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Abstract. With the advances of new proximal soil sensing technologies, soil properties can be inferred by a variety of sen-

sors, each having its distinct level of accuracy. This measurement error affects subsequent modelling and therefore must be

integrated when calibrating a spatial prediction model. This paper introduces a deep learning model for contextual Digital Soil

Mapping (DSM) using uncertain measurements of the soil property. The deep learning model, called Convolutional Neural

Network (CNN), has the advantage that it uses as input a local representation of environmental covariates to leverage the5

spatial information contained in the vicinity of a location. Spatial non-linear relationships between covariate pixel values and

measured soil properties are found by optimizing an objective function, which can be weighted with respect to a measurement

error of soil observations. In addition, a single model can be trained to predict a soil property at different soil depths. This

method is tested in mapping top- and subsoil organic carbon using laboratory analyzed and spectroscopically inferred mea-

surements. Results show that CNNs significantly increased prediction accuracy as indicated by the coefficient of determination10

and concordance correlation coefficient, when compared to a conventional DSM technique. Deeper soil layer prediction error

decreased, while preserving the interrelation between soil property and depths. The tests conducted using different window

size of input covariates matrix to predict organic carbon suggest that CNN benefits from using local contextual information up

to 260 to 360 metres. We conclude that CNN is a flexible, effective and promising model to predict soil properties at multiple

depths while accounting for contextual covariates information and measurement error.15

1 Introduction

Digital Soil Mapping (DSM) techniques are now commonly used to predict a soil property at unsampled locations using

measurements at a finite number of spatial locations. Prediction is routinely done by exploiting the relationship between a

soil property and one or several environmental covariates, which are assumed to represent soil forming factors. Examples of

covariates are Digital Elevation Model (DEM) or its derivatives (Moore et al., 1993). Demattê et al. (2018) used multi-temporal20

and multispectral remote sensing images to map soil spectral reflectance while Nussbaum et al. (2018) investigated the use of a

large set of covariates for mapping eight soil properties at four soil depths. The choice of covariates is governed either by their

availability, pre-selected using a priori pedological expertise, or based on the pedological concepts whereby covariates must

portray the factors of soil formation such as climate, organisms, relief, parent material and time. In most cases, the relation
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between soil property and the chosen covariates is modelled by a regression which relates either linearly (Wadoux et al., 2018)

or non-linearly (Grimm et al., 2008) sampled (point) soil properties and a vector a covariates value extracted at same point

location.

Several authors have shown that this is not satisfactory (e.g., Moran and Bui, 2002). Pedogenesis and thus soil properties spatial

variation is governed by complex relationships with soil forming factors and landscape characteristics, materialized at a local,5

regional or supra-regional scale (Behrens et al., 2014). Point information of the covariates can only describe approximately the

soil property because a large part of the spatial contextual information is missing. For example, soils on a gentle slope might

have a great accumulation of soil organic matter, accumulation which varies according to the surrounding slope gradients.

Several studies have shown that incorporating covariates contextual information improves prediction accuracy (Behrens et al.,

2014; Grinand et al., 2008; Gallant and Dowling, 2003). Smith et al. (2006) tested different neighbouring size in computing10

terrain attributes for use in a soil survey. The authors showed that the amount of contextual information supplied to the model

significantly impacts the output of the survey. In spite of these conclusions, contextual information surrounding a sampling

location is usually disregarded in DSM studies.

Several attempts have been made to incorporate the spatial domain of the covariates into the analysis. Behrens et al. (2010)

developed ConMAP which computes the elevation difference from the centre pixel to each pixel in a neighborhood and ConStat15

(Behrens et al., 2014) which derives statistical measures of elevation within a growing radius of the centre pixel. This generates

a very large number of hyper-covariates, abstract representation of the context, which can be used as predictor in subsequent

regression models. Another approach uses spatial transform such as wavelet to represent the covariate as a function of various

local spatial support (e.g., Lark and Webster, 2001). Alternatively, one may account for contextual information by simply

using covariates aggregated at larger support than their original resolution (Miller et al., 2015). This technique, referred to20

as the multi-scale approach, provides surprisingly large increase of prediction accuracy. It is now acknowledged that using

covariates with coarse spatial resolution can provide satisfactory prediction (Samuel-Rosa et al., 2015).

However, while this approaches enable to contextualize the spatial information supplied to the regression, they rely either on

heavy covariates pre-processing, subjective decisions based on the resolution to which covariates must be treated as input to the

model or modeller’s choice regarding neighbouring size. In light of these drawbacks, we propose to use Convolutional Neural25

Network (CNN) as a tool for mapping while explicitly accounting for local contextual information contained in covariates.

Recently, Padarian et al. (2018) have shown that is is possible to use CNN for soil mapping while accounting for contextual

covariate information while Behrens et al. (2018) compared deep neural network to random forest for mapping and found that

the former model provides more accurate predictions. The CNN proposed here has the advantage that it relies on the local

representation of covariates so as to leverage the spatial information contained in the vicinity of a sampled point. As for other30

regression methods, CNN is trained using measured soil properties at point location.

Measured soil properties are never error-free. Soil measurements can be at best performed under controlled conditions in

the laboratory. In the latter case, the error of those measurements is small and their impact on prediction is safely ignored.
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With the advent of new technology, soil measurements are often inferred using sensors such as spectrometers. The result is the

creation of databases of soil properties measured or inferred using several sensors which predicted soil properties with different

accuracy levels. Recently, Ramirez-Lopez et al. (2019) and Somarathna et al. (2018) have shown that measurement error may

have a significant impact in subsequent spatial analysis. For example, Ramirez-Lopez et al. (2019) estimated a measurement

error of about 50% for top- and subsoil Ca++ inferred using Near-Infrared (NIR) spectroscopy. In most cases, measurement5

error can be quantified and must therefore be accounted for when calibrating a spatial model using uncertain measurements.

While Padarian et al. (2018) demonstrated the use of CNN at a country extent mapping, we further advanced this concept for

mapping soil properties at a landscape scale which consider measurement error of soil measurements.

The objectives of this study are to (i) develop the framework of Convolutional Neural Networks for contextual spatial mod-

elling, (ii) account for the soil property measurement error in the CNN model calibration and (iii) demonstrate the usefulness10

of CNN to map top- and subsoil organic carbon in a potential application scenario.

2 Methodology

2.1 Model definition

We first describe the principle of Neural Networks (NN), basis of CNN. A measured soil property of interest zsi at location

si(i= 1, . . . ,n;si ∈ A) in the study area A is modelled by an Artificial Neural Network (ANN) model:15

zsi
= f(Xsi

;θ) + εsi
, (1)

where X is either a c×(w×h) 2-D matrix or a 3-D input matrix of size c×w×h which contains c environmental covariates of

size w×h centred at spatial location si. The vector θ are model parameters used by the neural network regression model f to

map non-linearly X→ z and leave room for a zero mean random error ε. Note that unlike classical geostatistics, measurements

of the soil property are assumed independent and identically distributed.20

An ANN model is formed of several layers, or “computation steps”. The input layer provides the raw information to the

network, which is connected to at least one hidden layer, which in turn is connected to an output layer, which outputs the

predictions of interest zsi . Each layer contains units, called neurons. The behaviour of the neurons depends on the activity of

the previous layer neurons and the weights between the previous and new layer neurons (LeCun et al., 2015). The parameters

of the models defined by Eq. 1 are thus the connection weights to the neuron j, wj = (wj,1, . . . ,wj,l) and a bias component25

per neuron bj . They are associated to an activation function φ which gives output zj by:

zj = φ(〈wj ,x〉+ bj), (2)

where 〈·, ·〉 is the dot product and x is a vector of inputs from previous layer neurons output. A graphical representation is

provided in Fig. 1a. In this study we use the ReLU activation function φ(x) = max(0,x) while the output layer for regression

uses the linear activation function φ′(x) = x.30
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Our neural network will contain more than one single hidden layer. For k = 1, . . . ,L hidden layers,

h0(x) = x, (3)

hk = ReLU(Wkhk−1(x)), for k = 1, . . . ,L− 1 (4)

hL = WLhL−1(x). (5)

For each layer, W is a matrix of size Jk × Jk−1, i.e. the number of neurons in the current layer by the number of neurons in5

the previous layer. Therefore the model parameters θ = (W1, b1, . . . ,WL, bL).

2.2 Convolutional Neural Network

In this paper we use the vicinity information of the measured soil property. In this case, ANN is not well adapted because they

deal with vectors as input data, while (correlated) spatial information is better represented as images. In convolutional neural

network, at least one layer is a convolution (Goodfellow et al., 2016). Let there be an input image matrix X, e.g. a Digital10

Elevation Model (DEM) cropped for size w×h pixels surrounding a measured soil property at location si. We apply a 2D

convolution using the filter F of size m×m′ to the input image X such that:

(F ∗X)(w,h) =
∑

m,m′

F(m,m′)X(w+m′,h+m), (6)

which can be rewritten with little modification to include the case where we have c= 3 environmental covariates. Eq. 6 shows

that each element in (F ∗X) is calculated as the sum of the products of one element in X and one element in F . In other words,15

the elements of (F ∗X) are the the sum of the element-wise multiplication of F by X.

Filters detect features related in the vicinity of a sampling location and leverage the spatial structure of the covariates. In

practice, the original covariate image go through several filters, each exploiting an abstract representation of the image features.

Similar to ANN, CNN has a number of hidden layers, called convolutional layers. The convolutions are combined with an

activation function at the end of each neuron, obtained by:20

zj(X) = φ(FL ∗hL−1 + bj). (7)

In addition to the convolutional layers, another set of operation consists of pooling layers. Pooling reduce the spatial size of the

images by down-sampling along the spatial dimension. Each convolution accepts one input image of a given size and number

of channels (aka depth), and returns another image of possibly a different size and number of channels. Usually, one want to

reduce the size of each image at each convolution, while augmenting the number of channels. Then, the last convolution returns25

an image of size 1× 1 and with a number of channels. this is a vector that we can pass to a fully connected layer.
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2.3 Parameter estimation

The CNN model is trained on dataset D = {(Xsi ,zsi) . . .(Xsn ,zsn)}, that is, a 4-D matrix of size n× c×w×h. The dataset

D is used to derive an optimized value of the parameters θ̂ for θ by minimizing the mean squared error (MSE) as objective

function, given by:

MSE =
n∑

i=1

δi(zsi
− f̂(Xsi

; θ̂))2, (8)5

where δ are the weights, which are all 1 if the soil property is measured without error. In this study, we used the Adam

optimizer (Kingma and Ba, 2014) to minimize Eq. 8. Adam uses the derivative of the objective function with respect to each

model parameter to update its value. This process is called backpropagation (LeCun et al., 1989). The optimization process

runs for a number of epochs. An epoch describes the number of times the network sees the entire input dataset. During each

epoch, the entire dataset is shown to the network in small subsets shuffled at random, called “minibatches”. The number of10

epochs must be chosen, as well as the batch size. In addition, one must chose the learning rate of the optimizer, i.e. how fast

the optimizer moves the weights in the opposite direction of the gradient after each update. A too small learning rate increases

the computation time to find the optimum of the objective function because the steps are small. If the learning rate is too large

training may not converge because the weights oscillate.

2.4 Multi-source data integration15

The values of the soil property zsi
used to train the CNN model might be uncertain. For example, they are derived using an

infrared spectroscopic model. This uncertainty must be accounted for when calibrating the CNN model. A solution is to assign

a weight to each value of the soil property, depending of its relative error compared to a true measurement of the soil property

at the same location. For a vector of a soil property inferred using a spectroscopic model zIR, one can assign a weight by

comparing the variance of the predicted soil property by the infrared model to the variance of the measurements used for the20

infrared model calibration. The weight δ for a measurement is given by:

δ = 1− var(zIR)
var(z)

, (9)

which can then be applied to weight importance of the values of the soil property inferred by the infrared model, at locations

where the true soil property is unknown. In this work, a true value of a soil property is measured in the laboratory, with assigned

weight of 1. The weights for each observation are used in model calibration, by updating objective function to minimize in25

Eq. 8.
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2.5 Quality of predictions

Once model parameter vector θ have been estimated, they are used to predict at new, unobserved location s0 by:

ẑs0 = f̂(Xs0 ; θ̂), (10)

which is used to evaluate the prediction accuracy on an independent test set. Let there be N −n independent test locations

si, i= (N−n), . . . ,N) whereN is the total number of measurements and n is the set of samples used for calibration, generally5

80% of the measured values. We quantify the quality of predictions by the Root Mean Squared Error (RMSE):

RMSE =
1

N −n
N−n∑

i=1

(zsi
− ẑsi

)2, (11)

the R2:

R2 = 1−
∑N−n

i=1 (zsi
− ẑsi

)
∑N−n

i=1 (zsi
− z)

. (12)

The bias is assessed by the Mean Error (ME):10

ME =
∑N−n

i=1 (zsi
− ẑsi

)
N −n , (13)

and the agreement of the predictions to the measurements with respect to the 1:1 line is assessed by the Concordance Correlation

Coefficient (ρ) (Lawrence and Lin, 1989):

ρ=
2ρ′σzσẑ

σ2
z +σ2

ẑ + (µz−µẑ)2
, (14)

where µ and σ2are mean and variance for either the vector of true measurements z or the vector of predicted values ẑ. The15

value ρ′ represents the correlation between µz and µẑ.

3 Case study

3.1 Study area and data

We tested the methodology in a 220 km2 area located in the lower Hunter valley area, Australia. Elevation ranges from 27 to

322 m above sea level with a pronounced slope ascending South-West. Measurements of the Total Soil Carbon (TC) expressed20

in g/100g−1 are available for topsoil (0-10 cm) and subsoil (40-50 cm). The lower Hunter area measurements were surveyed

along several years, which yielded the use of three TC measurement methods, denoted CNS, NIR and MIR hereafter:

– Laboratory analysis (CNS). Soil samples were analyzed for TC using the dry combustion method, i.e. by determining

the loss on ignition at 400°C under controlled conditions. This was done by an ElementarVario Max CNS analyser
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(Elementar Analysesysteme GmbH, Hanau, Germany). The standard deviation of the TC values inferred by the latter

device is small (less than 0.004 g/100g−1).

– Inferred using Near-Infrared (NIR) spectroscopy. Soil samples were scanned in the NIR range using an Agrispec portable

spectrophotometer with a contact probe attachment (Analytical SpectralDevices, Boulder, Colorado). TC values were

inferred using a spectroscopic model calibrated by the cubist regression tree method, using the spectral library of 3165

soil samples from Geeves et al. (1995).

– Inferred using Mid-Infrared (MIR) spectroscopy. Soil samples were scanned in the MIR region using a Bruker TENSOR

37 Fourier transform spectrometer. TC values were inferred using the MIR calibration model defined by Minasny et al.

(2008).

A large number of location contains more than one single measurement of TC. This is particularly visible in the western part10

of the area, where many samples have been analyzed using the two or three methods, and with a replication (Fig. 2). In total,

2,962 measurements of TC are available for the first depth, among which 722 are from the CNS methods, 1,146 for the NIR

and 1,094 from the MIR method. In the second depth, there are 2,500 measurements of the TC: 304 using the CNS method,

1,165 using the NIR method and 1,031 using the MIR method. They are shown in Fig. 2.

In addition to the TC measurements, three covariates from the study of Somarathna et al. (2018) at 25 × 25 m resolution were15

used:

– A Digital Elevation Model (DEM) from the SRTM (Shuttle Radar Topography Mission)(Fig. 3a), see Farr et al. (2007).

– A map of the Landsat 5 ETM band 5 (Fig. 3b), which corresponds to the Shortwave Infrared (SWIR) band for the

wavelength 1.55-1.75 µm.

– A map of the normalized difference vegetation index (NDVI) (Fig. 3c), derived from the NIR (band 4) and red (band 3)20

of the Landsat 5 ETM sensor.

3.2 Practical implementation

3.2.1 Model definition

The dataset of TC measurements was randomly splitted between test (20%) and calibration (80%) sets. Both topsoil and

subsoil measurements were jointly selected for either test or calibration. All soil measurements were normalized between 025

and 1 using the minimum and maximum values of the calibration set. In addition, all covariates were centred on 0 and scaled

to a standard deviation of 1 (see Fig. 3). Next, two 4-D matrices of dimension n× c×w×h and (N −n)× c×w×h were

created (test and calibration), where n is the number of TC measurements, N −n is the number of test measurements, c is the

number of covariates and w = h is the vicinity size (the square matrix) surrounding the TC measurements. We have n= 3,519

for calibration and (N −n) = 880 for test, c= 3 and w = h of different sizes. When a square of size w×h is created in the30
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Method

CNS

MIR

NIR

Measurements
per location

1

2

3

4

Figure 2. Spatial distribution of the observations for each measurement type (left) for the 0-10 cm topsoil and (right) number of measurements

recorded per sampling location for the 0-10 cm topsoil. The subsoil (40-50 cm) map is not shown but closely resembles the topsoil in both

number of sampling locations and number of measurements per location.

vicinity of a soil property at the border of the area, several missing values are reported. Since CNN can not handle this type of

input we assigned to the missing values the number -1. This practical problem is discussed more extensively in the Discussion

section.

A sequential multi-task (top- and subsoil) CNN model was built. The CNN is composed of a common architecture for the two

soil depths (shared layers) followed by two separate sets of fully connected layers, one for each soil depth. An illustration of5

the model is provided in Fig. 1b-c. The model specifications are reported in Table. 1. Note that for the convolutional layers,

zero padding is always applied to the original input image before the dot product with the filters. This operation keeps the

original size of the input image and preserve its information at an early stage of the model.

In order to compare the CNN prediction to a reference method, we also calibrated an univariate Random forest (RF) model.

Random forest is a non-linear machine learning method which have been widely used for soil mapping. For more information,10

the reader is redirected to Hengl et al. (2018). For a fair comparison between the CNN and RF models, we used the same
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(a) (b) (c)

−4 −2 0 2 4 6

Figure 3. Standardized covariates used in model calibration (a) DEM, (b) Landsat 5 ETM band 5 and (c) NDVI.

Table 1. Layers used in the sequential model built for topsoil and subsoil TC prediction.

Order Layer type Shared Filter size Number of fil-

ters/neurons

Activation

1 Convolutional yes 3 × 3 64 ReLU
2 Max-pooling yes 2 × 2 - -
3 Convolutional yes 2 × 2 32 ReLU
4 Dropout (0.3) yes - - -
5 Flatten yes - - -
6 Fully-connected no - 40 ReLU
7 Dropout (0.3) no - - -
8 Fully-connected no - 50 ReLU
9 Dropout (0.2) no - - -
10 Fully-connected no - 1 Linear

10
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calibration/test sets, with normalized TC measurements and standardized covariates as input. A RF forest model is calibrated

for each soil depth, using 1000 trees.

3.2.2 Parameter estimation

Once the sequential CNN model was specified, the parameters were estimated by minimizing the MSE as objective function

(Eq. 8), for which we used the Adam optimizer. Overfitting was carefully checked by (i) modifying the dropout rate in the model5

and (ii) ensuring that the model does not provide a considerably larger objective function on an independent dataset. Since the

test set was used solely to validate the predictions it could not be used to this purpose. We therefore randomly splitted the

calibration set into two sets, denoted calibration and validation sets hereafter. The calibration set (90%, 3,167 measurements)

was used to calibrate the model and the validation set (10%, 352 measurements) was used to tune the parameters and prevent

overfitting.10

The model was trained using different window size of the input images. We compared a model with window size (w×h) of 3,

5, 9, 15, 21, 29 and 35 for the input. The comparisons were made based on the depth averaged RMSE of the predictions on the

validation set. Optimization of the parameter of a single model (Table. 1) using 3 covariates, an input window size of 21 × 21

and 3,519 TC measurements took approximately 1 hour in parallel on a standard 4-cores laptop. All processing was done in R

3.5.1 (R Core Team, 2018), using the keras package (Allaire and Chollet, 2018) and tensoflow (Abadi et al., 2016) backend.15

Once the windows size selected, the hyperparameters of the model architecture were optimized using Bayesian optimization

(Snoek et al., 2012). Note that this is different from the optimization of the objective function using Adam. In Bayesian

optimization, the objective function is treated as a random function characterized by a prior probability distribution. Each

function evaluation is treated as data which enables updating the objective function posterior distribution. The latter is used to

determine where to evaluate next. The process is repeated until reaching a stopping criteria. Bayesian optimization enables to20

find optimized values of machine learning hyperparameters with commonly less iteration than when using a random search. In

this work, we optimized the filters number, the neurons number, the batch size and the learning rate using 50 iterations.

4 Results

Based on the procedure detailed in Section 2.4, measurements of TC inferred from NIR spectra were assigned a weight of 0.43

and 0.52 for topsoil and subsoil, respectively. The MIR inferred TC measurements had a weight of 0.62 for topsoil and 0.6125

for subsoil. This suggests that the MIR range of the spectra is more accurate in predicting TC. Recall that all CNS inferred

measurements had a weight of 1, as explained in the previous section.

Figure 4 shows the RMSE of topsoil and subsoil TC for different vicinity size of the input images. Contextual information is

accounted for by representing the input data as images of a square format surrounding a soil measurement. Each pixel has a
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Table 2. Weights given to the measurements.

CNS NIR MIR

Topsoil 1 0.43 0.62
Subsoil 1 0.52 0.61

0.8

1.0

1.2

R
M

S
E

Topsoil
Subsoil

0.4

0.6

0.8

3 5 7 9 15 21 29 35

Vicinity size

Figure 4. Effect of the vicinity size of input images. The RMSE corresponds to the error between the predictions and measured values in the

test set.

resolution of 25 × 25 m so that a window of size 3 × 3 includes contextual information up to 3/2 × 25 = 37.5 m. For both

soil depths, Fig. 4 shows a similar pattern with increasing size of the window. The RMSE becomes significantly smaller when

using a larger window of size 5 × 5. The lowest averaged (topsoil and subsoil) RMSE is found for a window size of 21 × 21

(radius of about 262 meters). It seems that model calibration does not benefit from using a larger window size as the RMSE

increases for a window size of 29 × 29 and 35 × 35. From now on, all the results presented come from using an input window5

size of 21 × 21 pixels.

The scatterplots of the measured against predicted TC values are presented in Fig. 5 for both the CNN and RF models. For

the CNN model, the agreement between measured and predicted TC was found to be satisfactory for both soil depths. Topsoil

predicted TC tends to be underestimated for large measured values of TC. This is also the case for subsoil where large measured

values of TC (e.g. 7.5 and 8 g/100g−1) have smaller predicted values at around 4 g/100g−1. High density of predicted values10

are close to the 1:1 line. In contrast to the CNN model, the predictions using the RF model are more dispersed, with several

over-predicted values for low-range of measured TC values. Visual inspection of Fig. 5 suggests that the CNN model predicts

more accurately than the RF model.

This is confirmed by the quantitative assessments of the predictions shown in Table 3. Correlation between predicted and

measured TC, as measured by the R2, is stronger for CNN (R2 = 0.55 for topsoil and R2 = 0.46 for subsoil) than for RF (R2 =15

0.35 for topsoil and R2 = 0.21 for subsoil). The ME shows that predictions for both models are relatively unbiased (ME close
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Figure 5. Scatterplot of the measured against predicted topsoil and subsoil TC for the CNN and RF models, along with the 1:1 line. Values

are expressed in g/100g−1.

Table 3. Evaluation of prediction accuracy on the independent test set.

R2 ME RMSE ρ

Convolutional Neural Network
Topsoil 0.55 0.04 0.93 0.68
Subsoil 0.46 −0.02 0.43 0.59

Random Forest
Topsoil 0.35 −0.05 1.07 0.55
Subsoil 0.21 −0.03 0.54 0.38

to zero in all cases). CNN model provides a significantly smaller accuracy measure (topsoil RMSE of 0.93 against 1.07 for the

RF model) while providing as well larger degree of prediction falling on the 45° line through the origin (about 15% higher for

both topsoil and subsoil), as already noticed visually in Fig. 5.

The maps produced using CNN are shown in Fig. 6 for topsoil (left) and subsoil (right) soil organic carbon. Both maps have

a relatively smooth pattern. The topsoil map of TC shows the highest concentrations in the South-East border of the area (>5
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Figure 6. Maps of the prediction of organic carbon for (a) topsoil and (b) subsoil. The values are expressed in g/100g−1.

8 g/100g−1), with relatively large concentration in the centre of the area (5 g/100g−1). There seems the be more TC in areas

where the NDVI have large values, but this pattern is not obvious. The subsoil maps of TC have a very different pattern than

the topsoil map. There seems to be an uniform distribution of TC around 1 g/100g−1 for most of the area. High concentration

of TC (> 5 g/100g−1) are seen in a patch in the centre of the catchment and in a large area in the south.

5 Discussion5

The proposed modelling approach explicitly accounts for the TC measurement error in the model calibration. The measurement

error of NIR inferred TC was larger than that of the MIR inferred TC. This is an expected result reported in many previous

studies (e.g., Rossel et al., 2006). The reason is that fundamental molecular vibration of bands associated to soil organic
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constituents occurs in the MIR region, while overtones and combinations appear in the NIR. Accounting for measurement

error in spatial modelling of soil property using spectroscopically inferred soil data received recently much attention. Using

the same case study, Somarathna et al. (2018) showed that acknowledging for measurement error almost halved prediction

uncertainty. Similarly, Ramirez-Lopez et al. (2019) emphasized the importance of estimating and accounting for measurement

error of spectroscopically inferred soil properties, as those can be larger than the sampling error. To the best of our knowledge,5

our study is the first to account for measurement error for mapping using machine learning.

The window size of the input images had a significant impact on model’s accuracy measure, as tested on an independent test

set. This is because the size of the input image is closely related to the amount of contextual information we supply to our

model. CNN integrates spatial context by using the pixels of covariates surrounding a sampling location. In our regional scale

case study of TC mapping, a window size of 21 × 21 and 29 × 29 provided the lowest prediction error, but larger window size10

worsened the prediction accuracy. In a similar context, this confirms the results found by Behrens et al. (2010). The authors

showed that prediction accuracy of topsoil silt content increased remarkably by using larger neighbourhood size. However, our

results also clearly indicated that including larger scale contextual information (larger input images window size) is not always

better. This is similar to the results of Smith et al. (2006) who noted that the windows size greatly varies between landscapes

and concluded that the appropriate size is case-dependent.15

Using a window size of 21× 21 to 29× 29 is equivalent to including spatial information in a radius from the sampling location

of about 262 to 362 m. Thus, it can be assumed that the window size relates to the range of spatial auto-correlation of TC.

Several authors provided equivalent values of spatial correlation range. Kumhálová et al. (2011) reported values of organic

matter spatial correlation range between 240 and 270 m using data of an experimental field in the Czech Republic. Similarly,

Jian-Bing et al. (2006) found a spatial correlation range of 309 m for a small watershed in northeast China. For our case study,20

we verified this assumption by fitting a spherical variogram to the experimental variogram of TC. The fitted value of range was

329 m for the topsoil and 275 m for the subsoil. This is close to the actual radius of the window size that we found optimal. This

is however delicate to draw conclusion. The actual correlation between auto-correlation range of a soil property and window

size deserves further investigation so as to generate rules.

Our approach predict TC for both topsoil and subsoil using a single model. The predictions benefit from using a common25

architecture for the two soil depths. When compared to predicting each depth separately using random forest, our method

reduced the mean squared error by 15 and 25% for topsoil and subsoil, respectively. Other studies reported similar results than

those produced by the random forest model. For example Kempen et al. (2011) reported a R2 of 0.23 for the 30-60 cm depth

range. Brus et al. (2016) also noticed a significant increase of the error for predicting organic carbon at deeper soil layers.

Our results confirm the recent study of Padarian et al. (2018) who showed a substantial decrease of the error associated to the30

prediction of deeper soil layer using CNN. The authors showed that CNN generates a representation of the vertical distribution

of the soil profile, which reproduced closely the observed vertical distribution. Following Angelini et al. (2017) we also tested

this by assessing the interrelation of among topsoil and subsoil for the measured, predicted by CNN or predicted using RF

TC (Table. 4). CNN maintains much better the correlation between depths than RF, as shown by the value of the Person’s r
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Table 4. Pearson’s r correlation coefficient between the topsoil and subsoil TC for the original measurements of the test set, the predicted

TC by CNN and the predicted TC by RF.

Original CNN RF

Pearson’s r 0.20 0.27 0.38

correlation coefficient. This is an important finding which needs to be confirmed in further studies. Soil properties are often

predicted depth by depth, which can result in predicting physically unrealistic soil profiles. In this study we showed that the

deterministic behaviour of a depth function can be partly reproduced by CNN.

Adapting CNN for soil mapping poses some practical problems. We mention two of them along with our solution for future

research:5

– Input images containing missing values are disregarded by CNN during calibration and prediction. This means that

(i) sampling locations close to the border of the area will be discarded from the analysis because their corresponding

covariate images contain missing values and (ii) prediction will suffer from an edge effect, i.e. pixels at the edge of the

area will not be predicted. This is a common problem when using a moving windows operation in GIS. In our study, we

padded the rows and columns of the covariates with -1, so as to avoid providing missing values to the model. The CNN10

is capable of predicting TC while learning that values containing -1 are missing values so that the subsequent prediction

do not acknowledge an edge effect. We note that padding a value of -1 is an arbitrary choice which might no be right in

another case study.

– A CNN model takes more time to train and predict than a RF one. In our case study, it took 5 seconds to fit RF and about

30 seconds to predict at about 600,000 centre of grid cells, using a standard 4-cores laptop. CNN took 15 minutes to fit15

and 30 seconds to predict but requires preparing a 4-D matrix of size n× c×w×h for the training (n is the number

of sampling locations) and for predicting (n is the number of prediction locations). This is tractable when the study

area is small or for predicting on a coarse grid, but becomes quickly computationally cumbersome for large scale or

high-resolution mapping. This is new problem arising from using multiple covariates when image recognition problems

commonly use three layers (color channels R-B-G). A solution is to move to could computing or make use of parallel20

computing solutions.

Finally, we note that in spite of its predictive power, CNN has the major disadvantage of being a “black box” machine learning

model, where results provide little knowledge, if any, into soil processes. In fact, many authors have noted that machine learning

models are difficult to interpret. Recent publications (e.g., Angelini et al., 2017) have made a step forward “conscious” digital

soil mapping where cause-effect relationships are adjusted with pedological knowledge. Solutions to interpret CNN or more25

common ANN models exist but they have been unexplored in digital soil mapping, for example automated sensitivity analysis

(Tickle et al., 1998) which consists in keeping track of the error computed during back propagation to measure the degree to

which each covariate contributes to the prediction error. The larger the contribution, the larger the influence of the covariate.
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Another solution is to extract set of rules (Andrews et al., 1995) for each hidden layer based on the weight vector and associated

bias of each unit. Taking these methods into account would certainly make a valuable extension to future CNN studies.

6 Conclusions

We have shown how to train a deep learning model to predict total organic carbon at two soil depths using uncertain measure-

ment of the soil property. The results and discussion bring us to the following conclusions:5

– The uncertainty of the organic carbon values inferred by NIR spectroscopy was larger than those inferred by MIR.

The uncertainty of the NIR inferred soil carbon measurement was large. Ignoring the latter uncertainty during model

calibration results in a substantial part of the uncertainty being ignored, which can potentially lead to biased parameter

estimates.

– A known measurement error can easily be accounted for when calibrating a CNN model, by weighting the objective10

function to optimize.

– CNN can be used for soil mapping using contextual covariates information. However the amount of contextual informa-

tion we supply to the model, as represented by the window size of the input covariates, must be chosen with attention.

In our case study a radius of 262 to 360 m provided the most best results. This is closely related to the range of the soil

organic carbon spatial auto-correlation. Future studies may show whether this is a consistent finding or case dependent.15

– In our case study, CNN outperforms RF as assessed by several prediction accuracy measures.

– A single CNN model can be used to predict multiple outputs. In our case study, we predicted simultaneously at two

soil depths. Deeper depth was much better predicted by CNN than RF. In addition, the reported predictions preserve

the interrelation between depths. CNN is more suited for predicting correlated outputs. This also needs to be further

investigated so as to generate rules.20

– More research is needed to (i) identify solutions for fast CNN soil data (pre-)processing for large scale or high resolution

soil mapping, (ii) develop methods to interpret CNN models and extract pedological knowledge from the neural network

and (iii) derive uncertainty bounds of the predictions made by CNN.
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