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Abstract. Soil is an important regulator of Earth system processes, but remains one of 15 

the least well-described data layers in Earth System Models (ESMs). We reviewed 16 

global soil property maps from the perspective of ESMs, including soil physical and, 17 

chemical and biological properties, which can also offer insights to soil data developers. 18 

These soil datasets provide model inputs, initial variables and benchmark datasets. For 19 

modeling use, the dataset should be geographically continuous, scalable and with 20 

uncertainty estimates. The popular soil datasets used in ESMs are often based on limited 21 

soil profiles and coarse resolution soil type maps with various uncertainty sources. 22 

Updated and comprehensive soil information needs to be incorporated in ESMs. New 23 

generation soil datasets derived by digital soil mapping with abundant, harmonized and 24 

quality controlled soil observations and environmental covariates are preferred to those 25 

by the linkage method (i.e. taxotransfer rule-based method) for ESMs. Soilgrids has the 26 

highest accuracy and resolution among the global soil datasets at the time, while other 27 

recently developed datasets are useful compliments. Because there is no universal 28 

pedotransfer function, an ensemble of them may be more suitable to provide derived 29 

soil properties to ESMs. Aggregation and upscaling of soil data are needed for model 30 

use but can be avoid by taking a subgrid method in ESMs at the cost of increases in 31 

model complexity. Producing soil property maps in time series is still challenging.  32 

Uncertainty of soil data needs to be estimated and incorporated in ESMs.  33 

 34 

  35 
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1 Introduction 36 

Soil or pedosphere is a key component of Earth system, and plays an important 37 

role in the water, energy and carbon balances and other biogeochemical processes. An 38 

accurate description of soil properties is essential in advancing the modeling 39 

capabilities of Earth System Models (ESMs) to predict land surface processes at the 40 

global and regional scales (Luo et al., 2016). Soil information is required by the land 41 

surface models (LSMs), which is a component of ESMs. With the help of computer-42 

based geographic systems, many researchers have produced geographical databases to 43 

organize and harmonize large amount of soil information generated from soil surveys 44 

during the last decades (Batjes, 2017; Hengl et al., 2017). However, soil dataset used 45 

in ESMs is not well updated nor well utilized yet (Sanchez et al., 2009; 46 

FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). The popular soil datasets used in ESMs are 47 

outdated and with limited accuracy. Some soil properties such as gravel (or coarse 48 

fragment) and depth to bedrock are not utilized in most ESMs. Meanwhile, it is 49 

needed to change ESMs’ schemes and structure to represent soil processes more 50 

realistic in utilizing new soil information (Brunke et al., 2016; Luo et al., 2016; 51 

Oleson et al., 2010). For example, Brunke et al., (2016) incorporated the depth to 52 

bedrock data in a land surface model using variable soil layers and instead of the 53 

previous constant depth. Better soil information with high resolution and better 54 

representation of soil in models have improved and will improve the performance in 55 

simulating the Earth system (eg. Livneh et al., 2015; Dy and Fung, 2016; Kearney and 56 

Maino, 2018). 57 

ESMs require detailed information on the soil physical, chemical and biological 58 

properties. Site observations (called soil profiles) from soil surveys include soil 59 

properties such as soil depth, soil texture (sand, silt and clay fractions), organic 60 

matter, coarse fragments, bulk density, soil colour, soil nutrients (carbon (C), nitrogen 61 

(N), phosphorus (P), potassium (K) and sulfur (S)), amount of roots, etc. The range of 62 

soil data collected during a soil survey, varies with scale, specifications of a country 63 

or a region, and projected applications of the data (i.e. type of soil surveys, routine 64 

versus specifically designed surveys). As a result, the availability of soil properties 65 

differs in different soil databases. However, soil hydraulic and thermal parameters as 66 

well as biogeochemical parameters are usually not observed in soil surveys, which 67 

need to be estimated by pedotransfer functions (PTFs) (Looy et al., 2017). This 68 

review focus on the soil data (usually time-invariant) from soil surveys, while 69 

variables such as soil temperature and soil moisture are beyond this paper’s scope. 70 

Soil properties are functioned in three aspects in ESMs:  71 

1) Model inputs to estimate parameters. The soil thermal (soil heat capacity and 72 

the thermal conductivity) and hydraulic characteristics (empirical parameters of soil 73 

water retention curve and hydraulic conductivity) are usually obtained by fitting 74 

equations (PTFs) to easily measured and widely available soil properties, such as 75 

sand, silt and clay fractions, organic matter content, rock fragments and bulk density 76 

(Clapp and Hornberger, 1978; Farouki, 1981; Vereecken et al., 2010; Dai et al., 2013). 77 

Soil albedos are significantly correlated with Munsell soil color value (Post et al., 78 

2000). For some ESMs, the derived parameters by PTFs are used as direct input 79 
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instead of calculating them in the models. 80 

2) Initial variables. The nutrient (C, N, P, K, S, etc.) amounts and the nutrients 81 

associated parameters (pH, cation-exchange capacity, etc.) in soils can be used to 82 

initialize the simulations. Generally, their initial values are assumed to be at steady 83 

state by running model over thousands of model years (i.e., spin-up) until no trend of 84 

change in pool sizes (McGuire et al., 1997; Thornton and Rosenbloom, 2005; Doney 85 

et al., 2006; Luo et al., 2016). To initialize nutrient amounts using soil data derived 86 

from observations as background field could largely reduce the times of model spin-87 

up, and also could avoid the possibility of the non-linear singularity evolution of the 88 

modeling which means that that models may have multiple equilibria, and then 89 

provide better estimate of the true terrestrial nutrient state. The setting of initial 90 

nutrient stocks is a major factor leading to model-to-model variation in the simulation 91 

(Todd-Brown et al., 2014). 92 

3) Benchmark data. Soil data, as measurements, could serve as a reference for 93 

modeling calibration, validation and comparison. Soil carbon stock is one of the most 94 

frequently used soil properties as benchmark data (Todd-Brown et al., 2013). Other 95 

nutrient stocks such as nitrogen stock can also be used as benchmark data if an ESM 96 

simulated them. 97 

Soil properties are of great spatial heterogeneity both horizontally and vertically. 98 

As a result, ESMs usually incorporate soil property maps (i.e., horizontal spatial 99 

distribution) for multiply layers rather than a global constant or a single layer. ESMs, 100 

especially LSMs, are evolving towards hyper-resolutions of 1km or finer with more 101 

detailed parameterization schemes to accommodate the land surface heterogeneity 102 

(Singh et al., 2015; Ji et al., 2017). So spatially explicit soil data at high resolutions 103 

are necessary to improve land surface representation and simulation. Because soil 104 

properties are observed at individual locations, soil mapping or spatial prediction 105 

model is needed to derive the 3D representation of soil distribution. The traditional 106 

way (i.e., the linkage method, also called taxotransfer rule-based method) is to link 107 

soil profiles and soil mapping units on soil type maps, sometimes with ancillary maps 108 

such as topography and land use (Batjes, 2003; FAO/IIASA/ISRIC/ISS-CAS/JRC, 109 

2012). In the past decades, various digital soil mapping technologies were proposed 110 

by finding the relationships between soil and environmental covariates (usually 111 

remote sensing data) such as climate, topography, land use, geology and so on 112 

(McBratney et al., 2003). 113 

There are many challenges related to application of soil datasets in ESMs. First, 114 

soil datasets are usually not appropriated scaled or formatted for the use of ESMs and 115 

some upscaling issues, which is the most frequently encountered, need to be 116 

addressed. The soil datasets produced by the linkage methods are polygon-based and 117 

need to be converted to fit the grid-based ESMs. This conversion can be done by 118 

either subgrid method or spatial aggregation. The up-to-date soil data are provided at 119 

a resolution of 1km or finer, while the LSMs are mostly ran at a coarser resolution. So 120 

upscaling of soil data is necessary before it can be used by ESMs. Proper upscaling 121 

methods need to be chosen carefully to minimize uncertainty in the modeling results 122 

introduced by them (Hoffmann and Christian Biernath, 2016; Kuhnert et al., 2017). 123 
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Second, all the current global soil datasets represent the average state of last decades, 124 

and producing soil property maps in time series is still challenging. Soil landscape and 125 

pedogenic models are developed to simulate soil forming processes and soil property 126 

changes, which can be incorporated into ESMs. The prediction of changing soil 127 

properties can be also done by digital soil mapping taken the changing climate and 128 

land use as covariates. Third, the uncertainty of soil properties can be estimated, and 129 

adaptive surrogate modeling based on statistical regression and machine learning may 130 

be used to assess effects of the uncertainty of soil properties on ESMs (Gong et al., 131 

2015; Li et al. 2018). Last but not the least, the layer schemes of soil data sets need to 132 

be converted for model use and missing values for deeper soil layers needs to be 133 

filled. 134 

This paper is organized in the following sections. In section 2, we first introduce 135 

soil datasets at global and national scales produced by the linkage method and digital 136 

soil mapping technology and then the soil datasets that have already been 137 

incorporated in ESMs. Section 3 presents PTFs that are used in ESMs to estimate soil 138 

hydraulic and thermal parameters. Section 4 describes how to deal with soil data 139 

derived by the linkage methods. Section 5 introduces the upscaling of high-resolution 140 

soil data to the coarse resolution of ESMs. Section 6 gives the summary and an 141 

outlook of further improvements. 142 

 143 

2 General methodology of deriving soil datasets for ESMs 144 

2.1 Global and national soil datasets 145 

Two kinds of soil data are generated from soil surveys: a map (usually in the 146 

form of polygon maps) representing main soil types in a landscape unit and soil 147 

profiles with observations of soil properties which are considered representative for 148 

the main component soils of the respective mapping units. ESMs usually require the 149 

spatial distribution of soil properties (i.e., soil property maps) rather than information 150 

about soil types. Two kinds of methods, i.e. the linkage method and the digital soil 151 

mapping method, are used to derive soil property maps. 152 

Soil maps (the term soil map refers to soil type map in this paper) show the 153 

geographical distribution of soil types, which are compiled under a certain soil 154 

classification system. There are many soil mapping units (SMU) in a soil map and a 155 

SMU is composed of more than one component (i.e. soil type) in most cases. At the 156 

global level, there is only one generally accepted global soil map, i.e., the FAO-157 

UNESCO Soil Map of the World (SMW) (FAO, 1971-1981). It was made based on 158 

soil surveys conducted between the 1930s and the 1970s, and technology available in 159 

1960s. Several versions exist in the digital format (FAO, 1995, 2003b; Zöbler, 1986) 160 

and these products are known to be outdated. The information on the initial SMW and 161 

DSMW has since been updated for large sections of the world in the HWSD product 162 

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012), which has recently been revised in 163 

WISE30sec (Batjes, 2016).  164 

At the regional and national level, there are many soil maps based on either 165 

national or international soil classifications. Here are some examples of major soil 166 

maps available in digital formats: the Soil and Terrain Database (SOTER) databases 167 
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(Van Engelen and Dijkshoorn, 2012) for different regions, the European Soil Database 168 

(ESB, 2004), the 1: 1 million Soil Map of China (National Soil Survey Office, 1995), 169 

the U.S. General Soil Map (GSM), the 1:1 million Soil Map of Canada (Soil 170 

Landscapes of Canada Working Group, 2010) and the Australian Soil Resource 171 

Information System (ASRIS) (Johnston et al., 2003).  172 

Soil profiles are composed of multiple layers called soil horizons. For each 173 

horizon, soil properties are observed (e.g. site data) or measured (e.g. pH, sand, silt, 174 

clay content). At the global level, several soil profile databases exist. Here we only 175 

discuss the two most comprehensive ones. The World Inventory of Soil Emission 176 

Potentials (WISE) database was developed as a homogenized set of soil profiles 177 

(Batjes, 2008). The newest version (WISE 3.1) contains 10,253 soil profiles and 26 178 

physical and chemical properties. The soil profiles database of World Soil Information 179 

Service (WoSIS) contains the most abundant profiles (about 118,400) from national 180 

and global databases including most of the databases mentioned below (Batjes et al., 181 

2017), though only a selection of important soil properties (12) are included (Ribeiro 182 

et al., 2018). Data served through WoSIS have been standardized, with special 183 

attention for the description and comparability of soil analytical methods worldwide. 184 

However, many countries, although having a large collection of soil profile data, are 185 

not yet sharing such data (Arrouays et al, 2017).  186 

At the regional and national level, there are many soil profile databases, usually 187 

with soil classifications corresponding to the local soil maps. Here are some 188 

examples: the USA National Cooperative Soil Survey Soil Characterization database 189 

(http://ncsslabdatamart.sc.egov.usda.gov/), profiles from the USA National Soil 190 

Information System (http://soils.usda.gov/technical/nasis/), Africa Soil Profiles 191 

database (Leenaars, 2012), the Australian Soil Resource Information System 192 

(Karssies, 2011), the Chinese National Soil Profile database (Shangguan et al., 2013), 193 

soil profile archive from the Canadian Soil Information System (MacDonald and 194 

Valentine, 1992), soil profiles from SOTER (Van Engelen and Dijkshoorn, 2012), the 195 

soil profile analytical database for Europe (Hannam et al., 2009), the Mexico soil 196 

profile database ( Instituto Nacional de Estadística y Geografía, 2016), and the 197 

Brazilian national soil profile database (Cooper et al., 2005). 198 

The linkage method (called the taxotransfer rule-based method) is to link soil 199 

maps (with soil mapping units or soil polygons) and soil profiles (with soil properties) 200 

according to taxonomy-based pedotransfer (taxotransfer in short, note that 201 

pedotransfer here does mean pedotransfer functions which is a different thing) rules 202 

(Batjes, 2003). The criteria used in the linkage could be one or many factors as 203 

following: soil class, soil texture class, depth zone, topographic class, distance 204 

between soil polygons and soil profiles and so on (Shangguan et al., 2012). Each soil 205 

type is represented by one or a group of soil profiles that meet the criteria, and usually 206 

the median or mean value of a soil property is assigned to the soil type. Because the 207 

linkage method assigned only one value or a statistical distribution to a soil type in 208 

soil polygons (usually a polygon contains multiple soil types with their fractions), the 209 

intra-polygonal spatial variation is not taken into account. At the global level, many 210 

databases were derived by the linkage method: the FAO Soil Map of the World with 211 



6 

 

derived soil properties (FAO, 2003a), the Data and Information System of 212 

International Geosphere-Biosphere Programme (IGBP-DIS) database (Global Soil 213 

DataTask, 2000), the Soil and Terrain Database (Van Engelen and Dijkshoorn, 2012) 214 

for multiply regions and countries, the ISRIC-WISE derived soil property maps 215 

(Batjes, 2006), the Harmonized World Soil Database (HWSD) 216 

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012), the Global Soil Dataset for Earth System 217 

Model (GSDE) (Shangguan et al., 2014) and WISE30sec (Batjes, 2016). Three most 218 

recent ones are HWSD, GSDE and WISE30sec. HWSD was built via combining the 219 

existing regional and national updates of soil information. GSDE as an improvement 220 

of HWSD incorporated more soil maps and more soil profiles related to the soil maps, 221 

with more soil properties. GSDE accomplished the linkage based on the local soil 222 

classification, which required no correlation between classification systems and 223 

avoided the error brought by taxonomy reference. In addition, GSDE provides 224 

estimation of eight layers to the depth of 2.3 m, while HWSD provides estimation of 225 

two layers to the depth of 1 m. WISE30sec is another improvement of HWSD 226 

incorporated more soil profiles with seven layers up to 200 cm depth and with 227 

uncertainty estimated by mean ± standard deviation. WISE30sec used the soil map 228 

from HWSD with minor corrections and climate zone maps as categorical covariate. 229 

Many national and regional agencies around the world have organized their soil 230 

surveys by linking soil maps and soil profiles, including the USA State Soil 231 

Geographic Database (STATSGO2) (Soil Survey Staff, 2017), Soil Landscapes of 232 

Canada (Soil Landscapes of Canada Working Group, 2010), the ASRIS (Johnston et 233 

al., 2003), the Soil-Geographic Database of Russia (Shoba et al., 2008) the European 234 

Soil Database (ESB, 2004), the China dataset of soil properties (Shangguan et al., 235 

2013) and so on. 236 

Digital soil mapping (McBratney et al., 2003) is the creation and the population 237 

of a geographically referenced soil database, generated at a given resolution by using 238 

field and laboratory observation methods coupled with environmental data through 239 

quantitative relationships (http://digitalsoilmapping.org/). Usually, the soil datasets 240 

derived by digital soil mapping provide grid-based spatial continuous estimation 241 

while the soil datasets derived by the linkage method provide estimations with abrupt 242 

changes at the boundary of soil polygons. The GlobalSoilMap is a global consortium 243 

that aims to create global digital maps for key soil properties (Sanchez et al., 2009). 244 

This global effort takes a bottom-up framework and will produce the best available 245 

map of soil at a resolution of 3 arc sec (about 100 m) along with the 90% confidence 246 

of predictions. Soil properties will be provided for six soil layers (i.e. 0–5, 5–15, 15–247 

30, 30– 60, 60–100, and 100–200 cm). Many countries have produced soil maps 248 

following the GlobalSoilMap specifications (Odgers et al., 2012; Viscarra Rossel et 249 

al., 2015; Mulder et al., 2016; Ballabio et al., 2016; Ramcharan et al., 2018; Arrouays, 250 

2018). The Soilgrids system (https://www.soilgrids.org) is another global soil 251 

mapping project (Hengl et al., 2014; Hengl et al., 2015; Hengl et al., 2017). The 252 

newest version (Hengl et al., 2017) at a resolution of 250 m was produced by fitting 253 

an ensemble of machine learning methods based on about 150,000 soil profiles and 254 

158 soil covariates, which is currently the most detailed estimation of global soil 255 
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distribution. A third global soil mapping project is the Global SOC Map of the Global 256 

Soil Partnership, which focuses on country-specific soil organic carbon estimates 257 

(Guevara et al., 2018). 258 

Because soil property maps are derived products based on soil measurements of 259 

soil profiles (point observations) and spatial continuous covariates (including soil 260 

maps), it is necessary to discuss the uncertainty sources, spatial uncertainty estimation 261 

and accuracy assessment of these derived data (the last two are different aspects of 262 

uncertainty estimation). More attention should be paid to this issue in ESM 263 

applications instead of taking soil property maps as observations without error. There 264 

are various uncertainty sources in deriving soil property maps, including uncertainty 265 

from soil maps, soil measurements, soil-related covariates and the linkage method 266 

itself (Shangguan et al., 2012; Batjes, 2016; Stoorvogel et al., 2017). The following 267 

may not be the complete list of uncertainty but the major ones. The uncertainty of soil 268 

maps is a major source of global dataset derived by the linkage methods. For these 269 

dataset, large sections of the world are drawn on the coarse FAO SMW map and the 270 

purity of soil maps (referring to the following website for the definition: 271 

https://esdac.jrc.ec.europa.eu/ESDB_Archive/ESDBv2/esdb/sgdbe/metadata/purity_m272 

aps/purity.htm) is likely to be around 50 to 65% (Landon, 1991). Another important 273 

source of uncertainty is the limited comparability of different analytical methods of a 274 

given soil property in using soil profiles coming from various sources. A weak 275 

correlation or even a negative correlation was found between different analytical 276 

methods, though strong positive correlation revealed in most cases (McLellan et al. 277 

2013). Both datasets by the linkage method and those by digital soil mapping suffer 278 

this uncertainty. Though there are no straightforward mechanisms to harmonize the 279 

data, efforts are undertaken to address this issue and provide quality assess (Batjes, 280 

2017; Pillar 5 Working Group, 2017). Another source of uncertainty comes from the 281 

geographic and taxonomic distribution of soil profiles, especially for the under-282 

represented areas and soils (Batjes, 2016). The fourth source of uncertainty is from 283 

the linkage method itself. It does not represent the intra-polygon spatial variation and 284 

usually do not consider soilrelated covariates explicitly like digital soil mapping, 285 

though there are cases where climate and topography are considered and Stoorvogel et 286 

al. (2017) proposed a methodology to incorporate landscape properties in the linkage 287 

method. Finally, uncertainty from the covariates is minor because spatial prediction 288 

models such as machining learning in digital soil mapping can reduce its influences 289 

(Hengl et al., 2014), though a more comprehensive list of covariates with higher 290 

resolution and accuracy will improve the predicted soil property maps. Spatial 291 

uncertainty is estimated by different methods for the linkage method and digital soil 292 

mapping methods. For the linkage method, statistics such as standard derivation and 293 

percentiles can be used as spatial uncertainty estimation, which are calculated for the 294 

population of soil profiles linked to a soil type or a land unit (Batjes, 2016). This 295 

estimation has some limitations because soil profiles are not taken probabilistically 296 

but based on their availability, especially for the global soil datasets. Uncertainty will 297 

be underestimated when the sample size is not big enough to represent a soil type. For 298 

digital soil mapping, spatial uncertainty could be estimated by methods such as 299 
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geostatistical methods and quantile regression forest (Vaysse and Lagacherie, 2017), 300 

which make sense of statistic. The accuracy of soil dataset derived by digital soil 301 

mapping are estimated by cross-validation. But it is not trivial for those derived by the 302 

linkage method due to the global scale, the support of the data and independent data 303 

(Stoorvogel et al., 2017) and most of these maps are validated by statistics such as 304 

mean error and coefficient of determination. Instead, some datasets, including WISE 305 

and GSDE, use some indictors such as linkage level of soil class and sample size to 306 

offer quality control information (Shangguan et al. 2014; Batjes, 2016). A simple way 307 

to compare the accuracy of datasets by both methods may be to use a global soil 308 

profile database as a validation dataset, though some of these profiles were used in 309 

deriving these datasets and questions will be raised. We evaluated several global soil 310 

property maps in section 3.  311 

 312 

 313 

2.2 Soil dataset incorporated in ESMs 314 

Table 1 shows ESMs (specifically, their land surface models) and their input soil 315 

datasets. The ESMs in Table 1 cover the list of CMIP5 (Coupled Model 316 

Intercomparison Project) except those without information about the input soil 317 

datasets. Land surface models (LSMs) are key tools to predict the dynamic of land 318 

surface under climate change and land use. Five datasets are widely used, i.e., the 319 

datasets by Wilson and Henderson-Sellers (1985), Zöbler (1986), Webb et al. (1993), 320 

Reynolds et al. (2000), Global Soil Data Task (2000), and Miller and White (1998). 321 

Except GSDE, HWSDand STATSGO (Miller and White, 1998) for USA in Table 1, 322 

these datasets were derived from the Soil Map of the World (note that large sections 323 

of GSDE and HWSD still used this map as a base map because there are no available 324 

regional or national maps) (FAO, 1971-1981) and limited soil profile data (no more 325 

than 5,800 profiles), which gained popularity because its simplicity and ease of use. 326 

But these are outdated and should no longer be used because much better soil 327 

information as introduced in Section 2.1 can be incorporated (Sanchez et al., 2009; 328 

FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). 329 

In recent years, efforts were taken to improve the soil data condition in ESMs. 330 

The Land-Atmosphere Interaction Research Group at Beijing Normal University 331 

(BNU, now at Sun Yat-sen University) has put much efforts on this topic. Shangguan 332 

et al. (2012, 2013) developed a China dataset of soil properties for land surface 333 

modeling based on 8,979 soil profiles and the Soil Map of China using the linkage 334 

method. Dai et al. (2013) derived soil hydraulic parameters using pedotransfer 335 

functions based on the soil properties by Shangguan et al. (2013). Shangguan et al. 336 

(2014) further developed a comprehensive global dataset for ESMs. The above soil 337 

datasets were widely used in the ESMs. Soil properties from these soil datasets, 338 

including soil texture fraction, organic carbon, bulk density and derived soil hydraulic 339 

parameters, were implemented in the Common Land Model Version 2014 340 

(CoLM2014, http://land.sysu.edu.cn/ ). Li et al. (2017) shows that CoLM2014 was 341 

more stable than the previous version and had comparable performance to that of 342 

CLM4.5 which may be attributed in part to the new soil parameters as input. Wu et al. 343 
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(2014) shows that soil moisture values are closer to the observations when simulated 344 

by CLM3.5 with the China dataset than those simulated with FAO. Zheng and Yang 345 

(2016) estimated effects of soil texture datasets from FAO and BNU on regional 346 

terrestrial water cycle simulations with the Noah-MP land surface model. Tian et al. 347 

(2012) used the China soil texture data in a land surface model (GWSiB) coupled with 348 

a groundwater model. Lei et al. (2014) used the China soil texture data in CLM to 349 

estimate the impacts of climate change and vegetation dynamics on runoff in the 350 

mountainous region of the Haihe River basin. Zhou et al. (2015) estimated age-351 

dependent forest carbon sink with a terrestrial ecosystem model utilizing the soil 352 

carbon data of China. Dy and Fung (2016) updated the soil data for the Weather 353 

Research and Forecasting model (WRF).  354 

Researchers have also put efforts to update ESMs with other soil data. Lawrence 355 

and Chase (2007) used MODIS data to derive soil reflectance, which was used as a 356 

soil colour parameter in Community Land Model 3.0 (CLM). De Lannoy et al. (2014) 357 

updated the Catchment land surface model of the NASA with soil texture and organic 358 

matter data from HWSD and STATSGO2. Livneh et al. (2015) evaluated the 359 

influence of soil textural properties on hydrologic fluxes by comparing the FAO data 360 

and STATSGO2. Folberth et al. (2016) evaluated the impact of soil input data on 361 

yield estimates in a global gridded crop model. Slevin et al. (2017) utilized the HWSD 362 

to simulate global gross primary productivity in the JULES land surface model. Trinh 363 

et al. (2018) proposed an approach that can assimilate coarse global soil data by finer 364 

land use and coverage dataset which improved the performance of hydrologic 365 

modeling at watershed scale. Kearney and Maino (2018) incorporated the new 366 

generation of soil data produced by digital soil mapping method into a climate model 367 

and found that, compared to the old soil information, this improved the simulation of 368 

soil moisture at fine spatial and temporal resolution over Australia. A global gridded 369 

hydrologic soil groups (HYSOGs250m) was developed based on soil texture and 370 

depth to bedrock of Soilgrids (Hengl et al., 2017) and groundwater table depth (Fan et 371 

al., 2013) for curve-number based runoff modeling of U.S. Department of Agriculture 372 

(Ross et al., 2018). 373 

Except soil properties, the estimation of underground boundaries including the 374 

groundwater table depth, the depth to bedrock (DTB) and depth to regolith and its 375 

implementation in ESMs is also a new focus. Fan et al. (2013) compiled global 376 

observations of water table depth and inferred the global patterns using a groundwater 377 

model. Pelletier et al. (2016) developed a global DTB dataset by using process-based 378 

models for upland and an empirical model for lowland. This dataset was implemented 379 

in the CLM4.5 and found that there were significant influences on water and energy 380 

simulations compared to the default constant depth (Brunke et al., 2015). Shangguan et 381 

al. (2018) developed a global DTB by digital soil mapping based on about 1.7 million 382 

observations from soil profiles and water wells, which has a much higher accuracy than 383 

the dataset by Pelletier et al. (2016). Vrettas and Fung (2016) shows that the weathered 384 

bedrock stores a significant fraction (more than 30%) of the total water despite its low 385 

porosity. Jordan et al. (2018) estimated global permeability of the unconsolidated and 386 

consolidated earth for groundwater modelling. However, due to the lack of data, an 387 
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accurate global estimation of depth to regolith is not feasible. Caution should be paid 388 

to use of the products of so-called soil depth in ESMs. Soil depth maps are usually 389 

estimated based on observations from soil survey, and soil depth (or depth to the R 390 

horizon) is assumed to be equal to DTB. However, these observations are usually less 391 

than 2 meters and usually do not meet the depth to bedrock (Shangguan et al., 2017). 392 

Thus, soil depth maps based on soil profiles only are significantly underestimated (one 393 

order of magnitude lower) compared to the actual depth to bedrock and should not be 394 

taken as the lower boundary of ESMs.  395 

                                         396 

2.3 Estimating secondary parameters using pedotransfer functions 397 

Earth system modellers have employed different pedotransfer functions (PTFs) 398 

to estimate soil hydraulic parameters (SHP), soil thermal parameters (STP), and 399 

biogeochemical parameters (Looy et al., 2017; Dai et al., 2013) or used these 400 

parameters as model inputs. Almost all ESMs incorporated SHPs and STPs estimated 401 

by PTFs but not biogeochemical parameters. PTFs are the empirical functions that 402 

account for the relationships between these secondary parameters (i.e., derived soil 403 

properties) and more easily obtainable soil property data. Direct measurement of these 404 

parameters is difficult, expensive and in most cases impractical to take sufficient 405 

samples to reflect the spatial variation. Thus, most soil databases do not contain these 406 

secondary parameters. PTFs provide the alternative to estimate them. In ESMs, SHPs 407 

and STPs are usually derived using simple PTFs taking only soil texture data as the 408 

input. As more soil properties become available globally, including gravel, soil 409 

organic matter and bulk density, more sophisticated PTFs using additional soil 410 

properties can be utilized in ESMs.   411 

PTFs can be expressed as either numerical equations or by machine learning 412 

methodology which is more flexible to simulate the highly nonlinear relationship in 413 

analysed data. PTFs can also be developed based on soil processes. Most researches 414 

did not indicate where the PTFs can potentially be used, and the accuracy of a PTF 415 

outside of its development dataset is essentially unknown McBratney et al. (2011). 416 

PTFs generally are not portable from one region to the other (i.e. locally or regionally 417 

validated). Therefore, they should never be considered as an ultimate source of 418 

parameters in soil modelling. Looy et al. (2017) reviewed PTFs extensively in earth 419 

system science and emphasized that PTF development has to go hand in hand with 420 

suitable extrapolation and upscaling techniques such that the PTFs correctly represent 421 

the spatial heterogeneity of soils in ESMs. Though the PTFs were evaluated, it is not 422 

clear which are the best set of PTFs for global applications. Due to these limitations, a 423 

better way to estimate the secondary parameters may be to use an ensemble of PTFs, 424 

which can give the variability of parameters. Dai et al. (2013) derived a global soil 425 

hydraulic parameter database using the ensemble method. Selection of PTFs was 426 

carried out based on the following rules, including the consistent physic definition, 427 

large enough training sample and positive evaluations in comparison with other PTFs. 428 

The PTFs selected included not only those in equations but also PTFs of machine 429 

learning. As a result, the modellers could use these parameters as inputs instead of 430 

calculating them in ESMs every time running the model. 431 
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The new generation soil information has already been utilized to derive SHPs 432 

and STPs in some researches. Montzka et al. (2017) produced a global map of SHPs 433 

at a resolution of 0.25° based on the SoilGrids 1km dataset. Tóth et al. (2017) 434 

calculated SHPs for Europe with the EU-HYDI PTFs (Tóth et al., 2015) based on 435 

SoilGrids 250 m. Wu et al. (2018) used an integrated approach that ensembles PTFs to 436 

map field capacity of China based on multi-source soil datasets. 437 

The performance of PTF in ESMs is evaluated in many researches, though PTFs 438 

has not been fully exploited and integrated into ESMs (Looy et al., 2017). Here are 439 

some examples. Chen et al. (2012) incorporated soil organic matter to estimate soil 440 

porosity and thermal parameters for the use of land surface models. Zhao et al. 441 

(2018a) evaluated PTFs performance to estimate SHPs and STPs for land surface 442 

modelling over the Tibetan Plateau. Zheng et al. (2018) developed PTFs to estimate 443 

the soil optical parameters to derive soil albedo for the Tibetan Plateau, and the PTFs 444 

incorporated into an eco-hydrological model which improved the model simulation of 445 

surface energy budget. Looy et al. (2017) envisaged two possible approaches to 446 

improve parameterization of Earth system models by PTFs. One is to replace constant 447 

coefficients in the current ESMs with spatially distributed values by PTFs. The other 448 

is to develop spatially exploitable PTFs to parameterize specific processes using 449 

knowledge of environmental controls and variation of soil properties. 450 

 451 

3 Comparison of available global soil datasets 452 

For the convenience of ESMs’ application, we compared several available soil 453 

datasets and evaluated them with soil profiles from WoSIS for some key variables 454 

(Sand, clay content, organic carbon, coarse fragment and bulk density) used in ESMs. 455 

In addition to the most recent developed soil datasets, we also included one old data 456 

set (i.e. IGBP) used in ESMs for the evaluation. It is not necessary to compare all the 457 

old data sets because they are based on similar, limited and outdated source data as 458 

described in section 2.2. They have coarser resolution (Table 1) than the newly 459 

developed soil datasets (Table 2). 460 

We present basic descriptions about the new soil datasets in Table 2 and 3. As 461 

described in section 2.1, four available global soil datasets, i.e. HWSD, GSDE, 462 

WISE30sec and Soilgrids, have been developed in the last several years (Table 2). 463 

These soil datasets are selected to be shown here because they have a global coverage 464 

with key variables used by ESMs and developed with relatively good data sources in 465 

recent years, and are freely available. Old versions of these datasets are not shown 466 

here. Table 3 shows the available soil properties of these soil datasets. Except 467 

WISE30sec, all these databases do not contain spatial uncertainty estimation. The 468 

explained variance of soil properties in Soilgrids is between 56% and 83%, while the 469 

other datasets do not offer quantitative accuracy assessment. GSDE has the largest 470 

number of soil properties, while Soilgrids currently contains ten primary soil 471 

properties defined by the GlobalSoilMap consortium. 472 

The accuracy of the newly developed soil datasets (Soilgrids, GSDE and HWSD) 473 

and an old dataset (IGBP) are evaluated for five key variables using 94,441 soil profiles 474 

from WoSIS (Table 4). We used four statistics in the evaluation, including mean error 475 
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(ME), root mean squared error (RMSE), coefficient of variation (CV) and coefficient 476 

of determination (R2). All soil datasets are evaluated for topsoil (0-30cm) and subsoil 477 

(30-100cm). The layer schemes of soil datasets are different (Table 1) and they were 478 

converted to the two layers. Soil datasets are in high resolution and were converted to 479 

the resolution of 10 km by averaging. All datasets have relatively small ME. In general. 480 

Soilgrids has much better accuracy than the other three due to RMSE, CV and R2, and 481 

GSDE ranks the second, followed by IGBP and HWSD. However, IGBP is slightly 482 

better than GSDE for bulk density and organic carbon of topsoil. Note that the IGBP 483 

does contain coarse fragment, which is needed in calculating soil carbon stocks. We did 484 

not evaluate the WISE30sec here to save some time in data processing, because 485 

previous evaluation using WoSIS showed that WISE30sec had slightly better accuracy 486 

than HWSD (https://github.com/thengl/SoilGrids250m/tree/master/grids/HWSD). 487 

This evaluation has some limitations. First, because the datasets developed by the 488 

linkage method give the mean value of a SMU resulted in abrupt change between the 489 

boundaries of soil polygons while the datasets developed by digital soil mapping 490 

simulated the soil as a continuum with a spatial continuous change of soil properties, 491 

they may not be so comparable. Second, the original resolution of soil datasets are 492 

different, which means that maps with higher resolution provides more spatial details 493 

and we should judge the map quality due to not only the accuracy assessment but also 494 

the resolution. As a result, datasets with higher resolution (i.e. HWSD and GSDE) are 495 

preferred than that with lower resolution (i.e., IGBP) as they have similar accuracy, 496 

especially when the LSMs are run at a high resolution such as 1km. Third, the vertical 497 

variation are better represented by Soilgrids, GSDE and WISE30sec with more than 2 498 

layers and to a depth over 2m (Table 2). This will provide more useful information for 499 

ESMs, especially when they model deeper soils with multiply layers.  500 

The new generation soil dataset produced by digital soil mapping method gave a 501 

quite different distribution of soil properties from those produced by the linkage method. 502 

Figure 1 shows soil sand and clay fraction at the surface 0-30 cm layer from Soilgrids, 503 

IGBP and GSDE. Figure 2 shows soil organic carbon and bulk density at the surface 0-504 

30 cm layer from Soilgrids, IGBP and GSDE. Significant differences are visible in these 505 

datasets. This will lead to different modelling results in ESMs. Tifafi et al. (2018) found 506 

that the global soil organic carbon stocks down to a depth of 1m is 3,400 Pg estimated 507 

by Soilgrids while it is 2500 Pg by HWSD, and the estimates by Soilgrids are closer to 508 

the observations, though they all underestimated the soil carbon stocks. Figure 1 of 509 

Tifafi et al. (2018) showed the global distribution of soil carbon stocks by Soilgrids and 510 

HWSD. 511 

In general, Soilgrids is preferred for ESMs’ application as it has the highest 512 

accuracy and resolution at the time. When soil properties are not available in Soilgrids, 513 

WISE30sec and GSDE offers the alternative options. However, model sensitivity 514 

simulations need to be done to investigate the effects of different soil datasets on ESMs 515 

in future studies.  516 

 517 
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4 Soil data usage in ESMs and existing challenges 518 

4.1 Model use of soil data derived by the linkage method 519 

Soil data by the linkage method are derived for each soil mapping unit or land 520 

unit and thus is polygon-based, while ESMs are usually grid-based. However, soil 521 

data derived by digital soil mapping are grid-based. So, the compatibility between soil 522 

data derived by the linkage method and ESMs needs to be addressed. In the soil map, 523 

a soil mapping unit (SMU) is composed of more than one component soil unit in most 524 

cases, and thus a one-to-many relationship exists between the SMU and the profile 525 

attributes of the respective soil units. This condition makes representing attributes 526 

characterizing a SMU a non-trivial task. To keep the whole variation of soil in a 527 

SMU, the best way is using the subgrid method in ESMs (Oleson et al., 2010), i.e. 528 

aggregate values of soil properties and provide the area percentage of each value. This 529 

will bring the problem of how to map the soil subgrids with land cover (or plant 530 

function type) subgrids. A possible solution is to: classify soil according to soil 531 

properties and get a number of defined soil classes (SC, n classes) like land cover 532 

types (LCT, m classes); overlay the defined soil classes with land cover types and get 533 

n by m combinations assuming soil classes and land cover types are independent. 534 

However, this will increase the computing time and the complexity of ESMs’ 535 

structure, which needs to implement the soil processes over each subgrid soil column 536 

within a grid instead of the entire model grid.  537 

Usually, the compatibility issue is addressed by converting the SMU-based soil 538 

data to grid data using spatial aggregation. The ESMs uses grid data as input and each 539 

grid cell has one unique value of a soil property. Three spatial aggregation methods 540 

were proposed to aggregate compositional attributes in a SMU to a representative 541 

value (Batjes, 2006; Shangguan et al., 2014). The area-weighting method (method A) 542 

takes area-weighting of soil attributes. The dominant type method (method D) takes 543 

the soil attribute of the dominant type. The dominant binned method (method B) 544 

classifies the soil attribute into several preselected classes and takes the dominant 545 

class. All three methods can be applied to quantitative data, while the method D and 546 

the method B can be applied to categorical data. The advantages and disadvantages of 547 

these methods were discussed (Batjes, 2006; Shangguan et al., 2014). The choice 548 

should be made according to the specific applications (Hoffmann and Christian 549 

Biernath, 2016). The method B provides binned classes, which are not convenient for 550 

modelling, though method B is considered more appropriate to represent a grid cell. 551 

The method A keeps mass conservation, which can meet most demands of model 552 

applications. However, the method A may be misleading in cases when extreme 553 

values appeared in a SMU. For the linkage method, the uncertainty is usually 554 

estimated by giving the 5 and 95 percentile soil properties (or other statistics) of the 555 

soil profiles that linked to a SMU. Because the frequency distribution of soil 556 

properties within a SMU is usually not a normal distribution or any other typical 557 

statistic distribution, the application of statistics such as standard deviation in model 558 

use is not proper. This means that the uncertainty of soil dataset derived by the 559 

linkage method can not be incorporated into ESMs in a straight forward way, and 560 

technology such as bootstrap may be more suitable than methods making assumptions 561 
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on the distribution. 562 

The basic soil properties are often used to derive secondary parameters including 563 

SHPs and STPs by PTFs and soil carbon stock or other nutrient stocks by certain 564 

equations (Shangguan et al., 2014). This procedure could be done either before or 565 

after the aggregation (here referred to ‘‘aggregating after” and ‘‘aggregating first’’). 566 

Because the relationship between the soil basic properties and the derived soil 567 

parameters is usually nonlinear, the ‘‘aggregating first’’ method should be taken. This 568 

was also proved by case studies (Romanowicz et al., 2005; Shangguan et al., 2014). 569 

However, some researches used the ‘‘aggregating after” method producing misleading 570 

results (Hiederer and Köchy, 2012). 571 

The aggregation smooths the variation of soil properties between soil 572 

components within a given SMU (Odgers et al., 2012). To avoid the aggregation, the 573 

spatial disaggregation of soil type maps can be used to determine the location of the 574 

SMU components, though the location error may be high in some cases (Thompson et 575 

al., 2010; Stoorvogel et al., 2017). This method depends on high density of soil 576 

profiles to establish soil and landscape relationships. Folberth et al. (2016) shows that 577 

the correct spatial allocation of the soil type to present cropland was very important in 578 

global crop yield simulations. Currently, aggregation is still the pragmatic way at the 579 

global scale due to lack of data. 580 

 581 

4.2 Upscaling detailed soil data for model use 582 

The updated soil datasets derived by both the linkage method and digital soil 583 

mapping are usually at a resolution from 1 km to 100 m, and upscaling or aggregation 584 

is required to derive lower resolution datasets for model use. The aggregation methods 585 

mentioned above can be used. Moreover, there are plenty of upscaling methods such as 586 

the window median, variability-weighted methods (Wang et al., 2004), variogram 587 

method (Oz et al., 2002), fractal theory (Quattrochi et al., 2001) and Miller–Miller 588 

scaling approach (Montzka et al., 2017). However, few studies have been devoted to 589 

test out which upscaling methods are suitable for soil data. A preliminary effort was 590 

done by (Shangguan, 2014). Five upscaling methods compared were the window 591 

average, widow median, widow modal, arithmetic average variability-weighted method 592 

and bilinear interpolation method. Differences between aggregation methods varied 593 

from 10% to 100% for different parameters. The upscaling methods affected the data 594 

derived by the linkage method more than the data by digital soil mapping. The window 595 

average, window median and arithmetic average variability-weighted method 596 

performed similar in upscaling. The root mean square error increased rapidly when the 597 

window size was less than 40 pixels. Similar to the aggregation of SMUs, the 598 

‘‘aggregating first’’ method is recommended when secondary soil parameters are 599 

derived. Again, alternative to avoid the aggregation into one single value for a grid cell 600 

is to use the subgrid methods in ESMs.  601 

The upscaling effect of soil data on model simulation has been investigated in 602 

previous studies with controversial conclusions. For example, Melton et al. (2017) used 603 

two linked algorithms to provide tiles of representative soil textures for subgrids in a 604 

terrestrial ecosystem model and found that the model is relatively insensitive to subgrid 605 
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soil textures compared to a simple grid-mean soil texture at a global scale. However, 606 

the treatment without soil subgrid structure in JULES resulted in soil-moisture 607 

dependent anomalies in simulated carbon flux (Park et al., 2018). Further researches 608 

are necessary to investigate the upscaling effect on models. 609 

 610 

4.3 The changing soil properties 611 

There is not any global soil property map in time-series because we do not have 612 

enough available data. In all the global soil property maps, all the available soil 613 

observations in the last decades are used in the development of soil property maps 614 

without considering the changing environment. So these datasets should be considered 615 

as an average state. The critical issue for mapping global soil properties in time-series 616 

is to establish a soil profile database with time stamps and then divide them into two or 617 

more groups of different periods such as 1950s-1970s. This is still quite challenging at 618 

the global scale because the spatial coverage of soil profiles is quite uneven for different 619 

periods and the sample size may not be big enough to derive maps with satisfied 620 

accuracy. 621 

Soil properties are changing but we are now taking it as static in ESMs. As some 622 

ESMs already simulate the soil carbon, this may be considered in PTFs used to estimate 623 

soil hydraulic and thermal parameters. Other soil properties affecting soil hydraulic and 624 

thermal parameters include soil texture, bulk density, soil structure and so on, but the 625 

change is relatively slow. The effect of environmental change on soil properties is the 626 

topic of quantitative modeling of soil forming processes, i.e. soil landscape and 627 

pedogenic models (Gessler et al., 1995; Minasny et al., 2008). If we need to simulate 628 

the change of soil properties, a coupling of ESMs and soil landscape and pedogenic 629 

models will be needed. Otherwise, we need to predict the soil properties in the future 630 

using soil landscape and pedogenic models which are small scale models and has high 631 

uncertainty. The prediction of changing soil properties may also be done by digital soil 632 

mapping taken the changing (especially for the future) climate and land use as 633 

covariates, which may be the more feasible than dynamic models. 634 

 635 

4.4 Incorporating the uncertainty of soil data in ESMs 636 

Incorporating the uncertainty of soil data in ESMs is a rising challenge. Except 637 

WISE30sec, all the current global soil data sets do not have a corresponding uncertainty 638 

map for a soil property. But the spatial uncertainty can be estimated by the methods 639 

mentioned in section 2.1 and soil data sets with uncertainty map will be made available 640 

sooner or later. It is too expensive to run multiply ESM simulations combining upper 641 

and lower bounds in all possible combinations to quantify the effect of soil data 642 

uncertainty on ESMs. Instead, adaptive surrogate modeling based on statistical 643 

regression and machine learning can be used, which costs much lower computing time 644 

and proves to be effective and efficient (Gong et al., 2015; Li et al. 2018). Surrogate 645 

models are used to emulate the responses of ESMs to the variation of soil properties at 646 

each location. 647 

 648 

4.5 Layer schemes and lack of deep layer soil data 649 
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The layer scheme of a soil data set needs to be coveted to that of ESMs for model 650 

use. A simple way for this conversion is the depth weighting method. When a more 651 

accurate conversion is needed, the equal-area quadratic smoothing spline functions can 652 

be used, which is proved to be advantageous in predicting the depth function of soil 653 

properties (Bishop et al., 1999). Mass conservation for a soil property of a layer is 654 

guaranteed by this method under the assumption of continuous vertical variation of soil 655 

properties. This method may produce some negative values which should be set to zero. 656 

The depth of soil observations in soil survey are usually less than 2 m and thus 657 

resulted in missing values for the deep layers of ESMs. For the lack of deep soil data, 658 

there is not any good solution other than extrapolate the values based on the 659 

observations of shallower layers, which will lead to higher uncertainty of soil properties 660 

for deep layers. The extrapolation can be done by the above-mentioned spline method 661 

or simply by assigning soil properties of the last layer to the rest of deeper soil layers. 662 

Depth to bedrock map (Shangguan et al., 2018) can be utilized in defining the low 663 

boundary of soil layers, and a default set of thermal and hydraulic characteristic can be 664 

assigned for bedrocks. 665 

5 Summary and outlook 666 

This paper reviews the status of soil datasets and their usage in ESMs. Soil 667 

physical and chemical properties served as model parameters, initial variables or 668 

benchmark datasets in ESMs. Soil profiles, soil maps and soil datasets derived by the 669 

linkage method and digital soil mapping are reviewed at national, regional and global 670 

levels. The soil datasets derived by digital soil mapping are considered to provide more 671 

realistic estimation of soils than those derived by the linkage method, because digital 672 

soil mapping provide spatial continuous estimations of soil properties using spatial 673 

prediction models with various soil-related covariates. Due to the evaluation of soil 674 

datasets by WoSIS, Soilgrids have the most accurate estimation of soil properties. 675 

However, other soil datasets including GSDE and WISE30sec can be considered as they 676 

provide more soil properties. 677 

The popular soil datasets used in ESMs are outdated and there are soil datasets 678 

available for the updates. In the recent several years, efforts were taken to update the 679 

soil data in ESMs. The effects of updated soil properties which are used to estimate soil 680 

hydraulic and thermal parameters were evaluated. Other major updates include soil 681 

reflectance, ground water tables and depth to bedrock. 682 

Pedotransfer functions (PTFs) are employed to estimate secondary soil parameters, 683 

including soil hydraulic and thermal parameters, and biogeochemical parameters. PTFs 684 

can take more soil properties (i.e., soil organic carbon, bulk density etc.) as input in 685 

addition to soil texture data. An ensemble of PTFs may be more suitable to provide 686 

secondary soil parameters as direct input to ESMs, because ensemble method has a 687 

number of benefits and potential over a single PTF (Looy et al., 2017). 688 

Soil data derived by the linkage methods and high-resolution data can be 689 

aggregated by different methods to fit the use in ESMs. The aggregation should be done 690 

after the secondary parameters are estimated. However, the aggregation will omit the 691 

variation of soil properties. To avoid the aggregation, the subgrid method in ESMs is 692 

an alternative which increases the model complexity. The effect of different upscaling 693 



17 

 

methods on the performance of ESMs needs to be investigated further. 694 

Because digital soil mapping has many advantages compared to the traditional 695 

linkage method, especially in representing spatial heterogeneity and quantifying 696 

uncertainty in the predictions, the new generation soil datasets derived by digital soil 697 

mapping need to be tested in ESMs, and some regional studies have shown that these 698 

datasets provided better modelling results than products by the linkage method 699 

(Kearney and Maino, 2018; Trinh et al., 2018). Moreover, many studies from digital 700 

soil mapping have identified that soil maps are not very important to predict soil 701 

properties and are usually not used as a covariate in most studies (eg. Hengl et al., 2014; 702 

Viscarra Rossel et al., 2015; Arrouays et al., 2018). However, the linkage method 703 

usually takes soil map as the major covariate, which essentially affect the accuracy of 704 

the derived soil property maps, especially for areas without detailed soil maps. As a 705 

data-driven method, digital soil mapping requires soil profiles observations and 706 

environmental covariates (in which the importance of soil maps is low), and including 707 

more of these data in mapping will improve the global predictions (Hengl et al., 2017). 708 

More quality assessed data, analysed according to comparable analytical methods, are 709 

needed to support such efforts. The harmonization of soil data is undertaking by the 710 

work of GSP Pillar 5 (Pillar 5 Working Group, 2017) and WoSIS (Batjes et al., 2017). 711 

Data derived from proximal sensing, although with higher uncertainty than traditional 712 

soil measurements, can be used in soil mapping (England and Viscarra Rossel, 2018). 713 

To avoid spatial extrapolation, soil profiles should have a good geographical coverage. 714 

The temporal variation of global soil is quite challenging due to lack of data. Soil image 715 

fusion is also needed to merge the local and global soil maps, which consider them as 716 

components of soil variation for ensemble predictions (Hengl et al., 2017). A system 717 

for automated soil image fusion might take years before an operational system for 718 

global soil data fusion is fully functional. Mapping the soil depth and depth to bedrock 719 

separately at the global level is also still challenging due to lack of data and the 720 

understanding of relevant processes. Uncertainty estimation, especially spatial 721 

uncertainty estimation should be included in the soil datasets developed in the future. 722 

However, incorporating the spatial uncertainty of soil properties in ESMs is still 723 

challenging due to the cost, and an alternative may be to use adaptive surrogate 724 

modeling.  725 

The gap between the amount of data that has been taken in surveys and the amount 726 

of data freely available is large. The soil profiles included by global soil databases such 727 

as WoSIS make up a very small fraction of the soil pits dug by human beings. For 728 

example, there are more than 100,000 soil profiles from the second national soil survey 729 

of China (Zhang et al., 2010) and no more than 9,000 were used to produce the national 730 

soil property maps freely available (Shangguan et al., 2013). In the last century, national 731 

soil survey was accomplished widely, majorly for agriculture purpose. However, most 732 

of these legacy data are not digitalized and they are usually not made available to the 733 

science community even if digitalized. How to flush out these hidden soil data requires 734 

some mechanism such as government mandatory regulations and investing money on 735 

making them available (Pillar four Working Group, 2014; Pillar 5 Working Group, 736 

2017). Arrouays et al. (2017) reported that about 800,000 soil profiles have been 737 
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rescued in the selected countries. In addition, investments on new soil samplings should 738 

be made, especially in the under-represented areas. A good example is the US, which 739 

has the most abundant soil data freely available (Batjes et al., 2017) like many other 740 

data. If the hidden data could be made available in any way, science and the whole 741 

human being will be promoted. A true big data era is waiting for us. Censored 742 

information produces censored things. Data compatibility of different analysis methods 743 

and different description protocols including soil classifications is also an important 744 

issue and data harmonization is necessary when the data are made available to public.  745 
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Table 1. Lists of the soil dataset used by land surface models (LSM) of Earth System Models (ESM) or climate models (CM) 1281 

 1282 

Dataset Resolution ESM or CM LSM Input soil data 

Elguindi et al. (2014)  RegCM 

BATS1e (Dickinson et al., 
1993) 
or CLM3.5 

Soil texture classes and Soil color classes prescribed for 
BATS vegetation/land cover type 

FAO (2003 a,b) 5’ CanESM2 
CTEM (Arora et al., 2009) 
CLASS3.4 (Verseghy, 2000) Soil texture 

FAO (2003 a,b) 5’ EC-EARTH  HTESSEL (Orth et al., 2016) Soil texture classes 
FAO (2003 a,b; 
outside 
Conterminous US) 
STATSGO (Miller and 
White, 1998) 

5’ 
30” 

WRF 
CWRF 

Noah (Chen and Dudhia, 
2001) 
Noah-MP (Niu et al., 2011) 
CLM4 
Other LSMs Soil texture 

GSDE (Shangguan 
et al., 2014) 30” 

CAS_ESM 
BNU_ESM 
GRAPES CoLM 2014(Dai et al., 2003) Soil texture, gravel, soil organic carbon, bulk density 

GSDE (Shangguan et 
al., 2014) 30” 

WRF 
CWRF 

Noah (Chen and Dudhia, 
2001) 
Noah-MP (Niu et al., 2011) 
CLM4 
Other LSMs Soil texture 

GSDE (Shangguan 
et al., 2014) 30” 

BCC_CSM 
1.1 
BCC_CSM 
1.1(m) 

BCC_AVIM 1.1 (Wu et al., 
2014) Soil texture 

Hagemann (2002) 

0.5° (8km 
over 
Africa) 

MPI-ESM 
ICON-ESM  

JSBACH4 (Mauritsen et al. 
(2019)  Soil albedo 
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Hagemann (2002)  0.5° 
MPI-ESM 
ICON-ESM  

JSBACH4 (Mauritsen et al. 
(2019)  

Field capacity, Plant-available soil water holding capacity 
and wilting point prescribed for ecosystem type 

Hagemann et al. 
(1999) 0.5° 

MPI-ESM 
ICON-ESM  

JSBACH4 (Mauritsen et al. 
(2019)  

Volumetric heat capacity and thermal diffusivity 
prescribed for 5 soil types of FAO soil map 

HWSD 
(FAO/IIASA/ISRIC/ISS
-CAS/JRC, 2012) 30” GFDL ESM 

GFDL LM4 (Zhao et al., 
2018b) Soil texture classes 

HWSD 
(FAO/IIASA/ISRIC/ISS
-CAS/JRC, 2012) 30” 

HadCM3 
HadGEM2 
QUEST  

JULES/MOSESvn 5.4 (Best et 
al., 2011;Clark et al., 2011) Soil texture  

HWSD 
(FAO/IIASA/ISRIC/ISS
-CAS/JRC, 2012) 30” CNRM-CM5 SURFEX8.1 (Moigne,2018) 

Soil texture,soil organic matter 

IGBP-DIS (Global Soil 
DataTask, 2000) 5′ 

CESM 
CCSM 
CMCC–
CESM 
FIO-ESM  
FGOALS 
(s2,gl,g2) 
NorESM1 

CLM 3.0 or CLM 4.0 or CLM 
5.0 (Oleson, 2013) 

Soil texture (sand, clay)  

ISRIC-WISE (Batjes, 
2006) combined with 
NCSD (Hugelius et al., 
2013) 5′; 0.25° 

CESM 
CCSM 
CMCC–
CESM 
FIO-ESM  
FGOALS 
(s2,gl,g2) 
NorESM1 

CLM 3.0 or CLM 4.0 or CLM 
5.0 (Oleson, 2013) Soil organic matter 
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Lawrence and Chase  
(2007) 0.05° 

CESM 
CCSM 
CMCC–
CESM 
FIO-ESM  
FGOALS 
(s2,gl,g2) 
NorESM1 

CLM 3.0 or CLM 4.0 or CLM 
5.0 (Oleson, 2013) Soil color class 

Reynolds et al. 
(2000) 5′  GLDAS 

Mosaic (Koster and Suarez, 
1992) 
CLM2 
Noah (Chen and Dudhia, 
2001) 
VIC (Liang et al., 1994) 

Soil texture classes 

Webb et al. (1993) 
and Zöbler (1986) 1° GISS-E2 

GISS-LSM (Rosenzweig and 
Abramopoulos, 1997) Soil texture 

Wilson and 
Henderson-Sellers 
(1985) 1° 

HadCM3 
HadGEM2 
QUEST  

JULES/MOSESvn 5.4 (Best et 
al., 2011;Clark et al., 2011) Soil texture  

Zöbler (1986) 1° 
ACCESS-
ESM 

CABLE2.0 (Kowalczyk et 
al, 2013) Soil texture classes 

Zöbler (1986) 1°  
SiB (Sellers et al., 1996; 
Gurney et al., 2008) Soil texture classes 

Zöbler (1986) 1° CFSv2 
CFSv2/Noah(Saha et al., 
2014) Soil texture 

Zöbler (1986) 1° 
CSIRO-
Mk3.6.0 

CSIRO-Mk3.6.0 (Rotstayn et 
al., 2012) Soil texture classes 

Zöbler (1986) 1° 

MIROC 
(4h,5) 
MIROC-ESM 

MATSIRO (Takata et al., 
2003) Soil texture classes 
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Zöbler (1986); 
Reynolds et al. 
(2000) 1°; 5′  IPSL-CM6  

ORCHIDEE [rev 3977] 
(Krinner, 2005) Soil texture classes 

 1283 

ACCESS = Australia Community Climate and Earth System Simulator 1284 

BATS = Biosphere-Atmosphere Transfer Scheme 1285 

BCC_CSM = Beijing Climate Center Climate System Model 1286 

BCC_AVIM = Beijing Climate Center Atmosphere and Vegetation Interaction Model 1287 

BNU_ESM = Beijing Normal University Earth System Model 1288 

CABLE = Community Atmosphere Biosphere Land Exchange 1289 

CanESM = Canadian Earth System Model 1290 

CAS_ESM = Chinese Academy of Sciences Earth System Model 1291 

CCSM = Community Climate System Model. 1292 

CESM = Community Earth System Model 1293 

CFS = Climate Forecast System 1294 

CLASS = Canadian Land Surface Scheme 1295 

CLM = Community Land ModelCMCC–CESM = Euro-Mediterranean Centre on Climate Change Community Earth System Model 1296 

CNRM-CM = Centre National de Recherches Meteorologiques Climate Model 1297 

CoLM = Common Land Model 1298 

CSIRO-Mk = Commonwealth Scientific and Industrial Research Organization climate system model 1299 

CTEM = Canadian Terrestrial Ecosystem Model 1300 

EC-EARTH = European community Earth-System Model 1301 

FAO = the Food and Agriculture Organization (FAO-UNESCO) digital Soil Map of the World (SMW) at 1:5 million scale 1302 

FGOALS = Flexible Global Ocean‐Atmosphere‐Land System Model 1303 

FIO-ESM = The First Institute of Oceanography Earth System Model  1304 

GRAPES = Global/Regional Assimilation Prediction System 1305 

GFDL = Geophysical Fluid Dynamics Laboratory 1306 

GISS = Goddard Institute for Space Studies 1307 

GLDAS = Global Land Data Assimilation System 1308 

GSDE = Global Soil Dataset for Earth System Model 1309 

HadCM = Hadley Centre Coupled Model 1310 
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HadGEM2-ES = Hadley Global Environment Model 2 - Earth System 1311 

HTESSEL = Tiled ECMWF Scheme for Surface Exchanges over Land 1312 

HWSD = Harmonized World Soil Database 1313 

ICON-ESM = Icosahedral non-hydrostatic Earth System Model 1314 

IGBP-IDS = Data and Information System of International Geosphere-Biosphere Programme 1315 

IPSL-CM = Institut Pierre Simon Laplace Climate Model 1316 

ISRIC-WISE = World Inventory of Soil Emission Potentials of International Soil Reference and Information Centre 1317 

JSBACH = Jena Scheme of Atmosphere Biosphere Coupling in Hamburg 1318 

JULES/MOSES= Joint UK Land Environment Simulator/Met Office Surface Exchange Scheme 1319 

MATSIRO = Minimal Advanced Treatments of Surface Interaction and Runoff 1320 

MIROC = Model for Interdisciplinary Research on Climate 1321 

MPI-ESM = The Max Planck Institute for Meteorology Earth System Model 1322 

Noah-MP = Noah-multiparameterization 1323 

NorESM1 =  1324 

NCSD = Northern Circumpolar Soil Carbon Database 1325 

ORCHIDEE = Organising Carbon and Hydrology In Dynamic Ecosystems 1326 

QUEST = Quantifying and Understanding the Earth System 1327 

RegCM = Regional Climate Model 1328 

SiB = Simple Biopshere Model 1329 

STATSGO = the State Soil Geographic Database 1330 

SURFEX = Surface Externalisée 1331 

WRF = Weather Research and Forecasting Model 1332 

 1333 

 1334 

 1335 
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 1336 

Table 2 Four new global soil datasets for the updates of ESMs. 1337 

Dataset* Resolution Number 
of layers 

Number of 
properties 

depth to the bottom of a 
layer (cm) 

Mapping method 

HWSD 1km 2 22 30, 100 Linkage method 
GSDE 1km 8 39 0, 4.5, 9.1, 16.6, 28.9, 

49.3, 82.9, 138.3, 229.6 
Linkage method 

WISE30sec 1km 7 20 20,40,60,80,100,150,200 Linkage method 
Soilgrids 250m 6 7 5, 15, 30, 60, 100, 200 Digital soil mapping 

*HWSD, GSDE, WISE30sec and Soilgrids are freely available at 1338 

http://www.iiasa.ac.at/web/home/research/researchPrograms/water/HWSD.html, 1339 

http://globalchange.bnu.edu.cn/research/data, https://www.isric.org/explore/wise-1340 

databases, and http://www.soilgrids.org/, respectively.  1341 

 1342 

 1343 

 1344 

 1345 

 1346 

 1347 

 1348 

  1349 
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Table 3 Derived soil properties considered in Four global soil datasets. 1350 

Soil property* HWSD GSDE WISE30sec Soilgrids Soil property* HWSD GSDE WISE30sec Soilgrids 
Drainage class √ √ √  Total carbon  √   
AWC class √ √   Total nitrogen  √ √  
Soil phase √ √   Total sulfur  √   
Impermeable layer √ √   pH(KCL)  √  √ 
Obstacle to roots √ √   pH(Cacl2)  √   
Additional property √ √   Exchangeable Ca  √   
Soil water regime √ √   Exchangeable Mg  √   
Reference soil 
depth 

√ √   Exchangeable K  √   

Depth to bedrock    √ Exchangeable Na  √   
Gravel √ √ √ √ Exchangeable Al  √   
Sand, Silt, Clay √ √ √ √ Exchangeable H  √   
Texture class** √    VWC at -10 kPa  √   
Bulk density √ √ √ √ VWC at -33 kPa  √ √  
Organic Carbon √ √ √ √ VWC at -1500 kPa  √ √  
pH(H2O) √ √ √ √ Phosphorous by 

Bray method 
 √   

CEC (clay) √  √  Phosphorous by 
Olsen method 

 √   

CEC (soil) √ √ √  Phosphorous by 
New Zealand 
method 

 √   

Effective CEC   √  Water soluble 
phosphorous 

 √   

Base saturation √ √ √  Phosphorous by 
Mechlich method 

 √   



38 

 

TEB √  √  Total phosphorous  √   
Calcium Carbonate √ √ √  Total Potassium  √   
Gypsum √ √ √  Salinity (ECE) √ √ √  
Sodicity (ESP) √  √  Aluminium 

saturation 
  √  

C/N ratio   √       

*CEC is cation exchange capacity. The base saturation measures the sum of exchangeable cations (nutrients) Na, Ca, Mg and K as a 1351 

percentage of the overall exchange capacity of the soil (including the same cations plus H and Al). TEB is total exchangeable base 1352 

including Na, Ca, Mg and K. ESP is exchangeable sodium percentage, which is calculated as Na*100/CECsoil. ECE is electrical 1353 

conductivity. AWC is the available water storage capacity. The first 9 soil properties on the left including drainage class, AWC class 1354 

and so on are available for soil types, while the other properties are available for each layer. It should be noted that many different 1355 

analytical methods have been used to derive a given soil property, which is a major source of uncertainty.  1356 

**texture class can be calculated using sand, silt and clay content 1357 

 1358 
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Table 4 Evaluation statistics of soil datasets using WoSIS soil profiles. ME is mean error. 1359 

RMSE is root mean squared error. CV is coefficient of variation. R2 is coefficient of 1360 

determination. 1361 

Soil property Dataset   Topsoil (0-30 cm)   Subsoil (30-100 cm) 
    ME RMSE CV R2 ME RMSE CV R2 
Sand content Soilgrids -0.906 18.6 0.457 0.518 -0.269 19.1 0.501 0.492 
(% in weight) GSDE -0.443 23.2 0.571 0.247 -1.31 23.8 0.625 0.211 

 HWSD 6.64 27.4 0.673 0.014 2.08 27.6 0.725 -0.0575 
  IGBP 3.74 26.3 0.647 0.0514 4.06 26.3 0.691 0.0546 

Clay content Soilgrids 1.34 12.5 0.554 0.339 0.386 13.6 0.485 0.382 
(% in weight) GSDE -0.949 14.6 0.643 0.104 -0.794 16.4 0.584 0.105 

 HWSD 0.77 16.2 0.718 -0.119 1.42 18.9 0.672 -0.182 

 IGBP 3.27 15.4 0.678 0.0444 2.44 16.8 0.597 0.0841 

Bulk density Soilgrids -79.7 237 0.164 0.338 -33.5 212 0.136 0.327 
(kg/m3) GSDE -68.4 279 0.193 0.0303 -65.5 269 0.173 -0.043 

 HWSD -105 298 0.206 -0.033 -168 317 0.204 -0.107 
  IGBP -55.6 273 0.189 0.0499 -112 294 0.189 -0.13 
Coarse 
fragment Soilgrids 1.53 10.1 1.68 0.319 

1.23 12.8 1.47 0.335 

(% in volume) GSDE 3.2 13.5 2.24 -0.165 3.18 16.8 1.93 -0.115 

 HWSD 1.8 13.2 2.2 -0.164 -0.401 16.2 1.87 -0.0805 

 IGBP -100 -100 -100 -100 0.99 23.5 3.32 0.134 

Organic carbon Soilgrids 6.21 29.8 1.69 0.218 0.45 27.4 3.87 -0.174 
(g/kg) GSDE -0.354 34.5 1.95 -0.095 -1.38 27.4 3.87 -0.172 

 HWSD -3.67 36.2 2.05 -0.194 1.67 28.5 4.02 -0.268 
  IGBP 0.605 33.4 1.89 -0.026 -0.269 19.1 0.501 0.492 

 1362 

 1363 

 1364 
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 1365 
Figure 1 Soil sand and clay fraction at the surface 0-30 cm layer from Soilgrids, IGBP-1366 

DIS and GSDE. The difference among them will lead to different modeling results for 1367 

ESMs. IGBP-DIS is Data and Information System of International Geosphere-Biosphere 1368 

Programme, and GSDE is Global Soil Dataset for Earth System Model. 1369 

 1370 
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 1371 
Figure 2 Soil organic carbon and bulk density at the surface 0-30 cm layer from Soilgrids, 1372 

GSDE and IGBP. 1373 
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