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Replay to editor’s comments 1 

Your manuscript has been thoroughly reviewed by two peer experts in the field. Both consider 2 

your manuscript as useful and valuable at least in parts. Since it is a review, a certain degree 3 

of comprehensiveness is expected and has not been achieved yet with several global soil 4 

datasets not being included as pointed out by both reviewers. 5 

Reply: Thanks for pointing out the value and the weakness of the paper. We added some 6 

global soil datasets for discussion (See table 1 and table 2). 7 

 8 

A systematic approach is required with criteria to be defined for the selection or exclusion of 9 

maps in this review. If the focus of the paper is on global soil maps also Table 1 maybe revised 10 

to start with the soil maps and not with the ESMs. 11 

Reply: The list of ESMs includes all the LSMs used in CMIP5 except two models without 12 

information of soil data used. For the new soil datasets developed in recent years, datasets 13 

are selected because they have developed with relatively good data sources and are freely 14 

available. Old versions of these datasets are not shown here. We have revised Table 1 to start 15 

with the soil maps.   16 

 17 

I also suggest to include more aspects of the quality of the maps as proposed by the first 18 

reviewer in order to evaluate (e.g. with global or latitudinal means) and where possible to 19 

compare the maps. 20 

Reply: We have evaluated four global soil datasets using soil profiles of WoSIS. Details are in 21 

section 3.  22 

 23 

 24 

Reply to reviewer 1 25 

1. General comments 26 

 27 

 28 

This is a timely review of global scale soil data sets that are used to underpin Earth System 29 

Models, and the still numerous, associated uncertainties. Such soil data sets have evolved 30 

greatly since the coarse 1-degree resolution map generalised by Zobler (1986) resulting in a 31 

new generation of digital soil maps, and the underpinning soil point data sets and/or 32 

covariates layers. That being said, I have a number of queries and comments. For example, 33 

rather little attention is given to difficulties associated with the limited comparability of soil 34 

analytical data worldwide and uncertainty propagation. Further, several recent global soil 35 

databases of possible interest for ESM modelling have not been considered in the review and 36 

discussion. 37 

 38 

 39 

Reply: Thanks for your valuable and detailed comments which help us a lot in improving our 40 

manuscript. The reviewer’s comments have been addressed one by one in the following 41 

replies. This review was done from the perspective of ESMs and its users rather than that of 42 

soil data development. So we omitted some details about data development and associate 43 

uncertainty as pointed out by the reviewer. But it is useful to discuss these details for data 44 
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development. We are aware that many uncertainty sources exist in the derived soil dataset, 45 

which need attentions to be paid by ESM applications.  After considering the comments of 46 

the reviewer (including the comparability of soil analytical data), we added a paragraph 47 

concentrating on the uncertainty sources and uncertainty estimation (including spatial 48 

uncertainty estimation and accuracy assessment) of soil data, which is a more comprehensive 49 

summary on the uncertainty of soil data. And the comparability of soil analytical data, the 50 

covariates uncertainty and others are discussed in this paragraph. Some contents about the 51 

uncertainty in the original manuscript were also moved to this paragraph. As we see in the 52 

literature, ESMs usually do not consider much about uncertainty or even data quality of soil 53 

properties, which is not a good situation. ESM users should be more concerned about the 54 

uncertainty estimation rather than the uncertainty sources, while data developers need to 55 

know both aspects well. Further, we added more global soil databases as suggested by the 56 

reviewer (see the reply to table 2 and 3). 57 

 58 

Here is the uncertainty paragraph we added: 59 

 60 

Because soil property maps are derived products based on soil measurements of soil profiles 61 

(point observations) and spatial continuous covariates (including soil maps), it is necessary to 62 

discuss the uncertainty sources, spatial uncertainty estimation and accuracy assessment of 63 

these derived data (the last two are different aspects of uncertainty estimation). More 64 

attention should be paid to this issue in ESM applications instead of taking soil property maps 65 

as observations without error. There are various uncertainty sources in deriving soil property 66 

maps, including uncertainty from soil maps, soil measurements, soil-related covariates and 67 

the linkage method itself (Shangguan et al., 2012; Batjes, 2016; Stoorvogel et al., 2017). The 68 

following may not be the complete list of uncertainty but the major ones. The uncertainty of 69 

soil maps is a major source of global dataset derived by the linkage methods. For these 70 

dataset, large sections of the world are drawn on the coarse FAO SMW map and the purity 71 

of soil maps (referring to the following website for the definition: 72 

https://esdac.jrc.ec.europa.eu/ESDB_Archive/ESDBv2/esdb/sgdbe/metadata/purity_maps/pu73 

rity.htm) is likely to be around 50 to 65% (Landon, 1991). Another important source of 74 

uncertainty is the limited comparability of different analytical methods of a given soil property 75 

in using soil profiles coming from various sources. A weak correlation or even a negative 76 

correlation was found between different analytical methods, though strong positive 77 

correlation revealed in most cases (McLellan et al. 2013). Both datasets by the linkage method 78 

and those by digital soil mapping suffer this uncertainty. Though there are no straightforward 79 

mechanisms to harmonize the data, efforts are undertaken to address this issue and provide 80 

quality assess (Batjes, 2017; Pillar 5 Working Group, 2017). Another source of uncertainty 81 

comes from the geographic and taxonomic distribution of soil profiles, especially for the 82 

under-represented areas and soils (Batjes, 2016). The fourth source of uncertainty is from the 83 

linkage method itself. It does not represent the intra-polygon spatial variation and usually do 84 

not consider soil related covariates explicitly like digital soil mapping, though there are cases 85 

where climate and topography are considered and Stoorvogel et al. (2017) proposed a 86 

methodology to incorporate landscape properties in the linkage method. Finally, uncertainty 87 

from the covariates is minor because spatial prediction models such as machining learning in 88 



3 

 

digital soil mapping can reduce its influences (Hengl et al., 2014), though a more 89 

comprehensive list of covariates with higher resolution and accuracy will improve the 90 

predicted soil property maps. Spatial uncertainty is estimated by different methods for the 91 

linkage method and digital soil mapping methods. For the linkage method, statistics such as 92 

standard derivation and percentiles can be used as spatial uncertainty estimation, which are 93 

calculated for the population of soil profiles linked to a soil type or a land unit (Batjes, 2016). 94 

This estimation has some limitations because soil profiles are not taken probabilistically but 95 

based on their availability, especially for the global soil datasets. Uncertainty will be 96 

underestimated when the sample size is not big enough to represent a soil type. For digital 97 

soil mapping, spatial uncertainty could be estimated by methods such as geostatistical 98 

methods and quantile regression forest (Vaysse and Lagacherie, 2017), which make sense of 99 

statistic. The accuracy of soil dataset derived by digital soil mapping are estimated by cross-100 

validation. But it is not trivial for those derived by the linkage method due to the global scale, 101 

the support of the data and independent data (Stoorvogel et al., 2017) and most of these 102 

maps are validated by statistics such as mean error and coefficient of determination. Instead, 103 

some datasets, including WISE and GSDE, use some indictors such as linkage level of soil class 104 

and sample size to offer quality control information (Shangguan et al. 2014; Batjes, 2016). A 105 

simple way to compare the accuracy of datasets by both methods may be to use a global soil 106 

profile database as a validation dataset, though some of these profiles were used in deriving 107 

these datasets and questions will be raised. We evaluated several global soil property maps 108 

in section 3. 109 

 110 

 111 

The manuscript would benefit from a thorough English edit by a native speaker. 112 

 113 

Reply: We will take an English editing service for the revised manuscript. 114 

 115 

2. Specific comments 116 

L15-16: Rephrase this as e.g.: Soil is an important regulator of earth system processes, but 117 

remains one of the least well-described data layers in such models. 118 

 119 

Reply: Modified as: Soil is an important regulator of earth system processes, but remains one 120 

of the least well-described data layers in Earth System Models (ESMs). 121 

 122 

L17: Function as->provide 123 

 124 

Reply: Modified. 125 

 126 

L22: Abundant soil observations are not ‘enough’; these should have been analysed according 127 

to comparable analytical methods and quality-assessed (which is seldom the case, see Batjes 128 

et al. 2017). What about the geographical distribution, or possible clustering, of the available 129 

(i.e. shared) soil profile data? 130 

 131 

Reply: We changed the expression as ‘with abundant, harmonized and quality controlled soil 132 
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observations’.  Corresponding contents are added accordingly. See the replies to related 133 

comments of the reviewer.  134 

 135 

L24: By their nature, pedotransfer functions generally are not portable from one region to the 136 

other. Please add some discussion. 137 

 138 

Reply: We add a sentence to the comments on L323. we added: PTFs generally are not 139 

portable from one region to the other (i.e. locally or regionally validated). 140 

 141 

L24-25: Speculative as written, provide some arguments for this. 142 

 143 

Reply: See reply to comments on L451-452. This issue is discussed extensively by Looy et al. 144 

2017 at the end of section 3. For briefty, we added a sentence here instead of long discussions: 145 

because ensemble modeling carries a number of benefits and potential over the use of a 146 

single model (Looy et al., 2017). 147 

 148 

L27-28: What about uncertainty in the co-variates? 149 

 150 

Reply: We put this as a part of the paragraph discussing uncertainty sources of the derive soil 151 

dataset. we added:  Finally, uncertainty from the covariates is minor because spatial 152 

prediction models such as machining learning in digital soil mapping can reduce its influences 153 

(Hengl et al., 2014), though a more comprehensive list of covariates with higher resolution 154 

and accuracy will improve the predicted soil property maps.  155 

But there are many sources of uncertainty in addition to covariates. For brevity, we modified 156 

here: ESMs are often based on limited soil profiles and coarse resolution soil type maps with 157 

various uncertainty sources. 158 

 159 

L35-36 / 45: You may consider the following reference here: 160 

http://dx.doi.org/10.1002/2015GB005239. 161 

 162 

Reply:  The reference was added. It is helpful to understand the role of soil information in 163 

ESMs. 164 

 165 

L43: Remove available 166 

 167 

Reply: Removed. 168 

 169 

L45: How do you define ‘better’ here? Please clarify. 170 

 171 

Reply: We changed the word to ‘more realistic’. This is in the following citations, Brunke et al. 172 

(2016); Luo et al. (2016); Oleson et al. (2010).  We added an example here: ‘For example, 173 

Brunke et al., (2016) incorporated the depth to bedrock data in a land surface model using 174 

variable soil layers and instead of the previous constant depth.’ 175 

 176 
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L47-48: Also other types of soil data, for example soil biology (see ref. line L35-36). 177 

See also discussion in https://doi.org/10.1111/gcb.13896. 178 

 179 

Reply: We changed the sentence into ‘ESMs require detailed information on the soil physical 180 

and, chemical and biological properties’. 181 

 182 

L56: Useful to say that the range of soil data collected during a soil survey, will vary with scale 183 

and projected applications of the data (i.e. type of soil survey, routine versus surveys/studies 184 

aimed at answering specific user demands). 185 

 186 

Reply: We added a sentence to say this: The range of soil data collected during a soil survey, 187 

varies with scale, specifications of a country or a region, and projected applications of the 188 

data (i.e. type of soil surveys, routine versus specifically designed surveys). As a result, the 189 

availability of soil properties differs in different soil databases. 190 

 191 

L72: How would you define reliable soil data? Remove from this sentence. 192 

 193 

Reply: Removed 194 

 195 

L76: Rather refer to measurements here. 196 

 197 

Reply: Modified. 198 

 199 

L87-88: Should add HWSD (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012) as reference for 200 

this type of ‘traditional’ approach. 201 

 202 

Reply: Added. 203 

 204 

L93: usually not ready for ...! ...not appropriately scaled or formatted for ... 205 

 206 

Reply: Modified. 207 

 208 

L113-114...: representing main soil types in a landscape unit characterised by soil profiles 209 

considered representative for the main component soils of the respective mapping units. 210 

 211 

Reply: Here we are describing two kinds of data from soil survey, i.e., soil map and soil profiles. 212 

So We modified the sentence as: a map (usually in the form of polygon maps) representing 213 

main soil types in a landscape unit and soil profiles with observations of soil properties which 214 

are considered representative for the main component soils of the respective mapping units 215 

 216 

L124: Rephrase this...: (FAO, 2003b, Zobler 1986) and these products are known to be 217 

outdated. The information on the initial SMW and DSMW has since been updated for large 218 

sections of the world in the HWSD product (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012), which has 219 

recently been revised in WISE30sec (http://dx.doi.org/10.1016/j.geoderma.2016.01.034). 220 
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 221 

Reply: Added. 222 

 223 

L124-125: Start new paragraph for the regional and national level data. 224 

 225 

Reply: Modified. 226 

 227 

L132: multiply –> multiple 228 

 229 

Reply: Modified. 230 

 231 

L133: soil properties are observed (e.g. site data) or measured (e.g. pH, sand, silt, clay content) 232 

 233 

Reply: Modified. 234 

 235 

L138-141: Important to mention here that data served through WoSIS have been 236 

standardised, with special attention for the description/comparability of soil analytical 237 

methods worldwide. See: http://dx.doi.org/10.17027/isric-wdcsoils.20180001. Also an 238 

important element for the discussion is that many countries, although having a large 239 

collection of soil profile data, are not yet sharing such data. See for example: 240 

https://doi.org/10.1016/j.grj.2017.06.001 241 

 242 

Reply: Modified: Data served through WoSIS have been standardized, with special attention 243 

for the description and comparability of soil analytical methods worldwide. However, many 244 

countries, although having a large collection of soil profile data, are not yet sharing such data 245 

(Arrouays et al, 2017). 246 

 247 

L141: The initial list of attributes corresponds with the GlobalSoilMap specifications, with 248 

additional properties added/considered later in WoSIS (see http://dx.doi.org/10.17027/isric-249 

wdcsoils.20180001). 250 

 251 

Reply: Modified by adding the number of soil properties as follows: The soil profiles database 252 

of World Soil Information Service (WoSIS) contains the most abundant profiles (about 118,400) 253 

from national and global databases including most of the databases mentioned below (Batjes, 254 

2017), though only a selection of important soil properties (12) are included (Ribeiro et al., 255 

2018). 256 

 257 

L164: The linkage methods assigns a best-estimate for each soil property (and soil interval) 258 

under consideration to each component soil unit of a polygon (see e.g. HWSD). [see also 359-259 

360]. 260 

 261 

Reply:Modified as: Because the linkage method assigned only one value or a statistical 262 

distribution to a soil type in soil polygons (usually a polygon contains multiple soil types with 263 

their fractions), the intra-polygonal spatial variation is not taken into account. 264 
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 265 

L171-173: For a more comprehensive review see also: 266 

http://dx.doi.org/10.1016/j.geoderma.2016.01.034 and http://dx.doi.org/10.1002/ldr.2656. 267 

 268 

Reply: We added the first one. But we did not add the second one because we did not find 269 

any available dataset online. We also sent an email to the corresponding author but no reply. 270 

 271 

L178: FYI, WISE30sec considers seven layers up to 200 cm depth and 20 soil properties. 272 

 273 

Reply: We added description of WISE30sec as one of the recent global datasets: WISE30sec 274 

is another improvement of HWSD incorporated more soil profiles with seven layers up to 200 275 

cm depth and with uncertainty estimated by mean ± standard deviation. WISE30sec used the 276 

soil map from HWSD with minor corrections and climate zone maps as categorical covariate. 277 

 278 

L201: Possibly, also mention the GSOC effort of the GSP here, see: 279 

https://doi.org/10.5194/soil-4-173-2018. 280 

 281 

Reply: Added as: A third global soil mapping project is the Global SOC Map of the Global Soil 282 

Partnership, which focuses on country-specific soil organic carbon estimates (Guevara et al., 283 

2018). 284 

 285 

L205: … which is currently the most detailed, though not necessarily most accurate estimation 286 

of … 287 

 288 

Reply: Due to our evaluation in section 3, it is also the most accurate estimation. So we did 289 

not describe the accuracy here but in section 3. 290 

 291 

L214: See also: Tifafi M, Guenet B and Hatté CCG 2018. Large differences in global and 292 

regional total soil carbon stock estimates based on Soil-Grids, HWSD and NCSCD: 293 

Intercomparison and evaluation based on field data from USA, England, Wales and France. 294 

Global Biogeochemical Cycles, 42-56. http://dx.doi.org/10.1002/2017GB005678. Note: This 295 

paper is erroneously referred to as Marwa et al. 2018 in manuscript. This should be: Tifafi et 296 

al. 2018. 297 

 298 

Reply: Corrected. 299 

 300 

L214: Check if this is for 0-100 cm; likely these estimates are for 0-200 cm (see also recent 301 

sources mentioned above). 302 

 303 

Reply: It is reported as 0-100 cm in the ref. 304 

 305 

L224: Large sections of HWSDv1.2 still draw on the now outdated DSMW. 306 

 307 

Reply: Modified as: Except GSDE, HWSD and STATSGO (Miller and White, 1998) for USA in 308 
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Table 1, these datasets were derived from the Soil Map of the World  (note that large 309 

sections of GSDE and HWSD still used this map as a base map because there are no available 310 

regional or national maps) 311 

 312 

L295-296: See earlier comments. 313 

 314 

Reply: We added WISE30sec in Table 2 and 3. 315 

 316 

L299: WISE30sec presents estimations of uncertainty, unlike the HWSD and GSDE. 317 

 318 

Reply:  Modified as: Except WISE30sec, all these databases do not contain uncertainty 319 

estimation. 320 

 321 

L300: Needs some discussion and references to publications on the subject. 322 

 323 

Reply: We evaluated several global soil dataset using WoSIS in section 3: 324 

3 Comparison of available global soil datasets 325 

For the convenience of ESMs’ application, we compared several available soil datasets and 326 

evaluated them with soil profiles from WoSIS for some key variables (Sand, clay content, 327 

organic carbon, coarse fragment and bulk density) used in ESMs. In addition to the most 328 

recent developed soil datasets, we also included one old data set (i.e. IGBP) used in ESMs for 329 

the evaluation. It is not necessary to compare all the old data sets because they are based on 330 

similar, limited and outdated source data as described in section 2.2. They have coarser 331 

resolution (Table 1) than the newly developed soil datasets (Table 2). 332 

We present basic descriptions about the new soil datasets in Table 2 and 3. As described in 333 

section 2.1, four available global soil datasets, i.e. HWSD, GSDE, WISE30sec and Soilgrids, 334 

have been developed in the last several years (Table 2). These soil datasets are selected to be 335 

shown here because they have a global coverage with key variables used by ESMs and 336 

developed with relatively good data sources in recent years, and are freely available. Old 337 

versions of these datasets are not shown here. Table 3 shows the available soil properties of 338 

these soil datasets. Except WISE30sec, all these databases do not contain spatial uncertainty 339 

estimation. The explained variance of soil properties in Soilgrids is between 56% and 83%, while 340 

the other datasets do not offer quantitative accuracy assessment. GSDE has the largest 341 

number of soil properties, while Soilgrids currently contains ten primary soil properties 342 

defined by the GlobalSoilMap consortium. 343 

The accuracy of the newly developed soil datasets (Soilgrids, GSDE and HWSD) and an old 344 

dataset (IGBP) are evaluated for five key variables using 94,441 soil profiles from WoSIS (Table 345 

4). We used four statistics in the evaluation, including mean error (ME), root mean squared 346 

error (RMSE), coefficient of variation (CV) and coefficient of determination (R2). All soil 347 

datasets are evaluated for topsoil (0-30cm) and subsoil (30-100cm). The layer schemes of soil 348 

datasets are different (Table 1) and they were converted to the two layers. Soil datasets are in 349 

high resolution and were converted to the resolution of 10 km by averaging. All datasets have 350 

relative small ME. In general. Soilgrids has much better accuracy than the other three due to 351 

RMSE, CV and R2, and GSDE ranks the second, followed by IGBP and HWSD. However, IGBP 352 
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is slightly better than GSDE for bulk density and organic carbon of topsoil. Note that the IGBP 353 

does contain coarse fragment, which is needed in calculating soil carbon stocks. We did not 354 

evaluate the WISE30sec here to save some time in data processing, because previous 355 

evaluation using WoSIS showed that WISE30sec had slightly better accuracy than HWSD 356 

(https://github.com/thengl/SoilGrids250m/tree/master/grids/HWSD). This evaluation has 357 

some limitations. First, because the datasets developed by the linkage method give the mean 358 

value of a SMU resulted in abrupt change between the boundaries of soil polygons while the 359 

datasets developed by digital soil mapping simulated the soil as a continuum with a spatial 360 

continuous change of soil properties, they may not be so comparable. Second, the original 361 

resolution of soil datasets are different, which means that maps with higher resolution 362 

provides more spatial details and we should judge the map quality due to not only the 363 

accuracy assessment but also the resolution. As a result, datasets with higher resolution (i.e. 364 

HWSD and GSDE) are preferred than that with lower resolution (i.e., IGBP) as they have similar 365 

accuracy, especially when the LSMs are run at a high resolution such as 1km. Third, the vertical 366 

variation are better represented by Soilgrids, GSDE and WISE30sec with more than 2 layers 367 

and to a depth over 2m (Table 2). This will provide more useful information for ESMs, 368 

especially when they model deeper soils with multiply layers.  369 

The new generation soil dataset produced by digital soil mapping method gave a quite 370 

different distribution of soil properties from those produced by the linkage method. Figure 1 371 

shows soil sand and clay fraction at the surface 0-30 cm layer from Soilgrids, IGBP and GSDE. 372 

Figure 2 shows soil organic carbon and bulk density at the surface 0-30 cm layer from 373 

Soilgrids, IGBP and GSDE. Significant differences are visible in these datasets. This will lead to 374 

different modelling results in ESMs. Tifafi et al. (2018) found that the global soil organic carbon 375 

stocks down to a depth of 1m is 3,400 Pg estimated by Soilgrids while it is 2500 Pg by HWSD, 376 

and the estimates by Soilgrids are closer to the observations, though they all underestimated 377 

the soil carbon stocks. Figure 1 of Tifafi et al. (2018) showed the global distribution of soil 378 

carbon stocks by Soilgrids and HWSD. 379 

In general, Soilgrids is preferred for ESMs’ application as it has the highest accuracy and 380 

resolution at the time. When soil properties are not available in Soilgrids, WISE30sec and 381 

GSDE offers the alternative options. However, model sensitivity simulations need to be done 382 

to investigate the effects of different soil datasets on ESMs in future studies. 383 

L302: Larger number of soil properties for GSDE, but what about the accuracy of the 384 

predictions? (not given as indicated earlier). 385 

 386 

Reply: Not only GSDE but also HWSD, WISE30sec do not provide a quantitative accuracy 387 

assessment. WISE30sec provides uncertainty estimation of each soil unit, and HWSD and 388 

GSDE could take similar way to estimate the uncertainty. But (spatial) uncertainty estimation 389 

is different from accuracy assessment. As we discussed above, we do the evaluation in section 390 

3. GSDE did some quality assessment using some indicators like WISE, including linkage level 391 

of soil class, sample size, texture consideration, search radius and map unit level (see figure 6 392 

of Shangguan et al., 2014). But it is only a reference of the accuracy and not straight forward 393 

for users, and most users may not even take a look at it. We add some discussions in the 394 

paragraph of uncertainty: Spatial uncertainty is estimated by different methods for the linkage 395 

method and digital soil mapping methods. For the linkage method, statistics such as standard 396 
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derivation and percentiles can be used as spatial uncertainty estimation, which are calculated 397 

for the population of soil profiles linked to a soil type or a land unit (Batjes, 2016). This 398 

estimation has some limitations because soil profiles are not taken probabilistically but based 399 

on their availability, especially for the global soil datasets. Uncertainty will be underestimated 400 

when the sample size is not big enough to represent a soil type. For digital soil mapping, 401 

spatial uncertainty could be estimated by methods such as geostatistical methods and 402 

quantile regression forest (Vaysse and Lagacherie, 2017), which make sense of statistic. The 403 

accuracy of soil dataset derived by digital soil mapping are estimated by cross-validation. But 404 

it is not trivial for those derived by the linkage method due to the global scale, the support of 405 

the data and independent data (Stoorvogel et al., 2017) and most of these maps are validated 406 

by statistics such as mean error and coefficient of determination. Instead, some datasets, 407 

including WISE and GSDE, use some indictors such as linkage level of soil class and sample 408 

size to offer quality control information (Shangguan et al. 2014; Batjes, 2016). A simple way 409 

to compare the accuracy of datasets by both methods may be to use a global soil profile 410 

database as a validation dataset, though some of these profiles were used in deriving these 411 

datasets and questions will be raised. We evaluated several global soil property maps in 412 

section 3. 413 

 414 

L303: Rephrase. ...SoilGrids products currently consider the list of attributes as defined 415 

by the GlobalSoilMap consortium. 416 

 417 

Reply: Modified: while Soilgrids currently contains ten primary soil properties defined by the 418 

GlobalSoilMap consortium. 419 

 420 

L323: Most PTFs are not portable (i.e. locally or regionally validated). 421 

 422 

Reply: We added: PTFs generally are not portable from one region to the other (i.e. locally or 423 

regionally validated). 424 

 425 

L331-332: add database (word is missing in sentence) 426 

 427 

Reply: Modified. 428 

 429 

L360-361: ...component soil unit in most cases, and thus a one-to-many relationship 430 

exists between the SMU and the profile attributes of the respective soil units... 431 

 432 

Reply: Modified. 433 

 434 

L397-398: Possibly, rephrase this sentence. 435 

 436 

Reply: Modified: However, some researches used the “aggregating after” method producing 437 

misleading results (Hiederer and Köchy, 2012). 438 

 439 

L410: remove high from sentence 440 
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 441 

Reply: removed. 442 

 443 

L441-442: Provide some justification (a sentence or two) for this statement. 444 

 445 

Reply: added: because they provide spatial continuous estimations of soil properties using 446 

spatial prediction models with various soil-related covariates.  447 

 448 

L451-452: Speculative as written. Please provide some evidence for this. 449 

 450 

Reply: This issue is discussed extensively by Looy et al. 2017 at the end of section 3. For briefty, 451 

we added a sentence here instead of long discussions: because ensemble modeling carries a 452 

number of benefits and potential over the use of a single model (Looy et al., 2017).  453 

 454 

For you reference, I copied the content from Looy et al. (2017) here:  Another recent 455 

technique that has merits in this respect is ensemble modeling – i.e. the use of a number of 456 

models in combination. This technique is a natural part of weather and climate modeling 457 

today, yet it is less used in the prediction of soil properties [Baker and Ellison, 2008b]. 458 

Ensemble modeling carries a number of benefits and potential over the use of a single model. 459 

Models can differ in their theory and structure, but also in the information that they require. 460 

As a result, their sensitivity and scale of support may also differ. The use of ensemble modeling 461 

is easy to justify if it is difficult to determine which, if any, single model may be superior to 462 

others. In ensemble modeling, the main aim is not to make the single model perfect, but to 463 

capture the trend that multiple models agree on. The ensemble will amplify trends that are 464 

common among models, while by-chance predictions will be softened. The outputs, therefore, 465 

can be interpreted – qualitatively or quantitatively - as a measure of uncertainty. In the context 466 

of integrated Earth system models, the represented complex processes – integrating physical 467 

and biochemical processes typically – can be covered by a number of models with strongly 468 

varying concept and structure. Here lies an opportunity to construct ensemble models 469 

entering different PTF-based parameterizations.  470 

 471 

L460: and quantifying uncertainty in the predictions 472 

 473 

Reply: Added 474 

 475 

L461: ‘need to gain popularity in ...’. Basically, the “proof of the pudding is in the 476 

eating". 477 

 478 

Reply: We provided some examples at regional scales, which shows products by digital soil 479 

mapping improved climate modelling results (Kearney and Maino, 2018; Trinh et al., 2018). 480 

But no global studies have been taken to compare digital soil mapping products and linkage 481 

method products in ESMs yet, which we are doing now. So we changed this sentence to a 482 

more conservative one: the new generation soil datasets derived by digital soil mapping need 483 

to be tested in ESMs, and some regional studies have shown that these datasets provided 484 
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better modelling results than products by the linkage method (Kearney and Maino, 2018; 485 

Trinh et al., 2018). Moreover, many studies from digital soil mapping have identified that soil 486 

maps are not very important to predict soil properties and are usually not used as a covariate 487 

in most studies (eg. Hengl et al., 2014; Viscarra Rossel et al., 2015; Arrouays et al., 2018). 488 

However, the linkage method usually takes soil map as the major covariate, which essentially 489 

affect the accuracy of the derived soil property maps, especially for areas without detailed soil 490 

maps. 491 

 492 

L462: What I miss in this paper, is a discussion of the inherent uncertainty attached to using 493 

soil profile data coming from various sources. Often, little consideration is given to differences 494 

in analytical methods used for analysing e.g. soil organic carbon content worldwide (see 495 

Shangguang et al 2014, who consider this as ‘a major imitation to their approach’). For a 496 

discussion of issues see e.g.: http://dx.doi.org/10.17027/isricwdcsoils.20180001 497 

 498 

Reply: This was mentioned in L483-L484: Data compatibility of different analysis methods and 499 

different description protocols including soil classifications is also an important issue and data 500 

harmonization is necessary when the data are made available to public. Also, see the 501 

paragraph discussing uncertainty we added. 502 

 503 

L463-464: More soil profiles is not necessarily the solution. More quality assessed data, 504 

analysed according to comparable analytical methods, are needed to support such efforts. 505 

Reference should be made to ’new’ types of data as derived from proximal sensing (e.g. 506 

http://dx.doi.org/10.5194/soil-2017-36), and associated limitations. Reference, in this respect, 507 

could also be made to the GLOSOLAN effort, initiated by the GSP (http://www.fao.org/global-508 

soilpartnership/resources/events/detail/en/c/1037455/) and work of GSP Pillar 5 towards 509 

harmonisation (http://www.fao.org/3/a-bs756e.pdf). Also, importantly, the geographical 510 

distribution and possible clustering of the shared soil profiles. 511 

 512 

Reply: these are added: More quality assessed data, analysed according to comparable 513 

analytical methods, are needed to support such efforts. The harmonization of soil data is 514 

undertaking by the work of GSP Pillar 5 (Pillar 5 Working Group, 2017) and WoSIS (Batjes et 515 

al., 2017). Data derived from proximal sensing, although with higher uncertainty than 516 

traditional soil measurements, can be used in soil mapping (England and Viscarra Rossel, 517 

2018). To avoid spatial extrapolation, soil profiles should have a good geographical coverage. 518 

 519 

L471-475: True, but how many of these profiles are actually being shared for the greater 520 

benefit of the international community? See paper by Arrouays et al. 2017 for a discussion. 521 

 522 

Reply: We added: Arrouays et al. (2017) reported that about 800,000 soil profiles have been 523 

rescued in the selected countries. 524 

 525 

L479: Some reference to the ongoing work of the Global Soil Partnership, Pillars 4 and 526 

5, is needed here. 527 

 528 
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Reply: Added: (Pillar four Working Group, 2014; Pillar 5 Working Group, 2017) 529 

 530 

L948: Table 2 is not complete; ‘recent’ datasets not yet considered in the review should be 531 

added here ( http://dx.doi.org/10.1002/ldr.2656; 532 

http://dx.doi.org/10.1016/j.geoderma.2016.01.034 ). Idem for Table 3. 533 

 534 

Reply: WISE30sec is added. The other one (Stoorvogel et al., 2017, which we cited in our paper) 535 

is more about proposing a new method which can improve HWSD results. ‘The RMSD for S-536 

World was considerably smaller (2.1% SOC) than the RMSD for HWSDweighted (2.9% 537 

SOC) .’But this method has some limitation for soil properties with limited samples and for 538 

those having week relationship with covariates. We don’t find the dataset available online. 539 

And in the paper, they only tested 6 soil properties.  i) topsoil thickness (cm), ii) soil depth 540 

(cm), iii) soil organic carbon (SOC) content in the top 30 cm (%), iv) SOC content in the subsoil 541 

(30 to 120 cm) (%), v) clay content in the soil profile (%), and vi) sand content in the soil profile 542 

(%) . So we did not add this citation as a dataset for now. I have written email to the 543 

corresponding author to check the availability but not reply. 544 

 545 

L952: Table 3. Change title to “Derived soil properties considered in three global soil datasets”. 546 

Essentially, this is a simple enumeration of derived soil properties. However, the fact that many 547 

different analytical methods have been used to derive a given soil property (e.g. soil organic 548 

carbon Walkley & Black method or LECO total analyses) or which CEC (e.g. measured at ‘field 549 

pH’ or in a buffer-solution at ‘pH7’ or ‘pH8’) has been considered is not mentioned here (in 550 

a footer perhaps). In their study, Shangguan et al. (2014) rightly indicate that this has not been 551 

the case and indicate that they see this an important limitation. However, there are still no 552 

straightforward mechanisms for harmonising the data (cf. GSP Pillar 5 and GLOSOLAN 553 

activities, as mentioned above). 554 

 555 

Reply: title changed. We add a sentence in the footnote: It should be noted that many 556 

different analytical methods have been used to derive a given soil property, which is a major 557 

source of the dataset. 558 

 559 

Potaasium –> Potassium 560 

 561 

Reply: corrected 562 

  563 
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Reply to reviewer 2 564 

 565 

2. General comments 566 

Comment: A review of soil datasets available for Earth system modeling is extremely useful, 567 

given the wide application of ESMs in important projects such as the coupled model 568 

intercomparison projects (CMIP) serving the IPCC reports, and in view of the challenges of 569 

observing soil properties covering the globe. However, the manuscript does in fact not fulfill 570 

what it promises in the title. It does not review datasets and compares them quantitatively 571 

(apart from selected maps in Fig. 1-2, but a systematic comparison is missing). Instead it 572 

discusses in length linkage and digital mapping methods, then how soil observational data in 573 

general can be incorporated in ESMs and what challenges arise. This is valuable *ancillary* 574 

information, and the manuscript summarizes a lot of important information on these topics. 575 

But the main purpose of the paper is missed. A careful review of available datasets needs to 576 

be added, which is of course a major revision: there should be more than the 3 datasets in 577 

Tab. 3, unless justified that these 3 are special (for example it would be very illustrative to 578 

include all the currently used old datasets as well to know what a difference the new datasets 579 

might make). There should be a review also of other data than global maps, as needed e.g. 580 

for parameters. Most importantly, however, a quantitative comparison of at least key variables 581 

should be included, with useful statistical measure (maps, global mean and variability, 582 

latitudinal means, comparison against selected observational high-quality sites, …). Ideally, 583 

model sensitivity simulations would be run, but this latter point is not essential. 584 

 585 

Reply: The purpose of the review is to offer insights to both soil data developer and ESM users. 586 

So we discussed contents may be interesting to both sides.  That is why we discussed  in 587 

length linkage and digital mapping methods, then how soil observational data in general can 588 

be incorporated in ESMs and what challenges arise.  589 

We agree that a systematic quantitative comparison is a very important aspect this review 590 

should cover. So we compared a selection of global soil data sets with a focus on the most 591 

recent developed ones (i.e., HWSD, GSDE, WISE30sec and Soilgrids). We also included one 592 

‘old’ data set (i.e. IGBP) used in ESMs for the comparison. It is not necessary to compare all 593 

the old data sets because they are based on similar, limited and outdated source data. All the 594 

old soil data are based on the FAO soil map and no more than 5,800 soil profiles (described 595 

in section 2.2). We can see that the newly developed soil data in fig.1-2 have some major 596 

differences. It is valuable to compare them even though they may not be so comparable, 597 

because the datasets developed by the linkage method give the mean value of a SMU 598 

resulted in abrupt change between the boundaries of soil polygons while the datasets 599 

developed by digital soil mapping simulated the soil as a continuum with a spatial continuous 600 

change of soil properties. Nevertheless, we used site observations of WOSIS to evaluate the 601 

soil data sets, though these observations are used or partly used in the development of global 602 

distribution of soil data. We compared the key variables (Sand, clay content, organic carbon, 603 

coarse fragment and bulk density) used in ESM with useful statistical measures. However, 604 

model sensitivity simulations will not be done in this review and need to be done in other 605 

studies. This review focuses on the global soil property maps in ESMs. We did not extend the 606 

content to other data including model parameters which is a different topic but valuable. As 607 
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we mentioned in the manuscript, variables such as soil temperature and soil moisture are 608 

beyond this paper’s scope. To avoid misunderstanding, we changed the title to ‘a review on 609 

the global soil property maps for earth system model’ and modify the corresponding 610 

expression in the manuscript. However, we will use the term soil datasets for brevity. We 611 

added a new section (section 3) to show the comparison of the soil datasets:  612 

3 Comparison of available global soil datasets 613 

For the convenience of ESMs’ application, we compared several available soil datasets and 614 

evaluated them with soil profiles from WoSIS for some key variables (Sand, clay content, 615 

organic carbon, coarse fragment and bulk density) used in ESMs. In addition to the most 616 

recent developed soil datasets, we also included one old data set (i.e. IGBP) used in ESMs for 617 

the evaluation. It is not necessary to compare all the old data sets because they are based on 618 

similar, limited and outdated source data as described in section 2.2. They have coarser 619 

resolution (Table 1) than the newly developed soil datasets (Table 2). 620 

We present basic descriptions about the new soil datasets in Table 2 and 3. As described in 621 

section 2.1, four available global soil datasets, i.e. HWSD, GSDE, WISE30sec and Soilgrids, 622 

have been developed in the last several years (Table 2). These soil datasets are selected to be 623 

shown here because they have a global coverage with key variables used by ESMs and 624 

developed with relatively good data sources in recent years, and are freely available. Old 625 

versions of these datasets are not shown here. Table 3 shows the available soil properties of 626 

these soil datasets. Except WISE30sec, all these databases do not contain spatial uncertainty 627 

estimation. The explained variance of soil properties in Soilgrids is between 56% and 83%, while 628 

the other datasets do not offer quantitative accuracy assessment. GSDE has the largest 629 

number of soil properties, while Soilgrids currently contains ten primary soil properties 630 

defined by the GlobalSoilMap consortium. 631 

The accuracy of the newly developed soil datasets (Soilgrids, GSDE and HWSD) and an old 632 

dataset (IGBP) are evaluated for five key variables using 94,441 soil profiles from WoSIS (Table 633 

4). We used four statistics in the evaluation, including mean error (ME), root mean squared 634 

error (RMSE), coefficient of variation (CV) and coefficient of determination (R2). All soil 635 

datasets are evaluated for topsoil (0-30cm) and subsoil (30-100cm). The layer schemes of soil 636 

datasets are different (Table 1) and they were converted to the two layers. Soil datasets are in 637 

high resolution and were converted to the resolution of 10 km by averaging. All datasets have 638 

relatively small ME. In general. Soilgrids has much better accuracy than the other three due 639 

to RMSE, CV and R2, and GSDE ranks the second, followed by IGBP and HWSD. However, 640 

IGBP is slightly better than GSDE for bulk density and organic carbon of topsoil. Note that the 641 

IGBP does contain coarse fragment, which is needed in calculating soil carbon stocks. We did 642 

not evaluate the WISE30sec here to save some time in data processing, because previous 643 

evaluation using WoSIS showed that WISE30sec had slightly better accuracy than HWSD 644 

(https://github.com/thengl/SoilGrids250m/tree/master/grids/HWSD). This evaluation has 645 

some limitations. First, because the datasets developed by the linkage method give the mean 646 

value of a SMU resulted in abrupt change between the boundaries of soil polygons while the 647 

datasets developed by digital soil mapping simulated the soil as a continuum with a spatial 648 

continuous change of soil properties, they may not be so comparable. Second, the original 649 

resolution of soil datasets are different, which means that maps with higher resolution 650 

provides more spatial details and we should judge the map quality due to not only the 651 
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accuracy assessment but also the resolution. As a result, datasets with higher resolution (i.e. 652 

HWSD and GSDE) are preferred than that with lower resolution (i.e., IGBP) as they have similar 653 

accuracy, especially when the LSMs are run at a high resolution such as 1km. Third, the vertical 654 

variation are better represented by Soilgrids, GSDE and WISE30sec with more than 2 layers 655 

and to a depth over 2m (Table 2). This will provide more useful information for ESMs, 656 

especially when they model deeper soils with multiply layers.  657 

The new generation soil dataset produced by digital soil mapping method gave a quite 658 

different distribution of soil properties from those produced by the linkage method. Figure 1 659 

shows soil sand and clay fraction at the surface 0-30 cm layer from Soilgrids, IGBP and GSDE. 660 

Figure 2 shows soil organic carbon and bulk density at the surface 0-30 cm layer from 661 

Soilgrids, IGBP and GSDE. Significant differences are visible in these datasets. This will lead to 662 

different modelling results in ESMs. Tifafi et al. (2018) found that the global soil organic carbon 663 

stocks down to a depth of 1m is 3,400 Pg estimated by Soilgrids while it is 2500 Pg by HWSD, 664 

and the estimates by Soilgrids are closer to the observations, though they all underestimated 665 

the soil carbon stocks. Figure 1 of Tifafi et al. (2018) showed the global distribution of soil 666 

carbon stocks by Soilgrids and HWSD. 667 

In general, Soilgrids is preferred for ESMs’ application as it has the highest accuracy and 668 

resolution at the time. When soil properties are not available in Soilgrids, WISE30sec and 669 

GSDE offers the alternative options. However, model sensitivity simulations need to be done 670 

to investigate the effects of different soil datasets on ESMs in future studies. 671 

 672 

Comment: A method for the review is missing, which leaves the reader in doubt whether 673 

he/she has been reading an opinion piece or a comprehensive review. Currently both the 674 

selection of mentioned datasets and the selection of ESMs is incomprehensive and not 675 

justified in its selection. For the models one could imagine to do a review of all TRENDY LSMs 676 

or of all CMIP5 (or even better CMIP6) ESMs and the datasets they are using. For the available 677 

datasets some objective criteria should be given as well, e.g. a list of criteria that datasets 678 

need to fulfill to be included in Tab. 3 (global, soil type and property x, y, z need to be 679 

included,…) 680 

 681 

Reply: We described the selection of mentioned datasets and the selection of ESMs. As we 682 

mentioned in the above reply, datasets are chosen according to their source data quality and 683 

developing time. In addition, the datasets should be freely available. We do not require 684 

minimum number of soil properties as long as the soil dataset are global maps (but they all 685 

have the key variables in ESMs evaluated in section 3).  The selection of mentioned datasets 686 

in Table 2 and 3 are described as: These soil datasets are selected to be shown here because 687 

they have with key variables required by ESMs and developed with relatively good data 688 

sources in recent years, and are freely available. Old versions of these datasets are not shown 689 

here. 690 

 691 

Our currently list of ESMs covers the major LSMs but not all of them because a complete list 692 

will be too lengthy. We also checked the list of CMIP5 and added these models if they have 693 

documented the soil dataset used. Only two ESMs (i.e., INMCM and MRI-ESM) are not include 694 

in Table 1 as there is no information about the soil dataset. According to the editors’ comment, 695 
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we start the table 1 with the soil dataset instead of the models as our focus is on soil data 696 

rather than ESMs or LSMs. We modified the description of Table 1: Table 1 shows several 697 

most popular ESMs (specifically, their land surface models) and their input soil datasets. The 698 

ESMs in Table 1 cover the list of CMIP5 (Coupled Model Intercomparison Project) except those 699 

without information about the input soil datasets. 700 

 701 

 702 

Comment: The organization of the sections does not appear logical: Datasets and their usage 703 

in ESMs (Section 2) is very good, presenting PTFs as Section 3 promises in l. 105 is also very 704 

useful but these PTFs are in fact never presented and compared, just discussed. Section 4 705 

deals with data from the linkage method. why? Why not data from digital mapping as well? 706 

Section 5 deals with upscaling to the coarse ESM resolution. This is an important point, but 707 

there are many other challenges related to application of soil datasets in ESMs: One obstacle 708 

is that observations are not covering the soil depth as deeply as the ESMs and in other layer 709 

distributions. Another that soil observations are derived from present-day, which has 710 

confounding effects of both environmental changes (climate, CO2, nutrient deposition, …) 711 

and historical land use changes. Would this affect soil thermal and other properties needed 712 

as input to ESMs? How should one evaluate ESMs only for present-day then? 713 

 714 

Reply: PTFs is not the major focus of this review while there is a very good review on PTF in 715 

ESMs which we cited as Looy et al., (2017). Section 4 does not discuss data from digital 716 

mapping because it does not have the aggregating problem like the data by the linkage 717 

method. Data by the linkage method are derived for each soil map unit and data by digital 718 

mapping are derived for each grid. We added sentences to clarify this: Soil data by the linkage 719 

method are derived for each soil mapping unit or land unit and thus is polygon-based, while 720 

ESMs are usually grid-based. However, soil data derived by digital soil mapping are grid-721 

based. So, the compatibility between soil data derived by the linkage method and ESMs needs 722 

to be addressed.  723 

 724 

We agree that issues about the changing soil properties should be discussed. We added a 725 

section : section 4.3 The changing soil properties: 726 

There is not any global soil property map in time-series because we do not have enough 727 

available data. In all the global soil property maps, all the available soil observations in the 728 

last decades are used in the development of soil property maps without considering the 729 

changing environment. So these datasets should be considered as an average state. The 730 

critical issue for mapping global soil properties in time-series is to establish a soil profile 731 

database with time stamps and then divide them into two or more groups of different periods 732 

such as 1950s-1970s. This is still quite challenging at the global scale because the spatial 733 

coverage of soil profiles is quite uneven for different periods and the sample size may not be 734 

big enough to derive maps with satisfied accuracy. 735 

 736 

Soil properties are changing but we are now taking it as static in ESMs. As some ESMs already 737 

simulate the soil carbon, this may be considered in PTFs used to estimate soil hydraulic and 738 

thermal parameters. Other soil properties affecting soil hydraulic and thermal parameters 739 
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include soil texture, bulk density, soil structure and so on, but the change is relatively slow. 740 

The effect of environmental change on soil properties is the topic of quantitative modeling of 741 

soil forming processes, i.e. soil landscape and pedogenic models (Gessler et al., 1995; Minasny 742 

et al., 2008). If we need to simulate the change of soil properties, a coupling of ESMs and soil 743 

landscape and pedogenic models will be needed. Otherwise, we need to predict the soil 744 

properties in the future using soil landscape and pedogenic models which are small scale 745 

models and has high uncertainty. The prediction of changing soil properties may also be done 746 

by digital soil mapping taken the changing (especially for the future) climate and land use as 747 

covariates, which may be the more feasible than dynamic models. 748 

 749 

 750 

We agree that we should also discuss the lack of deep soil data and the different layer 751 

schemes of soil data and ESMs.  We added:  752 

4.5 Layer schemes and lack of deep layer soil data 753 

The layer scheme of a soil data set needs to be coveted to that of ESMs for model use. A 754 

simple way for this conversion is the depth weighting method. When a more accurate 755 

conversion is needed, the equal-area quadratic smoothing spline functions can be used, 756 

which is proved to be advantageous in predicting the depth function of soil properties (Bishop 757 

et al., 1999). Mass conservation for a soil property of a layer is guaranteed by this method 758 

under the assumption of continuous vertical variation of soil properties. This method may 759 

produce some negative values which should be set to zero. 760 

The depth of soil observations in soil survey are usually less than 2 m and thus resulted in 761 

missing values for the deep layers of ESMs. For the lack of deep soil data, there is not any 762 

good solution other than extrapolate the values based on the observations of shallower layers, 763 

which will lead to higher uncertainty of soil properties for deep layers. The extrapolation can 764 

be done by the above-mentioned spline method or simply by assigning soil properties of the 765 

last layer to the rest of deeper soil layers. Depth to bedrock map (Shangguan et al., 2017) can 766 

be utilized in defining the low boundary of soil layers, and a default set of thermal and 767 

hydraulic characteristic can be assigned for bedrocks. 768 

 769 

 770 

Comment: How should ESMs deal with observational uncertainty (see comment below)?  771 

 772 

Reply: See the reply to the specific comment below. 773 

 774 

Comment: I think what this paper needs to cover is (0) specifying what ESMs need, i.e. which 775 

spatial and temporal coverage, which variables (extending the list of parameters, initial state, 776 

evaluation/benchmarking in the introduction) (1) general methodology of deriving this soil 777 

information (mostly Sec. 2, PTFs would go in this section as well.) (2) comprehensive, 778 

quantitative comparison of available global soil datasets (largely missing) (3) discussion of 779 

existing challenges of data usage in ESMs, where one should come back to the list of usages 780 

in the introduction: evaluation data for example does not have to have global coverage. The 781 

upscaling would be one of several points here. 782 

 783 
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Reply: We reorganized this manuscript as the reviewer recommended. However, there are 784 

some issues to be clarified. As we mentioned above, this review focuses on the global soil 785 

property maps in ESMs. We did not extend the content to other data including model 786 

parameters and data without a global coverage which is a different topic but valuable. As we 787 

mentioned in the manuscript, variables such as soil temperature and soil moisture are beyond 788 

this paper’s scope. For the temporal change of soil properties, we addressed it as a challenge 789 

as there is no time series of global soil property map yet.  790 

 791 

 792 

Comment: The paper is not very well written. First, the use of English language is incorrect or 793 

uncommon. Second, many expressions are not accurate. Just taking the first sentence as 794 

example: “Soil or pedosphere is a key component of Earth system, and plays an important 795 

role in the water, energy and carbon balances and biogeochemical processes.”First, it should 796 

read “The soil or pedosphere is a key component of the Earth system, …” (where “Earth” is 797 

correctly written in capitals, while it is not in the title: : :). Second, the carbon cycle is one 798 

example of biogeochemical processes, so it should read “ and *other* biogeochemical 799 

processes”. I am not correcting any of these language and accuracy errors in the following 800 

because they are too numerous. 801 

 802 

Reply: Thanks for pointing out these errors. We revised this manuscript and will take a 803 

language service after the final revision. 804 

 805 

 806 

 807 

More detailed comments: 808 

p. 1 809 

Comment:  * "Soil datasets function as model parameters": do the authors mean that model 810 

parameters can be derived from soil carbon maps? What parameters are they thinking of? 811 

 812 

Reply: we corrected the expression to model inputs. This is the major usage of soil property 813 

maps in ESMs (table 1).  814 

 815 

Comment:  * "are preferred to those by the linkage method for ESMs": not understandable 816 

at this point in the manuscript - what is the “linkage method”? 817 

 818 

Reply: we also added the other name of it: “taxotransfer rule-based method’, which may be 819 

a more understandable terminology. But this terminology is not possible to explain in the 820 

abstract.  821 

 822 

Comment: * "to provide secondary soil parameters to ESMs": what are secondary soil 823 

parameters? 824 

 825 

Reply: we modified it to “derived soil properties”, which includes soil hydraulic, thermal and 826 

biogeochemical parameters. And we explained this when “secondary soil parameter” first 827 
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appear in the manuscript. 828 

 829 

 830 

Comment: Generally, the abstract does not read like a review of datasets, but like a 831 

commentary on challenges of integrating soil carbon datasets in ESMs. As a reader I would 832 

have expected an abstract here of types of data, see general comment above. 833 

 834 

Reply: we revised the abstract adding the related contents. Note that comparison and 835 

evaluation of datasets is only one aspect of this review: Soil is an important regulator of Earth 836 

system processes, but remains one of the least well-described data layers in Earth System 837 

Models (ESMs). We reviewed global soil property maps from the perspective of ESMs, 838 

including soil physical and, chemical and biological properties, which can also offer insights 839 

to soil data developers. These soil datasets provide model inputs, initial variables and 840 

benchmark datasets. For modeling use, the dataset should be geographically continuous, 841 

scalable and with uncertainty estimates. The popular soil datasets used in ESMs are often 842 

based on limited soil profiles and coarse resolution soil type maps with various uncertainty 843 

sources. Updated and comprehensive soil information needs to be incorporated in ESMs. New 844 

generation soil datasets derived by digital soil mapping with abundant, harmonized and 845 

quality controlled soil observations and environmental covariates are preferred to those by 846 

the linkage method (i.e. taxotransfer rule-based method) for ESMs. Soilgrids has the highest 847 

accuracy and resolution among the global soil datasets at the time, while other recently 848 

developed datasets are useful compliments. Because there is no universal pedotransfer 849 

function, an ensemble of them may be more suitable to provide derived soil properties to 850 

ESMs. Aggregation and upscaling of soil data are needed for model use but can be avoid by 851 

taking a subgrid method in ESMs at the cost of increases in model complexity. Producing soil 852 

property maps in time series is still challenging.  Uncertainty of soil data needs to be 853 

estimated and incorporated in ESMs. 854 

 855 

p. 2 856 

Comment:  * "However, soil dataset used in ESMs is not well updated nor well utilized yet.”: 857 

This needs citation of which datasets are used and felt by the authors to be outdated. 858 

 859 

Reply: To make this more objective, we added some citation from FAO and globalsoilmap (a 860 

community joint effort project), not felt by us.  We have explained this in section 2.2: Except 861 

GSDE, HWSD and STATSGO (Miller and White, 1998) for USA in Table 1, these datasets were 862 

derived from the Soil Map of the World (note that large sections of GSDE and HWSD still used 863 

this map as a base map because there are no available regional or national maps) (FAO, 1971-864 

1981) and limited soil profile data (no more than 5,800 profiles), which gained popularity 865 

because its simplicity and ease of use. But these are outdated and should no longer be used 866 

because much better soil information as introduced in Section 2.1 can be incorporated 867 

(Sanchez et al., 2009; FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). 868 

 869 

 870 

Comment:  * l. 45-48: Kearney & Maino are one specific study for Australia for soil moisture 871 
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using one new soil dataset. Using this as reference for the entire “Earth system” and for “will 872 

improve” in the future is a stretch. Better look for a couple of references and spell them out 873 

explicitly. 874 

 875 

Reply: This is only an example. We added more citations here: (eg. Livneh et al., 2015; Dy and 876 

Fung, 2016; Kearney and Maino, 2018). More examples are given with brief description in 877 

section 2.2. 878 

 879 

Comment: * "could avoid the possibility of the non-linear singularity evolution of the 880 

modeling”: this needs to be explained in one more sentence. Do the authors mean that 881 

models may have multiple equilibria? 882 

 883 

Reply: Yes, it means models may have multiple equilibria. And we also added a sentence: The 884 

setting of initial nutrient stocks is a major factor leading to model-to-model variation in the 885 

simulation (Todd-Brown et al., 2014). 886 

 887 

p. 3 888 

Comment: * "for multiply layers rather than a global constant”: This mixes up vertical 889 

resolution (-> layers) and horizontal resolution (-> global constant). Be more explicit in your 890 

description.  891 

 892 

Reply: we modified it as: As a result, ESMs usually incorporate soil property maps (i.e., 893 

horizontal spatial distribution) for multiply layers rather than a global constant or a single 894 

layer. 895 

 896 

Comment: * Is “linkage method” really the proper technical term here? It seems to me it is 897 

used in the literature rather for remapping than for linking soil observations to environmental 898 

variables. The paper would benefit from a clearer overview of technical terms and methods, 899 

if it is meant to serve as a review. 900 

 901 

Reply: We used this term for brevity. But it may be misleading if readers are not familiar with 902 

soil mapping. So we also used the other term taxotransfer rule-based method. We added this 903 

term when it first appears in the manuscript: The traditional way (i.e., the linkage method, also 904 

called taxotransfer rule-based method) is to link soil profiles and soil mapping units on soil 905 

type maps, sometimes with ancillary maps such as topography and land use (Batjes, 2003; 906 

FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). 907 

 908 

Comment: * paragraph starting l. 93: Vector to raster conversion and remapping to a different 909 

resolution are certainly not the biggest or at least not the only obstacles to including soil 910 

datasets in models. That models need different variables than those directly observable or 911 

that observational datasets cover only a certain depth, which most often is different from the 912 

one ESMs cover, are examples of other important challenges. Overall, I feel the sections 913 

internally should be a bit better structured, with one topic being covered comprehensively by 914 

one paragraph. 915 
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 916 

Reply: This paragraph served as a brief introduction of the obstacles to including soil datasets 917 

in models and detailed description were given in the later sections. That models need different 918 

variables than those directly observable is related to the PTF development. So we did not put 919 

here. We added the challenge of layer schemes here. We modified the paragraph as follows:  920 

There are many challenges related to application of soil datasets in ESMs. First, soil datasets 921 

are usually not appropriated scaled or formatted for the use of ESMs and some upscaling 922 

issues, which is the most frequently encountered, need to be addressed. The soil datasets 923 

produced by the linkage methods are polygon-based and need to be converted to fit the 924 

grid-based ESMs. This conversion can be done by either subgrid method or spatial 925 

aggregation. The up-to-date soil data are provided at a resolution of 1km or finer, while the 926 

LSMs are mostly ran at a coarser resolution. So upscaling of soil data is necessary before it 927 

can be used by ESMs. Proper upscaling methods need to be chosen carefully to minimize 928 

uncertainty in the modeling results introduced by them (Hoffmann and Christian Biernath, 929 

2016; Kuhnert et al., 2017). Second, all the current global soil datasets represent the average 930 

state of last decades, and producing soil property maps in time series is still challenging. Soil 931 

landscape and pedogenic models are developed to simulate soil forming processes and soil 932 

property changes, which can be incorporated into ESMs. The prediction of changing soil 933 

properties can be also done by digital soil mapping taken the changing climate and land use 934 

as covariates. Third, the uncertainty of soil properties can be estimated, and adaptive 935 

surrogate modeling based on statistical regression and machine learning may be used to 936 

assess effects of the uncertainty of soil properties on ESMs (Gong et al., 2015; Li et al. 2018). 937 

Last but not the least, the layer schemes of soil data sets need to be converted for model use 938 

and missing values for deeper soil layers needs to be filled. 939 

 940 

Comment: * "Two kinds of soil data are generated from soil surveys: soil polygon maps 941 

representing distribution of soil types and soil profiles with observations of soil properties. 942 

ESMs usually require the spatial distribution of soil properties, or soil property maps rather 943 

than soil classification information.”: It is unclear how the information of the two sentences 944 

relates. Would this be correct: "Two kinds of soil data are generated from soil surveys: a 945 

classification of soil type (usually in the form of polygon maps) and soil profiles with 946 

observations of soil properties. ESMs usually require the spatial distribution of soil properties 947 

(soil property maps) rather than a classification of soil type.” If so please always use the same 948 

term for the same information. 949 

 950 

Reply: you are right. we modified as follows: 951 

 952 

Two kinds of soil data are generated from soil surveys: a map (usually in the form of polygon 953 

maps) representing main soil types in a landscape unit and soil profiles with observations of 954 

soil properties which are considered representative for the main component soils of the 955 

respective mapping units. ESMs usually require the spatial distribution of soil properties (i.e., 956 

soil property maps) rather than information about soil types. Two kinds of methods, i.e. the 957 

linkage method and the digital soil mapping method, are used to derive soil property maps. 958 

 959 
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p. 4 960 

Comment: * "Soil maps show the geographical distribution of soil types,”: I think this is too 961 

general, the term “soil map” is not a technical, well specified term. Rather speak explicitly of 962 

“soil type maps” to distinguish it from maps of soil properties. 963 

 964 

Reply: In soil science, if it is not clarified, soil map refers to soil type map. To clarify this, we 965 

modified to: Soil maps (the term soil map refers to soil type map in this paper) show the 966 

geographical distribution of soil types. 967 

 968 

Comment: * l. 153 ff linkage method: this is a useful description, but hard to read for non-969 

experts. Please improve the clarity of the text. For example: * my understanding is that 970 

pedotransfer functions map well-observable to less-wellobservable properties, but here it 971 

sounds as if the PTFs are needed to link site-level (profile) observations of soil properties to 972 

soil type maps. 973 

 974 

Reply: Sorry for the description leading to the misunderstanding. Pedotransfer here has 975 

nothing to do with Pedotransfer functions discussed in the late section. We added some 976 

notification here: The linkage method (called the taxotransfer rule-based method) is to link 977 

soil maps (with soil mapping units or soil polygons) and soil profiles (with soil properties) 978 

according to taxonomy-based pedotransfer (taxotransfer in short, note that pedotransfer 979 

here does mean pedotransfer functions which is a different thing) rules (Batjes, 2003). 980 

 981 

Comment: * "The criteria used in the linkage could be one or many factors as following […] 982 

and so on”: this is very vague. Which type of criteria is this: soil physical and chemical 983 

properties? 984 

 985 

Reply: this is related to the above comment. These are the criteria for linking soil map and soil 986 

profiles with all soil properties together. Soil properties are not creteria. 987 

 988 

Comment: * "Each soil type is represented by one or a group of soil profiles that meet the 989 

criteria, and usually the median or mean value of a soil property is assigned to the soil type.”: 990 

Criteria and properties are mixed up here. Isn’t it choosing one (or several) property 991 

as criteria, then mapping the rest? 992 

 993 

Reply: this is related to the above comment. Soil properties are not creteria.  994 

 995 

Comment: * l. 165-172: how do these references relate to the examples of "major soil maps” 996 

in the introduction? 997 

 998 

Reply: these references include both soil type maps and soil property maps, while "major soil 999 

maps" in section 2.1 (not the introduction) refers to soil type map only. 1000 

 1001 

Comment: * l. 188 ff: Again, please add clarity. The difference between linkage method and 1002 

digital soil mapping is not just that the first has the same values across a polygon, but also in 1003 
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what information is used as criteria for mapping: the digital soil mapping uses environmental 1004 

information, not just physical and chemical properties if I understood it correctly. 1005 

 1006 

Reply: This is also related to the misunderstanding of the term pedotranfer.  1007 

 1008 

p. 5 1009 

Comment: * “purity of soil map units is likely to be around 50 to 65%”: which statistical measure 1010 

is meant by “purity”? 1011 

 1012 

Reply: This is a term used in soil science, which means the percentage of the dominant soil 1013 

type in a soil map unit. Modified as: the purity of soil maps (referring to the following 1014 

website for the definition: 1015 

https://esdac.jrc.ec.europa.eu/ESDB_Archive/ESDBv2/esdb/sgdbe/metadata/purity_m1016 

aps/purity.htm) is likely to be around 50 to 65% (Landon, 1991) 1017 

 1018 

p. 6 1019 

Comment: * Why is IGBP-DIS mentioned here the first time? It should have been mentioned 1020 

under the linkage or the digital mapping methods (depending on what method is used) 1021 

before. 1022 

 1023 

Reply: IGBP-DIS is listed in Table 1. It is produced by the linkage method. We added IGBP-1024 

DIS under the linkage method: At the global level, many databases were derived by the 1025 

linkage method: the FAO Soil Map of the World with derived soil properties (FAO, 2003a), the 1026 

Data and Information System of International Geosphere-Biosphere Programme (IGBP-DIS) 1027 

database (Global Soil DataTask, 2000), 1028 

 1029 

 1030 

Comment: * “soil organic carbon stocks at 1m depth”: is it meant “carbon stocks down to a 1031 

depth of 1m”? 1032 

 1033 

Reply: Yes, we corrected it. 1034 

 1035 

Comment: Fig. 1: remove superfluous information that costs the reader time to read and hides 1036 

the differences between the panels (the datasets): since the legend is the same for all sand 1037 

(clay) panels it does not have to be repeated; same for “sand (clay) at 0-30cm (%)”, which is 1038 

even stated in the caption. “Longitude” (typo!) and “latitude” are also superfluous information. 1039 

 1040 

Reply: we removed superfluous information. 1041 

 1042 

 1043 

Comment: Fig. 2: Same comment as for Fig. 1. “s” missing in soilgrids. Why is IGBP not 1044 

included here as well? A more useful information for modelers would be the total carbon 1045 

content down to a certain depth rather than units of g/kg. 1046 

 1047 
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Reply: we removed superfluous information and add IGBP. Soil carbon stock maps can be 1048 

calculated based on the soil organic carbon, coarse fragment and bulk density. Due to the 1049 

evaluation of this study and a former study, the most accurate one is Soilgrids. Figure 1 of 1050 

Tifafi et al. (2018) showed this map. We added: Tifafi et al. (2018) found that the global soil 1051 

organic carbon stocks down to a depth of 1m is 3,400 Pg estimated by Soilgrids while it is 1052 

2500 Pg by HWSD, and the estimates by Soilgrids are closer to the observations, though they 1053 

all underestimated the soil carbon stocks. Figure 1 of Tifafi et al. (2018) showed the global 1054 

distribution of soil carbon stocks by Soilgrids and HWSD.   1055 

 1056 

p. 6 cont’d 1057 

Comment: * "several most popular ESMs”: give objective criteria for “popular" 1058 

 1059 

Reply: Here we do not have objective criteria. So, we delete this word. Instead, we just 1060 

extended the list of ESMs according CMIP5. Our focus is on the soil datasets rather than ESMs. 1061 

So, we did not assess or indicate the popularity in the list of Table 1. 1062 

 1063 

Comment: * l. 227-229: Again, it should be stated in how far the new datasets are superior 1064 

over previous datasets. 1065 

 1066 

Reply: This is quantitatively assessed in section 3 . 1067 

 1068 

Comment: * l. 231: "This was started: : :” sounds a bit like advertisement and subjective, 1069 

certainly other groups have been working on this to some extent for a long time as well. 1070 

Reformulate more neutrally? 1071 

 1072 

Reply: we modified it to: The Land-Atmosphere Interaction Research Group at Beijing Normal 1073 

University (BNU, now at Sun Yat-sen University) has put much efforts on this topic. 1074 

 1075 

Comment: * l. 245-253: What is the purpose of these references? Only if they prove model 1076 

results have improved by the usage of the new soil map is it useful to cite them here. 1077 

 1078 

Reply: These citations are showing the application of the new soil datasets in ESMs, which is 1079 

stated in the first sentence of the paragraph: In recent years, efforts were taken to improve 1080 

the soil data condition in ESMs.  Note that not all the citation has a comparison with the old 1081 

datasets. 1082 

 1083 

Comment: Tab. 1: please fix typos (inconsistent punctuation and capitalization). Add version 1084 

numbers to LSMs, as usage of soil information may change between versions. Not sure the 1085 

references are always correct, e.g. LeQuere et al., ESDD 2018 a and b (“Global carbon budget 1086 

2017” and “2018”, resp) state Reick or Mauritsen as JSBACH references, not Giorgetta. 1087 

 1088 

Reply: we checked this table and make corrections. We added version numbers to LSMs if 1089 

possible.  We changed Mauritsen et al. (2019) as JSBACH references. 1090 

 1091 
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p. 7 1092 

Comment: * l. 299 ff: if there are no uncertainty estimates, how can you judge soilgrids to be 1093 

the most accurate one? 1094 

 1095 

Reply: According the evaluation in section 3, Soilgrids is the most accurate one. 1096 

 1097 

Comment: * l. 305: not all models apply PTFs, some directly require these less observable 1098 

variables as input, as you show in Tab. 1 1099 

 1100 

Reply: It is true. But these variables are also derived by PTFS. To be precise, we modified it to: 1101 

Earth system modellers have employed different pedotransfer functions (PTFs) to estimate 1102 

soil hydraulic parameters (SHP), soil thermal parameters (STP), and biogeochemical 1103 

parameters (Looy et al., 2017;Dai et al., 2013) or used these parameters as model inputs. 1104 

 1105 

p. 9 1106 

Comment: * l. 359: The methods have been introduced before, so technical terms like 1107 

“SMU”should have been introduced in these earlier chapters. 1108 

 1109 

Reply: We introduced it in describing soil type maps:  There are many soil mapping units 1110 

(SMU) in a soil map and a SMU is composed of more than one component (i.e. soil type) in 1111 

most cases. 1112 

 1113 

Comment: * l. 365: A problem of using subgrid soil information is that ES modelers do not 1114 

know how to map them with land use information, which is also subgrid level. This may be 1115 

the more fundamental obstacle than the computational issues that are mentioned. 1116 

 1117 

Reply: Yes, this will increase the model complexity, too. We added: This will bring the problem 1118 

of how to map the soil subgrids with land cover (or plant function type) subgrids. A possible 1119 

solution is to: classify soil according soil properties and get a number of defined soil classes 1120 

(SC, n classes) like land cover types (LCT, m classes); overlay the defined soil classes with land 1121 

cover types and get n by m combinations assuming soil classes and land cover types are 1122 

independent. However, this will increase the computing time and the complexity of ESMs’ 1123 

structure, which needs to implement the soil processes over each subgrid soil column within 1124 

a grid instead of the entire model grid. 1125 

 1126 

p. 11 1127 

Comment: * "The temporal variation of global soil is quite challenging due to lack of data.”: 1128 

the aspect of temporal changes has not been addressed before and seems out of place in the 1129 

summary. 1130 

 1131 

Reply: We added a section (section 4.3) about this. 1132 

 1133 

Comment: * "Soil image fusion is also needed to merge the local and global soil maps.”: What 1134 

is soil image fusion? Don’t bring new methods in the summary section... 1135 
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 1136 

Reply: This is about outlook instead of summary. Soil image fusion is proposed by Hengl et 1137 

al. (2017), which consider local and global soil maps as components of soil variation for 1138 

ensemble predictions. We modified this to: Soil image fusion is also needed to merge the 1139 

local and global soil maps, which consider them as components of soil variation for ensemble 1140 

predictions (Hengl et al., 2017). A system for automated soil image fusion might take years 1141 

before an operational system for global soil data fusion is fully functional. 1142 

 1143 

Comment: * " Uncertainty estimation should be included in the soil datasets developed in the 1144 

future.”: of course uncertainty estimates build trust in an observational dataset. But how do 1145 

the authors recommend should ESMs use such uncertainty estimates other than as criterion 1146 

for which dataset to choose in the first place? Running multiple simulations combining upper 1147 

and lower bounds in all possible combinations is too expensive... 1148 

 1149 

Reply: We agree that running ESMs with all possible combinations is too expensive. An 1150 

alternative to quantify effects of the uncertainty of soil properties on ESMs may be to use 1151 

adaptive surrogate modeling based on statistical regression and machine learning which costs 1152 

much lower computing time (Gong et al., 2015; Li et al. 2018). We discussed this using a 1153 

section:  1154 

4.4 Incorporating the uncertainty of soil data in ESMs 1155 

Incorporating the uncertainty of soil data in ESMs is a rising challenge. Except WISE30sec, all 1156 

the current global soil data sets do not have a corresponding uncertainty map for a soil 1157 

property. But the spatial uncertainty can be estimated by the methods mentioned in section 1158 

2.1 and soil data sets with uncertainty map will be made available sooner or later. It is too 1159 

expensive to run multiply ESM simulations combining upper and lower bounds in all possible 1160 

combinations to quantify the effect of soil data uncertainty on ESMs. Instead, adaptive 1161 

surrogate modeling based on statistical regression and machine learning can be used, which 1162 

costs much lower computing time and proves to be effective and efficient (Gong et al., 2015; 1163 

Li et al. 2018). Surrogate models are used to emulate the responses of ESMs to the variation 1164 

of soil properties at each location.  1165 

 1166 

Comment: * "The gap between soil data existence and data availability is huge”: Reads 1167 

awkward. Better “The gap between the amount of data that has been taken in surveys and 1168 

the amount of data freely available is large."  1169 

 1170 

Reply:  Modified: The gap between the amount of data that has been taken in surveys and 1171 

the amount of data freely available is large. 1172 

 1173 

p. 12 1174 

Comment: * l. 482 "like many other data”: Too general a statement, remove.  1175 

 1176 

Reply: Thanks for mentioning this point. Data sharing is a very important issue for the whole 1177 

science community. So I would like to keep it here.  1178 

 1179 
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Comment: l. 481 “: : : which has the most: : :”: how do you know? Add reference or justify in 1180 

other ways  1181 

 1182 

Reply: We added a citation here (Batjes et al., 2017). 1183 

 1184 

Comment: * Arbitrary last sentence. l. 465 already mentions the subgrid issue in ESMs. Is there 1185 

no more general conclusion that can be given? Otherwise just delete the last paragraph and 1186 

end with the more “outlook”-like previous paragraph. 1187 

 1188 

Reply: the last paragraph is deleted. 1189 

 1190 

 1191 

 1192 

  1193 
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 1207 

Abstract. Global soil dataset is a pillar to the challenge of earth system modeling. But 1208 

it is one of the most important uncertainty sources for Soil is an important regulator of 1209 

Earth system processes, but remains one of the least well-described data layers in Earth 1210 

System Models (ESMs). We reviewed global soil property maps from the perspective 1211 

of ESMs, including soil physical and, chemical and biological properties, which can 1212 

also offer insights to soil data developers. These Ssoil datasets function asprovide 1213 

model inputsparameters, initial variables and benchmark datasets for model calibration, 1214 

validation and comparison. For modeling use, the dataset should be geographically 1215 

continuous, scalable and with uncertainty estimates. The popular soil datasets used in 1216 

ESMs are often based on limited soil profiles and coarse resolution soil type maps with 1217 

various uncertainty sources. Updated and comprehensive soil information needs to be 1218 

incorporated in ESMs. New generation soil datasets derived by digital soil mapping 1219 

with abundant, harmonized and quality controlled soil observations and environmental 1220 

covariates are preferred to those by the linkage method (i.e. taxotransfer rule-based 1221 

method) for ESMs. Soilgrids has the highest accuracy and resolution among the global 1222 

soil datasets at the time, while other recently developed datasets are useful compliments. 1223 

Because there is no universal pedotransfer function, an ensemble of them may be more 1224 

suitable to provide secondary derived soil propertiesparameters to ESMs. Aggregation 1225 

and upscaling of soil data are needed for model use but can be avoid by taking a subgrid 1226 

method in ESMs at the cost of increases in model complexity. Producing soil property 1227 

maps in time series is still challenging.  Uncertainty of soil data needs to be estimated 1228 

and incorporated in ESMs.  1229 

 1230 

  1231 
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1 Introduction 1232 

Soil or pedosphere is a key component of Earth system, and plays an important 1233 

role in the water, energy and carbon balances and other biogeochemical processes. An 1234 

accurate description of soil properties is essential in advancing the modeling 1235 

capabilities of Earth System Models (ESMs) to predict land surface processes at the 1236 

global and regional scales (Luo et al., 2016). Soil information is required by the land 1237 

surface models (LSMs), which is a component of ESMs. With the help of computer-1238 

based geographic systems, many researchers have produced geographical databases to 1239 

organize and harmonize large amount of soil information generated from soil surveys 1240 

during the last decades (Batjes, 2017; Hengl et al., 2017). However, soil dataset used 1241 

in ESMs is not well updated nor well utilized yet (Sanchez et al., 2009; 1242 

FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). The popular soil datasets used in ESMs are 1243 

outdated and with limited accuracy. Some available soil properties such as gravel (or 1244 

coarse fragment) and depth to bedrock are not utilized in most ESMs. Meanwhile, it is 1245 

needed to change ESMs’ schemes and structure to better represent the soil processes 1246 

more realistic in utilizing new soil information (Brunke et al., 2016; Luo et al., 2016; 1247 

Oleson et al., 2010). For example, Brunke et al., (2016) incorporated the depth to 1248 

bedrock data in a land surface model using variable soil layers and instead of the 1249 

previous constant depth. Better soil information with high resolution and better 1250 

representation of soil in models have improved and will improve the performance in 1251 

simulating the Earth system (eg. Livneh et al., 2015; Dy and Fung, 2016; Kearney and 1252 

Maino, 2018). 1253 

ESMs require detailed information on the soil physical and, chemical and 1254 

biological properties. Site observations (called soil profiles) from soil surveys include 1255 

soil properties such as soil depth, soil texture (sand, silt and clay fractions), organic 1256 

matter, coarse fragments, bulk density, soil colour, soil nutrients (carbon (C), nitrogen 1257 

(N), phosphorus (P), potassium (K) and sulfur (S)), amount of roots, etc. The range of 1258 

soil data collected during a soil survey, varies with scale, specifications of a country 1259 

or a region, and projected applications of the data (i.e. type of soil surveys, routine 1260 

versus specifically designed surveys). As a result, the availability of soil properties 1261 

differs in different soil databases. However, soil hydraulic and thermal parameters as 1262 

well as biogeochemical parameters are usually not observed in soil surveys, which 1263 

need to be estimated by pedotransfer functions (PTFs) (Looy et al., 2017). This 1264 

review focus on the soil data (usually time-invariant) from soil surveys, while 1265 

variables such as soil temperature and soil moisture are beyond this paper’s scope. 1266 

Soil properties are functioned in three aspects in ESMs:  1267 

1) Model inputs to estimate parameters. The soil thermal (soil heat capacity and 1268 

the thermal conductivity) and hydraulic characteristics (empirical parameters of soil 1269 

water retention curve and hydraulic conductivity) are usually obtained by fitting 1270 

equations (PTFs) to easily measured and widely available soil properties, such as 1271 

sand, silt and clay fractions, organic matter content, rock fragments and bulk density 1272 

(Clapp and Hornberger, 1978; Farouki, 1981; Vereecken et al., 2010; Dai et al., 2013). 1273 

Soil albedos are significantly correlated with Munsell soil color value (Post et al., 1274 

2000). For some ESMs, the derived parameters by PTFs are used as direct input 1275 
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instead of calculating them in the models. 1276 

2) Initial variables. The nutrient (C, N, P, K, S, etc.) amounts and the nutrients 1277 

associated parameters (pH, cation-exchange capacity, etc.) in soils can be used to 1278 

initialize the simulations. Generally, their initial values are assumed to be at steady 1279 

state by running model over thousands of model years (i.e., spin-up) until no trend of 1280 

change in pool sizes (McGuire et al., 1997; Thornton and Rosenbloom, 2005; Doney 1281 

et al., 2006; Luo et al., 2016). To initialize nutrient amounts using the reliable soil 1282 

data derived from observations as background field could largely reduce the times of 1283 

model spin-up, and also could avoid the possibility of the non-linear singularity 1284 

evolution of the modeling which means that that models may have multiple equilibria, 1285 

and then provide better estimate of the true terrestrial nutrient state. The setting of 1286 

initial nutrient stocks is a major factor leading to model-to-model variation in the 1287 

simulation (Todd-Brown et al., 2014). 1288 

3) Benchmark data. Soil data, as observationsmeasurements, could serve as a 1289 

reference for modeling calibration, validation and comparison. Soil carbon stock is 1290 

one of the most frequently used soil properties as benchmark data (Todd-Brown et al., 1291 

2013). Other nutrient stocks such as nitrogen stock can also be used as benchmark 1292 

data if an ESM simulated them. 1293 

Soil properties are of great spatial heterogeneity both horizontally and vertically. 1294 

As a result, ESMs usually incorporate soil property maps (i.e., horizontal spatial 1295 

distribution) for multiply layers rather than a global constant or a single layer. ESMs, 1296 

especially LSMs, are evolving towards hyper-resolutions of 1km or finer with more 1297 

detailed parameterization schemes to accommodate the land surface heterogeneity 1298 

(Singh et al., 2015; Ji et al., 2017). So spatially explicit soil data at high resolutions 1299 

are necessary to improve land surface representation and simulation. Because soil 1300 

properties are observed at individual locations, soil mapping or spatial prediction 1301 

model is needed to derive the 3D representation of soil distribution. The traditional 1302 

way (i.e., the linkage method, also called taxotransfer rule-based method) is to link 1303 

soil profiles and soil mapping units on soil type maps, sometimes with ancillary maps 1304 

such as topography and land use (Batjes, 2003; FAO/IIASA/ISRIC/ISS-CAS/JRC, 1305 

2012). In the past decades, various digital soil mapping technologies were proposed 1306 

by finding the relationships between soil and environmental covariates (usually 1307 

remote sensing data) such as climate, topography, land use, geology and so on 1308 

(McBratney et al., 2003). 1309 

There are many challenges related to application of soil datasets in ESMs. First, 1310 

Ssoil datasets are usually not ready appropriated scaled or formatted for the use of 1311 

ESMs and some upscaling issues, which is the most frequently encountered, need to 1312 

be addressed. The soil datasets produced by the linkage methods are polygon-based 1313 

and need to be converted to fit the grid-based ESMs. This conversion can be done by 1314 

either subgrid method or spatial aggregation. The up-to-date soil data are provided at 1315 

a resolution of 1km or finer, while the LSMs are mostly ran at a coarser resolution. So 1316 

upscaling of soil data is necessary before it can be used by ESMs. Proper upscaling 1317 

methods need to be chosen carefully to minimize uncertainty in the modeling results 1318 

introduced by them (Hoffmann and Christian Biernath, 2016; Kuhnert et al., 2017). 1319 
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Second, all the current global soil datasets represent the average state of last decades, 1320 

and producing soil property maps in time series is still challenging. Soil landscape and 1321 

pedogenic models are developed to simulate soil forming processes and soil property 1322 

changes, which can be incorporated into ESMs. The prediction of changing soil 1323 

properties can be also done by digital soil mapping taken the changing climate and 1324 

land use as covariates. Third, the uncertainty of soil properties can be estimated, and 1325 

adaptive surrogate modeling based on statistical regression and machine learning may 1326 

be used to assess effects of the uncertainty of soil properties on ESMs (Gong et al., 1327 

2015; Li et al. 2018). Last but not the least, the layer schemes of soil data sets need to 1328 

be converted for model use and missing values for deeper soil layers needs to be 1329 

filled. 1330 

This paper is organized in the following sections. In section 2, we first introduce 1331 

soil datasets at global and national scales produced by the linkage method and digital 1332 

soil mapping technology and then the soil datasets that have already been 1333 

incorporated in ESMs. Section 3 presents PTFs that are used in ESMs to estimate soil 1334 

hydraulic and thermal parameters. Section 4 describes how to deal with soil data 1335 

derived by the linkage methods. Section 5 introduces the upscaling of high -resolution 1336 

soil data to the coarse resolution of ESMs. Section 6 gives the summary and an 1337 

outlook of further improvements. 1338 

 1339 

2 General methodology of deriving soil datasets for ESMsSoil datasets used in 1340 

ESMs 1341 

2.1 Global and national soil datasets 1342 

Two kinds of soil data are generated from soil surveys: soil polygon maps 1343 

representing distribution of soil types and soil profiles with observations of soil 1344 

properties. ESMs usually require the spatial distribution of soil properties, or soil 1345 

property maps rather than soil classification information. Two kinds of soil data are 1346 

generated from soil surveys: a map (usually in the form of polygon maps) 1347 

representing main soil types in a landscape unit and soil profiles with observations of 1348 

soil properties which are considered representative for the main component soils of 1349 

the respective mapping units. ESMs usually require the spatial distribution of soil 1350 

properties (i.e., soil property maps) rather than information about soil types. Two 1351 

kinds of methods, i.e. the linkage method and the digital soil mapping method, are 1352 

used to derive soil property maps. 1353 

Soil maps (the term soil map refers to soil type map in this paper) show the 1354 

geographical distribution of soil types, which are compiled under a certain soil 1355 

classification system. There are many soil mapping units (SMU) in a soil map and a 1356 

SMU is composed of more than one component (i.e. soil type) in most cases. At the 1357 

global level, there is only one generally accepted global soil map, i.e., the FAO-1358 

UNESCO Soil Map of the World (SMW) (FAO, 1971-1981). It was made based on 1359 

soil surveys conducted between the 1930s and the 1970s, and technology available in 1360 

1960s. Several versions exist in the digital format (FAO, 1995, 2003b, 1995; Zöbler, 1361 

1986) and these products are known to be outdated. The information on the initial 1362 

SMW and DSMW has since been updated for large sections of the world in the 1363 
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HWSD product (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012), which has recently been 1364 

revised in WISE30sec (Batjes, 2016).  1365 

At the regional and national level, there are many soil maps based on either 1366 

national or international soil classifications. Here are some examples of major soil 1367 

maps available in digital formats: the Soil and Terrain Database (SOTER) databases 1368 

(Van Engelen and Dijkshoorn, 2012) for different regions, the European Soil Database 1369 

(ESB, 2004), the 1: 1 million Soil Map of China (National Soil Survey Office, 1995), 1370 

the U.S. General Soil Map (GSM), the 1:1 million Soil Map of Canada (Soil 1371 

Landscapes of Canada Working Group, 2010) and the Australian Soil Resource 1372 

Information System (ASRIS) (Johnston et al., 2003).  1373 

Soil profiles are composed of multiplye layers called soil horizons. For each 1374 

horizon, soil properties are observed (e.g. site data) or measured (e.g. pH, sand, silt, 1375 

clay content). At the global level, several soil profile databases exist. Here we only 1376 

discuss the two most comprehensive ones. The World Inventory of Soil Emission 1377 

Potentials (WISE) database was developed as a homogenized set of soil profiles 1378 

(Batjes, 2008). The newest version (WISE 3.1) contains 10,253 soil profiles and 26 1379 

physical and chemical properties. The soil profiles database of World Soil Information 1380 

Service (WoSIS) contains the most abundant profiles (about 118,400) from national 1381 

and global databases including most of the databases mentioned below (Batjes et al., 1382 

2017), though only a selection of important soil properties (12) are included (Ribeiro 1383 

et al., 2018) (Batjes, 2017). Data served through WoSIS have been standardized, with 1384 

special attention for the description and comparability of soil analytical methods 1385 

worldwide. However, many countries, although having a large collection of soil 1386 

profile data, are not yet sharing such data (Arrouays et al, 2017).  1387 

At the regional and national level, there are many soil profile databases, usually 1388 

with soil classifications corresponding to the local soil maps. Here are some 1389 

examples: the USA National Cooperative Soil Survey Soil Characterization database 1390 

(http://ncsslabdatamart.sc.egov.usda.gov/), profiles from the USA National Soil 1391 

Information System (http://soils.usda.gov/technical/nasis/), Africa Soil Profiles 1392 

database (Leenaars, 2012), the Australian Soil Resource Information System 1393 

(Karssies, 2011), the Chinese National Soil Profile database (Shangguan et al., 2013), 1394 

soil profile archive from the Canadian Soil Information System (MacDonald and 1395 

Valentine, 1992), soil profiles from SOTER (Van Engelen and Dijkshoorn, 2012), the 1396 

soil profile analytical database for Europe (Hannam et al., 2009), the Mexico soil 1397 

profile database ( Instituto Nacional de Estadística y Geografía, 2016), and the 1398 

Brazilian national soil profile database (Cooper et al., 2005). 1399 

The linkage method (called the taxotransfer rule-based method) is to link soil 1400 

maps (with soil mapping units or soil polygons) and soil profiles (with soil properties) 1401 

according to taxonomy-based pedotransfer (taxotransfer in short, note that 1402 

pedotransfer here does mean pedotransfer functions which is a different thing) rules 1403 

(Batjes, 2003). The criteria used in the linkage could be one or many factors as 1404 

following: soil class, soil texture class, depth zone, topographic class, distance 1405 

between soil polygons and soil profiles and so on (Shangguan et al., 2012). Each soil 1406 

type is represented by one or a group of soil profiles that meet the criteria, and usually 1407 
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the median or mean value of a soil property is assigned to the soil type. There are 1408 

many sources of uncertainty in the linkage method (Shangguan et al., 2012). The 1409 

major source is spatial errors of soil maps, i.e. the location of soil types, as the 1410 

estimation relies heavily on the soil map and the purity of soil map units is likely to be 1411 

around 50 to 65%. Because the linkage method assigned only one value or a statistical 1412 

distribution to a soil type in soil polygons (usually a polygon contains multiple soil 1413 

types with their fractions), the intra-polygonal spatial variation is not taken into 1414 

account. At the global level, many databases were derived by the linkage method: the 1415 

FAO Soil Map of the World with derived soil properties (FAO, 2003a), the Data and 1416 

Information System of International Geosphere-Biosphere Programme (IGBP-DIS) 1417 

database (Global Soil DataTask, 2000), the Soil and Terrain Database (Van Engelen 1418 

and Dijkshoorn, 2012) for multiply regions and countries, the ISRIC-WISE derived 1419 

soil property maps (Batjes, 2006), the Harmonized World Soil Database (HWSD) 1420 

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012), and the Global Soil Dataset for Earth 1421 

System Model (GSDE) (Shangguan et al., 2014) and WISE30sec (Batjes, 2016). Two 1422 

Three most recent ones are HWSD and, GSDE and WISE30sec. HWSD was built via 1423 

combining the existing regional and national updates of soil information. GSDE as an 1424 

improvement of HWSD incorporated more soil maps and more soil profiles related to 1425 

the soil maps, with more soil properties. GSDE accomplished the linkage based on the 1426 

local soil classification, which required no correlation between classification systems 1427 

and avoided the error brought by taxonomy reference. In addition, GSDE provided 1428 

provides estimation of eight layers to the depth of 2.3 m, while HWSD provided 1429 

provides estimation of two layers to the depth of 1 m. WISE30sec is another 1430 

improvement of HWSD incorporated more soil profiles with seven layers up to 200 1431 

cm depth and with uncertainty estimated by mean ± standard deviation. WISE30sec 1432 

used the soil map from HWSD with minor corrections and climate zone maps as 1433 

categorical covariate. Many national and regional agencies around the world have 1434 

organized their soil surveys by linking soil maps and soil profiles, including the USA 1435 

State Soil Geographic Database (STATSGO2) (Soil Survey Staff, 2017), Soil 1436 

Landscapes of Canada (Soil Landscapes of Canada Working Group, 2010), the ASRIS 1437 

(Johnston et al., 2003), the Soil-Geographic Database of Russia (Shoba et al., 2008) 1438 

the European Soil Database (ESB, 2004), the China dataset of soil properties 1439 

(Shangguan et al., 2013) and so on. 1440 

Digital soil mapping (McBratney et al., 2003) is the creation and the population 1441 

of a geographically referenced soil database, generated at a given resolution by using 1442 

field and laboratory observation methods coupled with environmental data through 1443 

quantitative relationships (http://digitalsoilmapping.org/). Usually, the soil datasets 1444 

derived by digital soil mapping provide grid-based spatial continuous estimation 1445 

while the soil datasets derived by the linkage method provide estimations with abrupt 1446 

changes at the boundary of soil polygons. The uncertainty could be estimated 1447 

quantitatively by methods such as geostatistical methods and quantile regression 1448 

forest (Vaysse and Lagacherie, 2017). The GlobalSoilMap is a global consortium that 1449 

aims to create global digital maps for key soil properties (Sanchez et al., 2009). This 1450 

global effort takes a bottom-up framework and will produce the best available map of 1451 
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soil at a resolution of 3 arc sec (about 100 m) along with the 90% confidence of 1452 

predictions. Soil properties will be provided for six soil layers (i.e. 0–5, 5–15, 15–30, 1453 

30– 60, 60–100, and 100–200 cm). Many countries have produced soil maps 1454 

following the GlobalSoilMap specifications (Odgers et al., 2012; Viscarra Rossel et 1455 

al., 2015; Mulder et al., 2016; Ballabio et al., 2016; Ramcharan et al., 2018; Arrouays, 1456 

2018). The Soilgrids system (https://www.soilgrids.org) is another global soil 1457 

mapping project (Hengl et al., 2014; Hengl et al., 2015; Hengl et al., 2017). The 1458 

newest version (Hengl et al., 2017) at a resolution of 250 m was produced by fitting 1459 

an ensemble of machine learning methods based on about 150,000 soil profiles and 1460 

158 soil covariates, which is currently the most detailed estimation of global soil 1461 

distribution. A third global soil mapping project is the Global SOC Map of the Global 1462 

Soil Partnership, which focuses on country-specific soil organic carbon estimates 1463 

(Guevara et al., 2018). 1464 

Because soil property maps are derived products based on soil measurements of 1465 

soil profiles (point observations) and spatial continuous covariates (including soil 1466 

maps), it is necessary to discuss the uncertainty sources, spatial uncertainty estimation 1467 

and accuracy assessment of these derived data (the last two are different aspects of 1468 

uncertainty estimation). More attention should be paid to this issue in ESM 1469 

applications instead of taking soil property maps as observations without error. There 1470 

are various uncertainty sources in deriving soil property maps, including uncertainty 1471 

from soil maps, soil measurements, soil-related covariates and the linkage method 1472 

itself (Shangguan et al., 2012; Batjes, 2016; Stoorvogel et al., 2017). The following 1473 

may not be the complete list of uncertainty but the major ones. The uncertainty of soil 1474 

maps is a major source of global dataset derived by the linkage methods. For these 1475 

dataset, large sections of the world are drawn on the coarse FAO SMW map and the 1476 

purity of soil maps (referring to the following website for the definition: 1477 

https://esdac.jrc.ec.europa.eu/ESDB_Archive/ESDBv2/esdb/sgdbe/metadata/purity_m1478 

aps/purity.htm) is likely to be around 50 to 65% (Landon, 1991). Another important 1479 

source of uncertainty is the limited comparability of different analytical methods of a 1480 

given soil property in using soil profiles coming from various sources. A weak 1481 

correlation or even a negative correlation was found between different analytical 1482 

methods, though strong positive correlation revealed in most cases (McLellan et al. 1483 

2013). Both datasets by the linkage method and those by digital soil mapping suffer 1484 

this uncertainty. Though there are no straightforward mechanisms to harmonize the 1485 

data, efforts are undertaken to address this issue and provide quality assess (Batjes, 1486 

2017; Pillar 5 Working Group, 2017). Another source of uncertainty comes from the 1487 

geographic and taxonomic distribution of soil profiles, especially for the under-1488 

represented areas and soils (Batjes, 2016). The fourth source of uncertainty is from 1489 

the linkage method itself. It does not represent the intra-polygon spatial variation and 1490 

usually do not consider soil related covariates explicitly like digital soil mapping, 1491 

though there are cases where climate and topography are considered and Stoorvogel et 1492 

al. (2017) proposed a methodology to incorporate landscape properties in the linkage 1493 

method. Finally, uncertainty from the covariates is minor because spatial prediction 1494 

models such as machining learning in digital soil mapping can reduce its influences 1495 
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(Hengl et al., 2014), though a more comprehensive list of covariates with higher 1496 

resolution and accuracy will improve the predicted soil property maps. Spatial 1497 

uncertainty is estimated by different methods for the linkage method and digital soil 1498 

mapping methods. For the linkage method, statistics such as standard derivation and 1499 

percentiles can be used as spatial uncertainty estimation, which are calculated for the 1500 

population of soil profiles linked to a soil type or a land unit (Batjes, 2016). This 1501 

estimation has some limitations because soil profiles are not taken probabilistically 1502 

but based on their availability, especially for the global soil datasets. Uncertainty will 1503 

be underestimated when the sample size is not big enough to represent a soil type. For 1504 

digital soil mapping, spatial uncertainty could be estimated by methods such as 1505 

geostatistical methods and quantile regression forest (Vaysse and Lagacherie, 2017), 1506 

which make sense of statistic. The accuracy of soil dataset derived by digital soil 1507 

mapping are estimated by cross-validation. But it is not trivial for those derived by the 1508 

linkage method due to the global scale, the support of the data and independent data 1509 

(Stoorvogel et al., 2017) and most of these maps are validated by statistics such as 1510 

mean error and coefficient of determination. Instead, some datasets, including WISE 1511 

and GSDE, use some indictors such as linkage level of soil class and sample size to 1512 

offer quality control information (Shangguan et al. 2014; Batjes, 2016). A simple way 1513 

to compare the accuracy of datasets by both methods may be to use a global soil 1514 

profile database as a validation dataset, though some of these profiles were used in 1515 

deriving these datasets and questions will be raised. We evaluated several global soil 1516 

property maps in section 3.  1517 

The new generation soil dataset produced by digital soil mapping method gave a 1518 

quite different distribution of soil properties from those produced by the linkage 1519 

method. Figure 1 shows soil sand and clay fraction at the surface 0-30 cm layer from 1520 

Soilgrids, IGBP-DIS (Data and Information System of International Geosphere-1521 

Biosphere Programme) and GSDE. Figure 2 shows soil organic carbon and bulk 1522 

density at the surface 0-30 cm layer from Soilgrids and GSDE. Significant differences 1523 

are visible in these datasets. This will lead to different modelling results in ESMs. 1524 

(TifafiMarwa et al., (2018) found that the global soil organic carbon stocks at down to 1525 

a depth of 1m depth is 3,400 Pg estimated by Soilgrids while it is 2500 Pg by HWSD, 1526 

and the estimates by Soilgrids are closer to the observations.  1527 

 1528 

2.2 Soil dataset incorporated in ESMs 1529 

Table 1 shows several most popular ESMs (specifically, their land surface 1530 

models) and their input soil datasets. The ESMs in Table 1 cover the list of CMIP5 1531 

(Coupled Model Intercomparison Project) except those without information about the 1532 

input soil datasets. Land surface models (LSMs) are key tools to predict the dynamic 1533 

of land surface under climate change and land use. Five datasets are widely used, 1534 

ei.ge., the datasets by Wilson and Henderson-Sellers (1985), Zöbler (1986), Webb et 1535 

al. (1993), Reynolds et al. (2000), Global Soil Data Task (2000), and Miller and 1536 

White (1998). Except GSDE, HWSD and STATSGO (Miller and White, 1998) for 1537 

USA in Table 1, these datasets were derived from the Soil Map of the World (note 1538 

that large sections of GSDE and HWSD still used this map as a base map because 1539 
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there are no available regional or national maps) (FAO, 1971-1981) and limited soil 1540 

profile data (no more than 5,800 profiles), which gained popularity because its 1541 

simplicity and ease of use. But they these are outdated and should no longer be used 1542 

because much better soil information as introduced in Section 2.1 can be incorporated 1543 

(Sanchez et al., 2009; FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). 1544 

In recent years, efforts were taken to improve the soil data condition in ESMs. 1545 

This was started by tThe Land-Atmosphere Interaction Research Group at Beijing 1546 

Normal University (BNU, now at Sun Yat-sen University) has put much efforts on 1547 

this topic. Shangguan et al. (2012, 2013) developed a China dataset of soil properties 1548 

for land surface modeling based on 8,979 soil profiles and the Soil Map of China 1549 

using the linkage method. Dai et al. (2013) derived soil hydraulic parameters using 1550 

pedotransfer functions based on the soil properties by Shangguan et al. (2013). 1551 

Shangguan et al. (2014) further developed a comprehensive global dataset for ESMs. 1552 

The above soil datasets were widely used in the ESMs. Soil properties from these soil 1553 

datasets, including soil texture fraction, organic carbon, bulk density and derived soil 1554 

hydraulic parameters, were implemented in the Common Land Model Version 2014 1555 

(CoLM2014, http://land.sysu.edu.cn/ ). Li et al. (2017) shows that CoLM2014 was 1556 

more stable than the previous version and had comparable performance to that of 1557 

CLM4.5 which may be attributed in part to the new soil parameters as input. Wu et al. 1558 

(2014) shows that soil moisture values are closer to the observations when simulated 1559 

by CLM3.5 with the China dataset than those simulated with FAO. Zheng and Yang 1560 

(2016) estimated effects of soil texture datasets from FAO and BNU on regional 1561 

terrestrial water cycle simulations with the Noah-MP land surface model. Tian et al. 1562 

(2012) used the China soil texture data in a land surface model (GWSiB) coupled with 1563 

a groundwater model. Lei et al. (2014) used the China soil texture data in CLM to 1564 

estimate the impacts of climate change and vegetation dynamics on runoff in the 1565 

mountainous region of the Haihe River basin. Zhou et al. (2015) estimated age-1566 

dependent forest carbon sink with a terrestrial ecosystem model utilizing the soil 1567 

carbon data of China. Dy and Fung (2016) updated the soil data for the Weather 1568 

Research and Forecasting model (WRF).  1569 

Researchers have also put efforts to update ESMs with other soil data. Lawrence 1570 

and Chase (2007) used MODIS data to derive soil reflectance, which was used as a 1571 

soil colour parameter in Community Land Model 3.0 (CLM). De Lannoy et al. (2014) 1572 

updated the Catchment land surface model of the NASA with soil texture and organic 1573 

matter data from HWSD and STATSGO2. Livneh et al. (2015) evaluated the 1574 

influence of soil textural properties on hydrologic fluxes by comparing the FAO data 1575 

and STATSGO2. Folberth et al. (2016) evaluated the impact of soil input data on 1576 

yield estimates in a global gridded crop model. Slevin et al. (2017) utilized the HWSD 1577 

to simulate global gross primary productivity in the JULES land surface model. Trinh 1578 

et al. (2018) proposed an approach that can assimilate coarse global soil data by finer 1579 

land use and coverage dataset which improved the performance of hydrologic 1580 

modeling at watershed scale. Kearney and Maino (2018) incorporated the new 1581 

generation of soil data produced by digital soil mapping method into a climate model 1582 

and found that, compared to the old soil information, this improved the simulation of 1583 
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soil moisture at fine spatial and temporal resolution over Australia. A global gridded 1584 

hydrologic soil groups (HYSOGs250m) was developed based on soil texture and 1585 

depth to bedrock of Soilgrids (Hengl et al., 2017) and groundwater table depth (Fan et 1586 

al., 2013) for curve-number based runoff modeling of U.S. Department of Agriculture 1587 

(Ross et al., 2018). 1588 

Except soil properties, the estimation of underground boundaries including the 1589 

groundwater table depth, the depth to bedrock (DTB) and depth to regolith and its 1590 

implementation in ESMs is also a new focus. Fan et al. (2013) compiled global 1591 

observations of water table depth and inferred the global patterns using a groundwater 1592 

model. Pelletier et al. (2016) developed a global DTB dataset by using process- based 1593 

models for upland and an empirical model for lowland. This dataset was implemented 1594 

in the CLM4.5 and found that there were significant influences on water and energy 1595 

simulations compared to the default constant depth (Brunke et al., 2015). Shangguan et 1596 

al. (20187) developed a global DTB by digital soil mapping based on about 1.7 million 1597 

observations from soil profiles and water wells, which has a much higher accuracy than 1598 

the dataset by Pelletier et al. (2016). Vrettas and Fung (2016) shows that the weathered 1599 

bedrock stores a significant fraction (more than 30%) of the total water despite its low 1600 

porosity. Jordan et al. (2018) estimated global permeability of the unconsolidated and 1601 

consolidated earth for groundwater modelling. However, due to the lack of data, an 1602 

accurate global estimation of depth to regolith is not feasible. Caution should be paid 1603 

to use of the products of so-called soil depth in ESMs. Soil depth maps are usually 1604 

estimated based on observations from soil survey, and soil depth (or depth to the R 1605 

horizon) is assumed to be equal to DTB. However, these observations are usually less 1606 

than 2 meters and usually do not meet the depth to bedrock (Shangguan et al., 2017). 1607 

Thus, soil depth maps based on soil profiles only are significantly underestimated (one 1608 

order of magnitude lower) compared to the actual depth to bedrock and should not be 1609 

taken as the lower boundary of ESMs.  1610 

For the convenience of ESMs’ application, we present basic descriptions about the 1611 

new soil datasets in Table 2 and 3. As described in section 2.1, three four available 1612 

global soil datasets, i.e. HWSD, GSDE, WISE30sec and Soilgrids, have been 1613 

developed in the last several years (Table 2). Table 3 shows the available soil properties 1614 

of these soil datasets. Though all three databases do not contain uncertainty estimation, 1615 

Soilgrids is considered to be the most accurate oneExcept WISE30sec, all these 1616 

databases do not contain spatial uncertainty estimation. The explained variance of soil 1617 

properties in Soilgrids is between 56% and 83%, while HWSD and GSDEthe other 1618 

datasets do not offer quantitative accuracy assessment. GSDE has the largest number 1619 

of soil properties, while Soilgrids currently contains only ten primary soil properties 1620 

defined by the GlobalSoilMap consortium.  1621 

                                         1622 

3 2.3 Estimating secondary parameters using pedotransfer functions 1623 

Earth system modellers have employed different pedotransfer functions (PTFs) 1624 

to estimate soil hydraulic parameters (SHP), soil thermal parameters (STP), and 1625 

biogeochemical parameters (Looy et al., 2017; Dai et al., 2013) or used these 1626 

parameters as model inputs. Almost all ESMs incorporated SHPs and STPs estimated 1627 
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by PTFs but not biogeochemical parameters. PTFs are the empirical functions that 1628 

account for the relationships between these secondary parameters (i.e., derived soil 1629 

properties) and more easily obtainable soil property data. Direct measurement of these 1630 

parameters is difficult, expensive and in most cases impractical to take sufficient 1631 

samples to reflect the spatial variation. Thus, most soil databases do not contain these 1632 

secondary parameters. PTFs provide the alternative to estimate them. In ESMs, SHPs 1633 

and STPs are usually derived using simple PTFs taking only soil texture data as the 1634 

input. As more soil properties become available globally, including gravel, soil 1635 

organic matter and bulk density, more sophisticated PTFs using additional soil 1636 

properties can be utilized in ESMs.   1637 

PTFs can be expressed as either numerical equations or by machine learning 1638 

methodology which is more flexible to simulate the highly nonlinear relationship in 1639 

analysed data. PTFs can also be developed based on soil processes. Most researches 1640 

did not indicate where the PTFs can potentially be used, and the accuracy of a PTF 1641 

outside of its development dataset is essentially unknown McBratney et al. (2011). 1642 

PTFs generally are not portable from one region to the other (i.e. locally or regionally 1643 

validated). Therefore, they should never be considered as an ultimate source of 1644 

parameters in soil modelling. Looy et al. (2017) reviewed PTFs extensively in earth 1645 

system science and emphasized that PTF development has to go hand in hand with 1646 

suitable extrapolation and upscaling techniques such that the PTFs correctly represent 1647 

the spatial heterogeneity of soils in ESMs. Though the PTFs were evaluated, it is not 1648 

clear which are the best set of PTFs for global applications. Due to these limitations, a 1649 

better way to estimate the secondary parameters may be to use an ensemble of PTFs, 1650 

which can give the variability of parameters. Dai et al. (2013) derived a global soil 1651 

hydraulic parameter databases using the ensemble method. Selection of PTFs was 1652 

carried out based on the following rules, including the consistent physic definition, 1653 

large enough training sample and positive evaluations in comparison with other PTFs. 1654 

The PTFs selected included not only those in equations but also PTFs of machine 1655 

learning. As a result, the modellers could use these parameters as inputs instead of 1656 

calculating them in ESMs every time running the model. 1657 

The new generation soil information has already been utilized to derive SHPs 1658 

and STPs in some researches. Montzka et al. (2017) produced a global map of SHPs 1659 

at a resolution of 0.25° based on the SoilGrids 1km dataset. Tóth et al. (2017) 1660 

calculated SHPs for Europe with the EU-HYDI PTFs (Tóth et al., 2015) based on 1661 

SoilGrids 250 m. Wu et al. (2018) used an integrated approach that ensembles PTFs to 1662 

map field capacity of China based on multi-source soil datasets. 1663 

The performance of PTF in ESMs is evaluated in many researches, though PTFs 1664 

has not been fully exploited and integrated into ESMs (Looy et al., 2017). Here are 1665 

some examples. Chen et al. (2012) incorporated soil organic matter to estimate soil 1666 

porosity and thermal parameters for the use of land surface models. Zhao et al. 1667 

(2018a) evaluated PTFs performance to estimate SHPs and STPs for land surface 1668 

modelling over the Tibetan Plateau. Zheng et al. (2018) developed PTFs to estimate 1669 

the soil optical parameters to derive soil albedo for the Tibetan Plateau, and the PTFs 1670 

incorporated into an eco-hydrological model which improved the model simulation of 1671 
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surface energy budget. Looy et al. (2017) envisaged two possible approaches to 1672 

improve parameterization of Earth system models by PTFs. One is to replace constant 1673 

coefficients in the current ESMs with spatially distributed values by PTFs. The other 1674 

is to develop spatially exploitable PTFs to parameterize specific processes using 1675 

knowledge of environmental controls and variation of soil properties. 1676 

 1677 

3 Comparison of available global soil datasets 1678 

For the convenience of ESMs’ application, we compared several available soil 1679 

datasets and evaluated them with soil profiles from WoSIS for some key variables 1680 

(Sand, clay content, organic carbon, coarse fragment and bulk density) used in ESMs. 1681 

In addition to the most recent developed soil datasets, we also included one old data 1682 

set (i.e. IGBP) used in ESMs for the evaluation. It is not necessary to compare all the 1683 

old data sets because they are based on similar, limited and outdated source data as 1684 

described in section 2.2. They have coarser resolution (Table 1) than the newly 1685 

developed soil datasets (Table 2). 1686 

We present basic descriptions about the new soil datasets in Table 2 and 3. As 1687 

described in section 2.1, four available global soil datasets, i.e. HWSD, GSDE, 1688 

WISE30sec and Soilgrids, have been developed in the last several years (Table 2). 1689 

These soil datasets are selected to be shown here because they have a global coverage 1690 

with key variables used by ESMs and developed with relatively good data sources in 1691 

recent years, and are freely available. Old versions of these datasets are not shown 1692 

here. Table 3 shows the available soil properties of these soil datasets. Except 1693 

WISE30sec, all these databases do not contain spatial uncertainty estimation. The 1694 

explained variance of soil properties in Soilgrids is between 56% and 83%, while the 1695 

other datasets do not offer quantitative accuracy assessment. GSDE has the largest 1696 

number of soil properties, while Soilgrids currently contains ten primary soil 1697 

properties defined by the GlobalSoilMap consortium. 1698 

The accuracy of the newly developed soil datasets (Soilgrids, GSDE and HWSD) 1699 

and an old dataset (IGBP) are evaluated for five key variables using 94,441 soil profiles 1700 

from WoSIS (Table 4). We used four statistics in the evaluation, including mean error 1701 

(ME), root mean squared error (RMSE), coefficient of variation (CV) and coefficient 1702 

of determination (R2). All soil datasets are evaluated for topsoil (0-30cm) and subsoil 1703 

(30-100cm). The layer schemes of soil datasets are different (Table 1) and they were 1704 

converted to the two layers. Soil datasets are in high resolution and were converted to 1705 

the resolution of 10 km by averaging. All datasets have relatively small ME. In general. 1706 

Soilgrids has much better accuracy than the other three due to RMSE, CV and R2, and 1707 

GSDE ranks the second, followed by IGBP and HWSD. However, IGBP is slightly 1708 

better than GSDE for bulk density and organic carbon of topsoil. Note that the IGBP 1709 

does contain coarse fragment, which is needed in calculating soil carbon stocks. We did 1710 

not evaluate the WISE30sec here to save some time in data processing, because 1711 

previous evaluation using WoSIS showed that WISE30sec had slightly better accuracy 1712 

than HWSD (https://github.com/thengl/SoilGrids250m/tree/master/grids/HWSD). 1713 

This evaluation has some limitations. First, because the datasets developed by the 1714 

linkage method give the mean value of a SMU resulted in abrupt change between the 1715 
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boundaries of soil polygons while the datasets developed by digital soil mapping 1716 

simulated the soil as a continuum with a spatial continuous change of soil properties, 1717 

they may not be so comparable. Second, the original resolution of soil datasets are 1718 

different, which means that maps with higher resolution provides more spatial details 1719 

and we should judge the map quality due to not only the accuracy assessment but also 1720 

the resolution. As a result, datasets with higher resolution (i.e. HWSD and GSDE) are 1721 

preferred than that with lower resolution (i.e., IGBP) as they have similar accuracy, 1722 

especially when the LSMs are run at a high resolution such as 1km. Third, the vertical 1723 

variation are better represented by Soilgrids, GSDE and WISE30sec with more than 2 1724 

layers and to a depth over 2m (Table 2). This will provide more useful information for 1725 

ESMs, especially when they model deeper soils with multiply layers.  1726 

The new generation soil dataset produced by digital soil mapping method gave a 1727 

quite different distribution of soil properties from those produced by the linkage method. 1728 

Figure 1 shows soil sand and clay fraction at the surface 0-30 cm layer from Soilgrids, 1729 

IGBP and GSDE. Figure 2 shows soil organic carbon and bulk density at the surface 0-1730 

30 cm layer from Soilgrids, IGBP and GSDE. Significant differences are visible in these 1731 

datasets. This will lead to different modelling results in ESMs. Tifafi et al. (2018) found 1732 

that the global soil organic carbon stocks down to a depth of 1m is 3,400 Pg estimated 1733 

by Soilgrids while it is 2500 Pg by HWSD, and the estimates by Soilgrids are closer to 1734 

the observations, though they all underestimated the soil carbon stocks. Figure 1 of 1735 

Tifafi et al. (2018) showed the global distribution of soil carbon stocks by Soilgrids and 1736 

HWSD. 1737 

In general, Soilgrids is preferred for ESMs’ application as it has the highest 1738 

accuracy and resolution at the time. When soil properties are not available in Soilgrids, 1739 

WISE30sec and GSDE offers the alternative options. However, model sensitivity 1740 

simulations need to be done to investigate the effects of different soil datasets on ESMs 1741 

in future studies.  1742 

 1743 

4 Soil data usage in ESMs and existing challenges 1744 

4.1 Model use of soil data derived by the linkage method 1745 

Soil data by the linkage method are derived for each soil mapping unit or land 1746 

unit and thus is polygon-based, while ESMs are usually grid-based. However, soil 1747 

data derived by digital soil mapping are grid-based. So, the compatibility between soil 1748 

data derived by the linkage method and ESMs needs to be addressed. In the soil map, 1749 

a soil mapping unit (SMU) is composed of more than one component soil unit in most 1750 

cases, and thus a one-to-many relationship exists between the SMU and the profile 1751 

attributes of the respective soil units. This condition makes representing attributes 1752 

characterizing a SMU a non-trivial task. To keep the whole variation of soil in a 1753 

SMU, the best way is using the subgrid method in ESMs (Oleson et al., 2010), i.e. 1754 

aggregate values of soil properties and provide the area percentage of each value. This 1755 

will bring the problem of how to map the soil subgrids with land cover (or plant 1756 

function type) subgrids. A possible solution is to: classify soil according to soil 1757 

properties and get a number of defined soil classes (SC, n classes) like land cover 1758 

types (LCT, m classes); overlay the defined soil classes with land cover types and get 1759 
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n by m combinations assuming soil classes and land cover types are independent. 1760 

However, this will increase the computing time and the complexity of ESMs’ 1761 

structure, which needs to implement the soil processes over each subgrid soil column 1762 

within a grid instead of the entire model grid.  1763 

Usually, the compatibility issue is addressed by converting the SMU-based soil 1764 

data to grid data using spatial aggregation. tThe ESMs uses grid data as input and 1765 

each grid cell has one unique value of a soil property. Three spatial aggregation 1766 

methods were proposed to aggregate compositional attributes in a SMU to a 1767 

representative value (Batjes, 2006; Shangguan et al., 2014). The area-weighting 1768 

method (method A) takes area-weighting of soil attributes. The dominant type method 1769 

(method D) takes the soil attribute of the dominant type. The dominant binned method 1770 

(method B) classifies the soil attribute into several preselected classes and takes the 1771 

dominant class. All three methods can be applied to quantitative data, while the 1772 

method D and the method B can be applied to categorical data. The advantages and 1773 

disadvantages of these methods were discussed (Batjes, 2006; Shangguan et al., 1774 

2014). The choice should be made according to the specific applications (Hoffmann 1775 

and Christian Biernath, 2016). The method B provides binned classes, which are not 1776 

convenient for modelling, though method B is considered more appropriate to 1777 

represent a grid cell. The method A keeps mass conservation, which can meet most 1778 

demands of model applications. However, the method A may be misleading in cases 1779 

when extreme values appeared in a SMU. For the linkage method, the uncertainty is 1780 

usually estimated by giving the 5 and 95 percentile soil properties (or other statistics) 1781 

of the soil profiles that linked to a SMU. Because the frequency distribution of soil 1782 

properties within a SMU is usually not a normal distribution or any other typical 1783 

statistic distribution, the application of statistics such as standard deviation in model 1784 

use is not proper. This means that the uncertainty of soil dataset derived by the 1785 

linkage method can not be incorporated into ESMs in a straight forward way, and 1786 

technology such as bootstrap may be more suitable than methods making assumptions 1787 

on the distribution. 1788 

The basic soil properties are often used to derive secondary parameters including 1789 

SHPs and STPs by PTFs and soil carbon stock or other nutrient stocks by certain 1790 

equations (Shangguan et al., 2014). This procedure could be done either before or 1791 

after the aggregation (here referred to ‘‘aggregating after” and ‘‘aggregating first’’). 1792 

Because the relationship between the soil basic properties and the derived soil 1793 

parameters is usually nonlinear, the ‘‘aggregating first’’ method should be taken. This 1794 

was also proved by case studies (Romanowicz et al., 2005; Shangguan et al., 2014). 1795 

However, some researchers researches (Hiederer and Köchy, 2012) were not aware of 1796 

this and used the ‘‘‘‘aggregating after” method producing misleading results 1797 

(Hiederer and Köchy, 2012). 1798 

The aggregation smooths the variation of soil properties between soil 1799 

components within a given SMU (Odgers et al., 2012). To avoid the aggregation, the 1800 

spatial disaggregation of soil type maps can be used to determine the location of the 1801 

SMU components, though the location error may be high in some cases (Thompson et 1802 

al., 2010; Stoorvogel et al., 2017). This method depends on high density of soil 1803 
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profiles to establish soil and landscape relationships. Folberth et al. (2016) shows that 1804 

the correct spatial allocation of the soil type to present cropland was very important in 1805 

global crop yield simulations. Currently, aggregation is still the pragmatic way at the 1806 

global scale due to lack of data. 1807 

 1808 

54.2 Upscaling detailed soil data for model use 1809 

The updated soil datasets derived by both the linkage method and digital soil 1810 

mapping are usually at a high resolution from 1 km to 100 m, and upscaling or 1811 

aggregation is required to derive lower resolution datasets for model use. The 1812 

aggregation methods mentioned above can be used. Moreover, there are plenty of 1813 

upscaling methods such as the window median, variability-weighted methods (Wang et 1814 

al., 2004), variogram method (Oz et al., 2002), fractal theory (Quattrochi et al., 2001) 1815 

and Miller–Miller scaling approach (Montzka et al., 2017). However, few studies have 1816 

been devoted to test out which upscaling methods are suitable for soil data. A 1817 

preliminary effort was done by (Shangguan, 2014). Five upscaling methods compared 1818 

were the window average, widow median, widow modal, arithmetic average 1819 

variability-weighted method and bilinear interpolation method. Differences between 1820 

aggregation methods varied from 10% to 100% for different parameters. The upscaling 1821 

methods affected the data derived by the linkage method more than the data by digital 1822 

soil mapping. The window average, window median and arithmetic average variability-1823 

weighted method performed similar in upscaling. The root mean square error increased 1824 

rapidly when the window size was less than 40 pixels. Similar to the aggregation of 1825 

SMUs, the ‘‘aggregating first’’ method is recommended when secondary soil 1826 

parameters are derived. Again, alternative to avoid the aggregation into one single value 1827 

for a grid cell is to use the subgrid methods in ESMs.  1828 

The upscaling effect of soil data on model simulation has been investigated in 1829 

previous studies with controversial conclusions. For example, Melton et al. (2017) used 1830 

two linked algorithms to provide tiles of representative soil textures for subgrids in a 1831 

terrestrial ecosystem model and found that the model is relatively insensitive to subgrid 1832 

soil textures compared to a simple grid-mean soil texture at a global scale. However, 1833 

the treatment without soil subgrid structure in JULES resulted in soil-moisture 1834 

dependent anomalies in simulated carbon flux (Park et al., 2018). Further researches 1835 

are necessary to investigate the upscaling effect on models. 1836 

 1837 

4.3 The changing soil properties 1838 

There is not any global soil property map in time-series because we do not have 1839 

enough available data. In all the global soil property maps, all the available soil 1840 

observations in the last decades are used in the development of soil property maps 1841 

without considering the changing environment. So these datasets should be considered 1842 

as an average state. The critical issue for mapping global soil properties in time-series 1843 

is to establish a soil profile database with time stamps and then divide them into two or 1844 

more groups of different periods such as 1950s-1970s. This is still quite challenging at 1845 

the global scale because the spatial coverage of soil profiles is quite uneven for different 1846 

periods and the sample size may not be big enough to derive maps with satisfied 1847 
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accuracy. 1848 

Soil properties are changing but we are now taking it as static in ESMs. As some 1849 

ESMs already simulate the soil carbon, this may be considered in PTFs used to estimate 1850 

soil hydraulic and thermal parameters. Other soil properties affecting soil hydraulic and 1851 

thermal parameters include soil texture, bulk density, soil structure and so on, but the 1852 

change is relatively slow. The effect of environmental change on soil properties is the 1853 

topic of quantitative modeling of soil forming processes, i.e. soil landscape and 1854 

pedogenic models (Gessler et al., 1995; Minasny et al., 2008). If we need to simulate 1855 

the change of soil properties, a coupling of ESMs and soil landscape and pedogenic 1856 

models will be needed. Otherwise, we need to predict the soil properties in the future 1857 

using soil landscape and pedogenic models which are small scale models and has high 1858 

uncertainty. The prediction of changing soil properties may also be done by digital soil 1859 

mapping taken the changing (especially for the future) climate and land use as 1860 

covariates, which may be the more feasible than dynamic models. 1861 

 1862 

4.4 Incorporating the uncertainty of soil data in ESMs 1863 

Incorporating the uncertainty of soil data in ESMs is a rising challenge. Except 1864 

WISE30sec, all the current global soil data sets do not have a corresponding uncertainty 1865 

map for a soil property. But the spatial uncertainty can be estimated by the methods 1866 

mentioned in section 2.1 and soil data sets with uncertainty map will be made available 1867 

sooner or later. It is too expensive to run multiply ESM simulations combining upper 1868 

and lower bounds in all possible combinations to quantify the effect of soil data 1869 

uncertainty on ESMs. Instead, adaptive surrogate modeling based on statistical 1870 

regression and machine learning can be used, which costs much lower computing time 1871 

and proves to be effective and efficient (Gong et al., 2015; Li et al. 2018). Surrogate 1872 

models are used to emulate the responses of ESMs to the variation of soil properties at 1873 

each location. 1874 

 1875 

4.5 Layer schemes and lack of deep layer soil data 1876 

The layer scheme of a soil data set needs to be coveted to that of ESMs for model 1877 

use. A simple way for this conversion is the depth weighting method. When a more 1878 

accurate conversion is needed, the equal-area quadratic smoothing spline functions can 1879 

be used, which is proved to be advantageous in predicting the depth function of soil 1880 

properties (Bishop et al., 1999). Mass conservation for a soil property of a layer is 1881 

guaranteed by this method under the assumption of continuous vertical variation of soil 1882 

properties. This method may produce some negative values which should be set to zero. 1883 

The depth of soil observations in soil survey are usually less than 2 m and thus 1884 

resulted in missing values for the deep layers of ESMs. For the lack of deep soil data, 1885 

there is not any good solution other than extrapolate the values based on the 1886 

observations of shallower layers, which will lead to higher uncertainty of soil properties 1887 

for deep layers. The extrapolation can be done by the above-mentioned spline method 1888 

or simply by assigning soil properties of the last layer to the rest of deeper soil layers. 1889 

Depth to bedrock map (Shangguan et al., 2018) can be utilized in defining the low 1890 

boundary of soil layers, and a default set of thermal and hydraulic characteristic can be 1891 
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assigned for bedrocks. 1892 

  1893 

56 Summary and outlook 1894 

This paper reviews the status of soil datasets and their usage in ESMs. Soil 1895 

physical and chemical properties served as model parameters, initial variables or 1896 

benchmark datasets in ESMs. Soil profiles, soil maps and soil datasets derived by the 1897 

linkage method and digital soil mapping are reviewed at national, regional and global 1898 

levels. The soil datasets derived by digital soil mapping are considered to provide more 1899 

realistic estimation of soils than those derived by the linkage method, because digital 1900 

soil mapping provide spatial continuous estimations of soil properties using spatial 1901 

prediction models with various soil-related covariates. Due to the evaluation of soil 1902 

datasets by WoSIS, Soilgrids have the most accurate estimation of soil properties. 1903 

However, other soil datasets including GSDE and WISE30sec can be considered as they 1904 

provide more soil properties. 1905 

The popular soil datasets used in ESMs are outdated and there are soil datasets 1906 

available for the updates. In the recent several years, efforts were taken to update the 1907 

soil data in ESMs. The effects of updated soil properties which are used to estimate soil 1908 

hydraulic and thermal parameters were evaluated. Other major updates include soil 1909 

reflectance, ground water tables and depth to bedrock. 1910 

Pedotransfer functions (PTFs) are employed to estimate secondary soil parameters, 1911 

including soil hydraulic and thermal parameters, and biogeochemical parameters. PTFs 1912 

can take more soil properties (i.e., soil organic carbon, bulk density etc.) as input in 1913 

addition to soil texture data. An ensemble of PTFs may be more robust suitable to 1914 

provide secondary soil parameters as direct input to ESMs, because ensemble method 1915 

has a number of benefits and potential over a single PTF (Looy et al., 2017). 1916 

Soil data derived by the linkage methods and high high-resolution data can be 1917 

aggregated by different methods to fit the use in ESMs. The aggregation should be done 1918 

after the secondary parameters are estimated. However, the aggregation will omit the 1919 

variation of soil properties. To avoid the aggregation, the subgrid method in ESMs is 1920 

an alternative which increases the model complexity. The effect of different upscaling 1921 

methods on the performance of ESMs needs to be investigated further. 1922 

Because digital soil mapping has many advantages compared to the traditional 1923 

linkage method, especially in representing spatial heterogeneity and quantifying 1924 

uncertainty in the predictions, the new generation soil datasets derived by digital soil 1925 

mapping needs to gain popularitybe tested  in ESMs., and some regional studies have 1926 

shown that these datasets provided better modelling results than products by the linkage 1927 

method (Kearney and Maino, 2018; Trinh et al., 2018). Moreover, many studies from 1928 

digital soil mapping have identified that soil maps are not very important to predict soil 1929 

properties and are usually not used as a covariate in most studies (eg. Hengl et al., 2014; 1930 

Viscarra Rossel et al., 2015; Arrouays et al., 2018). However, the linkage method 1931 

usually takes soil map as the major covariate, which essentially affect the accuracy of 1932 

the derived soil property maps, especially for areas without detailed soil maps. As a 1933 

data-driven method, digital soil mapping requires soil profiles observations and 1934 

environmental covariates (in which the importance of soil maps is low), and including 1935 
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more of these data in mapping will improve the global predictions (Hengl et al., 2017). 1936 

More quality assessed data, analysed according to comparable analytical methods, are 1937 

needed to support such efforts. The harmonization of soil data is undertaking by the 1938 

work of GSP Pillar 5 (Pillar 5 Working Group, 2017) and WoSIS (Batjes et al., 2017). 1939 

Data derived from proximal sensing, although with higher uncertainty than traditional 1940 

soil measurements, can be used in soil mapping (England and Viscarra Rossel, 2018). 1941 

To avoid spatial extrapolation, soil profiles should have a good geographical coverage. 1942 

The temporal variation of global soil is quite challenging due to lack of data. Soil image 1943 

fusion is also needed to merge the local and global soil maps, which consider them as 1944 

components of soil variation for ensemble predictions (Hengl et al., 2017). A system 1945 

for automated soil image fusion might take years before an operational system for 1946 

global soil data fusion is fully functional. Mapping the soil depth and depth to bedrock 1947 

separately at the global level is also still challenging due to lack of data and the 1948 

understanding of relevant processes. Uncertainty estimation, especially spatial 1949 

uncertainty estimation should be included in the soil datasets developed in the future. 1950 

However, incorporating the spatial uncertainty of soil properties in ESMs is still 1951 

challenging due to the cost, and an alternative may be to use adaptive surrogate 1952 

modeling.  1953 

The gap between soil data existence and data availability is huge. The gap between 1954 

the amount of data that has been taken in surveys and the amount of data freely available 1955 

is large. The soil profiles included by global soil databases such as WoSIS make up a 1956 

very small fraction of the soil pits dug by human beings. For example, there are more 1957 

than 100,000 soil profiles from the second national soil survey of China (Zhang et al., 1958 

2010) and no more than 9,000 were used to produce the national soil property maps 1959 

freely available (Shangguan et al., 2013). In the last century, national soil survey was 1960 

accomplished widely, majorly for agriculture purpose. However, most of these legacy 1961 

data are not digitalized and they are usually not made available to the science 1962 

community even if digitalized. How to flush out these hidden soil data requires some 1963 

mechanism such as government mandatory regulations and investing money on making 1964 

them available (Pillar four Working Group, 2014; Pillar 5 Working Group, 2017). 1965 

Arrouays et al. (2017) reported that about 800,000 soil profiles have been rescued in 1966 

the selected countries. In addition, investments on new soil samplings should be made, 1967 

especially in the under-represented areas. A good example is the US, which has the most 1968 

abundant soil data freely available (Batjes et al., 2017) like many other data. Data 1969 

compatibility of different analysis methods and different description protocols 1970 

including soil classifications is also an important issue and data harmonization is 1971 

necessary when the data are made available to public.  1972 

The gap between the soil data availability and data usage in ESMs is still large. 1973 

Most popular ESMs have not utilized the recent available global soil datasets yet. 1974 

Another challenge may be to incorporate the spatial uncertainty of soil properties and 1975 

the statistical distribution of soil properties in a grid cell in ESMs.  1976 
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Table 1. Lists of the soil dataset used by land surface models (LSM) of Earth System Models (ESM) or climate models (CM) 2526 

 2527 

Dataset Resolution ESM or CM LSM Input soil data 

Elguindi et al. (2014)  RegCM 

BATS1e (Dickinson et al., 
1993) 
or CLM3.5 

Soil texture classes and Soil color classes prescribed for 
BATS vegetation/land cover type 

FAO (2003 a,b) 5’ CanESM2 
CTEM (Arora et al., 2009) 
CLASS3.4 (Verseghy, 2000) Soil texture 

FAO (2003 a,b) 5’ EC-EARTH  HTESSEL (Orth et al., 2016) Soil texture classes 
FAO (2003 a,b; 
outside 
Conterminous US) 
STATSGO (Miller and 
White, 1998) 

5’ 
30” 

WRF 
CWRF 

Noah (Chen and Dudhia, 
2001) 
Noah-MP (Niu et al., 2011) 
CLM4 
Other LSMs Soil texture 

GSDE (Shangguan 
et al., 2014) 30” 

CAS_ESM 
BNU_ESM 
GRAPES CoLM 2014(Dai et al., 2003) Soil texture, gravel, soil organic carbon, bulk density 

GSDE (Shangguan et 
al., 2014) 30” 

WRF 
CWRF 

Noah (Chen and Dudhia, 
2001) 
Noah-MP (Niu et al., 2011) 
CLM4 
Other LSMs Soil texture 

GSDE (Shangguan 
et al., 2014) 30” 

BCC_CSM 
1.1 
BCC_CSM 
1.1(m) 

BCC_AVIM 1.1 (Wu et al., 
2014) Soil texture 

Hagemann (2002) 

0.5° (8km 
over 
Africa) 

MPI-ESM 
ICON-ESM  

JSBACH4 (Mauritsen et al. 
(2019)  Soil albedo 
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Hagemann (2002)  0.5° 
MPI-ESM 
ICON-ESM  

JSBACH4 (Mauritsen et al. 
(2019)  

Field capacity, Plant-available soil water holding capacity 
and wilting point prescribed for ecosystem type 

Hagemann et al. 
(1999) 0.5° 

MPI-ESM 
ICON-ESM  

JSBACH4 (Mauritsen et al. 
(2019)  

Volumetric heat capacity and thermal diffusivity 
prescribed for 5 soil types of FAO soil map 

HWSD 
(FAO/IIASA/ISRIC/ISS
-CAS/JRC, 2012) 30” GFDL ESM 

GFDL LM4 (Zhao et al., 
2018b) Soil texture classes 

HWSD 
(FAO/IIASA/ISRIC/ISS
-CAS/JRC, 2012) 30” 

HadCM3 
HadGEM2 
QUEST  

JULES/MOSESvn 5.4 (Best et 
al., 2011;Clark et al., 2011) Soil texture  

HWSD 
(FAO/IIASA/ISRIC/ISS
-CAS/JRC, 2012) 30” CNRM-CM5 SURFEX8.1 (Moigne,2018) 

Soil texture,soil organic matter 

IGBP-DIS (Global Soil 
DataTask, 2000) 5′ 

CESM 
CCSM 
CMCC–
CESM 
FIO-ESM  
FGOALS 
(s2,gl,g2) 
NorESM1 

CLM 3.0 or CLM 4.0 or CLM 
5.0 (Oleson, 2013) 

Soil texture (sand, clay)  

ISRIC-WISE (Batjes, 
2006) combined with 
NCSD (Hugelius et al., 
2013) 5′; 0.25° 

CESM 
CCSM 
CMCC–
CESM 
FIO-ESM  
FGOALS 
(s2,gl,g2) 
NorESM1 

CLM 3.0 or CLM 4.0 or CLM 
5.0 (Oleson, 2013) Soil organic matter 
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Lawrence and Chase  
(2007) 0.05° 

CESM 
CCSM 
CMCC–
CESM 
FIO-ESM  
FGOALS 
(s2,gl,g2) 
NorESM1 

CLM 3.0 or CLM 4.0 or CLM 
5.0 (Oleson, 2013) Soil color class 

Reynolds et al. 
(2000) 5′  GLDAS 

Mosaic (Koster and Suarez, 
1992) 
CLM2 
Noah (Chen and Dudhia, 
2001) 
VIC (Liang et al., 1994) 

Soil texture classes 

Webb et al. (1993) 
and Zöbler (1986) 1° GISS-E2 

GISS-LSM (Rosenzweig and 
Abramopoulos, 1997) Soil texture 

Wilson and 
Henderson-Sellers 
(1985) 1° 

HadCM3 
HadGEM2 
QUEST  

JULES/MOSESvn 5.4 (Best et 
al., 2011;Clark et al., 2011) Soil texture  

Zöbler (1986) 1° 
ACCESS-
ESM 

CABLE2.0 (Kowalczyk et 
al, 2013) Soil texture classes 

Zöbler (1986) 1°  
SiB (Sellers et al., 1996; 
Gurney et al., 2008) Soil texture classes 

Zöbler (1986) 1° CFSv2 
CFSv2/Noah(Saha et al., 
2014) Soil texture 

Zöbler (1986) 1° 
CSIRO-
Mk3.6.0 

CSIRO-Mk3.6.0 (Rotstayn et 
al., 2012) Soil texture classes 

Zöbler (1986) 1° 

MIROC 
(4h,5) 
MIROC-ESM 

MATSIRO (Takata et al., 
2003) Soil texture classes 
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Zöbler (1986); 
Reynolds et al. 
(2000) 1°; 5′  IPSL-CM6  

ORCHIDEE [rev 3977] 
(Krinner, 2005) Soil texture classes 

 2528 

ACCESS = Australia Community Climate and Earth System Simulator 2529 

BATS = Biosphere-Atmosphere Transfer Scheme 2530 

BCC_CSM = Beijing Climate Center Climate System Model 2531 

BCC_AVIM = Beijing Climate Center Atmosphere and Vegetation Interaction Model 2532 

BNU_ESM = Beijing Normal University Earth System Model 2533 

CLM = Community Land Model. The current released version is CLM4.5. 2534 

CABLE = Community Atmosphere Biosphere Land Exchange 2535 

CanESM = Canadian Earth System Model 2536 

CAS_ESM = Chinese Academy of Sciences Earth System Model 2537 

CCSM = Community Climate System Model. 2538 

CESM = Community Earth System Model. 2539 

CFS = Climate Forecast System 2540 

CLASS = Canadian Land Surface Scheme 2541 

CLM = Community Land Model 2542 

CMCC–CESM = Euro-Mediterranean Centre on Climate Change Community Earth System Model 2543 

CNRM-CM = Centre National de Recherches Meteorologiques Climate Model 2544 

CoLM = Common Land Model 2545 

CSIRO-Mk = Commonwealth Scientific and Industrial Research Organization climate system model 2546 

CTEM = Canadian Terrestrial Ecosystem Model 2547 

EC-EARTH = European community Earth-System Model 2548 

FAO = the Food and Agriculture Organization (FAO-UNESCO) digital Soil Map of the World (SMW) at 1:5 million scale 2549 

FGOALS = Flexible Global Ocean‐Atmosphere‐Land System Model 2550 

FIO-ESM = The First Institute of Oceanography Earth System Model  2551 

GRAPES = Global/Regional Assimilation Prediction System 2552 

GFDL = Geophysical Fluid Dynamics Laboratory 2553 

GISS = Goddard Institute for Space Studies 2554 

GLDAS = Global Land Data Assimilation System 2555 
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GSDE = Global Soil Dataset for Earth System Model 2556 

HadCM = Hadley Centre Coupled Model 2557 

HadGEM2-ES = Hadley Global Environment Model 2 - Earth System 2558 

HTESSEL = Tiled ECMWF Scheme for Surface Exchanges over Land 2559 

HWSD = Harmonized World Soil Database 2560 

ICON-ESM = Icosahedral non-hydrostatic Earth System Model 2561 

IGBP-IDS = Data and Information System of International Geosphere-Biosphere Programme 2562 

IPSL-CM = Institut Pierre Simon Laplace Climate Model 2563 

ISRIC-WISE = World Inventory of Soil Emission Potentials of International Soil Reference and Information Centre 2564 

JSBACH = Jena Scheme of Atmosphere Biosphere Coupling in Hamburg 2565 

JULES/MOSES= Joint UK Land Environment Simulator/Met Office Surface Exchange Scheme 2566 

MATSIRO = Minimal Advanced Treatments of Surface Interaction and Runoff 2567 

MIROC = Model for Interdisciplinary Research on Climate 2568 

MPI-ESM = The Max Planck Institute for Meteorology Earth System Model 2569 

Noah-MP = Noah-multiparameterization 2570 

NorESM1 =  2571 

NCSD = Northern Circumpolar Soil Carbon Database 2572 

ORCHIDEE = Organising Carbon and Hydrology In Dynamic Ecosystems 2573 

QUEST = Quantifying and Understanding the Earth System 2574 

RegCM = Regional Climate Model 2575 

SiB = Simple Biopshere Model 2576 

STATSGO = the State Soil Geographic Database 2577 

SURFEX = Surface Externalisée 2578 

WRF = Weather Research and Forecasting Model 2579 

 2580 
IGBP-IDS = Data and Information System of International Geosphere-Biosphere Programme 2581 

ISRIC-WISE = World Inventory of Soil Emission Potentials of International Soil Reference and Information Centre 2582 

NCSD = Northern Circumpolar Soil Carbon Database 2583 

MPI-ESM = The Max Planck Institute for Meteorology Earth System Model 2584 

ICON-ESM =  icosahedral non-hydrostatic Earth System Model 2585 

JSBACH = Jena Scheme of Atmosphere Biosphere Coupling in Hamburg 2586 
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HWSD = Harmonized World Soil Database 2587 

FAO = the Food and Agriculture Organization (FAO-UNESCO) digital Soil Map of the World (SMW) at 1:5 million scale. 2588 

HadGEM2-ES = Hadley Global Environment Model 2 - Earth System 2589 

QUEST = Quantifying and Understanding the Earth System 2590 

JULES/MOSES= Joint UK Land Environment Simulator/Met Office Surface Exchange Scheme 2591 

RegCM = Regional Climate Model 2592 

BATS = Biosphere-Atmosphere Transfer Scheme 2593 

GFDL = Geophysical Fluid Dynamics Laboratory 2594 

GISS = Goddard Institute for Space Studies 2595 

STATSGO = the State Soil Geographic Database 2596 

WRF = Weather Research and Forecasting Model 2597 

Noah-MP = Noah-multiparameterization 2598 

GSDE = Global Soil Dataset for Earth System Model 2599 

CAS_ESM = Chinese Academy of Sciences Earth System Model 2600 

BNU_ESM = Beijing Normal University Earth System Model 2601 

GRAPES = Global/Regional Assimilation Prediction System 2602 

CoLM = Common Land Model. The current version is CoLM2014. 2603 

SiB = Simple Biopshere Model 2604 

GLDAS = Global Land Data Assimilation System 2605 

ACCESS = Australia Community Climate and Earth System Simulator 2606 

CABLE = Community Atmosphere Biosphere Land Exchange 2607 
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 2608 

Table 2 Three Four new global soil datasets for the updates of ESMs. 2609 

Dataset* Resolution Number 
of layers 

Number of 
properties 

depth to the bottom of a 
layer (cm) 

Mapping method 

HWSD 1km 2 22 30, 100 Linkage method 
GSDE 1km 8 39 0, 4.5, 9.1, 16.6, 28.9, 

49.3, 82.9, 138.3, 229.6 
Linkage method 

WISE30sec 1km 7 20 20,40,60,80,100,150,200 Linkage method 
Soilgrids 250m 6 7 5, 15, 30, 60, 100, 200 Digital soil mapping 

*HWSD, GSDE, WISE30sec and Soilgrids are freely available at 2610 

http://www.iiasa.ac.at/web/home/research/researchPrograms/water/HWSD.html, 2611 

http://globalchange.bnu.edu.cn/research/data, https://www.isric.org/explore/wise-2612 

databases, and http://www.soilgrids.org/, respectively.  2613 

 2614 

 2615 

 2616 

 2617 

 2618 

 2619 

 2620 

  2621 
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Table 3 Derived soil properties considered in Four global soil datasetsAvailable soil properties of three global soil datasets. 2622 

Soil property* HWSD GSDE Soilgrids Soil property* HWSD GSDE Soilgrids 
Drainage class √ √  Total carbon  √  
AWC class √ √  Total nitrogen  √  
Soil phase √ √  Total sulfur  √  
Impermeable layer √ √  pH(KCL)  √ √ 
Obstacle to roots √ √  pH(Cacl2)  √  
Additional property √ √  Exchangeable Ca  √  
Soil water regime √ √  Exchangeable Mg  √  
Reference soil 
depth 

√ √  Exchangeable K  √  

Depth to bedrock   √ Exchangeable Na  √  
Gravel √ √ √ Exchangeable Al  √  
Sand, Silt, Clay √ √ √ Exchangeable H  √  
Texture class** √   VWC at -10 kPa  √  
Bulk density √ √ √ VWC at -33 kPa  √  
Organic Carbon √ √ √ VWC at -1500 kPa  √  
pH(H2O) √ √ √ Phosphorous by 

Bray method 
 √  

CEC (clay) √   Phosphorous by 
Olsen method 

 √  

CEC (soil) √ √  Phosphorous by 
New Zealand 
method 

 √  

Base saturation √ √  Water soluble 
phosphorous 

 √  

TEB √   Phosphorous by 
Mechlich method 

 √  
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Calcium Carbonate √ √  Total phosphorous  √  
Gypsum √ √  Total Potaasium  √  
Sodicity (ESP) √   Salinity (ECE) √ √  
        

 2623 

 2624 

Soil property* HWSD GSDE WISE30sec Soilgrids Soil property* HWSD GSDE WISE30sec Soilgrids 
Drainage class √ √ √  Total carbon  √   
AWC class √ √   Total nitrogen  √ √  
Soil phase √ √   Total sulfur  √   
Impermeable layer √ √   pH(KCL)  √  √ 
Obstacle to roots √ √   pH(Cacl2)  √   
Additional property √ √   Exchangeable Ca  √   
Soil water regime √ √   Exchangeable Mg  √   
Reference soil 
depth 

√ √   Exchangeable K  √   

Depth to bedrock    √ Exchangeable Na  √   
Gravel √ √ √ √ Exchangeable Al  √   
Sand, Silt, Clay √ √ √ √ Exchangeable H  √   
Texture class** √    VWC at -10 kPa  √   
Bulk density √ √ √ √ VWC at -33 kPa  √ √  
Organic Carbon √ √ √ √ VWC at -1500 kPa  √ √  
pH(H2O) √ √ √ √ Phosphorous by 

Bray method 
 √   

CEC (clay) √  √  Phosphorous by 
Olsen method 

 √   

CEC (soil) √ √ √  Phosphorous by 
New Zealand 

 √   
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method 
Effective CEC   √  Water soluble 

phosphorous 
 √   

Base saturation √ √ √  Phosphorous by 
Mechlich method 

 √   

TEB √  √  Total phosphorous  √   
Calcium Carbonate √ √ √  Total Potassium  √   
Gypsum √ √ √  Salinity (ECE) √ √ √  
Sodicity (ESP) √  √  Aluminium 

saturation 
  √  

C/N ratio   √       

*CEC is cation exchange capacity. The base saturation measures the sum of exchangeable cations (nutrients) Na, Ca, Mg and K as a 2625 

percentage of the overall exchange capacity of the soil (including the same cations plus H and Al). TEB is total exchangeable base 2626 

including Na, Ca, Mg and K. ESP is exchangeable sodium percentage, which is calculated as Na*100/CECsoil. ECE is electrical 2627 

conductivity. AWC is the available water storage capacity. The first 9 soil properties on the left including drainage class, AWC class 2628 

and so on are available for soil types, while the other properties are available for each layer. It should be noted that many different 2629 

analytical methods have been used to derive a given soil property, which is a major source of uncertainty.  2630 

**texture class can be calculated using sand, silt and clay content 2631 

  2632 
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Table 4 Evaluation statistics of soil datasets using WoSIS soil profiles. ME is mean error. 2633 

RMSE is root mean squared error. CV is coefficient of variation. R2 is coefficient of 2634 

determination. 2635 

Soil property Dataset   Topsoil (0-30 cm)   Subsoil (30-100 cm) 
    ME RMSE CV R2 ME RMSE CV R2 
Sand content Soilgrids -0.906 18.6 0.457 0.518 -0.269 19.1 0.501 0.492 
(% in weight) GSDE -0.443 23.2 0.571 0.247 -1.31 23.8 0.625 0.211 

 HWSD 6.64 27.4 0.673 0.014 2.08 27.6 0.725 -0.0575 
  IGBP 3.74 26.3 0.647 0.0514 4.06 26.3 0.691 0.0546 

Clay content Soilgrids 1.34 12.5 0.554 0.339 0.386 13.6 0.485 0.382 
(% in weight) GSDE -0.949 14.6 0.643 0.104 -0.794 16.4 0.584 0.105 

 HWSD 0.77 16.2 0.718 -0.119 1.42 18.9 0.672 -0.182 

 IGBP 3.27 15.4 0.678 0.0444 2.44 16.8 0.597 0.0841 

Bulk density Soilgrids -79.7 237 0.164 0.338 -33.5 212 0.136 0.327 
(kg/m3) GSDE -68.4 279 0.193 0.0303 -65.5 269 0.173 -0.043 

 HWSD -105 298 0.206 -0.033 -168 317 0.204 -0.107 
  IGBP -55.6 273 0.189 0.0499 -112 294 0.189 -0.13 
Coarse 
fragment Soilgrids 1.53 10.1 1.68 0.319 

1.23 12.8 1.47 0.335 

(% in volume) GSDE 3.2 13.5 2.24 -0.165 3.18 16.8 1.93 -0.115 

 HWSD 1.8 13.2 2.2 -0.164 -0.401 16.2 1.87 -0.0805 

 IGBP -100 -100 -100 -100 0.99 23.5 3.32 0.134 

Organic carbon Soilgrids 6.21 29.8 1.69 0.218 0.45 27.4 3.87 -0.174 
(g/kg) GSDE -0.354 34.5 1.95 -0.095 -1.38 27.4 3.87 -0.172 

 HWSD -3.67 36.2 2.05 -0.194 1.67 28.5 4.02 -0.268 
  IGBP 0.605 33.4 1.89 -0.026 -0.269 19.1 0.501 0.492 

 2636 

 2637 

 2638 
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 2639 

Figure 1 Soil sand and clay fraction at the surface 0-30 cm layer from Soilgrids, IGBP-2640 

DIS and GSDE. The difference among them will lead to different modeling results for 2641 

ESMs. IGBP-DIS is Data and Information System of International Geosphere-Biosphere 2642 

Programme, and GSDE is Global Soil Dataset for Earth System Model. 2643 

 2644 
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 2645 

Figure 2 Soil organic carbon and bulk density at the surface 0-30 cm layer from Soilgrids, 2646 

and  GSDE and IGBP. 2647 

 2648 
 2649 


