

1 **Refining physical aspects of soil quality and soil health when
 2 exploring the effects of soil degradation and climate change on
 3 biomass production: an Italian case study.**

4 Antonello Bonfante^{1,3}, Fabio Terribile^{2,3}, Johan Bouma⁴

5 ¹Institute for Mediterranean Agricultural and Forest Systems - CNR-ISAQOM, Ercolano, Italy

6 ²University of Naples Federico II, Department of Agriculture, Portici, (NA), Italy

7 ³University of Naples Federico II, CRISP Interdepartmental Research Centre

8 ⁴Em. Prof. Soils Science, Wageningen University, The Netherlands

9 *Correspondence to:* Antonello Bonfante (antonello.bonfante@cnr.it)

10 **ABSTRACT**

11 This study focuses on soil physical aspects of soil quality and - health with the objective to define
 12 procedures with worldwide rather than only regional applicability, reflecting modern developments in
 13 soil physical and agronomic research and addressing important questions regarding possible effects of
 14 soil degradation and climate change. In contrast to water and air, soils cannot, even after much research,
 15 be characterized by a universally accepted quality definition and this hampers the internal and external
 16 communication process. Soil quality expresses the capacity of the soil to function. Biomass production
 17 is a primary function, next to filtering and organic matter accumulation, and can be modeled with soil-
 18 water-atmosphere-plant simulation models, as used in the agronomic yield-gap program that defines
 19 potential yields (Y_p) for any location on earth determined by radiation, temperature and standardized
 20 crop characteristics, assuming adequate water and nutrient supply and lack of pests and diseases. The
 21 water-limited yield (Y_w) reflects, in addition, the often limited water availability at a particular location.
 22 Real yields (Y_a) can be considered in relation to Y_w to indicate yield gaps, to be expressed in terms of
 23 the indicator: $(Y_a/Y_w) \times 100$. Soil data to calculate Y_w for a given soil type (the genoform) should
 24 consist of a range of soil properties as a function of past management (various phenoforms) rather than
 25 as a single “representative” dataset. This way a Y_w -based characteristic soil quality range for every soil
 26 type is defined, based on semi-permanent soil properties. In this study effects of subsoil compaction,
 27 overland flow following surface compaction and erosion were simulated for six soil series in the Destre
 28 Sele area in Italy, including effects of climate change. Recent proposals consider soil health, which

29 appeals more to people than soil quality and is now defined by separate soil physical, chemical and –
30 biological indicators. Focusing on the soil function biomass production, physical soil health at a given
31 time of a given type of soil can be expressed as a point (defined by a measured Y_a) on the defined soil
32 quality range for that particular type of soil, thereby defining the seriousness of the problem and the
33 scope for improvement. The six soils showed different behavior following the three types of land
34 degradation and projected climate change up to the year 2100. Effects are expected to be major as
35 reductions of biomass production of up to 50% appear likely under the scenarios. Rather than consider
36 soil physical, chemical and biological indicators separately, as proposed now elsewhere for soil health,
37 a sequential procedure is discussed logically linking the separate procedures.

38 **Keywords:** soil quality, soil health, climate change, simulation modeling, water-limited crop yield.

39

40 1. INTRODUCTION

41 The concept of Soil Health has been proposed to communicate the importance of soils to stakeholders
42 and policy makers (Moebius-Clune et al., 2016). This follows a large body of research on soil quality,
43 recently reviewed by Bünemann et al., (2018). The latter conclude that research so far has hardly
44 involved farmers and other stakeholders, consultants and agricultural advisors. This may explain why
45 there are as yet no widely accepted, operational soil quality indicators in contrast to quality indicators
46 for water and air which are even formalised into specific laws (e.g. EU Water Framework Directive).
47 This severely hampers effective communication of the importance of soils which is increasingly
48 important to create broad awareness about the devastating effects of widespread soil degradation. New
49 soil health initiatives, expanding the existing soil quality discourse, deserve therefore to be supported.
50 A National Soil Health Institute has been established in the USA (www.soilhealthinstitute.org) and
51 Cornell University has published a guide for its comprehensive assessment after several years of
52 experimentation (Moebius-Clune et al, 2016). Soil health is defined as: "*the continued capacity of the*
53 *soil to function as a vital living ecosystem that sustains plants, animals and humans*" (NRCS, 2012).
54 Focusing attention in this paper to soil physical conditions, the Cornell assessment scheme (Moebius-
55 Clune et.al, 2016) distinguishes three soil physical parameters: wet aggregate stability, surface and
56 subsurface hardness to be characterized by penetrometers and the available water capacity (AWC:
57 water held between 1/3 and 15 bar). The National Soil Health Institute reports 19 soil health parameters,

58 including 5 soil physical ones: water-stable aggregation, penetration resistance, bulk density, AWC
59 and infiltration rate.

60 Techniques to determine aggregate stability and penetrometer resistance have been introduced many
61 years ago (e.g. Kemper and Chepil, 1965; Lowery, 1986; Shaw et al., 1943). Aggregate stability is a
62 relatively static feature as compared with dynamic soil temperature and moisture content with
63 drawbacks in terms of (1) lack of uniform applied methodology (e.g. Almajmaie et al., 2017), (2) the
64 inability of dry and wet sieving protocols to discriminate between management practices and soil
65 properties (Le Bissonnais, 1996; Pulido Moncada et al., 2013) and above all: (3) the mechanical work
66 applied during dry sieving is basically not experienced in real field conditions (Díaz-Zorita et al., 2002).
67 Measured penetrometer resistances are known to be quite variable because of different modes of
68 handling in practice and seasonal variation. Finally, the AWC is a static characteristic based on fixed
69 values as expressed by laboratory measurements of the pressure head for “field capacity” and “wilting
70 point” that don’t correspond with field conditions (e.g. Bouma, 2018).

71 These drawbacks must be considered when suggesting the introduction for general use as physical soil
72 health indicators. More recent developments in soil physics may offer alternative approaches, to be
73 explored in this paper, that are more in line with the dynamic behavior of soils.

74 The definition of soil health is close to the soil quality concept introduced in the 1990’s: “*the capacity*
75 *of the soil to function within ecosystem and land-use boundaries to sustain productivity, maintain*
76 *environmental quality and promote plant and animal health*” (Bouma, 2002; Büemann et al., 2018;
77 Doran and Parkin, 1994; Karlen et al., 1997). Discussions in the early 2000’s have resulted in a
78 distinction between *inherent* and *dynamic* soil quality. The former would be based on relatively stable
79 soil properties as expressed in soil types that reflect the long-term effect of the soil forming factors
80 corresponding with the basic and justified assumption of soil classification that soil management
81 should not change a given classification. Still, soil functioning of a given soil type can vary
82 significantly as a result of the effects of past and current soil management, even though the name of
83 the soil type does not change (this can be the soil series as defined in USDA Soil Taxonomy (Soil
84 Survey Staff, 2014 as expressed in Table 1) but the lowest level in other soil classification systems
85 would also apply. In any case, the classification should be unambiguous. *Dynamic* soil quality would
86 reflect possible changes as a result of soil use and management over a human time scale, which can
87 have a semi-permanent character when considering, for example, subsoil plowpans (e.g. Möbius-
88 Clune et al, 2016). This was also recognized by Droogers and Bouma, (1997) and Rossiter and Bouma
89 (2018) when defining different soil phenoforms reflecting effects of land use for a given genoform as
90 distinguished in soil classification. Distinction of different soil phenoforms was next translated into a

range of characteristically different soil qualities by using simulation techniques (Bouma and Droogers, 1998). The term soil health appears to have a higher appeal for land users and citizens at large than the more academic term soil quality, possibly because the term “health” has a direct connotation with human wellbeing in contrast to the more distant and abstract term: “quality”. Humans differ and so do soils; some soils are genetically more healthy than others and a given soil can have different degrees of health at any given time, which depends not only on soil properties but also on past and current management and weather conditions. Moebius-Clune et al. (2016) have recognized the importance of climate variation by stating that their proposed system only applies to the North-East of the USA and its particular climate and soil conditions. This represents a clear limitation and could in time lead to a wide variety of local systems with different parameters that would inhibit effective communication to the outside world. This paper will therefore explore possibilities for a science-based systems approach with general applicability. To apply the soil health concept to a wider range of soils in other parts of the world, the attractive analogy with human health not only implies that “health” has to be associated with particular soil individuals, but also to climate zones. In addition, current questions about soil behavior often deal with possible effects of climate change. In this paper, the proposed systems analysis can – in contrast to the procedures presented so far- also deal with this issue. Using soils as a basis for the analysis is only realistic when soil types can be unambiguously defined, as was demonstrated by Bonfante and Bouma (2015) for five soil series in the Italian Destre Sele area that will also be the focus of this study. In most developed countries where soil surveys have been completed, soil databases provide extensive information on the various soil series, including parameters needed to define soil quality and soil health in a systems-analysis as shown, for example, for clay soils in the Netherlands (Bouma and Wosten, 2016). The recent report of the National Academy of Sciences, Engineering and Medicine (2018) emphasizes the need for the type of systems approaches as followed in this study. The basic premise of the Soil Health concept, as advocated by Moebius-Clune et.al. 2016 and others, is convincing. Soil characterization programs since the early part of the last century have been exclusively focused on soil chemistry and soil chemical fertility and this has resulted in not only effective recommendations for the application of chemical fertilizers but also in successful pedological soil characterization research. But soils are living bodies in a landscape context and not only chemical but also physical and biological processes govern soil functions. The Soil Health concept considers therefore not only soil chemical characteristics, that largely correspond with the ones already present in existing soil fertility protocols, but also with physical and biological characteristics that are determined with well defined methods, with particular emphasis on soil biological parameters (Moebius-Clune et al, 2016). However, the proposed soil physical methods by Moebius-Clune et al (2016) don't reflect modern soil physical expertise and procedures need to have a universal rather than

125 a regional character, while pressing questions about the effects of soil degradation and future climate
126 change need to be addressed as well. The proposed procedures do not allow this. Explorative simulation
127 studies can be used to express possible effects of climate change as, obviously, measurements in future
128 are not feasible. Also, only simulation models can provide a quantitative, interdisciplinary integration
129 of soil-water-atmosphere-plant processes that are key to both the soil quality and soil health definitions,
130 as mentioned above.

131 In summary, the objectives of this paper are to: (i) explore alternative procedures to characterize: “soil
132 physical quality and health” applying a systems analysis by modeling the soil-water-atmosphere-plant
133 system, an analysis that is valid anywhere on earth; (ii) apply the procedure to develop quantitative
134 expressions for the effects of different forms of soil degradation and (iii) explore effects of climate
135 change for different soils also considering different forms of soil degradation.

136

137 **2. MATERIALS AND METHODS.**

138 **2.1. Soil functions as a starting point**

139 The soil quality and - health definitions both mention: “*the continued capacity of a soil to function*”.
140 Soil functions have therefore a central role in the quality and health debate. EC (2006) defined the
141 following soil functions: (1) Biomass production, including agriculture and forestry; (2) Storing,
142 filtering and transforming nutrients, substances and water; (3) Biodiversity pool, such as habitats,
143 species and genes; (4) Physical and cultural environment for humans and human activities; (5) Source
144 of raw material; (6) Acting as carbon pool, and (7) Archive of geological and archaeological heritage.
145 Functions 4, 5 and 7 are not covered in this contribution since, if considered relevant, specific measures
146 have to be taken to set soils apart by legislative measures. The other functions are directly and indirectly
147 related to function 1, biomass production. Of course, soil processes not only offer contributions to
148 biomass production, but also to filtering, biodiversity preservation and carbon storage. Inter- and
149 transdisciplinary approaches are needed to obtain a complete characterization, requiring interaction
150 with other disciplines, such as agronomy, hydrology, ecology and climatology and, last but not least,
151 with stakeholders and policy makers. Soil functions thus contribute to ecosystem services and,
152 ultimately, to all seventeen UN Sustainable Development Goals (e.g. Bouma, 2016, 2014; Keesstra et
153 al., 2016). However, in the context of this paper, attention will be focused on function 1, biomass
154 production.

155 Soil physical aspects play a crucial role when considering the role of soil in biomass production, as
156 expressed by Function 1, which is governed by the dynamics of the soil-water-atmosphere-plant system
157 in three ways:

158 (1) Roots provide the link between soil and plant. Rooting patterns as a function of time are key factors
159 for crop uptake of water and nutrients. Deep rooting patterns imply less susceptibility to moisture stress.
160 Soil structure, the associated bulk densities, and the soil water content determine whether or not roots
161 can penetrate the soil. When water contents are too high, either because of the presence of a water table
162 or of a dense, slowly permeable soil horizon impeding vertical flow, roots will not grow because of
163 lack of oxygen. For example, compact plow-pans, resulting from applying pressure on wet soil by
164 agricultural machinery, can strongly reduce rooting depth. In fact, soil compaction is a major form of
165 soil degradation that may affect up to 30% of soils in some areas. (e.g. FAO & ITPS, 2015).

166 (2) Availability of water during the growing season is another important factor that requires, for a start,
167 infiltration of all rainwater into the soil and its containment in the unsaturated zone, constituting “green-
168 water” (e.g. Falkenmark and Rockström, 2006). When precipitation rates are higher than the infiltrative
169 capacity of soils water will flow laterally away over the soil surface, possibly leading to erosion and
170 reducing the amount of water available for plant growth, and:

171 (3) the climate and varying weather conditions among the years govern biomass production. Rainfall
172 varies in terms of quantities, intensities and patterns. Radiation and temperature regimes vary as well.
173 In this context, definitions of location-specific potential yield (Y_p), water-limited yield (Y_w) and actual
174 yield (Y_a) are important, as will be discussed later .

175 Soil Function 2 requires first soil infiltration of water followed by good contact between percolating
176 water and the soil matrix, where clay minerals and organic matter can adsorb cations and organic
177 compounds, involving chemical processes that will be considered when defining soil chemical quality.
178 However, not only the adsorptive character of the soil is important but also the flow rate of applied
179 water that can be affected by climatic conditions or by management when irrigating. Rapid flow rates
180 generally result in poor filtration as was demonstrated for viruses and fecal bacteria in sands and silt
181 loam soils (Bouma, 1979).

182 Soil Functions 3 and 6 are a function of the organic matter content of the soil (or % Organic Carbon -
183 %OC) ,the quantity of which is routinely measured in chemical soil characterization programs (also in
184 the soil health protocols mentioned earlier that also define methods to measure soil respiration). The
185 organic matter content of soils is highly affected by soil temperature and moisture regimes and soil

186 chemical conditions. Optimal conditions for rootgrowth in terms of water, air and temperature regimes
 187 will also be favorable for soil biological organisms, linking soil functions 1, 3 and 6.

188 When defining soil physical aspects of soil quality and soil health, focused on soil function 1,
 189 parameters will have to be defined that integrate various aspects, such as: (1) weather data, (2) the
 190 infiltrative capacity of the soil surface, considering rainfall intensities and quantities, (3) rootability as
 191 a function of soil structure, defining thresholds beyond which rooting is not possible, and: (4) hydraulic
 192 and root extraction parameters that allow a dynamic characterization of the soil-water-plant-
 193 atmosphere system that can only be realized by process modeling, that requires these five parameters
 194 and modeling is therefore an ideal vehicle to realize interdisciplinary cooperation. Simulation models
 195 of the soil-water-atmosphere-plant system are ideal to integrate these various aspects.

196 **2.2. The role of dynamic modeling of the soil-water-plant-atmosphere system**

197 When analysing soil quality and soil health, emphasis must be on the dynamics of *vital, living*
 198 *ecosystems* requiring a dynamic approach that is difficult to characterize with static soil characteristics
 199 (such as bulk density, organic matter content and texture) except when these characteristics are used
 200 as input data into dynamic simulation models of the soil-water-plant-climate system. Restricting
 201 attention to soil physical characteristics, hydraulic conductivity (K) and moisture retention properties
 202 ($\Theta(h)$) of soils are applied in such dynamic models. Measurement procedures are complex and can only
 203 be made by specialists, making them unsuitable for general application in the context of soil quality
 204 and health. They can, however, be easily derived from *pedotransferfunctions* that relate static soil
 205 characteristics such bulk density, texture and %OC to these two properties, as recently summarized by
 206 Van Looy et al. (2017). The latter soil characteristics are available in existing soil databases and are
 207 required information for the dynamic models predicting biomass production.

208 Simulation models of the soil-water-plant-atmosphere system, such as the Soil Water Atmosphere,
 209 Plant model (SWAP) (Kroes et al., 2008) to be discussed later in more detail, integrate weather
 210 conditions, infiltration rates, rooting patterns and soil hydrological conditions in a dynamic systems
 211 approach that also allows exploration of future conditions following climate change. The worldwide
 212 agronomic Yield-Gap program (www.yieldgap.org) can be quite helpful when formulating a soil
 213 quality and – health program with a global significance. So-called water-limited yields (Y_w) can be
 214 calculated, assuming optimal soil fertility and lack of pests and diseases (e.g Gobbett et al., 2017; van
 215 Ittersum et al., 2013; Van Oort et al., 2017). Y_w reflects climate conditions at any given location in the
 216 world as it is derived from potential production (Y_p) that reflects radiation, temperature and basic plant
 217 properties, assuming that water and nutrients are available and pests and diseases don't occur. Y_w
 218 reflects local availability of water. Y_w is usually, but not always, lower than Y_p . Y_w can therefore act as

219 a proxy value for physical soil quality, focusing on function 1. Note that Y_p and Y_w , while providing
220 absolute science-based points of reference, include assumptions on soil fertility and crop health.

221 Actual yields (Y_a) are often, again, lower than Y_w (e.g. Van Ittersum et al, 2013). The ratio Y_a/Y_w is
222 an indicator of the so-called “yield-gap” showing how much potential there is at a given site to improve
223 production (www.yieldgap.org) (Bouma, 2002). When multiplied with 100, a number between 1 and
224 100 is obtained as a quantitative measure of the “yield gap” for a given type of soil. Y_w can be
225 calculated for a non-degraded soil. Y_a should ideally be measured but can also be calculated as was
226 done in this exploratory study (in terms of Y_w values) on the basis of the assumed effects of different
227 forms of soil degradation, such as subsoil soil compaction, poor water infiltration at the soil surface
228 due to surface compaction or crusting and erosion. This requires introduction of a compact layer
229 (plowpan) in the soil, a reduction of rainfall amounts with the volume of estimated overland flow and
230 by removing topsoil. Each variant of the analyzed soil series represents a Phenoform. In this
231 exploratory study Y_a values were simulated but, ideally, field observations should be made in a given
232 soil type to define effects of management as explored, for example, by Pulleman et al., (2000) for clay
233 soils and Sonneveld et al., (2002) for sandy soils. They developed Phenoforms based on different %OC
234 of surface soil and such Phenoforms could also have been included here to provide a link with soil
235 biology but field data were not available to do so. Field work identifying phenoforms includes
236 important interaction with farmers as also mentioned by Moebius-Clune et al, (2016). Sometimes, soil
237 degradation processes, such as erosion, may be so severe that the soil classification (the soil genoform)
238 changes. Then, the soil quality and soil health discussion shifts to a different soil type.

239 This approach will now be explored with a particular focus on the Mediterranean environment. Physical
240 soil quality is defined by Y_w for each soil, considering a soil without assumed degradation phenomena
241 (the reference) and for three variants (hypothetical Y_a , expressed in terms of Y_w) with: (1) a compacted
242 plowlayer, (2) a compacted soil surface resulting in overland flow, and (3) removal of topsoil following
243 erosion, without a resulting change in the soil classification. This way a characteristic range of Y_w
244 values is obtained for each of the six soil series, reflecting positive and negative effects of soil
245 management and representing a range of soil physical quality values of the particular soil series
246 considered. Within this range an actual value of Y_a will indicate the soil physical health of the particular
247 soil at a given time and its position within the range of values will indicate the severity of the problem
248 and potential for possible improvement.

249 The ratio $(Y_a/Y_w) \times 100$ is calculated to obtain a numerical value that represents “soil health” as a point
250 value, representing actual conditions. Health is relatively low when real conditions occur in the lower
251 part of the soil quality range for that particular soil and relatively high when it occurs in the upper

range. Again, in this exploratory study measured values (at current climate conditions) for Y_a have not been made, so Y_a only applies to the three degraded soil forms being distinguished here where hypothetical effects of soil degradation have been simulated as related to the corresponding calculated Y_w values. Of course, actual measured Y_a values can't be determined at all when considering future climate scenario's and simulation is the only method allowing exploratory studies. We assume that climate change will not significantly affect soil formation processes until the year 2100. Soil properties will therefore stay the same.

To allow estimates of the possible effects of climate change RCP 8.5- IPCC scenario will be applied. Obviously, only computer simulations can be used when exploring future conditions, another important reason to use dynamic simulation modeling in the context of characterizing soil quality and soil health. The approach in this paper extends earlier studies on soil quality for some major soil types in the world that did not consider aspects of soil health nor effects of climate change (Bouma, 2002; Bouma et al., 1998).

265

266 **2.3. Simulation modeling**

267 The Soil–Water–Atmosphere–Plant (SWAP) model (Kroes et al., 2008) was applied to solve the soil
 268 water balance. SWAP is an integrated physically-based simulation model of water, solute and heat
 269 transport in the saturated–unsaturated zone in relation to crop growth. In this study only the water flow
 270 module was used; it assumes unidimensional vertical flow processes and calculates the soil water flow
 271 through the Richards equation. Soil water retention $\theta(h)$ and hydraulic conductivity $K(\theta)$ relationships
 272 as proposed by van Genuchten (1980) were applied. The unit gradient was set as the condition at the
 273 bottom boundary. The upper boundary conditions of SWAP in agricultural crops are generally
 274 described by the potential evapotranspiration ET_p , irrigation and daily precipitation. Potential
 275 evapotranspiration was then partitioned into potential evaporation and potential transpiration according
 276 to the LAI (Leaf Area Index) evolution, following the approach of Ritchie (1972). The water uptake
 277 and actual transpiration were modeled according to Feddes et al. (1978), where the actual transpiration
 278 declines from its potential value through the parameter α , varying between 0 and 1 according to the
 279 soil water potential.

280 The model was calibrated and validated by measured soil water content data at different depths for
 281 Italian conditions (Bonfante et al., 2010; Crescimanno and Garofalo, 2005) and in the same study area
 282 by (Bonfante et al., 2011, 2017). In particular, the model was evaluated in two farms inside of Destra
 283 Sele area, on three different soils (Udic Calciustert, Fluventic Haplustept and Typic Calciustoll), under

284 maize crop (two cropping seasons) during a Regional project “Campania Nitrati” (Regione Campania,
 285 2008) (Table.2).

286 Soil hydraulic properties of soil horizons in the area were estimated by the pedotransfer function (PTF)
 287 HYPRES (Wösten et al., 1999). A reliability test of this PTF was performed on $\theta(h)$ and $K(\theta)$ measured
 288 in the laboratory by the evaporation method (Basile et al., 2006) on 10 undisturbed soil samples
 289 collected in the Destra Sele area. The data obtained were compared with estimates by HYPRES and
 290 were considered to be acceptable ($RMSE = 0.02 \text{ m}^3 \text{ m}^{-3}$) (Bonfante et al., 2015).

291 Simulations were run considering a soil without assumed degradation phenomena (the reference) and
 292 for three variants with a compacted plowlayer, surface runoff and erosion, as discussed above:

293 (i) The compacted plowlayer was applied at -30cm (10 cm of thickness) with following physical
 294 characteristics: 0.30 WC at saturation, 1.12 n, 0.004 "a" and K_s of 2 cm/day. Roots were restricted to
 295 the upper 30 cm of the soil. (ii) Runoff from the soil surface was simulated removing ponded water
 296 resulting from intensive rainfall events. Rooting depth was assumed to be -80 cm. (iii) Erosion was
 297 simulated for the Ap horizon, reducing the upper soil layer to 20 cm. The maximum rooting depth was
 298 assumed to be 60 cm (A+B horizon) with a higher root density in the Ap horizon.

299 Variants were theoretical but based on local knowledge of the Sele Plain. Compaction is relevant
 300 considering the highly specialized and intensive horticulture land use of the Sele plain which typically
 301 involves repetitive soil tillage at similar depth. Runoff and erosion easily occur at higher altitude plain
 302 areas especially where the LON0, CIF0/RAG0, GIU0 soil types occur (Figure 1).

303

304 **2.4. Soils in the Destra Sele area in Italy.**

305 The “Destra Sele” study area, the plain of the River Sele (22,000 ha, of which 18,500 ha is farmed) is
 306 situated in the south of Campania, southern Italy (Figure 1). The main agricultural production consists
 307 of irrigated crops (maize, vegetables and fruit orchards), greenhouse-grown vegetables and mozzarella
 308 cheese from water buffalo herds. The area can be divided into four different landform classes
 309 (hills/footslopes, alluvial fans, fluvial terraces and dunes) with heterogeneous parent materials in which
 310 twenty different soil series were distinguished (within Inceptisol, Alfisol, Mollisol, Entisol and Vertisol
 311 soil orders) (Regione Campania, 1996), according to Soil Taxonomy (Soil Survey Staff, 1999). Six soil
 312 series were selected in the area to test application of the soil quality and soil health concepts.
 313 Representative data for the soils are presented in Table 1.

314 Decision trees were developed to test whether the selection process of the soil series was based on
 315 stable criteria, allowing extrapolation of results from measured to unmeasured locations when
 316 considering effects of climate change. While extrapolation in space of soil series data has been a

317 common procedure in soil survey (e.g. Soil Survey Staff, 2014; Bouma et al., 2012), extrapolation in
 318 time has not received as much attention. A basic principle of many taxonomic soil classification
 319 systems is a focus on stable soil characteristics when selecting diagnostic criteria for soil types. Also.
 320 emphasis on morphological features allows, in principle, a soil classification without requiring
 321 elaborate laboratory analyses (e.g. [Soil Survey Staff, 2014](#)). A given soil classification should, in order
 322 to obtain permanent names, not change following traditional management measures, such as plowing.
 323 This does, however, not apply to all soils and then a different name will have to be assigned.
 324 This way, soil classification results in an assessment of the (semi)-permanent physical constitution of
 325 a given soil in terms of its horizons and textures. That is why soil quality is defined for each soil type
 326 as a characteristic range of Y_w values, representing different effects of soil management that have not
 327 changed the soil classification.

328

329 **2.5. Climate information**

330 Future climate scenarios were obtained by using the high resolution regional climate model (RCM)
 331 COSMO-CLM (Rockel et al., 2008), with a configuration employing a spatial resolution of
 332 0.0715°(about 8 km), which was optimised over the Italian area. The validations performed showed
 333 that these model data agree closely with different regional high-resolution observational datasets, in
 334 terms of both average temperature and precipitation in Bucchignani et al. (2015) and in terms of
 335 extreme events in Zollo et al. (2015).

336 In particular, the Representative Concentration Pathway (RCP) 8.5 scenario was applied, based on the
 337 IPCC (Intergovernmental Panel on Climate Change) modelling approach to generate greenhouse gas
 338 (GHG) concentrations (Meinshausen et al., 2011). Initial and boundary conditions for running RCM
 339 simulations with COSMO-CLM were provided by the general circulation model CMCC-CM
 340 (Scoccimarro et al., 2011), whose atmospheric component (ECHAM5) has a horizontal resolution of
 341 about 85 km. The simulations covered the period from 1971 to 2100; more specifically, the CMIP5
 342 historical experiment (based on historical greenhouse gas concentrations) was used for the period
 343 1976–2005 (Reference Climate scenario - RC), while for the period 2006–2100, a simulation was
 344 performed using the IPCC scenario mentioned. The analysis of results was made on RC (1971–2005)
 345 and RCP 8.5 divided into three different time periods (2010–2040, 2040–2070 and 2070–2100). Daily
 346 reference evapotranspiration (ET_0) was evaluated according to Hargreaves and Samani, (1985)
 347 equation (HS). The reliability of this equation in the study area was perrformed by Fagnano et al.,
 348 (2001) comparing the HS equation with the Penman–Monteith (PM) equation (Allen et al., 1998).

349 Under the RCP 8.5 scenario the temperature in Destra Sele is expected to increase approximately two
 350 degrees celsius respectively every 30 years to 2100 starting from the RC. The differences in
 351 temperature between RC and the period 2070–2100 showed an average increase of minimum and
 352 maximum temperatures of about 6.2°C (for both min and max). The projected increase of temperatures
 353 produces an increase of the expected ET_0 . In particular, during the maize growing season, an average
 354 increase of ET_0 of about 18% is expected until 2100.

355

356 **3. RESULTS**

357 **3.1. Soil physical quality of the soil series, as expressed by Y_w , under current and future climates.**
 358 Soil physical quality of the six soil series, expressed as calculated Y_w values for the reference climate
 359 and for future climate scenario RCP 8.5, expressed for three time periods are shown in Figure 2.
 360 Considering current climate conditions, the Longobarda and Cifariello soils with loamy textures have the
 361 highest values, while the sandy soil Lazzaretto is lower. This can be explained by greater water retention
 362 of loamy soils (180 and 152 mm of AWC in the first 80 cm for Longobarda and Cifariello respectively)
 363 compared to the sandy soil (53 mm of AWC in the first 80 cm for Lazzaretto). The effects of climate
 364 change are most pronounced and quite clear for the two periods after 2040. Reductions compared with
 365 the period up to 2040 range from 20-40%, the highest values associated with sandier soil textures. This
 366 follows from the important reduction of projected rainfall during the cropping season (Figure 3) ranging
 367 from an average value of 235 (± 30) mm in the 2010-2040 period to 185 (± 26) mm (-21%) and to 142
 368 (± 24) mm (-40%) in the 2040-2070 and 2070-2100 periods, respectively (significant at $p < 0.01$). The
 369 figure also includes a value for Y_p , potential production (under RC with optimal irrigation), which is 18
 370 t ha^{-1} , well above the Y_w values. Only a Y_p value is presented for current conditions because estimates
 371 for future climates involve too many unknown factors.

372

373 **3.2. Projected effects of soil degradation processes**

374 *3.2.1. Projected effects of subsoil compaction.*

375 The projected effects of soil compaction are shown in Figure 4. The effects of compaction are very strong
 376 in all soils, demonstrating that restricting the rooting depth has major effects on biomass production.
 377 Compared with the reference, reductions in Y_w do not occur in the first time window (2010-2040), while
 378 the projected lower precipitation rates are expected to have a significant effect on all soils, strongly
 379 reducing Y_w values by 44-55% with, again, highest values in the sandy soils. Clearly, any effort to
 380 increase effective rooting patterns of crops should be a key element when considering attempts to combat
 381 effects of climate change. Data indicate that reactions are soil specific.

382 *3.2.2. Projected effects of overland flow.*

383 Results presented in Figure 5, show relatively small differences (5% or less) with results presented in
 384 Figure 2 that was based on complete infiltration of rainwater. This implies that surface crusting or
 385 compaction of surface soil, leading to lower infiltration rates and more surface runoff, does not seem to
 386 have played a major role here in the assumed scenario's. Real field measurements may well produce
 387 different results. Even though projected future climate scenario's predict rains with higher intensities,
 388 that were reflected in the climate scenario's being run, the effects of lower precipitation, as shown in
 389 Figure 3, appear to dominate.

390 *3.2.3. Projected effects of erosion.*

391 Results presented in Figure 6, show significant differences with results presented in Figure 2. Y_w values
 392 are lower in all soils as compared with reference climate conditions, but loamy and clayey subsoils still
 393 can still provide moisture to plant roots, leading to relatively low reductions of Y_w (e.g 10%-20% for the
 394 Longobarda and Cifariello soils, with an AWC of the remaining 60 cm depth of 150 mm and 120 mm,
 395 respectively) even though topsoils with a relatively high organic matter content have been removed. Next
 396 are the Picciola, Giuliarossa and San Vito soils with reductions between 35 and 45%, all with an AWC
 397 of appr. 107 mm. Effects of erosion are strongest in the sandy Lazzaretto soil, where loss of the A horizon
 398 has a relatively strong effect on the moisture supply capacity of the remaining soil with an AWC of 33
 399 mm up to the new 60 cm depth. The reduction with the reference level is 30%, which is relatively low
 400 because the reference level was already low as well. Projected effects of climate change are again strong
 401 for all soils, leading to additional reductions of Y_w of appr. 30%.

402 *3.2.4. Indicators for the soil quality range.*

403 Figure 7 presents the physical soil quality ranges for all the soil series, expressed separately as bars for
 404 each of the climate periods. The $(Y_a/Y_w) \times 100$ index illustrates that ranges are significantly different. The
 405 upper limit is theoretically 100%. But Van Ittersum et al (2013) have suggested that an 80% limit would
 406 perhaps be more realistic. Figure 7, ranging to 100%, shows the lower limits for the ranges to vary from
 407 e.g. 35 (Longobarda) to 55 (Lazaretto) for the reference climate with values for the three phenoforms in
 408 between. $(Y_a/Y_w) \times 100$ decreases as a projected reaction to climate change (e.g. 20 for Longobarda and
 409 40 for Lazaretto). This provides important signals for the future.

410 As discussed, the presented ranges are soil specific and are based on hypothetical conditions associated
 411 with different forms of land degradation. Field research may well result in different ranges also possibly
 412 considering different soil degradation factors beyond compaction, surface runoff and erosion. Still,
 413 principles involved are identical. Ranges presented in Figure 7 represent a physical soil quality range that
 414 is characteristic for that particular type of soil. Actual values (Y_a) will fit somewhere in this range and
 415 will thus indicate how far they are removed from the maximum and minimum value, thereby presenting
 416 a quantitative measure for soil physical health. This can not only be important for communication

417 purposes but it also allows a judgment of the effects of different forms of degradation in different soils
 418 as well as potential for improvement.

419

420 **4. DISCUSSION**

421 Linking the soil quality and soil health discussion with the international research program on the *yield*
 422 *gap* allows direct and well researched expressions for crop yields, defining soil function 1, as discussed
 423 above. The potential yield (Y_p) and water-limited yield (Y_w) concepts apply worldwide and provide,
 424 therefore, a sound theoretical basis for a general soil quality/health classification, avoiding many local
 425 and highly diverse activities as reviewed by Büneman et al, (2017). Of course, different indicator crops
 426 will have to be defined for different areas in the world.

427 Linking soil quality and health to specific and well defined soil types is essential because soil types, such
 428 as the soil series presented in this paper, uniquely reflect soil forming processes in a landscape context.
 429 They provide much more information than just a collection of soil characteristics, such as texture, organic
 430 matter content and bulk density. They are well known to stakeholders and policy makers in many
 431 countries. A good example is the USA where State Soils have been defined.

432 Defining (semi-permanent) soil quality for specific soil types, in terms of a characteristic range of Y_w
 433 values reflecting effects of different forms of land management, represents a quantification of the more
 434 traditional Soil Survey interpretations or land evaluations where soil performance was judged by
 435 qualitative, empirical criteria. (e.g. FAO, 2007, Bouma et al 2012).

436 In this exploratory study, hypothetical effects of three forms of soil degradation were tested. In reality,
 437 soil researchers should go to the field and assemble data for a given soil series as shown on soil maps,
 438 establishing a characteristic range of properties, following the example of Pulleman et al (2000) for a
 439 clay soil and Sonneveld et al, (2002) for a sand soil, but not restricting attention to %OC, as in these two
 440 studies, but including at least bulk density measurements. This way, a characteristic series of Phenoforms
 441 can be established. Physical soil quality (for a given soil type=Genoform) has a characteristic range of
 442 Y_w values, as shown in Figure 7. Soil physical health at any given time is reflected by the position of real
 443 Y_a values within that range and can be expressed by a number (Y_a/Y_w) $\times 100$.

444 One could argue that this “range” acts as a “thermometer” for a particular type of soil allowing
 445 determination of the physical “health” of a given soil by the placement of Y_a .

446 But calculating Y_w has implications beyond defining physical soil quality and health. As discussed, Y_w
 447 not only reflects the effects of soil moisture regimes but also assumes that chemical conditions for crop
 448 growth are optimal and that pests and diseases don’t occur. Defining Y_w can thus function as a starting
 449 point of a general soil quality/soil health discussion. If Y_a is lower than Y_w the reasons must be found. Is
 450 it lack of water, nutrients or occurrence of pests and diseases? Irrigation may be difficult to realize but

451 fertility can be restored rather easily and many methods, biological or chemical, are available to combat
 452 pests and diseases. If Phenoforms would be included that consider different %OC of surface soil (as
 453 discussed above), also low %OC contents could be a reason for relatively low Y_w values. This would
 454 cover soil biological quality with %OC acting as proxy value. This way, the Y_w analysis can be a logical
 455 starting point for follow-up discussions defining appropriate forms of future soil management.

456 This paper has focused on physical aspects but the proposed procedure has potential to extend the
 457 discussion to chemical and biological aspects, to be further explored in future. Rather than consider the
 458 physical, chemical and biological aspects separately, each with their own indicators as proposed by
 459 Moebius-Clune et al, (2016), following a logical and interconnected sequence considering first
 460 pedological (soil types), and soil physical (Y_w) characterizations, to be followed by analysing chemical
 461 and biological aspects, that can possibly explain relatively low Y_a values, could be more effective. This
 462 is the more relevant because definition of reproducible biological soil health parameters are still object
 463 of study (Wade et al., 2018) and %OC might be an acceptable proxy for soil biology for the time being.
 464 Recent tests of current soil-health protocols have not resulted in adequately expressing soil conditions in
 465 North Caolina (Roper et al, 2017), indicating the need for further research as suggested in this paper.

466

467 **5. CONCLUSIONS**

468

- 469 1. Lack of widely accepted, operational criteria to express soil quality and soil health is a barrier
 470 for effective external communication of the importance of soil science
- 471 2. Using well defined soil types as “carriers” of information on soil quality and soil health can
 472 improve communication to stakeholders and the policy arena.
- 473 3. A universal system defining soil quality and soil health is needed based on reproducible
 474 scientific principles that can be applied all over the world, avoiding a multitude of different
 475 local systems. Models of the soil-water-plant-atmosphere system can fulfil this role.
- 476 4. Connecting with the international *yield gap* program, applying soil-water-plant-atmosphere
 477 simulation models, will facilitate cooperation with agronomists which is essential to quantify
 478 the important soil function 1: biomass production.
- 479 5. The proposed system allows an extension of classical soil classification schemes, defining
 480 genoforms, by allowing estimates of effects of various forms of past and present soil
 481 management (phenoforms) within a given genoform that often strongly affects soil
 482 performance. Quantitative information thus obtained can improve current empirical and
 483 qualitative soil survey interpretations and land evaluation.
- 484 6. Rather than consider physical, chemical and biological aspects of soil quality and - health

485 separately, a combined approach starting with pedological and soil physical aspects followed
486 by chemical and biological aspects, all to be manipulated by management, is to be preferred.

487 7. Only the proposed modeling approach allows exploration of possible effects of climate change
488 on future soil behaviour which is a necessity considering societal concerns and questions.
489 8. Field work, based on existing soil maps to select sampling locations for a given genoform, is
490 needed to identify a characteristic range of phenoforms for a given genoform, which, in turn,
491 can define a characteristic soil quality range by calculating Y_w values.

492

493

494 **6 ACKNOWLEDGMENTS**

495 We acknowledge Dr. Eugenia Monaco and Dr. Langella Giuliano for the supporting in the analysis
496 of climate scenario. The “Regional Models and Geo-Hydrogeological Impacts Division”, Centro
497 Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Capua (CE) – Italy, and the Dr. Paola
498 Mercogliano and Edoardo Bucchignani for the climate information applied in this work.

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518 **7. REFERENCES**

519

520 Almajmaie, A., Hardie, M., Acuna, T., Birch, C.: Evaluation of methods for determining soil aggregate
521 stability. *Soil Tillage Res.* 167, 39–45. <http://dx.doi.org/10.1016/j.still.2016.11.003>, 2017

522 Allen, R. G., Pereira, L. S., Raes, D., Smith, M. and W, a B.: Crop evapotranspiration - Guidelines for
523 computing crop water requirements - FAO Irrigation and drainage paper 56, *Irrig. Drain.*, 1–15,
524 doi:10.1016/j.eja.2010.12.001, 1998.

525 Basile, A., Coppola, A., De Mascellis, R. and Randazzo, L.: Scaling approach to deduce field
526 unsaturated hydraulic properties and behavior from laboratory measurements on small cores, *Vadose*
527 *Zo. J.*, 5(3), 1005–1016, doi:10.2136/vzj2005.0128, 2006.

528 Bonfante, A. and Bouma, J.: The role of soil series in quantitative land evaluation when expressing
529 effects of climate change and crop breeding on future land use, *Geoderma*, 259–260, 187–195, 2015.

530 Bonfante, A., Basile, A., Acutis, M., De Mascellis, R., Manna, P., Perego, A. and Terribile, F.: SWAP,
531 CropSyst and MACRO comparison in two contrasting soils cropped with maize in Northern Italy,
532 *Agric. Water Manag.*, 97(7), 1051–1062, doi:10.1016/j.agwat.2010.02.010, 2010.

533 Bonfante, A., Basile, A., Manna, P. and Terribile, F.: Use of Physically Based Models to Evaluate
534 USDA Soil Moisture Classes, *Soil Sci. Soc. Am. J.*, 75(1), 181, doi:10.2136/sssaj2009.0403, 2011.

535 Bonfante, A., Monaco, E., Alfieri, S. M., De Lorenzi, F., Manna, P., Basile, A. and Bouma, J.: Climate
536 change effects on the suitability of an agricultural area to maize cultivation: Application of a new
537 hybrid land evaluation system, *Adv. Agron.*, 133, 33–69, doi:10.1016/bs.agron.2015.05.001, 2015.

538 Bonfante, A., Impagliazzo, A., Fiorentino, N., Langella, G., Mori, M. and Fagnano, M.: Supporting
539 local farming communities and crop production resilience to climate change through giant reed
540 (*Arundo donax* L.) cultivation: An Italian case study, *Sci. Total Environ.*, 601–602,
541 doi:10.1016/j.scitotenv.2017.05.214, 2017.

542 Bouma, J.: Subsurface applications of sewage effluent, *Plan. uses Manag. L.*, (planningtheuses), 665–
543 703, 1979.

544 Bouma, J.: Land quality indicators of sustainable land management across scales, *Agric. Ecosyst.
545 Environ.*, 88(2), 129–136, doi:10.1016/S0167-8809(01)00248-1, 2002.

546 Bouma, J.: Soil science contributions towards sustainable development goals and their implementation:
547 linking soil functions with ecosystem services, *J. plant Nutr. soil Sci.*, 177(2), 111–120, 2014.

548 Bouma, J.: Hydropedology and the societal challenge of realizing the 2015 United Nations Sustainable
549 Development Goals, *Vadose Zo. J.*, 15(12), 2016.

550 Bouma, J. and Droogers, P.: A procedure to derive land quality indicators for sustainable agricultural
551 production, *World Bank Discuss. Pap.*, 103–110 [online] Available from:
552 <http://www.archive.org/details/plantrelationsfi00coul>, 1998.

553 Bouma, J. and Wösten, J. H. M.: How to characterize good and greening in the EU Common
554 Agricultural Policy (CAP): The case of clay soils in the Netherlands, *Soil Use Manag.*, 32(4), 546–
555 552, 2016.

556 Bouma, J., Batjes, N. H. and Groot, J. J. R.: Exploring land quality effects on world food supply1,
557 *Geoderma*, 86(1–2), 43–59, 1998.

558 Bucchignani, E., Montesarchio, M., Zollo, A. L. and Mercogliano, P.: High-resolution climate
559 simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the 21st
560 century, *Int. J. Climatol.*, 36(2), 735–756, 2015.

561 Bünenmann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L.,
562 Geissen, V., Kuyper, T. W., Mäder, P. and others: Soil quality--A critical review, *Soil Biol. Biochem.*,
563 120, 105–125, 2018.

564 Crescimanno, G. and Garofalo, P.: Application and evaluation of the SWAP model for simulating water
565 and solute transport in a cracking clay soil, *Soil Sci. Soc. Am. J.*, 69(6), 1943–1954, 2005.

566 Doran, J. W. and Parkin, T. B.: Defining and assessing soil quality, *Defin. soil Qual. a Sustain.
567 Environ.*, (definingsoilqua), 1–21, 1994.

568 Droogers, P. and Bouma, J.: Soil survey input in exploratory modeling of sustainable soil management
 569 practices, *Soil Sci. Soc. Am. J.*, 61(6), 1704–1710, 1997.

570 Fagnano, M., Acutis, M. and Postiglione, L.: Valutazione di un metodo semplificato per il calcolo
 571 dell'ET₀ in Campania, *Model. di Agric. sostenibile per la pianura meridionale Gest. delle risorse idriche*
 572 nelle pianure irrigue. Gutenberg, Salerno, ISBN, 88–900475, 2001.

573 Falkenmark, M. and Rockström, J.: The new blue and green water paradigm: Breaking new ground for
 574 water resources planning and management, 2006.

575 Feddes, R. A., Kowalik, P. J., Zaradny, H. and others: *Simulation of field water use and crop yield.*,
 576 Centre for Agricultural Publishing and Documentation., 1978.

577 Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated
 578 soils, *Soil Sci. Soc. Am. J.*, 44(5), 892–898, 1980.

579 Gobbett, D. L., Hochman, Z., Horan, H., Garcia, J. N., Grassini, P. and Cassman, K. G.: Yield gap
 580 analysis of rainfed wheat demonstrates local to global relevance, *J. Agric. Sci.*, 155(2), 282–299, 2017.

581 Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from temperature, *Appl. Eng. Agric.*, 1(2), 96–99, 1985.

582 van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P. and Hochman, Z.: Yield gap
 583 analysis with local to global relevance a review, *F. Crop. Res.*, 143, 4–17, 2013.

584 Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F. and Schuman, G. E.: Soil
 585 quality: a concept, definition, and framework for evaluation (a guest editorial), *Soil Sci. Soc. Am. J.*,
 586 61(1), 4–10, 1997.

587 Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton,
 588 J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B. and
 589 Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations
 590 Sustainable Development Goals, *Soil*, 2(2), 111–128, doi:10.5194/soil-2-111-2016, 2016.

591 Kemper, W. D. and Chepil, W. S.: Size distribution of aggregates. p. 499–509. CA Black (ed.) *Methods*
 592 of soil analysis. Part I. Agron. Monogr. 9. ASA and SSSA, Madison, WI., *Size Distrib. aggregates*. p.
 593 499–509. CA Black *Methods soil Anal. Part I. Agron. Monogr. No. 9.* ASA, SSSA, Madison, WI.,
 594 1965.

595 Kroes, J. G., Van Dam, J. C., Groenendijk, P., Hendriks, R. F. A. and Jacobs, C. M. J.: SWAP version
 596 3.2. Theory description and user manual, Alterra Rep., 1649, 2008.

597 Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A.,
 598 Pachepsky, Y., Padarian, J. and others: Pedotransfer functions in Earth system science: challenges and
 599 perspectives, *Rev. Geophys.*, 2017.

600 Lowery, B.: A Portable Constant-rate Cone Penetrometer 1, *Soil Sci. Soc. Am. J.*, 50(2), 412–414,
 601 1986.

602 Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F.,
 603 Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K. and others: The RCP greenhouse gas
 604 concentrations and their extensions from 1765 to 2300, *Clim. Change*, 109(1–2), 213, 2011.

605 Moebius-Clune, B. N., Moebius-Clune, D. J., Gugino, B. K., Idowu, O. J., Schindelbeck, R. R., Ristow,
 606 A. J. and others: Comprehensive assessment of soil health: The Cornell Framework Manual, Edition
 607 3.1, Cornell Univ., Ithaca, NY, 2016.

608 Van Oort, P. A. J., Saito, K., Dieng, I., Grassini, P., Cassman, K. G. and Van Ittersum, M. K.: Can
 609 yield gap analysis be used to inform R&D prioritisation?, *Glob. Food Sec.*, 12, 109–118, 2017.

610 Pulleman, M. M., Bouma, J., Van Essen, E. A. and Meijles, E. W.: Soil organic matter content as a
 611 function of different land use history, *Soil Sci. Soc. Am. J.*, 64(2), 689–693, 2000.

612 Regione_Campania: I Suoli della Piana in Destra Sele. Progetto carta dei Suoli della Regione Campania
 613 in scala 1:50.000 e lotto CP1 e Piana destra Sele (Salerno)., 1996.

614 Ritchie, J. T.: Model for predicting evaporation from a row crop with incomplete cover, *Water Resour.*
 615 *Res.*, 8(5), 1204–1213, 1972.

616 Rockel, B., Will, A. and Hense, A.: The regional climate model COSMO-CLM (CCLM), *Meteorol.*

618 Zeitschrift, 17(4), 347–348, 2008.

619 Rossiter, D. G. and Bouma, J.: A new look at soil phenoforms--Definition, identification, mapping,
620 Geoderma, 314, 113–121, 2018.

621 Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P. G., Manzini, E., Vichi, M., Oddo, P. and
622 Navarra, A.: Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled
623 General Circulation Model, *J. Clim.*, 24(16), 4368–4384, doi:Doi 10.1175/2011jcli4104.1, 2011.

624 Shaw, B. T., Haise, H. R. and Farnsworth, R. B.: Four Years' Experience with a Soil Penetrometer 1,
625 *Soil Sci. Soc. Am. J.*, 7(C), 48–55, 1943.

626 Soil Survey Staff: Keys to soil taxonomy, 1999.

627 Soil Survey Staff: Keys to soil taxonomy, *Soil Conserv. Serv.*, 12, 410, doi:10.1109/TIP.2005.854494,
628 2014.

629 Sonneveld, M. P. W., Bouma, J. and Veldkamp, A.: Refining soil survey information for a Dutch soil
630 series using land use history, *Soil Use Manag.*, 18(3), 157–163, 2002.

631 Wade, J., Culman, S. W., Hurisso, T. T., Miller, R. O., Baker, L. and Horwath, W. R.: Sources of
632 variability that compromise mineralizable carbon as a soil health indicator, *Soil Sci. Soc. Am. J.*, 82(1),
633 243–252, 2018.

634 Wösten, J. H. ., Lilly, A., Nemes, A. and Le Bas, C.: Development and use of a database of hydraulic
635 properties of European soils, *Geoderma*, 90(3–4), 169–185, doi:10.1016/S0016-7061(98)00132-3,
636 1999.

637 Zollo, A. L., Turco, M. and Mercogliano, P.: Assessment of hybrid downscaling techniques for
638 precipitation over the Po river basin, in *Engineering Geology for Society and Territory-Volume 1*, pp.
639 193–197, Springer., 2015.

640

641

642
643
644
645
646
647
648
649

Tab. 1. Main soil features of selected soil series.

Env. Systems	SMU	STU	Soil family	Soil description		Texture			Hydrological properties			
				Horiz.	Depth (m)	sand (g 100g ⁻¹)	silty (g 100g ⁻¹)	clay (g 100g ⁻¹)	θ_0 (m ³ m ⁻³)	K ₀ (cm d ⁻¹)	α (1 cm ⁻¹)	1
Hills/foothill	LON0	Longobarda	Pachic Haploixerolls, fine loamy, mixed, thermic	Ap	0-0.5	33.0	40.6	26.4	0.46	27	0.04	-3.44 1.15
				Bw	0.5-1.5	21.7	48.9	29.4	0.61	69	0.02	-1.79 1.18
Alluvial fans	CIFO/R AG0	Cifariello	Typic Haploxerepts, coarse loamy, mixed, thermic	Ap	0-0.6	33.0	49.5	17.5	0.42	18	0.03	-2.52 1.21
				Bw1	0.6-0.95	33.2	50.2	16.6	0.47	37	0.03	-2.14 1.20
Alluvial Terraces	GIU0	Giuliarossa	Mollie Haploixeralf, fine, mixed, thermic	Ap	0-0.4	27.1	31.9	41.0	0.47	39	0.04	-3.72 1.13
				Bw	0.4-0.85	19.8	28.9	51.3	0.49	7	0.02	-1.28 1.10
Fluvial Terraces	SVI0	San Vito	Typic Haploxererts fine, mixed, thermic	Bss	0.85-1.6	46.3	28.8	24.9	0.40	18	0.05	-2.75 1.16
				Ap	0-0.5	17.3	39.4	43.3	0.44	31	0.03	-3.58 1.15
Fluvial Terraces	LAZ0	Lazzaretto	Typic Xeropsammets, mixed, thermic	Bw	0.5-0.9	16.1	39.6	44.3	0.49	11	0.02	-3.35 1.09
				Bk	0.9-1.3	11.2	40.5	48.3	0.49	10	0.02	-2.52 1.10
Dunes	PET0/ PIC0	Picciola	Typic Haploxerepts, coarse loamy, mixed, thermic	Ap	0-0.45	75.3	12.8	11.9	0.38	77	0.07	-2.26 1.30
				C	0.45- >0.65	100.0	0.0	0.0	0.34	123	0.08	2.04 1.85

650

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

666
667
668
669
670
671
672
673

Tab. 2. Main performance indexes of SWAP application in the three soils (Udic Calciustert, Fluventic Haplustept and Typic Calciustoll) under maize cultivation (data from "Nitrati Campania" regional project, Regione Campania, 2008).

Soil	RMSE*	Pearson's R*	n° of soil depths meas.	number of data
Udic Calciustert	0.043 (± 0.03)	0.716 (± 0.11)	7	1964
Typic Calciustoll	0.044 (± 0.03)	0.72 (± 0.13)	6	190
Fluventic Haplustept	0.031 (± 0.02)	0.821 (± 0.09)	6	318

* (average value \pm standard deviation)

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

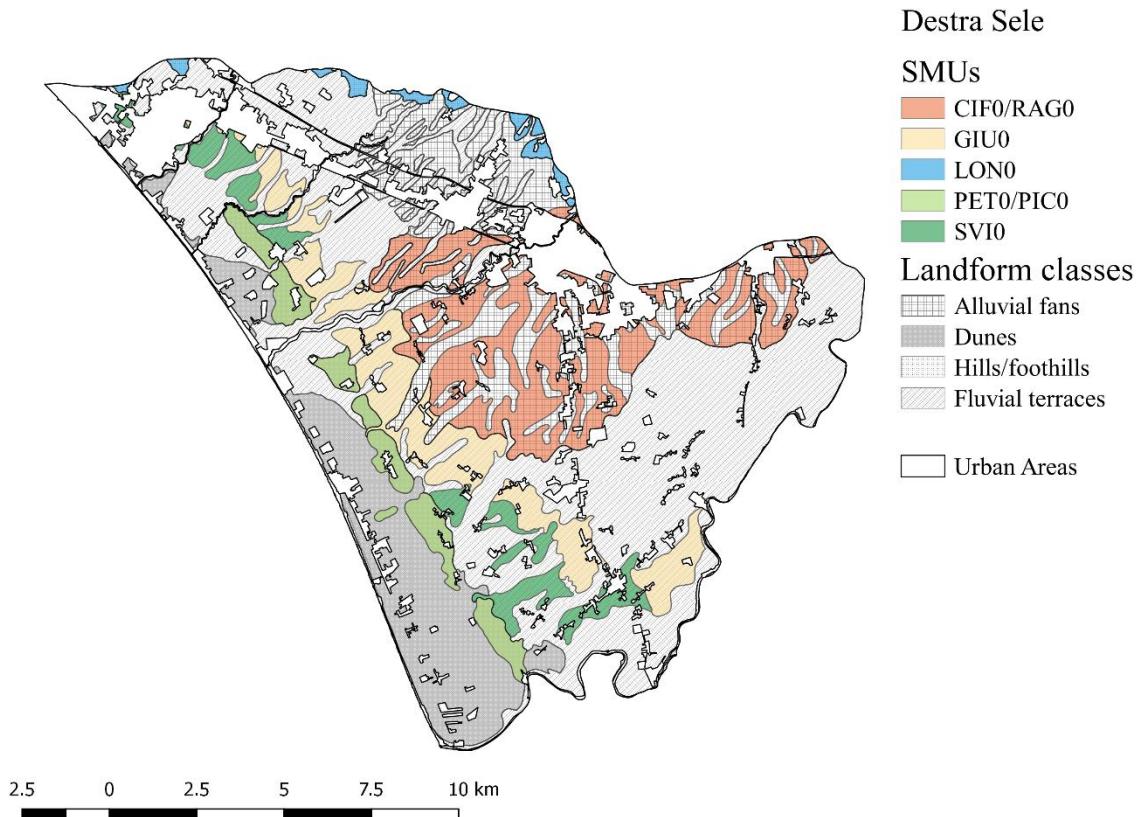
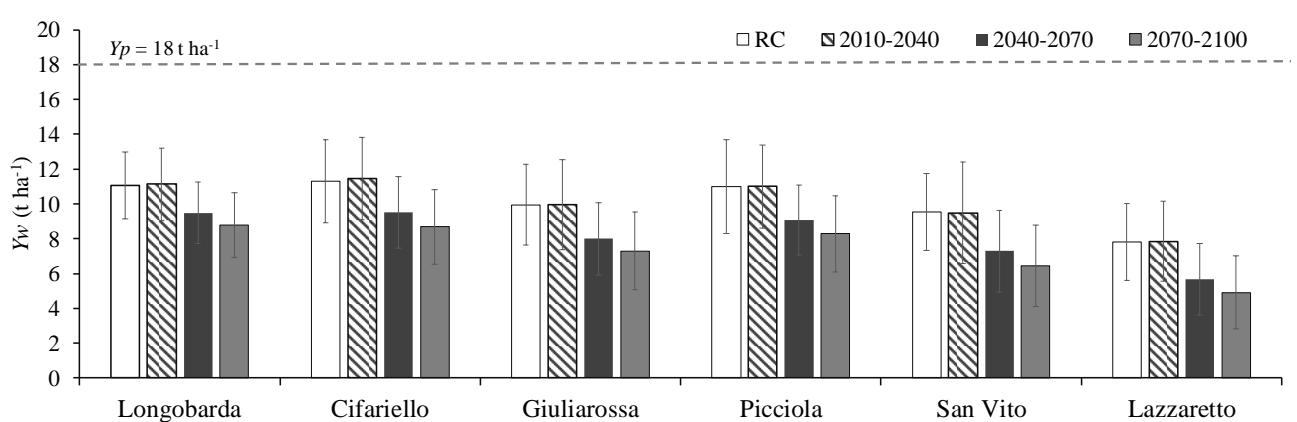
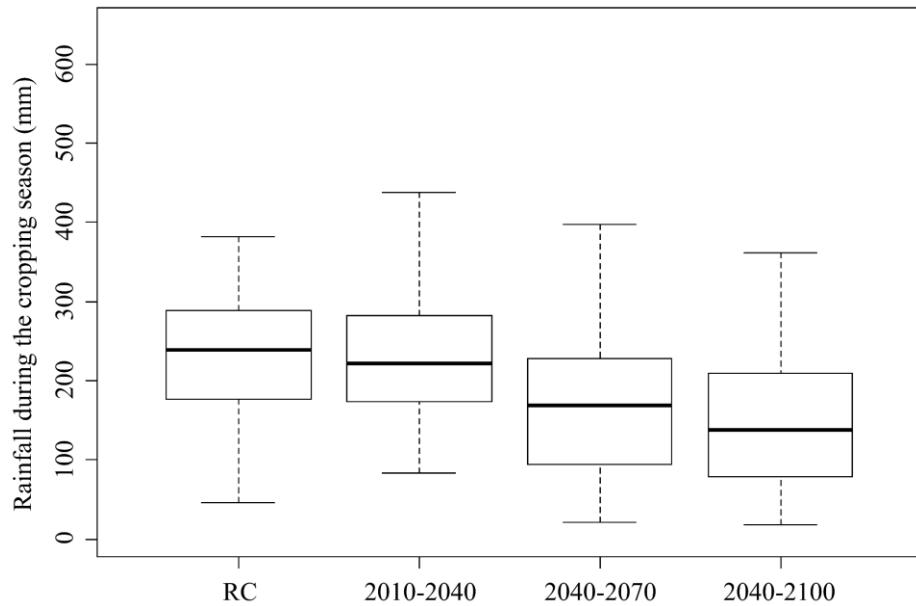
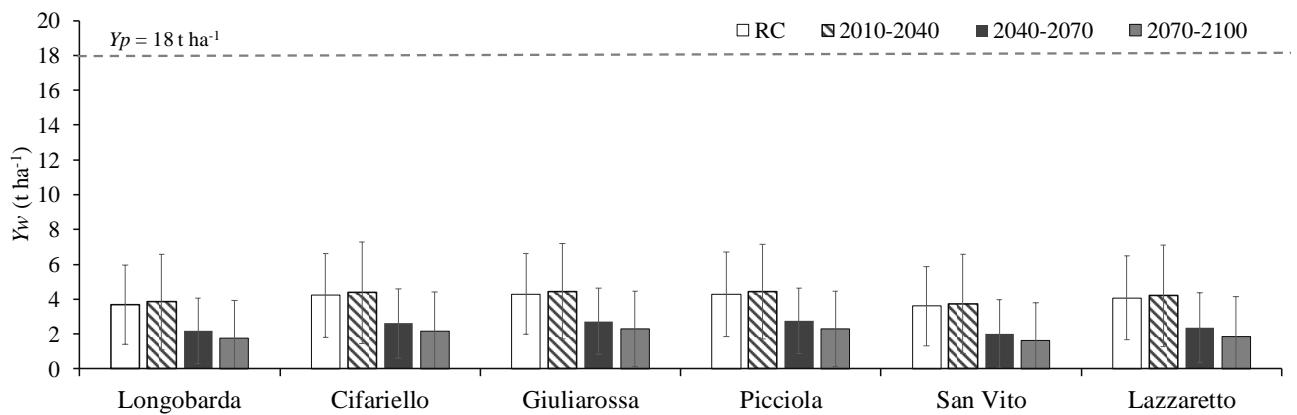
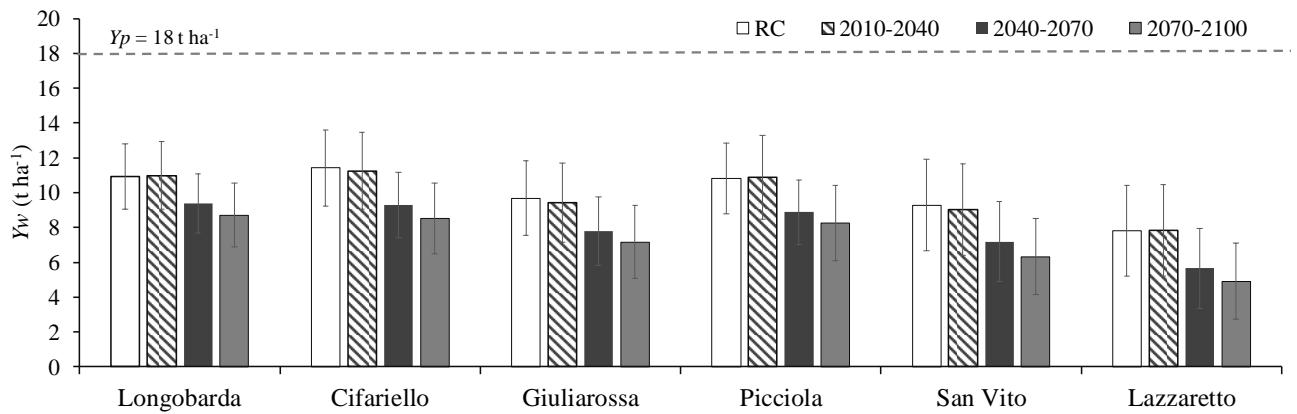
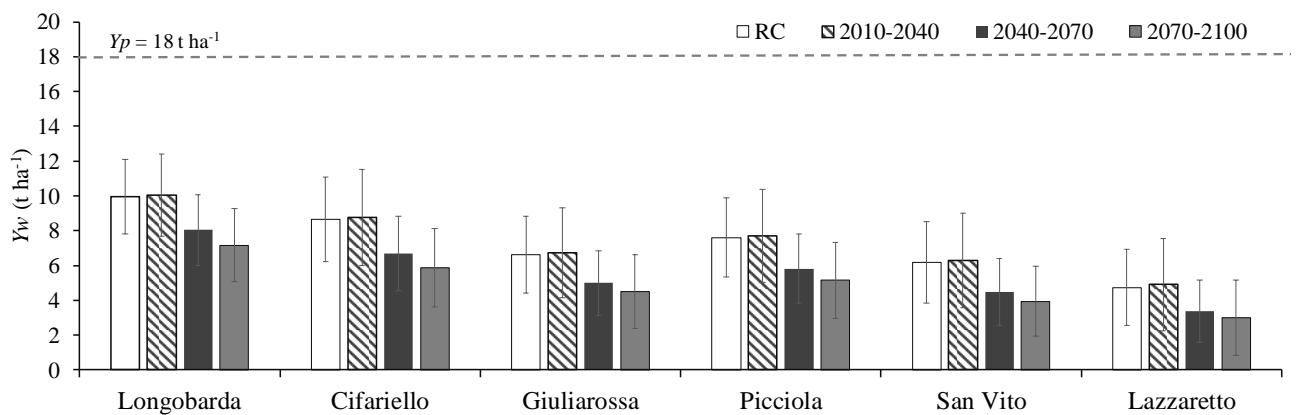
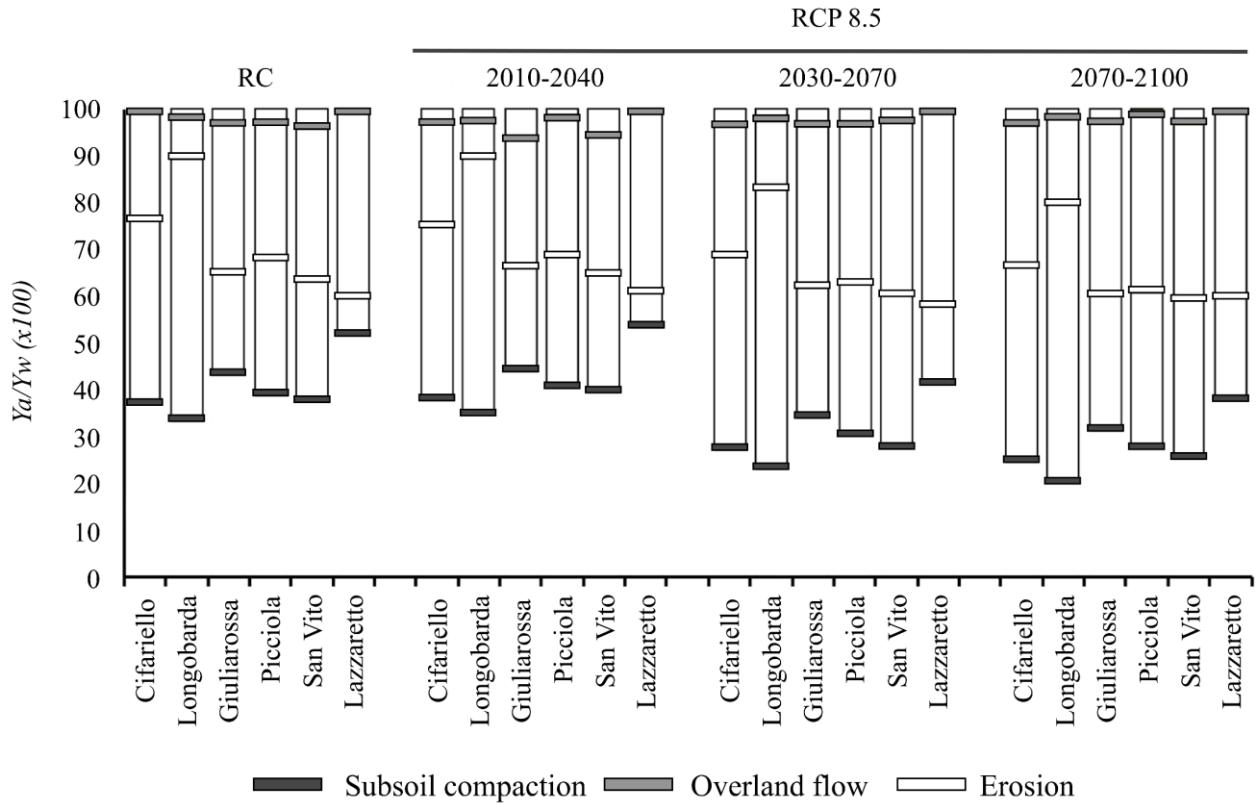





689
690

Figure 1: The four landform classes of the “Destra Sele” area and the Soil Map Units (SMU) of selected six Soil Typological Units (STUs, which are similar to the USDA soil series) (CIF0/RAG0= Cifariello; GIU0= Giuliarossa; LAZ0= Lazzaretto; LON0= Longobarda; PET0/PICO= Picciola; SVI= San Vito).


691
692

693
694
695
696
697
698
699 Figure 2: Simulated Y_w values for all soil series, considering the reference climate (RC; 1971-2005) and future climate scenarios (RCP 8.5) expressed for three time periods (2010-2040; 2040-2070; 2070-2100). The Y_p (potential yield) is the maize production for the Destre Sele area assuming optimal irrigation and fertilization and no pests and diseases. Y_p is only calculated for the reference climate.


700
701702
703 Figure 3: Cumulated rainfall during the maize growing season (April–August) in the four climate
704 periods.
705
706707
708 Figure 4: The projected effects of simulated soil compaction on Y_w for all the soil series assuming the
709 presence of a compacted plowlayer at 30 cm depth. Other terms are explained in Figure 2.
710
711

712
713
714 Figure 5: The projected effects of simulated surface runoff of water on Y_w for all the soil series. Runoff
715 occurs when rainfall intensity is higher than the assumed infiltrative capacity of the soil. Other terms
716 are explained in Figure 2.
717
718
719

720
721
722 Figure 6: The projected effects of erosion on Y_w for all the soil series. Other terms are explained in
723 Figure 2.
724
725
726
727

728 Figure 7: Range of soil physical quality indexes (Y_a/Y_w) $\times 100$ for all the soil series, expressing the effects
729 of different forms of soil degradation and climate change. The vertical bars for each type of soil (the
730 Genoform) represent a “Thermometer” indicating a characteristic range of values obtained by
731 establishing a series of Phenoforms, represented by their Y_w values. Soil Quality for a given soil is thus
732 represented by a characteristic range of values. Soil Health is indicated by the particular location of an
733 actual Y_a within this range.

734
735
736
737
738
739
740
741