Response to editor
Thanks for your suggestions.
We made 2 small changes:

- Clearly state that the 30% reduction in error is not generally applicable, and represents your
specific test case.

We added extra text in the abstract and conclusions to clarify that.

- I had a hard time to interpret figure 10, the differences are minimal. Is it possible to improve
the graphical representation?

Actually, there was no need to show both figures. We are now just showing the augmented case,
which is the better performing model.
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Abstract. Digital soil mapping has been widely used as a cost-effective method for generating soil maps. However, current
DSM data representation rarely incorporates contextual information of the landscape. DSM models are usually calibrated using
point observations intersected with spatially corresponding point covariates. Here, we demonstrate the use of the convolutional
neural network model that incorporates contextual information surrounding an observation to significantly improve the pre-
diction accuracy over conventional DSM models. We describe a convolutional neural network (CNN) model that takes inputs
as images of covariates and explores spatial contextual information by finding non-linear local spatial relationships of neigh-
bouring pixels. Unique features of the proposed model include: input represented as 3D stack of images, data augmentation
to reduce overfitting, and simultaneously predicting multiple outputs. Using a soil mapping example in Chile, the CNN model
was trained to simultaneously predict soil organic carbon at multiples depths across the country. The results showed that, in
this study, the CNN model reduced the error by 30% compared with conventional techniques that only used point informa-
tion of covariates. In the example of country-wide mapping at 100 m resolution, the neighbourhood size from 3 to 9 pixels is
more effective than at a point location and larger neighbourhood sizes. In addition, the CNN model produces less prediction
uncertainty and it is able to predict soil carbon at deeper soil layers more accurately. Because the CNN model takes covariate

represented as images, it offers a simple and effective framework for future DSM models.

Copyright statement. Author(s) 2018. CC BY 4.0 License

1 Introduction

Digital soil mapping (DSM) has now been widely used globally for mapping soil classes and properties (Arrouays et al., 2014).
In particular, DSM has been used to map soil carbon efficiently around the world (e.g. Chen et al. (2018)). DSM methodology
has been adopted by FAO (FAO, 2018) so that digital soil maps can be produced reliably for sustainable land management.
While DSM can be said is now operational, there are still unresolved methodological issues regarding better representation of
landscape pattern and soil processes. Some of the methodological research studies include the use of multiple remotely sensed
images (Poggio and Gimona, 2017) or time series of images as covariates (Dematté et al., 2018), testing novel regression
and machine learning models (Angelini et al., 2017; Somarathna et al., 2017), and incorporation of spatial residuals of the

regression model (Keskin and Grunwald, 2018; Angelini and Heuvelink, 2018).
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The formalisation of the DSM methodology was done by the publication of McBratney et al. (2003). Following the ideas
of Dokuchaev (1883) and Jenny (1941), they described the scorpan model as the empirical quantitative relationship of a soil
attribute and its spatially implicit forming factors. Such factors correspond to a) s: soil, other properties of the soil at a point;
b) c: climate, climatic properties of the environment at a point; ¢) o: organisms, vegetation or fauna or human activity; d) r:
topography, landscape attributes; e) p: parent material, lithology; f) a: age, the time factor; and g) n: space, spatial position.

Explicitly, the scorpan model can be written as:

Say) = f(8(2,9):C2,9)1 O2,9) T(2,9) Pla,) » Ua,y) s Tz,y)) + E(zy) ()

where (z,y) corresponds to the coordinates of a soil observation, and e is the spatial residual.

The usual steps for deriving the scorpan spatial soil prediction functions include intersecting soil observations (point data)
with the scorpan factors (raster images at a particular resolution), and calibrating a prediction function f. In effect, we are only
looking at relationships between point observations and point representation of covariates. The scorpan factors have implicit
spatial information, however the prediction function f does not explicitly take into account the spatial relationship.

Attempts have been made to incorporate more local information in the scorpan covariates, in particular topography. Ap-
proaches to include covariates information about the vicinity around the observations (x,y) have been devised. One approach
is to derive topographic or terrain attributes (e.g. slope, curvature) at multiple scales by expanding the size of the window or
neighbour size in the calculation (Miller et al., 2015; Behrens et al., 2010). Another approach includes multi-scale analysis
using spatial filters such as wavelets on the covariate raster (Biswas and Si, 2011; Sun et al., 2017). Thus, the raster represents
larger spatial support. Studies indicated that, generally, covariates with larger support than its original resolution could enhance
the prediction accuracy of the model (Mendoncga-Santos et al., 2006; Sun et al., 2017).

DSM can be thought as linking observable landscape structure and soil processes expressed as observed soil properties. To
effectively link structure and processes, Deumlich et al. (2010) suggested the use of analysis that spans over several spatial and
temporal scales. Behrens et al. (2018) proposed the contextual spatial modelling to account for the interactions of covariates
across multiple scales and their influence on soil formation. The authors’ approach (e.g.: Behrens et al. (2010, 2014)) derived
covariates based on the elevation at the local to the regional extent. Their approaches include ConMap (Behrens et al., 2010)
which is based on elevation differences from the centre pixel to each pixel in a sparse neighbourhood, and ConStat (Behrens
et al., 2014) which used statistical measures of elevation within growing sparse circular spatial neighbourhoods. These ap-
proaches produce a large number of predictors computed for each location, as shown in an example with 100 distance scales
(e.g., from 20 m to 20 km) and 1000 predictors per grid cell. These hyper-covariates, solely based on elevation, are used as
predictors in a random forest regression model.

Spatial filtering, multi-scale terrain calculation, and contextual mapping approaches require the pre-processing of each co-
variate independently. The useful scale for each covariate needs to be figured out via numerical experiments and most of the
time the process relies on ad hoc decisions. Here, we take advantage of the success of deep learning models that are used for

image recognition, as an effective tool in DSM to optimally search for local contextual information of covariates. This work
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aims to expand the classic DSM approach by including information about the vicinity around (z,y), to fully leverage the spatial
context of a soil observation. The aim is achieved by devising a convolutional neural network (CNN) which can take multiple

spatial contextual inputs.

2 Rationale

The theoretical background of DSM is based on the relationship between a soil attribute and soil forming factors. In practice,
a single soil observation is usually described as a point p with coordinates (x,y) (Eq. 1), and the corresponding soil forming
factors are represented by a vector of pixel values of multiple covariate rasters (a1, as,...,a,) at the same location, where n is
the total number of covariate rasters.

Soils are highly dependant on their position in the landscape, and information at a particular pixel might not be sufficient
to represent that complex relationship. Our method expands the classic DSM approach by replacing the covariates, usually
represented as a vector, with a 3D array with shape (w, h,n), where w and h are the width and height in pixels of a window
centred at point p (Fig. 1). Methods commonly used in DSM are not designed to adequately handle the data structure depicted
in Fig. 1. The data representation is similar to the network model by Lee and Kwon (2017) which used hyperspectral images

for classification purposes.
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Figure 1. Representation of the vicinity around a soil observation p, for n number of covariate rasters. w and h are the width and height in

pixels, respectively.

As described in the introduction, while multi-scale or contextual mapping approaches have been used in DSM, they still

rely on a vector representation of covariate and rely on machine learning methods such as random forest to select important



predictors. While deep learning methods have been used in DSM (e.g., (Song et al., 2016)), most studies still use a vector
representation of covariate.
In the following sections, we introduce the use of convolutional neural networks (CNNs) to exploit spatial information of

covariates that will perform a more effective DSM.

5 3 Deep learning

Deep learning is a machine learning method that is able to learn the representation of data through a series of processing layers.
In agriculture and environmental mapping, it is mainly used in hyperspectral and multispectral image classification problems,
e.g. land cover classification (Kamilaris and Prenafeta-Boldu, 2018). We have not seen much application of deep learning in
DSM, except for Song et al. (2016) which used the deep belief network for predicting soil moisture.

10 In this section we briefly introduce CNNs and some associated methods used during this work. For a more detailed and

general description about CNNs we refer the reader to LeCun et al. (1990) and Krizhevsky et al. (2012).

3.1 CNN

CNN s are based on the concept of a layer of convolving windows which move along a data array in order to detect features
(e.g.: edges) of the data by using different filters (Fig. 2). When stacked together, convolutional layers are capable of extracting
15 features of increasing complexity and abstraction (LeCun et al., 1990). Since CNNs have the capacity to leverage the spatial
structure of the data, they have been widely and effectively used in computer vision for image recognition or extraction (LeCun

et al., 1995).

Initial image Filter Resulting image
I I
| | Wo W1 W3
| | * Wy Ws Weg _—

Figure 2. Example of the first 3 steps of a convolution of a 3x3 filter over a 5x5 array (image). The resulting pixel values correspond to the

sum of the element-wise multiplication of the initial pixels (dashed lines) and the filter.

A CNN has a number of three dimensional hidden layers, each layer learning to detect different features of the input images
(LeCun et al., 2015). In our case, each of the layers can perform one of the two types of operations: convolution, or pooling.

20 Convolution takes the input images through a set of convolutional filters (e.g., a 3x3 size filter), each of which detects and
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enhances certain features from the images. Units in a convolutional layer are organised in feature maps (here we used 3 x 3).
Each unit of the feature map is connected to local patches in the feature maps of the previous layer through a set of weights.
These local weighted sum is then passed through a non-linear transfer function.

A pooling operation merges similar features by performing non-linear down-sampling. Here we used Max-Pooling layers
which combine inputs from a small 2x2 window. Pooling also makes the features robust against noise. All the convolutional
and pooling layers are finally “flattened” to the fully connected layer. In effect, the fully connected layer is a weighted sum of
the previous layers.

To obtain optimal weights for the network, we train the network using a training data set. Weights were adjusted based on
a gradient-based algorithm to minimise the error using an Adam optimiser (Kingma and Ba, 2014). We refer to a review by
LeCun et al. (2015) on the details of CNN.

3.2 Multi-task learning

CNNs have the capacity to predict multiple properties simultaneously. By doing so, a multi-task CNNss is capable of sharing
learned representations between different targets and also use the other targets as “clues” during the prediction process. In
consequence, the error of the simultaneous prediction is generally lower compared with a single prediction for each target
(Padarian et al., 2019; Ramsundar et al., 2015). An additional advantage of using a multi-task CNN is the reported reduction
on the risk of overfitting (Ruder, 2017).

In DSM, where the combination of large extents, high resolution, and bootstrap routines, leads to running multiple model
realisations on billions of pixels, combined with the fact that CNNs use a group of pixels around the soil observation instead
of a single pixel, the time and computational resources required for training and inference is an important factor. Due to the
simultaneous training an inference of multiple targets, a multi-task CNN present the advantage of reducing both, training and

inference time, compared with a single-task model.

4 Methods
4.1 Data

The data used in this work correspond to Chilean soil information. Since most observations are distributed on agricultural
lands, we complemented that information with a second small data collection compiled from the literature and collaborators.
We selected soil organic carbon content (%) at depths 0-5, 5-15, 15-30, 30-60 and 60-100 cm as our target attribute. 485 soil
profile where used after excluding soil profiles with total depth lower than 100 cm (in order to assure that all the profiles have
observations at all depth intervals). For more details about the data and depth standardisation we refer the reader to Padarian
et al. (2017).

As covariates, we used a) digital elevation model (HydroSHEDS, Lehner et al. (2008)), which are provided at 3 arc-second

resolution, in addition to its derived slope and topographic wetness index, calculated using SAGA (Conrad et al., 2015); and b)



long term mean annual temperature and total annual rainfall derived from information provided by WorldClim (Hijmans et al.,

2005), at 30 arc-second resolution. All data layers were standardised to a 100 m grid size.
4.2 Data augmentation

Deep learning techniques are described as “data-hungry” since they usually work better with large volumes of data. The direct

5 effect of data augmentation is to generate new samples by modifying the original data without changing its meaning (Simard

et al., 2003). To achieve this, we rotated the 3D array shown in Fig. 1 by 90, 180, and 270 degrees, hence quadruplicating the
number of observations. It is important to note that the central pixel preserves its initial position.

A secondary effect of data augmentation is regularisation, reducing the variance of the model and overfitting (Krizhevsky

et al., 2012). Data augmentation also induces rotation invariance (Vo and Hays, 2016) by generating alternative situations

10 (rotated data) where the model response should be similar to the original data (e.g: a soil profile next to a gully is expected to

be similar to a profile next to the opposite side of the gully, ceteris paribus).
4.3 Network architecture

The multi-task CNN used in this study (Fig. 3; Table 1) consists of an input layer pass through a series of convolutional
and pooling layers with a ReLU activation function, which adds a non-linearity by passing the learned weights through the
15 function f(z) = maz(0, ). The initial common/shared network has a function of extracting features shared between the five
target depth ranges. Next, the common features are propagated through independent branches, one per depth range, of 3 fully-

connected layers.

Table 1. Sequence of layers used to build the multi-task neural network

Layer type Kernel size  Filters  Activation
tConvolutional 3x3 16 ReLU
tMax-Pooling 2x2 - -
FDropout (0.3) - - -
tConvolutional 3x3 32 ReLU
+Fully-connected - 10 ReLU
+Dropout (0.3) - - -
tFully-connected - 10 ReLU
FFully-connected - 1 ReLU

tShared layers; for each property

The multiple connection between the layers generates a high number of parameters. In order to reduce the risk of overfitting,
we introduce a dropout rate. In between the layers, 0.3 of the connections were randomly disconnected (Nitish et al., 2014).

20 We added this dropout operation in the shared layer and another dropout before the output.
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Figure 3. Architecture of the multi-task network. “Shared layers” represent the layers shared by all the depth ranges. Each branch, one per

depth range, first flattens the information to a 1D array, followed by a series of 2 fully-connected layer and a fully-connected layer of size=1,

which corresponds to the final prediction.

4.4 Inputs

As explained in Section 2, our method uses a window around a soil observation which encloses a group of pixels instead
of the single pixel that coincides with the observation. Most likely, the extent or size of that window will affect the model
performance. To assess this effect, we compared the results of different models trained with a window size of 3, 5,7, 9, 15, 21
and 29 pixels.

As the vicinity size increases, so does the number of parameters of the network (considering a fixed network architecture)
and the risk of overfitting. To minimise overfitting, we modified the architecture of the network depending on the vicinity size

(Table 2).

Table 2. List of modifications made to the base network architecture for specific input window sizes.

Window size  Changes

15x15 e Extra Max-Pooling(2x2) after last Convolutional layer
e Extra Max-Pooling(2x2) after last Convolutional layer
2hal e Extra Convolutional(3x3, 16 filters)
o Extra Max-Pooling(2x2) after last Convolutional layer
29x29 e Extra Convolutional(3x3, 64 filters)

e Droputs changed to 0.5
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4.5 Training & Validation

First, 10% (n = 49) of the total dataset was randomly selected and used as a test set. The remaining 90% of the samples (n =
436) were augmented (see Section 4.2) obtaining a total of 1,744 samples. Following the data augmentation, we performed a
bootstrapping routine (Efron and Tibshirani, 1993) with 100 repetitions, where the training set is obtained by sampling with
replacement, generating a set of size 1,744. The samples which were not selected, about 1/3 (one-third), correspond to the
out-of-bag validation set.

As a control, we compared our results with a previous study by Padarian et al. (2017) where we used a Cubist regression
tree model (Quinlan et al., 1992) to predict soil organic carbon (SOC) at a national extent. Cubist has been used in many other
DSM studies due to its interpretability and robustness. In that study, we used the same set of soil observations and covariates

described in Section 4.1.
4.6 Uncertainty analysis

In this work (and in Padarian et al. (2017)), the uncertainty is represented as the 90% prediction interval derived from the 100

bootstrap iterations. To estimate the upper and lower prediction interval limits, we used the formula:

PIL=%4+1.645v 02+ MSE )
where 7 and o2 are the mean and variance of the 100 iterations, and M SF is the mean square error of the 100 fitted models.

4.7 Implementation

The CNN was implemented in Python (v3.6.2; Python Software Foundation, 2017) using Keras (v2.1.2; Chollet et al., 2015)
and Tensorflow (v1.4.1; Abadi et al., 2015) backend. Computing was done using the University of Sydney’s Artemis high

performance computing facility.

5 Results and discussion
5.1 Data augmentation

To generalise and improve the CNN model, we created new data using only information from the training data by rotating
the original image input. Data augmentation was effective at reducing model error and variability (Fig. 4). It was possible
to observe a decrease of the error, by 10.56, 10.56, 11.25, 14.51, and 24.77% for 0-5, 5-15, 15-30, 30-60 and 60-100 cm
depth ranges, respectively. The results are in accordance with image classification studies which generally showed that data
augmentation increased the accuracy of classification tasks (Perez and Wang, 2017). It is hypothesised that by increasing the

amount of training data, we can reduce overfitting of CNN models.
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Figure 4. Effect of using data augmentation as a pre-treatment on a 7x7 pixels array.

In terms of the data spatial autocorrelation, we need to consider that after augmenting the data we have 4 samples in the
same locations with exactly the same SOC content, therefore assuming that there is no variance when distance=0. That is
theoretically true if we consider that the distance is exactly equal to 0. In practice, when calculating the semivariogram, the

semivariance value of the first bin will be lower, but that does not significantly affect the final model.
5.2 Vicinity size

To incorporate contextual information for DSM prediction, we represent the input as image. The image is represented as
observation in the centre, with surrounding pixels in a square format. The size of the neighbourhood window (vicinity) has a
significant effect on the prediction error (Fig. 5). There is not significant difference when using a vicinity size of 3, 5, 7 or 9
pixels, but sizes above 9 pixels showed an increase in the error. Is possible to observe a lower error in the test dataset, compared
with the training and validation, due to the slight differences in the dataset distributions (Fig. 6). Since the SOC distribution is
right-skewed, the random sampling used to generate the training dataset does not completely recreate the original distribution,
excluding samples with very high SOC values. This should not significantly affect the conclusions given that the error for the
samples with hight SOC values is accounted during the bootstrapping routine and reflected in the training and validation curves
of Fig. 5. In this example, for a country-scale mapping of SOC at 100 m grid size, information from 150 to 450 m radius is
useful. A similar influence distance was obtained by Jian-Bing et al. (2006) and Sun et al. (2003) whom reported a medium-
scale spatial correlation range for SOC in China of around 300 m and 550 m, respectively; Rossi et al. (2009) and the 190 m
reported for a Coastal forest in Tanzania; and Don et al. (2007) of around 200 m in two grassland sites in Germany. A similar
spatial correlation range was reported for croplands in an review by Paterson et al. (2018), where, based on 41 variograms, the
authors estimated an average spatial correlation range of around 400 m.

As described in Section 4.3, we slightly modified the architecture of the network as input window size increased, in order to

minimise the risk of overfitting and isolate the effect of the vicinity size. As we increase the vicinity size, we give the model a
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Figure 5. Effect of vicinity size on prediction error, by depth range. Ref_1x1 corresponds to a fully connected neural network without any

surrounding pixels. Ref_Cubist corresponds to the Cubist models used by Padarian et al. (2017).
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Figure 6. Distribution of the original dataset and the test dataset. The random sampling excludes some observation with high SOC values.

broader spatial context. Our results show that just a small amount of extra context provides enough information to improve the
model predictions, and a larger amount of neighbouring information acts as noise, impairing the generalisation of the model.

Since we used the relatively large resolution of 100 m, it is hard to tell specifically what is the minimum amount of context

10
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needed to improve SOC predictions. We believe that using higher resolutions (< 10m) could produce more insights about this
matter.

Soil forming factors interact in complex ways and affect soil properties with different strength. At local scale, a broader
context (e.i.: larger vicinity size) does not necessarily provides extra information to the model, for instance when one of the
factors is relatively homogeneous. The extra information could be even detrimental if the vicinity size is well beyond the area
of influence of a factor, which is what probably happened when we increased the vicinity size above 9 pixels (radiusx=450m).
Representing this complexity in numerical terms would imply varying the size of the input array, such as each forming factor
has a different vicinity size, most likely also varying depending on the spatial location of the soil observation (e.g.: smaller
vicinity for homogeneous areas, larger for heterogeneous areas). This is technically possible but considerably increases the

complexity of the modelling.
5.3 Comparison with other methods

We compared our approach with the Cubist model used in our previous study (Padarian et al., 2017), where we did not use
any contextual information. We observed a significant decrease in the error (Fig. 5) by 23.0, 23.8, 26.9, 35.8, 39.8% for the
0-5, 5-15, 15-30, 30-60 and 60—100 cm depth ranges, respectively. Most current DSM studies rely on punctual observations
without contextual information and, given the improvements shown by our approach, we believe there is a big potential for
CNN s to be used in operational DSM.

To compare our results with a method that uses contextual information, we ran a test using wavelet decomposition as per
Mendonga-Santos et al. (2006). In addition to the five covariates, we used their approximation coefficients from the first, second
and third levels of a Haar decomposition (Chui, 2016; Haar, 1910). The results including wavelet decomposed variables were
similar to ones obtained with the Cubist model. The CNN approach reduced the error by 24.8, 24.7, 28.5, 28.6, 23.5 for
the 0-5, 5-15, 15-30, 30-60 and 60—100 cm depth ranges, respectively. Mendonca-Santos et al. (2006) reported an average
improvement of 1% for the prediction of clay content. In our case the wavelet decomposition reduced the error of SOC content
by 5.1%, in average, compared with Cubist but the reduction was only observed in depth (2.4, 1.2, 2.3, -10.1, -21.4% error
change for the 0-5, 5-15, 15-30, 30—60 and 60-100 cm depth ranges, respectively), where SOC content is low, hence reducing
the effect in applications such as carbon accounting. Our approach showed greater error reductions and through the whole

profile.
5.4 Prediction of deeper soil layers

Our approach uses a multi-task CNN to predict multiple depths simultaneously in order to produce a synergistic effect. Com-
pared with predicting each depth range in isolation by training a network with the same structure (Section 4.3) but with only
one output, our approach reduced the error by 1.5, 6.7, 6.6, 8.9, 13.0% for the 0-5, 5-15, 15-30, 30-60 and 60—-100 cm depth
ranges, respectively. In this case, the reduction was modest and we believe the effect can be greater when more soil observations

are available.
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In DSM, there are two main approaches to deal with the vertical variation of a soil attribute: 2.5D and 3D modelling. In
the first one, an independent model is fitted for each depth range. The latter explicitly incorporates depth in order to obtain a
single model for the whole profile. Interestingly, both approaches show a decrease in the variance explained by the model as the
prediction depth increases. In a 3D mapping of SOC for a 125 km? region in the Netherlands, Kempen et al. (2011) presented
R?2 values of 0.75, 0.23 and 0.09 for the 0-30, 30-60, and 60-90cm depth ranges, respectively. Our previous study (Padarian
et al., 2017) the 2.5D mapping showed R2 values of 0.39, 0.39, 0.27, 0.19, and 0.17 for the 0-3, 5-15, 15-30, 30-60 and 60—
100 cm depth ranges, respectively. Similar studies show the same trend (Akpa et al., 2016; Mulder et al., 2016; Adhikari et al.,
2014), independent of the models used or the soil attribute predicted. This is expected as the information used as covariates
usually represents surface conditions. Our multi-task network presented the opposite trend (Fig. 7), showing an increase of the

explained variance as the prediction depth increases.
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Figure 7. Percentage change in model R? in function of depth. The Multi-task model corresponds to a CNN trained using a 7x7 pixels
vicinity. Data for “Other studies” correspond to validation statistics from Padarian et al. (2017); Akpa et al. (2016); Mulder et al. (2016) and
Adhikari et al. (2014)

The prediction of the adjacent layers served as guidance, producing a synergistic effect. A soil attribute through a profile
usually has a predictable behaviour (unless there are lithological discontinuities), which has been described by many authors in
the form of depth functions (Kempen et al., 2011; Nakane, 1976; Russell and Moore, 1968). A CNN is capable of generating

an internal representation of the vertical distribution of the target attribute, which resembles the observed pattern (Fig. 8).
5.5 Visual evaluation of maps

Visually, the maps generated with the Cubist tree model and our multi-task CNN showed differences (Fig. 9). In an example
for an area in southern Chile (around 72.57° S), the map generated with the Cubist model (Fig. 9a) shows more details related
with the topography, but also presents some artefacts due to the sharp limits generated by the tree rules. On the other hand,
the map generated with the multi-task CNN using a 7x7 window (Fig. 9b) shows a smoothing effect, an expected behaviour

consequence of using neighbour pixels.
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Figure 8. Vertical SOC distribution for 20 randomly selected profiles. Predictions correspond to the multi-task CNN.

Cubist CNN

SOC (%)

T

12 13 14 15 16 17 18 19

Figure 9. Detailed view of (left panel) map generated by a Cubist model (Padarian et al., 2017) and (right panel) model generated by our
multi-task CNN showing the smoothing effect of the CNN.

5.6 Uncertainty

A recommended DSM practice is to present a map of a predicted attribute along its associated uncertainty (Arrouays et al.,
2014). Our multi-task CNN significantly reduced the prediction interval width (PIW, Table 3) compared with the Cubist model.
In average, we observed a reduction of 13.1 and 13.8% for the CNN model generated without and with data augmentation pre-
treatment, respectively, for the first three depth intervals. Our multi-task CNN model showed a slightly lower prediction interval

coverage, but all wider than the proposed 90% coverage.
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Table 3. Median prediction interval width (PIW, SOC %) and proportion of observations that fell within the 90% prediction interval (PICP)
estimated at the test dataset locations. For the Cubist model, values were extracted from the final maps. For the CNN models, the values

correspond to the mean of the 100 bootstrap iterations.

Cubist Not augmented Augmented

PICP 0.96 0.96 0.94
0-5cm

PIW 7.96 7.20 7.25

PICP 0.97 0.96 0.92
5-15 cm

PIW 7.69 6.15 6.06

PICP 0.97 0.96 0.96
15-30 cm

PIW 7.16 6.47 6.35

In terms of the spatial patterns of the uncertainty (Fig 10), the greater reductions of the PIW where observed in elevated
areas of the Andes, followed by the central valleys. A slight increase, in the order of 6-8%, was observed in the western coastal
ranges. The reduction of the PIW in the Andes is most mest-likely due to a more reserved extrapolation by the CNN models
compared with Cubist. It is worth noting that the central valleys is were most of the agricultural lands are located and the

uncertainty reduction observed in these areas could have important implications.

PIW change (%)

—60%-50%-40%-30%-20%-10% 0% 10%

Figure 10. Percentage change on the prediction interval width using as a reference a Cubist model (Padarian et al., 2017)with-and-without,
Comparison made using data augmentation pre-treatment(right-and-eft-panels;respeetively).

6 Conclusions

Incorporating contextual information into DSM models is an important aspect that deserves more attention. Since a soil sur-

veyor will look at the surrounding landscape to make a prediction of soil type, DSM models should also incorporate information

14



surrounding an observation. We demonstrated the use of a convolutional neural network as an efficient, effective, and accurate
method to achieve this goal. In particular we introduce a deep learning model for DSM which has the following innovative

features:

— The representation of input as an image, which takes into account information surrounding a point observation. CNN is
5 able to recognise contextual information, and extract multi-scale information automatically, which circumvents the need

to pre-process the data in the form of spatial filtering or multi-scale analysis.

— The use of data augmentation as a general representation of soil in the landscape, which can reduce overfitting and

improve model accuracy.

— The ability to predict different soil depth simultaneously in a model, and thus take into account the depth correlation of
10 soil properties and attributes. In our example, prediction of soil properties at deeper layer, common problem in DSM

studies, improved significantly.

Overall, in this study, we observed an error reduction of 30% compared with conventional techniques. The resulting pre-

diction also has less uncertainty;—farther;-. Furthermore, the use of this data structure with CNN seems to eliminate artefacts
generally found in DSM products due to incompatible scale of covariates and sharp discontinuities due to tree models.

15 A CNN can handle large number of covariates and has advantages over other machine learning algorithms used in DSM,
such as random forests, and Cubist regression tree because its architecture is flexible, and explicitly takes spatial information
of covariates around observations. While there are-have been attempts to include information surrounding an observation as
covariates in a random forest model, those inputs still do not have spatial relationship. CNN does not require pre-processing
such as wavelet transformation, rather such function is built in the model. There are other features such as handling missing

20 values via data imputation (Duan et al., 2016) which can be readily added in the network.

The example presented in this paper is for a country-wide modelling at 100 m resolution, and we need to further test such
approach in the regional to landscape mapping. The CNN model would be highly suitable for mapping soil class. In addition,

the presented model can be used for other environmental mapping.
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