

1 Opportunities and limitations related to the application of 2 plant-derived lipid molecular proxies in soil science

3

4 **Boris Jansen¹ and Guido L. B. Wiesenberg²**

5 [1]{Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam,
6 Amsterdam, P.O. Box 94240, NL-1090GE, The Netherlands}

7 [2]{Department of Geography, University of Zürich, Winterthurerstrasse 190, CH-8057
8 Zürich, Switzerland}

9 *Correspondence to:* B. Jansen (B.Jansen@uva.nl)

10

11 **Abstract**

12 The application of lipids in soils as molecular proxies, also often referred to as biomarkers,
13 has dramatically increased in the last decades. Applications range from inferring changes in
14 past vegetation composition, climate and/or human presence to unraveling input and turnover
15 of soil organic matter (SOM). Molecules used include extractable and ester-bound lipids as
16 well as their carbon or hydrogen isotopic composition. While holding great promise, the
17 application of soil lipids as molecular proxies comes with several constraining factors the
18 most important of which are: i) variability in the molecular composition of plant-derived
19 organic matter plant-internally and in between plant individuals; ii) variability in (relative
20 contribution of) input pathways into the soil; and iii) transformation and/or (selective)
21 degradation of (some of) the molecules once present in the soil. Unfortunately, the
22 information about such constraining factors and their impact on the applicability of molecular
23 proxies is fragmented and scattered. The purpose of this study is to provide a critical review
24 of the current state of knowledge with respect to the applicability of molecular proxies in soil
25 science, specifically focusing on the factors constraining such applicability. Variability in
26 genetic, ontogenetic and environmental factors influence plant *n*-alkane patterns in the way
27 that no unique compounds or specific molecular proxies pointing to e.g. plant-community
28 differences or environmental influences, exist. Other components such as *n*-alcohols, *n*-fatty
29 acids, cutin- and suberin-derived monomers have received far less attention in this respect.
30 Furthermore, there is a high diversity of input pathways offering both opportunities and

1 limitations for the use of molecular proxies at the same time. New modelling approaches
2 might offer a possibility to unravel such mixed input signals. Finally, transformation and
3 turnover of SOM offer opportunities when tracing such processes is the purpose of applying a
4 molecular proxy, whilst posing limitations when they obliterate molecular proxy signals
5 linked to other phenomena. For *n*-alkanes several modelling approaches have recently been
6 developed to compensate for (selective) degradation. Still such techniques are in their infancy
7 and information about their applicability to other classes of components than *n*-alkanes is
8 lacking yet. All constraining factors considered can have a significant influence on the
9 applicability of molecular proxies in soil science. The degree of influence strongly depends
10 on the type of molecular proxy as well as the environmental context in which it is applied.
11 However, the potential impact of the constraining factors should always explicitly be
12 addressed whenever molecular proxies are applied in a soil scientific context. More
13 importantly, there is still a serious lack of available information in particular for compound
14 classes other than the *n*-alkanes. Therefore, we urgently call for the consideration of more
15 holistic approaches determining various parameters during sampling as well as using as many
16 compound classes as possible.

17

18 1 Introduction

19 Since more than a century, various compounds deriving from the substance class of lipids,
20 which are operationally defined as soluble in organic solvents, but not or to a limited degree
21 in water, have been investigated in plant and soil science. Some of the earliest publications in
22 plant science date back to the first half of the 19th century (Liebig et al., 1837; Wöhler F. and
23 Liebig, 1839) and in soil science to the early 20th century as already reviewed by Stevenson
24 (1966). One of the main interests to study lipids apart from the general understanding of the
25 human diet was the large heterogeneity of compounds included in this substance class. Some
26 of the individual compounds have been described as ‘biomarkers’ or ‘biogenic markers’, i.e.
27 compounds that “*may be diagnostic of specific organisms, classes of organism, or general
biota that contribute organic matter to the atmosphere, aqueous or sedimentary
environment*” (Peters et al., 2005). In addition to these contemporary biogenic markers, also
28 referred to as ‘geochemical fossils’ (Tissot and Welte, 1984), in environmental sciences also
29 anthropogenic markers and petroleum markers were highlighted by Peters et al. (2005) that
30 have the ability to be preserved with “no or only minor change” (Tissot and Welte, 1984).
31 Eganhouse (1997) summarized the principal criteria for a specific marker as follows:
32

1 "Molecular markers must be typical for specific sources and characterized by their
2 conservative behavior in environmental archives". In other disciplines such as medicine and
3 toxicology a variety of "medical signs, symptoms, biomarkers, surrogate endpoints, clinical
4 endpoints, validation" is used under the umbrella biomarker (Strimbu and Tavel, 2010).
5 Because *sensu strictu* the term biomarker has been used for the differentiation of biological
6 tissues of different origin in environmental matrices, during the recent years the term
7 'molecular proxy' has become more frequently used. This term allows for an inclusion of
8 biomarkers *sensu strictu* as individual compounds characterizing specific biogenic sources,
9 but also individual compounds acting as specific proxy e.g. for anthropogenic impact or
10 thermal alteration. Furthermore, it accommodates the use of groups of compounds used in the
11 before mentioned way. Finally, it implies the use of molecular ratios of compounds like the
12 carbon preference index (CPI) or the average chain length (ACL) that could also be indicative
13 for biogenic sources, alteration or overprint of organic matter. Therefore, in the present work
14 we use the term molecular proxy rather than biomarker.

15 In its broadest sense, molecular proxies allow determination of the presence, absence, or
16 certain characteristics of a (set of) molecule(s) that are indicative for a process in, or state or
17 composition of a system of interest. For instance, in the clinical sciences molecular proxies
18 among other applications are used as indicators of the presence of a disease or response to
19 treatment (Brennan et al., 2013; Van Bon et al., 2014); in toxicology to assess the effect of
20 toxicant exposure on biota (Clemente et al., 2014); in the forensic sciences to link suspects to
21 a crime scene (Concheri et al., 2011); in limnology to examine past lacustrine environmental
22 conditions (Castañeda and Schouten, 2011); and in organic geochemistry to follow oil
23 formation and translocation in source and reservoir rocks (Curiale, 2002).

24 Also in soil science, molecular proxies have been used for decades, and their application has
25 exponentially increased in the last decade as indicated by the number of related articles
26 published in Web of Science indexed journals (Table 1). Compared to the overall timeframe
27 covered by Scopus, between 23 % (pentacyclic triterpenoids) and 99 % (GDGTs = glycerol
28 dialkyl glycerol tetraethers) of the publications using molecular proxies in soil science have
29 been published in the last ten years (2006-2015). On average (\pm SEM) 59 ± 4 % of the
30 publications with the respective keyword selections have been published in the last decade.
31 This clearly illustrates a strong increase associated by a diversification of the use of
32 molecular proxies in soil science. The types of molecular proxies used are as diverse as the
33 field of soil science itself. They range from the use of phospholipid fatty acids to estimate

1 bacterial and fungal biomass in soils (Frostegård and Bååth, 1996), to the application of
2 preserved retene/caldalene ratios to infer palaeoecological vegetation shifts (Hauteville et al.,
3 2006). Also the archives of the molecular proxies in soil sciences that are used are diverse
4 and, in addition to soils themselves, include lacustrine and terrestrial sediments, peat deposits,
5 as well as paleosols (Zhang et al., 2006; Bai et al., 2009; Andersson et al., 2011; Berke et al.,
6 2012). However, in spite of this large variety a limited number of scientific topics can be
7 discerned that encompass the great majority of molecular proxy application in the soil
8 sciences. These are:

- 9 • Changes in vegetation composition inferred from extractable and/or ester-bound lipids
10 of plant origin, and/or their carbon isotopic composition (e.g. Huang et al., 1996; Zech
11 et al., 2009; Le Milbeau et al., 2013).
- 12 • Changes in climate, i.e. mean annual temperature and/or precipitation inferred from
13 bacterial membrane lipids and/or the hydrogen isotopic composition of plant-derived
14 lipids (e.g. Weijers et al., 2006; Krull et al., 2006; Rao et al., 2009).
- 15 • Changes in palaeoelevation inferred from bacterial membrane lipids and/or the
16 hydrogen isotopic composition of plant-derived lipids (e.g. Sachse et al., 2006; Bai et
17 al., 2011; Ernst et al., 2013).
- 18 • Changes in human impact or settlement inferred from compound-specific N isotope
19 analysis or transformation products of plant-derived lipids, e.g. through burning, or
20 manure derived lipids (e.g. Bull et al., 1999; Eckmeier and Wiesenberg, 2009;
21 Zocatelli et al., 2012).
- 22 • Contribution of fossil fuel-derived carbon to soil assessed by lipid molecular
23 composition and compound-specific isotopes (e.g. Lichtfouse et al., 1995; Lichtfouse
24 et al., 1997; Rethemeyer et al., 2004).
- 25 • Input, transformation and/or decomposition of soil organic matter inferred from or
26 traced through extractable and/or ester-bound lipids of plant origin and/or bacterial
27 membrane lipids and/or their carbon isotopic composition. (e.g. Nierop et al., 2001;
28 Amelung et al., 2008; Hamer et al., 2012).

29 In Table 1 an overview is given of the classes of molecules frequently used as molecular
30 proxies in soil archives in relation to their application as well as total and recent (last ten
31 years) publications including the respective keywords.

1 When using molecular proxies to answer research questions in any of the areas identified, in
2 particular when soils are used as an archive, several constraining factors have to be taken into
3 account that vary with the type of application and research question to be answered. The most
4 important ones are:

5 i) Variability in the source of plant-derived organic matter, i.e. abundance and
6 composition of the molecular proxies in different plant species, plant specimens and
7 plant parts as a result of genetic or life stage variations and/or external factors such as
8 climate, seasonality or exposure to the sun (e.g. Nødskov Giese, 1975; Lockheart et
9 al., 1998; Shepherd and Griffiths, 2006).

10 ii) Variability in (relative contribution of) input pathways into the soil, in particular
11 microbial versus vegetation input, and root versus aboveground biomass input (e.g.
12 Jackson et al., 1996; Schefuß et al., 2003; Mambelli et al., 2011).

13 iii) Transformation and/or (selective) degradation of (some of) the compounds once
14 present in the soil, when it is not the aim of the study to use the molecular proxies to
15 study such transformations (e.g. De Leeuw and Baas, 1986; Nguyen Tu et al., 2004;
16 Andreetta et al., 2013).

17 However, the information about such constraining factors and their impact on the
18 applicability of molecular proxies is fragmented and scattered over different publications
19 inside and outside the scientific discipline of soil sciences. For instance, much of the
20 available information about variation of leaf wax lipid composition is presented in the plant
21 physiological literature in studies that were not conducted with the application of such lipids
22 as molecular proxy for past vegetation composition from soil archives in mind (e.g. Tulloch,
23 1973; Avato et al., 1984; Kim et al., 2007). The fragmentation of the information makes it
24 difficult for researchers to assess the potential influence of constraining factors on the
25 application of molecular proxies. It also hinders the identification of hiatuses in the available
26 knowledge about the constraining factors as well as the designation of potential strategies to
27 compensate or correct for such constraints.

28 Therefore, the purpose of the present study is to provide a critical review of the current state
29 of knowledge with respect to the applicability of molecular proxies in soil science,
30 specifically focusing on the factors constraining such applicability. Based on this we will
31 identify areas for future research both with respect to the application of molecular proxies in
32 soil science as well as the constraints thereof.

1 The vastness of the field of molecular proxies forced us to restrict the scope of the present
2 study. With respect to the molecules to consider, a first restriction was to focus on those
3 related to the earlier mentioned main areas of application of molecular proxies in soil science.
4 A second restriction was to focus on the main classes of components as used by several
5 researchers. Finally, in spite of their common application, we explicitly excluded lignin and
6 phospholipid fatty acids (PLFA) as lignin was subject of another recent review article
7 (Thevenot et al., 2010) and PLFAs are considered in such a large set of studies (c.f. Table 1)
8 that they would require a separate review. Finally GDGTs were excluded because their
9 application is predominantly in aquatic sediments rather than soils and they have been
10 recently reviewed (Schouten et al., 2013). This leaves the component classes labeled in bold
11 in Table 1 to be considered in the present study. Our study is relevant to the application of
12 compound-specific isotope analysis inasmuch that such analysis is directly affected by
13 variability and transformation of the underlying molecules. However, we did not explicitly
14 consider sources and effects of variation of the stable isotope signature of specific molecules
15 themselves, this being a research area of its own and also subject of recent review by
16 Diefendorf and Freimuth (2017). Furthermore, when considering application and preservation
17 of molecular proxies we restricted ourselves to topsoils (i.e. surface soil horizons = A
18 horizons as defined by the FAO in the Guidelines for soil description (2006)) as archives.
19 Paleosols as well as pedogenesis have been excluded as their formation and influence on the
20 preservation of molecular proxies forms an extensive research area in its own right that was
21 already the subject of another recent review article (Wiesenberg and Gocke, under review).

22

23 **2 Source related variability of molecular proxies**

24 **2.1 Definition**

25 Source related variability of molecular proxies pertains to intra-species variation in the
26 abundance of the molecules that are used as proxy. Such variability entails: i) variation in
27 relative abundance of individual compounds that together constitute the proxy, e.g. of *n*-
28 alkanes of different chain length in leaf waxes of a certain species; ii) variation in absolute
29 abundance of the molecules used as proxy either between different specimens or between
30 different parts of a single specimen. Depending on the research question, intra-species
31 variability of molecular proxies may be desirable or not. For instance when preserved leaf
32 wax lipids patterns are used to reconstruct past vegetation composition, the implicit

1 assumption is that the intra-species variability in the source vegetation is small compared to
2 the inter-species variability. In opposite, when the $\delta^2\text{H}$ signal of preserved leaf wax lipids is
3 used to reconstruct past precipitation patterns, one assumes that the precipitation induced
4 intra-species variability in the $\delta^2\text{H}$ patterns is large.

5 There are two main causes of intra-species variability in molecular proxies: internal variation
6 related to genetics and/or ontogeny; and external variation related to the growing
7 environment. Both are related in the sense that differences in response to environmental
8 factors are also often genetically determined (Shepherd and Griffiths, 2006). Here we discuss
9 both causes separately with a third paragraph devoted to studies where combined effects were
10 examined. For a detailed description of the biomolecular mechanisms of wax genesis and all
11 potential sources of change, the reader is referred to the review provided by Shepherd and
12 Griffiths (2006).

13 **2.2 Variation related to genetics and/or ontogeny**

14 **2.2.1 Wax lipids**

15 Many studies have indicated that the clear genetic control of leaf wax genesis leads to a
16 significant and meaningful difference in their composition (Shepherd et al., 1995; Shepherd
17 and Griffiths, 2006). For instance, prompted by the early works in this area (e.g. Eglinton et
18 al., 1962; Herbin and Robins, 1968; Herbin and Robins, 1969), Maffei performed an
19 extensive evaluation of the *n*-alkane patterns in several hundreds of plant species belonging
20 to the Gramineae, Umbelliferae, Cruciferae, Leguminosae, Cactaceae, Pinales, Lamiaceae,
21 Boraginaceae, Verbenaceae, Lolaneaceae and Scrophylariaceae (Maffei, 1994; Maffei,
22 1996a; Maffei, 1996b; Maffei et al., 1997; Maffei et al., 2004). These studies were
23 replenished by those on Styracaceae (Li et al., 2013), Moraceae (Sonibare et al., 2005), and
24 Clusiaceae (Medina et al., 2004; Medina et al., 2006). Further, Dove et al. (1996) described
25 the alkane diversity among a grassland plant community, which enables tracing of the diet of
26 grazing animals due to the different alkane compositions of the plants. Recently, Mueller-
27 Niggemann and Schwark (2015) were able to differentiate rice from alternating crop plants
28 based on their *n*-alkane patterns. The results support the chemotaxonomic discriminatory
29 power of *n*-alkane patterns at family, sub-family and tribal level, which has been further
30 examined by Diefendorf et al. (2017). Examining plant *n*-alkane and *n*-alcohol distribution of
31 37 C₄ grasses, Rommerskirchen et al. (2006) also found chemotaxonomic differentiation was

1 possible at the sub-family level. Mongrand et al. (2001) examined the fatty acid composition
2 of the leaves of over 137 species of gymnosperms belonging to 14 families and collected
3 from different locations in France. They found a taxonomically meaningful clustering into
4 four main groups, with the highest discriminatory power in the Pinaceae at the genus level
5 (Mongrand et al., 2001). Additionally, Wiesenbergs and Schwark (2006) determined
6 differences in the fatty acid composition between temperate C₃- and C₄-crops. Within the
7 same *Brassica* species of kale and swede Shepherd et al. (1995) observed a difference in
8 chain length distribution of wax lipids between two genotypes of the same species, indicative
9 of genetic control through variation in the enzyme system. Also for the isoprenoids, a
10 genetically driven discriminatory power related to (groups of) plant species is attributed
11 (Ohsaki et al., 1999; Jansen et al., 2007). However, an important issue is the phenotypic
12 plasticity of the genetic variability in leaf wax lipid patterns found and the implications
13 thereof for the stability of the patterns observed.

14 Maffei et al. (2004) concluded that phenotypic plasticity may overcome genetic variability,
15 particularly when plant developmental stages are considered along with abiotic and biotic
16 stress conditions. Several plant physiological studies have focussed on wax lipid composition
17 related to plant life stage, and report different results. Avato et al. (1984) found that where the
18 relative contribution of *n*-fatty acids, *n*-alcohols and *n*-alkanes differed between *Sorghum*
19 seedlings and mature leaves, the chain-length distribution within a component class remained
20 the same for the *n*-alkanes and *n*-alcohols. Giese (1975) observed a difference in homologue
21 dominance of *n*-alkanes between leaves of seedlings and mature barley plants. Also Herbin
22 and Robins (1969), Dyson and Herbin (1970), Baker and Hunt (1981), and Zhang et al.
23 (2004) identified increasing chain length dominance of leaf wax alkanes with increasing leaf
24 age. However, averaging of sampling over leaves of different age, position etc. within a stand
25 of trees did allow for distinction from other stands, indicating that inter-species variation was
26 larger than intra-species variation (Dyson and Herbin, 1970). Baker and Hunt (1981)
27 observed differences between adaxial and abaxial parts of leaves for some of the plant
28 species. Also Tulloch (1973) observed a variation of leaf waxes of several *Triticum* species
29 with age. In particular the whole plant *n*-alkane predominance shifted from C₃₁ at 24 days
30 after germination to C₂₉ at 100 days after germination (Tulloch, 1973). Furthermore,
31 Wiesenbergs et al. (2004; 2012) and Wiesenbergs and Schwark (2006) observed changes in *n*-
32 alkane and *n*-fatty acid compositions of a variety of temperate crop species with plant age.
33 Other publications reported seasonal variations in the *n*-alkane composition for variety of

1 pasture and crop plants by Dove et al. (1996), Hellgren and Sandelius (2001), Moseley
2 (1983), Shelves and Koziol (1986) and various trees especially by Gülz and collaborators
3 (Prasad and Gülz, 1990; Gülz et al., 1991; Gülz and Muller, 1992; Gülz and Boor, 1992).
4 Variations in the alkane composition could be observed during the growing season among all
5 investigated plants, but general trends of increasing or decreasing chain length and *n*-alkane
6 contents have not consistently been determined. The *n*-alcohol predominance also varied but
7 to a much smaller extent, not affecting the predominance of a specific *n*-alcohol (Tulloch,
8 1973). Esters gradually showed an increase in esters of trans 2,3-unsaturated C₂₃ and C₂₄
9 acids with plant age (Tulloch, 1973). The variation was related to the development of the
10 plant, in particular that of flag leafs and sheets between 55 and 66 days (Tulloch, 1973).
11 Seldomly, also different source locations were analysed for their lipid composition, where the
12 plants could have developed specific lipid patterns. Kreyling et al. (2012) described
13 differences in the *n*-fatty acid and *n*-alkane composition of the same plant species originating
14 from different regions across Europe with different climatic conditions most likely due to
15 biosynthetic adaptation to the specific conditions.
16 In contrast to the previous, Li et al. (1997) studied the influence of ontogeny on leaf wax
17 lipids (*n*-alkanes, *n*-aldehydes, *n*-alcohols, esters, β -diketones, flavonoids and triterpenoids)
18 in several *Eucalyptus* species of the subgenus *Sympyomyrtus* on Tasmania, and found no
19 significant effect of ontogeny on leaf wax composition, which they found to clearly and
20 consistently differ between species (Li et al., 1997). Also Eglinton et al. (1962) observed that
21 the *n*-alkane composition of leaf waxes of 74 species of *Crassulaceae* from the Canary Islands
22 showed no appreciable variation with respect to leaf position, age, size or specimen. Further,
23 Bush and McInery (2013) found no influence of canopy position or sampling time on the *n*-
24 alkane patterns of mature leaves from 24 tree species.

25 **2.2.2 Cutin and suberin monomers**

26 Cutin forms the molecular frame of the plant cuticle, whereas suberin is a cell wall
27 component of cork cells (Kolattukudy, 1981; Kögel-Knabner, 2002). As a result cutin occurs
28 mainly in the leaves of plants whereas suberin occurs on the outside of stems and roots of
29 woody plants, as well as in the endodermis and bundle sheet cells of grasses (Kögel-Knabner,
30 2002). Cutin and suberin monomers are mainly used as proxies to distinguish leaf from root
31 input in soils (Schreiber et al., 1999; Bull et al., 2000; Mendez-Millan et al., 2011) or as
32 proxy for related phenomena such as the degree of bioturbation in the topsoil (Nierop and

1 Verstraten, 2004). Therefore, the possible (onto)genetic effects on cutin and suberin
2 composition are a concern if they were to alter the composition of the polyesters to such an
3 extent that the separation between cutin and suberin is compromised.
4 Some general observations in literature are that long-chain even numbered C₂₀-C₃₀ ω -hydroxy
5 fatty acids and α, ω -alkanedioic acids mainly originate from suberin, whereas shorter chained
6 C₁₆ and C₁₈ ω -hydroxy fatty acids mainly derive from cutin (Schreiber et al., 1999; Otto et
7 al., 2005; Mendez-Millan et al., 2011). However, several publications challenge the universal
8 applicability of such general observations, indicating instead that genetic variability results in
9 many exceptions to such general rules. For instance, Hamer et al. (2012) found that ω C_{22:0},
10 ω C_{24:0} and ω C_{26:0} hydroxy fatty acids were not exclusively associated to roots, but also
11 occurred in the shoots of several species. In addition, ω C_{16:0} and ω C_{18:0} fatty acids were not
12 exclusive to the leaves, but also occurred in the roots of several species.

13 **2.3 Variation related to environmental factors**

14 **2.3.1 Effects of temperature**

15 Increased solar radiation levels are generally reported to lead to higher absolute amounts of
16 waxes produced (Sanchez et al., 2001; Shepherd and Griffiths, 2006). In addition, the
17 composition of the various component classes of wax lipids, i.e. the relative contribution of
18 *n*-fatty acids, *n*-alkanes, *n*-alcohols etc., has been reported to change. A shift towards lower
19 chain lengths within different component classes was sometimes found (Shepherd and
20 Griffiths, 2006). Thus, a positive correlation of long-chain odd *n*-alkanes with temperature
21 was observed (Maffei et al., 1993; Zhang et al., 2004). Also, the abundance of membrane
22 fatty acids with 16 and 18 carbons can change as a result of temperature (Maffei et al., 1993;
23 Williams et al., 1995; Matteucci et al., 2011). Often, under heat stress the relative abundance
24 of C_{16:0} fatty acid was found to increase and vice versa the abundance of polyunsaturated
25 C_{18:3} fatty acid to decrease (Larkindale and Huang, 2004; Bakht et al., 2006). Furthermore,
26 effects of temperature were observed for mono- and sesquiterpenes, with compounds like
27 limonene and myrcene having a close correlation with temperature, whereas others like 1,8-
28 cineol were not affected by temperature (Maffei et al., 1993). As a cause, a different
29 sensitivity of individual steps in the genesis of the wax lipid components is assumed
30 (Shepherd and Griffiths, 2006). However, results were found to vary between different
31 species and genotypes, indicating a species or genotype related sensitivity to changes in
32 irradiation (Shepherd and Griffiths, 2006), whereas cold- or heat-acclimated plants respond

1 differently than those that are not acclimated (Larkindale and Huang, 2004). Thus, a
2 dependency of temperature and lipid metabolism is widely observed, but especially in plants
3 other factors such as humidity or greenhouse gas composition might coincide with a larger
4 effect on the overall lipid composition.

5 **2.3.2 Effects of humidity**

6 With respect to the effects of water stress and/or high humidity, in their review Shepherd and
7 Griffith (2006) reported mixed results, with respect to absolute amounts as well as chain
8 length distribution. Bondada et al. (1996) reported an increase in absolute amounts of
9 epicuticular wax production by 69% in the leaves of cotton (*Gossypium Hirsutum* L.) under
10 water stress, which was confirmed by Hamrouni et al. (2001), Koch et al. (2006), Kim et al.
11 (2007), and Bettaieb et al. (2010) for neutral lipids of other plant species. However, Kim et
12 al. (2007) found that water stress had only a minor effects on chain length distribution. The
13 relative contribution of different component classes to the wax composition remained
14 unchanged except for *Brassica oleracea* at the highest relative humidity, which showed an
15 increased contribution of ketones and primary alcohols and a reduction of secondary alcohols
16 and aldehydes (Koch et al., 2006). Recently, Srivastava et al. (2017) determined that
17 sustainable effects of drought on plant lipid composition are commonly missing with few
18 exceptions for perennial plants. Thus, several months after exposure to drought the lipid
19 biosynthesis and composition of leaves is resilient. The existing data shows that general
20 effects of drought on plant lipid composition are difficult to draw.

21 **2.3.3 Effects of increased CO₂**

22 Changes in greenhouse gases such as CO₂ have also been discussed to influence the lipid
23 biosynthesis and thus the lipid composition of plants. Short-term exposure of several hours to
24 elevated CO₂ concentrations e.g. during ¹³CO₂ or ¹⁴CO₂ labelling experiments has no or little
25 effect on the lipid composition, especially if sampling occurs several days after labelling
26 (Wiesenbergs et al., 2009). In contrast a long-term rise in atmospheric CO₂ concentration has
27 been investigated in laboratory or free air carbon dioxide enrichment (FACE) experiments
28 (Ainsworth and Long, 2005). Although numerous such experiments have been maintained in
29 the meantime, implication of investigations of lipid composition is limited. Greenhouse
30 experiments showed that elevated CO₂ concentration affects the relative composition of
31 saturated and unsaturated fatty acids in wheat plants (Williams et al., 1994; Williams et al.,
32 1995; Williams et al., 1998). However, rising nitrogen fertilization and rising temperature can

1 lead to competing trends so that with elevated temperature and nitrogen fertilization
 2 (Williams et al., 1995; Griepentrog et al., 2016). Although specific abundances of individual
 3 long-chain alkanes and alcohols changed under elevated CO₂ concentration, the overall lipid
 4 composition expressed as ACL and CPI did not change (Huang et al., 1999). Nevertheless,
 5 concentration changes like an increase in *n*-alkane and *n*-alcohol abundances and a decrease
 6 in *n*-fatty acid abundance was determined under rising CO₂ concentration, whereas nitrogen
 7 fertilization led to a decrease in the effect (Huang et al., 1999), which was confirmed by
 8 Wiesenbergs et al. (2008a) for *n*-alkanes, *n*-fatty acids and *n*-alcohols. In some forest FACE
 9 and open top chamber experiments, the effect of elevated CO₂ on plant lipid concentration
 10 were not identified (Feng et al., 2010; Griepentrog et al., 2015), but the ¹³CO₂ labelling
 11 associated with the CO₂ enrichment was used for tracing turnover of lipids in soils as
 12 introduced by Wiesenbergs et al. (2008b) for lipids.

13 **2.4 Other or combined genetic, ontogenetic and/or environmental effects**

14 Many studies considered the effects of e.g. geographical location on wax amounts and/or
 15 composition without differentiating between individual genetic or environmental causes.
 16 Again the exact parameters investigated vary greatly between studies, as do the conclusions
 17 drawn. Cowlishaw et al. (1983) examined the *n*-alkane, *n*-alcohol, *n*-aldehydes and ester
 18 composition of composite samples of four species of *Chionochloa*, one of which was sampled
 19 at three different environmental locations to investigate environmental effects. They found
 20 distinct chain length patterns that allowed for chemotaxonomic identification, where variation
 21 between the three sampling sites did not alter dominant chain length patterns for any of the
 22 component classes (Cowlishaw et al., 1983). Similar observations were made by Herbin and
 23 Sharma (1969) for ω -hydroxy fatty acid composition of *Pinus* species from Asia, Europe,
 24 North-America, Central America and the Caribbean. On the other hand, Piervittori et al.
 25 (1996) found that the distribution of C₂₅, C₂₇, C₂₉ and C₃₁ *n*-alkanes in *Xanthoria parietina*
 26 varied significantly between two different Piedmont valleys in Italy, and within those with
 27 altitude, reflecting a combined influence of elevation, water availability, radiation and
 28 temperature. For plaggia ecosystems Kirkels et al. (2013) also observed a significant
 29 variability in reported ratios of the dominant *n*-alkanes with chain lengths C₂₇, C₂₉, C₃₁, C₃₃
 30 most likely attributable to the causes examined here. However, in spite of this they found
 31 meaningful clustering of the three different plant groups grasses, shrubs and trees indicating
 32 that the variability did not obliterate the power of distinction (Kirkels et al., 2013). In a larger

1 study based on 2093 observations from 86 sources of plant material, Bush and McInerney
 2 (2013) concluded that the general observation that C_{27} and C_{29} *n*-alkanes are dominant
 3 markers for woody vegetation and C_{31} for graminoids does not rigorously hold true. At the
 4 same time C_{23} and C_{25} *n*-alkanes do seem to be robust indicators of *Sphagnum* (Bush and
 5 McInerney, 2013) as already observed by Baas et al. (2000) and Pancost et al. (2002). Bush
 6 and McInerney (2013) indicated that the lack of rigour of the mentioned proxies is likely caused
 7 by environmental conditions as indicated by a shift in patterns across African savannah and
 8 rainforest environments.

9 The distinction between African savannah and rainforest environments in general and C_3
 10 versus C_4 vegetation in particular have been the subject of more detailed research. Vogts et
 11 al. (2009) studied the leaves and sometimes whole plants of 24 African rain forest and 45
 12 savannah species. They found that as a result of environmental influence, including
 13 temperature and aridity, chain length distributions of the *n*-alkanes and *n*-alcohols of some
 14 species shifted to different chain length predominance. The environmental influences
 15 overshadowed a taxonomic distinction at the order, family or sub-family level (Vogts et al.,
 16 2009). Patterns in grasses were more consistent and thus less dependent on environmental
 17 factors (Vogts et al., 2009). As a result, in spite of the environmental variability observed,
 18 Vogts et al. (2009) found that by averaging lipid patterns within a given environment a clear
 19 distinction between rain forest and savannah plants can be made, with a dominance of C_{29} *n*-
 20 alkane representative of the average rain forest plant signal and a dominance of C_{31} *n*-alkane
 21 of the savannah plants and C_4 savannah grasses. For the *n*-alcohols, C_{28} dominated on
 22 average for savannah plants, C_{30} for rain forest plants and C_{32} for C_4 savannah grasses (Vogts
 23 et al., 2009).

24 Rommerskirchen et al. (2006) observed a generally higher content of C_{31} and C_{33} *n*-alkanes
 25 and therefore higher ACL value in African C_4 grasses with respect to C_3 grasses from the
 26 same area as a result of the genetic adaptation of C_4 grasses to warm, arid habitats. In
 27 addition, *n*-fatty acid patterns have also been shown to vary with C_3 and C_4 metabolism, with
 28 C_3 crops having relatively large proportions of C_{24} *n*-fatty acid in leaves, stem and roots as
 29 compared to C_{22} and C_{26} *n*-fatty acids in C_4 crops (Wiesenberg and Schwark, 2006).

30 **2.5 Conclusions and implications regarding source related variability**

31 Already Herbin and Robins (1969) concluded that there is a basic genetic control on the
 32 composition of the wax components, including the alkanes, of plant leaves. However,

1 variable factors associated with age and environment can be superimposed upon the specific
2 pattern in some cases, while in others the genetically controlled pattern appears to be stable
3 and unaffected by external influences (Herbin and Robins, 1969). Now, 48 years later, a
4 much more extensive database has been accrued, albeit with a large emphasis on leaf wax
5 lipids in general and *n*-alkanes in particular. Nevertheless, the results are still equivocal. On
6 the one hand, there is ample evidence that genetically driven variability of leaf wax lipid
7 composition in principle leads to chemotaxononomically meaningful clustering that can form
8 the basis of the application of leaf wax lipids as molecular proxies. On the other hand, it is
9 clear that both ontogeny and environmental factors can have a significant and sometimes
10 dominant influence on lipid composition like e.g. chain length distribution. Matters are
11 complicated by the fact that much data with respect to the effects of environmental stress
12 originates from studies where plants were studied for a limited period of time (typically one
13 growing season), where extreme conditions were artificially imposed. In contrast, the lipid
14 signal from soil or sediment archives as used in reconstructions typically represents a mixture
15 of input of decades or longer from plants in various life stages of perennial plants, the
16 induced diversity of plants by frequent changes of annual plants in managed ecosystems and
17 the average of natural fluctuations in stress conditions during that time period.

18 In general from what is known to date, the conclusion seems justified that on the one hand
19 because of genetic and environmental influences there are no unique compounds nor 'golden
20 ratios' of different chain lengths of compounds that can always be linked to certain plants
21 under all circumstances. On the other hand, there are many situations where the influence of
22 genetic and environmental effects are small enough that they do not prevent the use of plant
23 lipids as molecular proxies. The currently available data does not allow for objective,
24 quantitative rules to be formulated in this respect. From the plant wax components, the *n*-
25 alkanes are the dominant class studied. In addition, research attention has focussed to a lesser
26 extent on *n*-alcohols and *n*-fatty acids. The other wax components such as isoprenoids and
27 ester bound lipids received hardly any research attention to date with respect to source related
28 variability in the context of their use as molecular proxies. Yet even for the *n*-alkane patterns
29 in leaf waxes, only a tiny portion of dominant plant species on the planet have been examined
30 in detail for the effects of genetics and environment on their amounts and patterns. It is clear
31 that much more research is needed in this respect.

32 Based on the current insights it seems prudent to explicitly take the possibility of genetically
33 and environmentally driven variability of lipid patterns into account when considering the use

1 of lipids as molecular proxies. For instance by considering plant species from the same
2 climatic zone as where the reconstruction takes place, and by mixing plant material from
3 different life stages to obtain the average molecular fingerprint to look for.

4

5 **3 Input pathway related variability of molecular proxies**

6 **3.1 Definition**

7 Here we discuss differences in the amount and composition of molecules used as proxies,
8 which is possible due to different input pathways of such molecules to the soil. A schematic
9 representation of the different input routes of molecular proxies into the soil is provided in
10 Fig. 1. The emphasis lies on potential effects for their use as molecular proxies. For a general
11 description of the different molecular origins of organic matter in soil, the reader is referred
12 to a dedicated review on this topic by Kögel-Knabner (2002).

13 **3.2 Leaf versus root input**

14 Conservative estimates calculate roots to represent 33% of global annual net primary
15 productivity (Jackson et al., 1997), whereas more recent studies highlight that the
16 contribution of root-derived organic matter in soils can account for >70% of total plant-
17 derived carbon (Rasse et al., 2005). As a result, roots form a considerable input of organic
18 matter in soils and are proposed to improve carbon storage in soils (Kell, 2012). In addition,
19 root input occurs to considerable depth in soils, ranging from an average depth of 0.5m in
20 tundra biomes to 15.0m in tropical grassland/savannah (Canadell et al., 1996). But also in the
21 temperate zone under certain circumstances such as the presence of nutrient rich fossil A
22 horizons at depth, deep rooting can be very significant (Gocke et al., 2015). However, on
23 average the majority of root biomass appears to be incorporated in the top 30 cm of the soil in
24 most biomes, i.e. in the topsoil (Jackson et al., 1996). The ratio of root/shoot biomass input is
25 also very variable across biomes, ranging from an average of 0.10 in cropland to 4.5 in
26 deserts (Jackson et al., 1996). Table 2 represents an overview of the average maximum
27 rooting depth, root biomass input in the first 30 cm of the soil and root/shoot biomass input
28 for different biomes (see also Fig. 1).

29 Therefore, if the molecules to be used as proxy are present in both leaves and roots of plants,
30 the possibility of root input is a factor that has to be considered depending also on the

1 purpose of the proxy. In the case of cutin and suberin monomers root input does not cause
2 interference as discerning root from leaf input is the specific purpose of this molecular proxy
3 (Mendez-Millan et al., 2011). However, this may be different for the wax lipids, i.e. *n*-
4 alkanes, *n*-alcohols, *n*-fatty acids and isoprenoids, that have been found to occur in leaves as
5 well as roots of species at varying concentrations (Jansen et al., 2007; Huang et al., 2011).
6 Particularly when such wax derived lipids are applied as molecular proxies for vegetation
7 cover in soil, root input can be an issue for two reasons: i) roots may contain a different wax
8 lipid composition than leaves qualitatively and quantitatively, thereby clouding the leaf signal
9 (Jansen et al., 2006; Martelanc et al., 2007); ii) young root input at depth may disrupt the
10 chronology of a reconstruction in time by overprinting the originally present signal (Lavrieux
11 et al., 2012; Gocke et al., 2014).

12 The main discussion with respect to the influence of root input in wax lipid based
13 environmental reconstructions from soils therefore revolves around assessing the relative
14 importance of root versus aboveground biomass input. Since plant wax lipids reside on the
15 outer parts of leaves and roots, relative surface area and bioproduction are important. On a
16 global scale root surface area is almost always calculated to be higher than leaf surface area,
17 more than an order of magnitude so in grasslands (Jackson et al., 1997). However, in many
18 cases the absolute amount of lipids present per mass unit of root material is an order of
19 magnitude or more lower than on leaf material (Marseille et al., 1999; Zech et al., 2011). The
20 concurrent influence of such various factors makes the impact of root input a complex issue
21 that still is subject of scientific debate (Wiesenber and Gocke, 2013).

22 Given that different factors will have a highly variable influence in different situations, no
23 general conclusion can be drawn. In some situations, the influence of roots as input pathway
24 of extractable lipids to be used as molecular proxy may be limited (Quenea et al., 2006). In
25 others, root input may be dominant (Van Mourik and Jansen, 2013). In addition, the relative
26 degree of influence may vary greatly with depth leading to the concurrent presence of leaf
27 lipid dominated and root lipid dominated zones at different depths in the same profile (Angst
28 et al., 2016).

29 **3.3 Microbial input**

30 In general, microbial biomass can be a significant source of soil organic matter, with up to
31 40% transformed to non-living soil organic matter, but is turned over much faster than plant
32 residues (Miltner et al., 2012). Focussing specifically on lipids, isotopic studies show that

1 90% of fatty acids of microbial origin are turned over rapidly after cell death, whereas the
2 majority of biomass derived residual bulk C was stabilized in the non-living soil organic
3 matter pool (Kindler et al., 2009). In spite of the potentially shorter residence time, a
4 concurrent faster production makes that microorganism derived molecules are a factor to
5 consider when applying molecular proxies in soils except when such proxies are used to
6 study microbial input.

7 For wax lipids generally *n*-alkanes, *n*-alcohols and *n*-fatty acids with longer chain lengths
8 ($>C_{20}$) and a distinct odd-over-even (*n*-alkanes) or even-over-odd (*n*-alcohols and *n*-fatty
9 acids) chain length predominance are considered to be higher plant derived, whereas shorter
10 chain length homologues are considered to be predominantly of microbial origin (Eglinton et
11 al., 1962; Dinel et al., 1990). Moreover, with the exception of an abundance of C_{16} and C_{18} *n*-
12 alcohol and *n*-fatty acid, such microbial lipids are described to lack a specific chain length
13 predominance (Stevenson, 1994; Lichtfouse et al., 1995). However, several researchers
14 challenge the observation that higher chain length lipids in soils are exclusively of higher
15 plant origin. Microorganisms have been shown capable of synthesizing higher chain length
16 straight-chain lipids, albeit usually to a limited extent (Ladygina et al., 2006; Nguyen Tu et
17 al., 2011). Jambu et al. (1978) indicated that while chain lengths $>C_{20}$ in soils are
18 predominantly plant derived, particularly in acidic soils fungi may contribute such lipids as
19 well. Furthermore, Marseille et al. (1999) observed an abundance of C_{25} and C_{27} *n*-alkanes
20 that they also attribute to *in-situ* production by fungi. This was confirmed for an agricultural
21 soil by Quenea et al. (2006), who observed old forest and fungi derived odd long-chain
22 alkanes based on compound-specific isotope analysis and lipid distribution patterns. Possible
23 pathways of *in-situ* genesis of *n*-alkanes in soils are reduction of *n*-alkenes and *n*-alcohols,
24 decarboxylation of bacterial *n*-fatty acids as well as degradation of biopolymers containing
25 aliphatic side chains (Lichtfouse et al., 1998). Nevertheless, based on the large number of
26 studies where typical higher plant derived patterns of lipids are reported and used in soils
27 (Table 1), including indicative ACL and CPI values, microbial input of longer chain length
28 straight-chain lipids generally does not seem to be a major factor compared to direct plant
29 derived input in the topsoil (Jansen and Nierop, 2009; Bai et al., 2009). In contrast, for
30 steroids and triterpenoids such as camposterol, stigmasterol and lupeol, microbial input in
31 soils can be considerable (Naafs et al., 2004). As another example, arbuscular mycorrhizal
32 fungi derived β -sitosterol is by far the most abundant sterol identified in soils (Grandmougin-
33 Ferjani et al., 1999).

1 With respect to cutin and suberin monomers, *in-situ* genesis in soils through microbial
2 transformation of other precursor molecules can be an issue. For instance, oxidation of free
3 fatty acids could be a source of ω -hydroxy fatty acids, whereas microbial β -oxidation of
4 unsaturated fatty acids and/or mid-chain hydroxy fatty acids may be a source of α,ω -
5 alkanedioic acids, thus clouding the cutin/suberin signal (Naafs et al., 2004)

6 **3.4 Airborne input**

7 In addition to *in-situ* production and incorporation of soil lipids, airborne input must be
8 considered. The distance of airborne transport of larger constituents such as leaves can be
9 expected to be limited. However, smaller physical forms containing lipids, such as aerosols
10 and dust particles, can travel substantial distances (Conte and Weber, 2002) thus causing
11 input of alien molecules that may influence the local signal. This is of special importance
12 where airborne sediments with low content of organic matter are investigated as in these
13 environments already low inputs of foreign organic matter can significantly influence the
14 molecular proxies. Liu et al. (2007) showed that the $\delta^{13}\text{C}$ signature of sediment organic
15 carbon in loess deposits of the western Chinese Loess Plateau corresponds to that of dust
16 sources instead of the local vegetation. While in a study of marine sediment cores along the
17 Southwest African continental margin, Rommerskirchen et al. (2003) revealed that aerosol
18 derived input of higher chain-length *n*-alkanes and *n*-alcohols provides a significant signal,
19 the $\delta^{13}\text{C}$ signal of which corresponded well with continental C3/C4 plant distribution and
20 fossil pollen input when prevailing wind patterns were taken into account. However, in this
21 case, in contrast to vegetated soils, there was no *in-situ* input from higher plant vegetation.

22 Aerosol studies above plant canopies revealed a certain relationship of the plant wax
23 composition of the present plants, but significant differences from the biomass were observed
24 for *n*-alkanols and *n*-alkanes (Conte et al., 2003). While the wax molecular composition was
25 not directly linked between biomass and aerosol, especially the compound-specific isotope
26 composition ($\delta^{13}\text{C}$) revealed a closer link of both. For Bermuda aerosols it could be shown
27 that the aerosol compound-specific isotope composition of *n*-alcohols and *n*-acids reflects the
28 plant wax compound-specific isotope composition as well as the course of the bioproductivity
29 during the different seasons of the years (Conte and Weber, 2002).

30 In a study of PM_{10} aerosols collected during a winter season in Baoji, China, Xie et al. (2009)
31 found concentrations of $\text{C}_{21}\text{-C}_{33}$ *n*-alkanes in the 10–600 ng/m^3 range as a result of intensive
32 coal burning in the region. In a two year study of PM_{10} and $\text{PM}_{2.5}$ aerosols in urban sites in

1 Nanjing, Wang et al. (2006) observed C₂₁-C₃₃ *n*-alkanes present in the 10-100 ng/m³ range.
2 Concentrations of C₂₁-C₃₅ *n*-alkanes in PM₁₀ aerosols in urban sites in Beijing sampled in all
3 seasons were even lower (Zhou et al., 2009). In this study also *n*-fatty acids and hopanes were
4 considered, but were found in small concentrations that, together with the *n*-alkanes,
5 constituted ca. 3% of the total organic matter in the aerosols (Zhou et al., 2009). In all studies,
6 the straight chain lipid patterns lacked the odd-over-even chain length predominance typical
7 of higher plants (Wang et al., 2006; Xie et al., 2009; Zhou et al., 2009). Nevertheless, in a
8 large survey a clear odd-over-even chain length predominance was found in spite of such
9 potentially intense aerosol derived input (Rao et al., 2011). This indicates that even in areas
10 under large aerosol deposition, as in the case of intensive anthropogenic pollution associated
11 with fossil fuel burning, the effect of aerosol deposition on *n*-alkane patterns in the soil is
12 limited as a result of the large *in-situ* input via roots and leaves of the local vegetation.

13 **3.5 Conclusions and implications regarding input pathway related variability**

14 The diversity of input pathways offers both opportunities and limitations for the use of
15 molecular proxies. Opportunities arise when different sources can be elucidated using
16 molecular proxies. Examples are the differences in molecular composition of leaf and root
17 waxes as used to differentiate between their respective influences, or when aerosol associated
18 lipids are used for source apportionment of terrestrial plant input in terrestrial or marine
19 sediments. This can help budgeting organic matter input of different sources and thus
20 improve (paleo-)environmental interpretations and reconstructions. Limitations are posed
21 when input through multiple pathways clouds the linkage of a (set of) molecule(s) to a certain
22 source for which it is to serve as proxy. For instance when linking a suite of straight-chain
23 lipids to a particular group of plants at a certain site. When looking at the application of
24 molecular proxies in soils, in particular the assessment of the influence of root derived input
25 is a challenge that is not always acknowledged. The significance of root derived organic
26 matter in soils and terrestrial sediments has been neglected for decades and has only been
27 recently highlighted (Rasse et al., 2005; Rumpel and Koegel-Knabner, 2011). More research
28 attention is needed to pinpoint how large possible interferences are and how the potential can
29 be to compensate for them, e.g. through modelling approaches. For instance, the VERHIB
30 model was designed to unravel the mixed *n*-alkane, *n*-alcohol and/or *n*-fatty acid signal
31 observed in soils into the most likely combination of plant groups responsible for the original

1 lipid input, treating leaves and roots explicitly as separate entities (Jansen et al., 2010). This
2 might form a starting point to disentangle leave and root derived lipid input.
3 Although the aerosol studies so far provide useful information that plant wax components are
4 transported via aerosols to remote places, other factors like degradation during transport and
5 integration of regional vegetation patterns may hamper direct source-to-sink relationship of
6 airborne molecular markers. Nevertheless the overall impact of aerosol borne molecules on
7 molecular proxy based reconstructions seems to be limited whenever the total abundance in
8 the soil is high.

9

10 **4 Transformations and turnover in soil**

11 Transformations and turnover of soil organic matter are an important study area in their own
12 right (Kögel-Knabner, 2002; Von Lützow et al., 2008). Important in the context of the
13 application of molecular proxies is the recent paradigm shift to the attribution of external
14 factors as drivers of soil organic matter turnover rates as opposed to inherent recalcitrance
15 related to molecular structure (Schmidt et al., 2011; Lehmann and Kleber, 2015). Coupled to
16 this are indications that microbial recycling of organic matter upon entering the soil
17 decouples the molecules from their biological sources (Miltner et al., 2012; Gleixner, 2013).
18 Here, we focus on the effects of (differences in) transformations/degradation of molecules in
19 soils for their use as molecular proxies. This includes transformations during the stages of
20 senescence or litter and covers attempts to estimate successive degradation processes of
21 organic matter occurring after burial until stages of long-term preservation (see also Fig. 1).
22 All of the attempts dealing with incorporation and preservation of organic matter deal with
23 different assumptions and entail different problems in terms of uncertainties. Thus, in
24 dependency of the environmental conditions, assumptions that are relevant for incorporation
25 and burial of organic matter play a major role, as should the different aspects of degradation
26 and preservation. However, currently much uncertainty exists regarding the influences of
27 individual environmental and genetic factors concerning degradation and preservation.
28 Therefore, the following paragraphs only provide the first insights tackling these issues,
29 which need further attention in future research projects.

30 Molecular transformations and variations thereof of molecular proxies mostly offer
31 complicate application of molecular proxies. However, in some instances they may also offer
32 opportunities. For instance, *n*-alkanes can be degraded to *n*-methyl ketones through β -

1 oxidation (Chaffee et al., 1986; Ambles et al., 1993), which can be used to assess and trace *n*-
2 alkane degradation in soils (Jansen and Nierop, 2009). Similarly, the presence of certain *seco*-
3 acids formed through A-ring opening of 3-oxytriterpenoids under anaerobic conditions, may
4 be used as proxy for the occurrence of such anaerobic episodes (Jaffe et al., 1996), e.g. under
5 stagnant water conditions.

6 **4.1 Differences related to incorporation pathway**

7 The incorporation pathway (Fig. 1) may influence subsequent turnover of molecular proxies.
8 This includes (differences in) degradation during senescence and/or litter degradation stages,
9 e.g. due to different input shapes (like root vs. leaf) offer a different degree of physical
10 protection.

11 In a study of *Gingko biloba* leaf wax lipids during the senescence and litter stages, Nguyen
12 Tu et al. (2003) found limited degradation that did not affect the dominant chain lengths of
13 alkyl molecular proxies. When comparing different classes of wax lipids they found the *n*-
14 alkanes to be the most resistant to degradation, followed by the *n*-fatty acids and then the *n*-
15 alcohols (Nguyen Tu et al., 2003). Also, more in general, in a study of grassland and forest
16 soils, Otto and Simpson (2005) determined that characteristic patterns of wax lipids and
17 isoprenoids were preserved throughout the stages between fresh plant material and soil
18 organic matter. They also determined preferential enrichment of suberin with respect to cutin
19 monomers in particular in one of the grassland soils (Simpson et al., 2008). This indicated for
20 example the fact that the former is embedded in woody tissue while the latter is exposed on
21 leaf surfaces (Simpson et al., 2008) (see also 4.3.3).

22 When looking at bulk organic matter in soils, Rasse et al. (2005) estimated that the main
23 residence time of root derived organic matter is on average 2.4 times that of shoot derived
24 organic matter. When comparing cutin and suberin monomers, Andreetta et al. (2013)
25 described selective preservation of leaf derived monomers in the more acidic and dryer soil,
26 while in the more fertile soil root derived monomers were preferentially preserved. They
27 attributed the former to inhibited microbial degradation due to drought and acidity, and the
28 latter to protection within aggregates. In another study still small differences in degradation
29 of the same *n*-alkanes that derived from different plants were found, with a slower
30 degradation of *n*-alkanes derived from more woody roots (Nierop and Jansen, 2009),
31 although lipids were generally well preserved. Killops and Frewin (1994) reported that

1 persistency of plant cuticles protected their composite isoprenoids from degradation in
2 mangrove sediments. Similar preservation in soils is also perceivable.
3 More in general, Mambelli et al. (2011) observed root litter, including biomarkers, to be
4 selectively preserved with respect to needle litter, which was confirmed by Mendez-Millan et
5 al. (2010) for maize and wheat roots versus shoots. Using isotopic signatures, Mendez-Millan
6 et al. (2011) were able to quantify and subsequently compensate for such differences in
7 turnover rate. This further emphasizes the significance of root derived organic matter for
8 turnover determinations as already discussed by Wiesenbergs et al. (2004). In other words, the
9 relative abundance of roots and the uncertainties in terms of root related overprint in the
10 rhizosphere and rhizosphere extension entail large uncertainties and strong differences
11 between different plant species and environmental settings, especially at a molecular level.
12 Further research is required to enable extrapolations to or across ecosystem scales.

13 **4.2 Differences between different soil compartments**

14 When soils are used as archives of molecular proxies, mostly bulk samples are used and
15 replication per horizon or stratigraphic layer is often limited or absent. However, several
16 studies indicate that preservation of molecules used as proxies can differ between different
17 soil compartments (Flessa et al., 2008; Clemente et al., 2011; Griepentrog et al., 2014).
18 Depending on the research question this may pose a problem, for instance it might obscure
19 chronology when molecules are used as proxies to reconstruct changes over time.

20 Already Lichtfouse et al. (1998) showed that straight-chain lipids can become encapsulated in
21 larger humic polymers, thus being protected against degradation. In addition, physical
22 protection in (micropores of) aggregates and/or through association with clay minerals have
23 been identified as important pathways for stabilization of soil organic matter in general,
24 including molecules used as molecular proxies (Tonneyck et al., 2010). Using bulk and
25 compound-specific $\delta^{13}\text{C}$ analysis, Cayet and Lichtfouse (2001) showed that plant-derived *n*-
26 alkanes in a soil under maize cultivation varied in average age per particle size fraction, with
27 the C_{31} *n*-alkane from the 200-2000 μm fraction being significantly younger than that from the
28 50-200 μm and 0-50 μm fractions. A general trend of preferential preservation in smaller size
29 fractions, in particular the clay fraction, is also reported in other studies. For instance, Quenea
30 et al. (2004) and Flessa et al. (2008) observed longer turnover rates of soil organic matter in
31 smaller size fractions. Clemente et al. (2011) studied the preservation of long chain aliphatic
32 compounds in three soils with similar clay mineralogy but different carbon contents and

1 standing vegetation. Irrespective of these differences, they too found the aliphatic compounds
2 to be preferentially preserved in the silt and clay fractions, and again linked this to strong
3 interactions with the present clay minerals. In a recent study, Griepentrog et al. (2015, 2016)
4 confirmed the higher residence time of organic matter in small sized density fractions when
5 compared to macro-aggregates. This implies an improved preservation of organic matter
6 associated with higher density and thus mineral association when compared to organic matter
7 associated to lower density. However, physical fractionation techniques such as particle and
8 density fractionation have a potential of creating analytical artifacts, especially when
9 molecular proxies are investigated.

10 In addition, the effects of size or density fractions of soil on preservation of organic matter,
11 including molecular proxies, are not uniform. For instance, Höfle et al. (2013) found size and
12 density fraction related organic matter stabilization to be much less pronounced in the active
13 upper layer than in the deeper soil horizons. This points to selective preservation of organic
14 matter in the deeper soil because of more extensive aggregation and organo-mineral
15 association. In a study of volcanic ash soils, Stewart et al. (2011) did not find differences in
16 preservation of bulk soil organic matter in general or lipids in particular between different
17 size fractions. They attributed this lack of differentiation to the presence of a large proportion
18 of the soil organic matter that was not associated with mineral components as these were
19 already saturated with previously incorporated soil organic matter (Stewart et al., 2011).

20 In general a combination of physical protection and sorptive preservation seems to be
21 responsible for the observed differences (or lack thereof) in preservation of organic molecules
22 in soils between different size or density fractions. This is corroborated amongst others by a
23 study by Guggenberger et al. (1995), where they observed differences in the preservation of
24 soil organic matter derived from tropical pastures compared to the preceding native savannah
25 vegetation. They attributed this effect to a difference in interactions with the mineral phase,
26 leading to physical protection of soil organic matter and molecular proxies contained therein.
27 Similarly, differences in turnover rates between forest and grass derived molecules after land
28 use change have been observed as a result of saturation of the adsorption sites on the mineral
29 phase (Hamer et al., 2012).

30 In addition to heterogeneity in the effects of interactions with the mineral phase on
31 preservation of molecular proxies, analytical artifacts cannot be completely excluded when
32 physical and chemical fractionation techniques are applied to separate particle size or density
33 fractions. To date systematic investigations addressing these issues are lacking, which

- 1 hampers the drawing of general conclusions with respect to processes that are relevant e.g.
- 2 under different climates and for different soil mineralogical composition.

3 **4.3 Selective preservation within or between classes of molecules**

4 Turnover rates of molecular proxies do not only vary between different compartments, but
5 may also vary within the same compartment; between and even within different (classes of)
6 molecules (Dinel et al., 1990; Bull et al., 2000; Amelung et al., 2008). For instance, Feng and
7 Simpson (2007) found preferential enrichment of straight-chain lipids as well as cutin and
8 suberin monomers with increasing depth with respect to bulk soil organic matter. In contrast,
9 in a study of grain-maize and silage-maize cropped soils Wiesenberg et al. (2004) found
10 turnover times in the sequence bulk soil organic matter > *n*-alkanes > *n*-fatty acids, with rate
11 differences that varied substantially between the two cultivations. The differences could be
12 related to the different biomass input on the one hand and large amount of lignite dust and the
13 low biomass input on the other hand, thus hampering degradation at this site. The faster
14 turnover of fatty acids than alkanes as also confirmed by Wiesenberg et al. (2008a) and
15 Griebentrog et al. (2015; 2016). In contrast, it may also offer opportunities to apply such
16 differences between molecular classes and their response to external factors to trace
17 transformations and input of organic matter in soils (Feng and Simpson, 2007).

18 An important issue with respect to the application of straight-chain lipids as molecular
19 proxies is also preferential degradation of certain chain lengths within a certain class of
20 molecules, as molecular ratios of various (higher) chain lengths are often used as proxies for
21 certain vegetation types (see paragraph 2). This issue is addressed in the following
22 paragraphs.

23 **4.3.1 Straight-chain lipids**

24 Already Moucawi et al. (1981) reported decreasing degradation rates with larger chain-length
25 for *n*-alkanes in soils, which was confirmed by Lichtfouse et al. (1998) who determined a
26 higher resistance of long straight-chain biopolymers in soil compared to their shorter chain
27 counterparts. However, such preferential degradation was found in agricultural and acidic
28 soils and in the absence of Fe(OH)₃ (Moucawi et al., 1981; Lichtfouse et al., 1998). Similar
29 results were found for other lipid classes as well (Moucawi et al., 1981). More recently,
30 several authors also indicate that such preferential degradation can occur in other soils
31 (Jansen and Nierop, 2009; Cui Jingwei et al., 2010). However, the extent of the effect

1 questions the suitability of the compounds in question as molecular proxies. For instance,
2 Jansen and Nierop (2009) found the overall effect of preferential degradation on higher plant
3 derived *n*-alkane patterns in soils to be small and not of influence for their use as vegetation
4 proxy. Similarly, Lei et al. (2010) determined that in spite of strong evidence of microbial
5 degradation, relative abundance of long-chain *n*-alkanes could still be used to distinguish
6 coniferous from broadleaf tree input in soils.
7 Within the group of straight-chain lipids, overall degradation rates of subclasses have been
8 found to vary depending on soil physicochemical properties. For instance, *n*-alkanes have
9 been reported to be better preserved in alkaline soils, whereas *n*-fatty acids accumulate in
10 more acidic soils (Simpson et al., 2008).

11 **4.3.2 Isoprenoids**

12 Isoprenoids are reported to have varying turnover rates both under oxic and anoxic conditions
13 in soils (Jaffe et al., 1996; Amelung et al., 2008). Generally, sterols, diterpenes and
14 pentacyclic triterpenes are reported to be turned over rapidly as compared to straight-chain
15 lipids in grassland as well as forest soils, hindering their application as molecular proxies for
16 their sources (Bull et al., 2000; Naafs et al., 2004; Jansen et al., 2007). However, Otto and
17 Simpson (2005) observed the exact opposite trend, indicating a strong environmental control
18 on the relative transformation rate of different classes of components. In an incubation study
19 of derived triterpenols, Koch et al. (2005) highlighted marked differences between
20 degradation rates of individual triterpenols, leading to a sharp relative increase in the
21 proportion of taraxerol with respect to the other triterpenols.

22 In addition, Δ^5 sterols are transferred both aerobically and anaerobically to 5α - and 5β -stanols
23 (De Leeuw and Baas, 1986), which are reported to persist much longer in soils than their
24 precursors (Bull et al., 2000). Simpson et al. (2008) suggest to use the ratio of precursor
25 sterols to their stanol and stanone degradation products as measure for their degree of
26 degradation.

27 **4.3.3 Cutin and suberin monomers**

28 Bull et al (2000) observed different degradation rates for different components within the
29 classes of free and ester bound lipids, depending on soil chemical and physical composition.
30 However, Otto and Simpson (2006) found degradation of cutin and suberin to take place
31 without preference for specific constituents. In general, Quenea et al. (2004) described cutin

1 and suberin to be more resistant to degradation than free lipids residing in the same particle
2 size fraction.

3 In a study of hydrolysable lipids using compound-specific ^{13}C analysis, Feng et al. (2010)
4 described mean turnover times for cutin and suberin derived ester-bound lipids of 32-34
5 years. While slower than for bulk soil organic matter in this system, it was much shorter than
6 anticipated, leading them to conclude that a large portion of cutin and suberin derived
7 compounds reside in the non-hydrolysable fraction (Feng et al., 2010).

8 As mentioned earlier (section 4.1), Simpson et al. (2008) observed preferential enrichment of
9 suberin monomers with respect to cutin monomers, which was confirmed by Mendez-Millan
10 et al. (2010). In addition to the physical location of suberin versus cutin as potential cause,
11 Simpson et al. (2008) suggested a higher resistance of suberin to degradation than cutin
12 owing to a larger content of phenolic units in the former. Mendez-Millan et al. (2010) argued
13 that microbial degradation, potentially influenced by the access to degradation sites are other
14 factors influencing the slower turnover of suberin vs. cutin monomers. Regardless of the
15 mechanism, the general difference in root vs. aboveground biomass derived suberin and
16 cutin monomers and their individual turnover would clearly influence the application of the
17 cutin/suberin monomer ratio as proxy for leaf vs. root input.

18 **4.4 Conclusions and implications regarding differences in transformations
19 and turnover of molecular proxies in soils**

20 Although available data is limited, it is clear that degradation of organic matter at a molecular
21 level in terrestrial archives such as soils, paleosols and sediments can significantly influence
22 the applicability of molecular proxies. As a result it seems useful to explore the possibility for
23 a correction to improve the determination of paleovegetation and vegetation shifts and other
24 paleoenvironmental information like paleotemperature and pH. The number of published
25 approaches to compensate for the influence of degradation on paleoenvironmental
26 reconstructions is still small. Zech et al. (2009) provided a simple two endmember model
27 approach to improve paleovegetation reconstruction based on molecular ratios of different
28 long-chain *n*-alkanes (C₂₇-C₃₃). Assuming that forest vegetation is dominated by *n*-C₂₇ alkane
29 and grass vegetation by *n*-C₃₁ and *n*-C₃₃ alkanes, high relative contributions of the respective
30 homologues of the assumed source vegetation are used as end-members. At the same time the
31 source vegetation is typically characterized by high odd-over-even predominance of long-
32 chain *n*-alkanes. On the other hand, soils reveal a low odd-over-even predominance and

1 abovementioned molecular ratios with smaller differences between the different vegetation
2 types. In theory, the degradation continuum from plant leaves to soils of the respective
3 vegetation type thus enable the identification of the degradation intensity of an unknown
4 sample, if the sample is mainly influenced by a single vegetation. If the unknown sample
5 does not plot on the degradation continuum, but between the different lines of different
6 vegetation types, the relative contribution of grass vs. tree derived vegetation might be
7 estimated and also corrected for the vegetation.

8 A slightly different approach was established by Buggle et al. (2010) who also used long-
9 chain *n*-alkane ratios and the odd-over-even predominance of alkanes for their correction.
10 While Zech et al. (2009) used correlations and then graphical-based reconstructions, Buggle
11 et al. (2010) used a calculation based approach. The degradation in the continuum from
12 recent soils is taken as an analogy and the slope of the regression line is multiplied with the
13 odd-over-even predominance and the addition of the intercept of a long-chain *n*-alkane ratio
14 in the crossplot of the ratio with the odd-over-even predominance. By moving the regression
15 line to an ancient sample set, the end of the regression line yields the former topsoil value of
16 the molecular ratio and odd-over-even predominance. Variation in the corrected long-chain *n*-
17 alkane ratio enable the assessment of fluctuations in palaeovegetation.

18 Both mentioned approaches rely on the general differentiation of grass vs. forest vegetation
19 based on long-chain *n*-alkane composition. As mentioned above such clear distinction of
20 vegetation types exclusively based on compounds deriving from one compound fraction such
21 as alkanes might be hampered by various factors such as variability within and between plant
22 species, thus leading to similar composition of e.g. alkane from coniferous trees and grass
23 plants (Maffei, 1996b; Maffei et al., 2004). Thus, such simple approaches might be
24 appropriate only in very well defined settings, where independent records such as pollen data
25 confirm the composition of specific plant assemblages determined by molecular proxies.

26 The expansion of approaches like the ones mentioned here to a broader range of molecular
27 proxies is required to receive more complete pictures and to acknowledge the different
28 turnover and degradation of different substance classes. However, the availability of datasets
29 on plant and soil chemical composition for substance classes other than the *n*-alkanes are
30 quite limited, hindering such expanding approaches. Thus, further surveys are required for
31 other molecular proxies than *n*-alkanes for a high diversity of plants and soils from different
32 climates. Afterwards, combined studies of more than one substance class enable improved
33 paleoenvironmental reconstructions, whereas cross-checking with other non-molecular

1 proxies, e.g. fossil pollen data, might be essential, especially if the paleorecord is targeted.
2 Also the extrapolation of such approaches to different environmental and climatic settings
3 might be limited as the effects of temperature, moisture, oxygen availability and others
4 influence the degradation of organic matter as discussed above. Consequently, proper
5 modelling approaches are required to assess not only palaeoenvironmental changes, but also
6 to acknowledge and identify degradation of organic matter at a molecular scale.

7

8 **5 General conclusions**

9 In this review we considered the three most important constraining factors for the application
10 of molecular proxies in soil science: i) variability in the molecular composition of plant
11 derived organic matter as a result of genetic or life stage variations or external environmental
12 factors; ii) variability in (relative contribution of) input pathways into the soil; and iii)
13 transformation and/or (selective) degradation of (some of) the molecules once present in the
14 soil. From the various studies done within and outside of soil science over the last decades
15 the following general picture emerges. All constraining factors considered can have a
16 significant influence on the applicability of molecular proxies in soil science. The degree of
17 influence of the constraining factors strongly depends on the type of molecular proxy as well
18 as the environmental context in which it is applied. In addition, the research question to be
19 addressed by application of the molecular proxy has a strong influence. A factor that poses a
20 constraining factor in one study might offer an opportunity in another. For instance microbial
21 degradation may constrain the application of molecular soil organic matter composition as
22 palaeo-vegetation proxy, but may offer the opportunity to study molecular transformation of
23 soil organic matter in the context of a study of soil carbon cycling. Recently, the first
24 modelling approaches to potentially compensate for some of the constraining factors,
25 specifically variability in input pathways and degradation of molecular proxies once in the
26 soil, have started to emerge. Based on the previous we strongly recommend that the potential
27 constraining factors are always explicitly considered whenever studies are planned in which
28 molecular proxies in soils play a role. This review may serve as starting point for gathering
29 the necessary information to decide, which constraining factors may play a role and how they
30 can be addressed best. At the same time, it became clear from available literature that much
31 information about the mentioned constraining factors is still lacking. In particular for
32 molecular classes other than *n*-alkanes, systematic information is often very scarce. We
33 therefore strongly appeal to the soil scientific community to address this knowledge gap. Also

1 for this our review may serve as a starting point with future applicability in soil science and
 2 furthermore in paleopedology.

3

4 **References**

5 Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO₂
 6 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy,
 7 *New Phytol.*, 165, 351-371, 2005.

8 Ambles, A., Jambu, P., Jacquesy, J. C., Parlanti, E. and Secouet, B.: Changes in the ketone
 9 portion of lipidic components during the decomposition of plant debris in a
 10 hydromorphic forest Podzol, *Soil Sci.*, 156, 49-56, 1993.

11 Amelung, W., Brodowski, S., Sandhage-Hofmann, A. and Bol, R.: Combining biomarker
 12 with stable isotope analyses for assessing the transformation and turnover of soil organic
 13 matter, *Adv. Agron.*, Vol 100, 100, 155-250, 2008.

14 Andersson, R. A., Kuhry, P., Meyers, P., Zebuhr, Y., Crill, P. and Morth, M.: Impacts of
 15 paleohydrological changes on *n*-alkane biomarker compositions of a Holocene peat
 16 sequence in the eastern European Russian Arctic, *Org. Geochem.*, 42, 1065-1075, 2011.

17 Andreetta, A., Dignac, M. and Carnicelli, S.: Biological and physico-chemical processes
 18 influence cutin and suberin biomarker distribution in two Mediterranean forest soil
 19 profiles, *Biogeochemistry*, 112, 41-58, 2013.

20 Angst, G., John, S., Mueller, C.W., Kögel-Knabner, I. and Rethemeyer, J.: Tracing the
 21 sources and spatial distribution of organic carbon in subsoils using a multi-biomarker
 22 approach, *Scientific Reports*, 29478, 2016.

23 Avato, P., Bianchi, G. and Mariani, G.: Epicuticular waxes of Sorghum and some
 24 compositional changes with plant age, *Phytochemistry*, 23, 2843-2846, 1984.

25 Ayari, A., Yang, H., Wiesenberg, G. L. B. and Xie, S.: Distribution of archaeal and bacterial
 26 tetraether membrane lipids in rhizosphere-root systems in soils and their implication for
 27 paleoclimate assessment, *Geochem. J.*, 47, 337-347, 2013.

28 Baas, M., Pancost, R., Van Geel, B. and Damste, J. S. S.: A comparative study of lipids in
 29 Sphagnum species, *Org. Geochem.*, 31, 535-541, 2000.

30 Bai, Y., Fang, X. M., Wang, Y. L., Kenig, F., Miao, Y. F. and Wang, Y. X.: Distribution of
 31 aliphatic ketones in Chinese soils: Potential environmental implications, *Org. Geochem.*,
 32 37, 860-869, 2006.

1 Bai, Y., Fang, X., Gleixner, G. and Mügler, I.: Effect of precipitation regime on δD values of
2 soil n-alkanes from elevation gradients – Implications for the study of paleo-elevation,
3 *Org. Geochem.*, 42, 838-845, 2011.

4 Bai, Y., Fang, X., Nie, J., Wang, Y. and Wu, F.: A preliminary reconstruction of the
5 paleoecological and paleoclimatic history of the Chinese Loess Plateau from the
6 application of biomarkers, *Palaeogeogr. Palaeocl.*, 271, 161-169, 2009.

7 Baker, E. A. and Hunt, G. M.: Developmental changes in leaf epicuticular waxes in relation
8 to foliar penetration, *New Phytol.*, 88, 731-747, 1981.

9 Bakht, J., Bano, A. and Dominy, P.: The role of abscisic acid and low temperature in
10 chickpea (*Cicer arietinum*) cold tolerance. II. Effects on plasma membrane structure and
11 function, *J. Exp. Bot.*, 57, 3707-3715, 2006.

12 Berke, M. A., Johnson, T. C., Werne, J. P., Grice, K., Schouten, S. and Sinninghe Damsté, J.
13 S.: Molecular records of climate variability and vegetation response since the Late
14 Pleistocene in the Lake Victoria basin, East Africa, *Quat. Sci. Rev.*, 55, 59-74, 2012.

15 Bettaieb, I., Bourgou, S., Wannes, W. A., Hamrouni, I., Limam, F. and Marzouk, B.:
16 Essential oils, phenolics, and antioxidant activities of different parts of cumin (*Cuminum
cuminum* L.), *J. Agric. Food Chem.*, 58, 10410-10418, 2010.

17 Birk, J. J., Dippold, M., Wiesenber, G. L. B. and Glaser, B.: Combined quantification of
18 faecal sterols, stanols, stanones and bile acids in soils and terrestrial sediments by gas
19 chromatography–mass spectrometry, *Journal of Chromatography A*, 1242, 1-10, 2012.

20 Bol, R., Eriksen, J., Smith, P., Garnett, M. H., Coleman, K. and Christensen, B. T.: The
21 natural abundance of ^{13}C , ^{15}N , ^{34}S and ^{14}C in archived (1923-2000) plant and soil
22 samples from the Askov long-term experiments on animal manure and mineral fertilizer,
23 *Rapid Commun. Mass Spectrom.*, 19, 3216-3226, 2005.

24 Bondada, B. R., Oosterhuis, D. M., Murphy, J. B. and Kim, K. S.: Effect of water stress on
25 the epicuticular wax composition and ultrastructure of cotton (*Gossypium hirsutum* L.)
26 leaf, bract, and boll, *Environ. Exp. Bot.*, 36, 61-69, 1996.

27 Brennan, C. W., Verhaak, R. G. W., McKenna, A., Campos, B., Noushmehr, H., Salama, S.
28 R., Zheng, S., Chakravarty, D., Sanborn, J. Z., Berman, S. H., Beroukhim, R., Bernard,
29 B., Wu, C., Genovese, G., Shmulevich, I., Barnholtz-Sloan, J., Zou, L., Vigesna, R.,
30 Shukla, S. A., Ciriello, G., Yung, W. K., Zhang, W., Sougnez, C., Mikkelsen, T.,
31 Aldape, K., Bigner, D. D., Van Meir, E. G., Prados, M., Sloan, A., Black, K. L.,
32 Eschbacher, J., Finocchiaro, G., Friedman, W., Andrews, D. W., Guha, A., Iacocca, M.,
33 O'Neill, B. P., Foltz, G., Myers, J., Weisenberger, D. J., Penny, R., Kucherlapati, R.,
34

1 Perou, C. M., Hayes, D. N., Gibbs, R., Marra, M., Mills, G. B., Lander, E., Spellman, P.,
2 Wilson, R., Sander, C., Weinstein, J., Meyerson, M., Gabriel, S., Laird, P. W., Haussler,
3 D., Getz, G., Chin, L. and TCGA Res Network: The somatic genomic landscape of
4 glioblastoma, *Cell*, 155, 462-477, 2013.

5 Buggle, B., Wiesenberg, G. L. B. and Glaser, B.: Is there a possibility to correct fossil n-
6 alkane data for postsedimentary alteration effects?, *Appl. Geochem.*, 25, 947-957, 2010.

7 Bull, I. D., Nott, C. J., Van Bergen, P. F., Poulton, P. R. and Evershed, R. P.: Organic
8 geochemical studies of soils from the Rothamsted Classical Experiments - VI. The
9 occurrence and source of organic acids in an experimental grassland soil, *Soil Biology &*
10 *Biochemistry*, 32, 1367-1376, 2000.

11 Bull, I. D., Simpson, I. A., Dockrill, S. J. and Evershed, R. P.: Organic geochemical evidence
12 for the origin of ancient anthropogenic soil deposits at Tofts Ness, Sanday, Orkney, *Org.*
13 *Geochem.*, 30, 535-556, 1999.

14 Bush, R. T. and McInerney, F. A.: Leaf wax n-alkane distributions in and across modern
15 plants: Implications for paleoecology and chemotaxonomy, *Geochim. Cosmochim. Acta*,
16 117, 161-179, 2013.

17 Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E. and Schulze, E. D.:
18 Maximum rooting depth of vegetation types at the global scale, *Oecologia*, 108, 583-
19 595, 1996.

20 Castañeda, I. S. and Schouten, S.: A review of molecular organic proxies for examining
21 modern and ancient lacustrine environments, *Quat. Sci. Rev.*, 30, 2851-2891, 2011.

22 Cayet, C. and Lichtfouse, E.: $\delta^{13}\text{C}$ of plant-derived *n*-alkanes in soil particle-size fractions,
23 *Org. Geochem.*, 32, 253-258, 2001.

24 Chaffee, A. L., Hoover, D. S., Johns, R. B. and Schweighardt, F. K.: Biological markers
25 extractable from coal, in: *Biological markers in the sedimentary record*, Johns, R. B.
26 (Ed.), Elsevier, Amsterdam, 311-345, 1986.

27 Clemente, J. S., Simpson, A. J. and Simpson, M. J.: Association of specific organic matter
28 compounds in size fractions of soils under different environmental controls, *Org.*
29 *Geochem.*, 42, 1169-1180, 2011.

30 Clemente, Z., Castro, V. L. S. S., Moura, M. A. M., Jonsson, C. M. and Fraceto, L. F.:
31 Toxicity assessment of TiO_2 nanoparticles in zebrafish embryos under different exposure
32 conditions, *Aquat. Toxicol.*, 147, 129-139, 2014.

1 Concheri, G., Bertoldi, D., Polone, E., Otto, S., Larcher, R. and Squartini, A.: Chemical
2 elemental distribution and soil DNA fingerprints provide the critical evidence in murder
3 case investigation, *Plos One*, 6, e20222, 2011.

4 Conte, M. H. and Weber, J. C.: Plant biomarkers in aerosols record isotopic discrimination of
5 terrestrial photosynthesis, *Nature*, 417, 639-641, 2002.

6 Conte, M. H., Weber, J. C., Carlson, P. J. and Flanagan, L. B.: Molecular and carbon Isotopic
7 composition of leaf wax in vegetation and aerosols in a northern prairie ecosystem,
8 *Oecologia*, 135, 67-77, 2003.

9 Conte, P., Spaccini, R., Chiarella, M. and Piccolo, A.: Chemical properties of humic
10 substances in soils of an Italian volcanic system, *Geoderma*, 117, 243-250, 2003.

11 Cowlishaw, M. G., Bickerstaffe, R. and Young, H.: Epicuticular wax of four species of
12 *Chionochloa*, *Phytochemistry*, 22, 119-124, 1983.

13 Cui Jingwei, Huang Junhua, Meyers, P. A., Huang Xianyu, Li Jingjing and Liu Wengui:
14 Variation in solvent-extractable lipids and *n*-alkane compound-specific carbon isotopic
15 compositions with depth in a Southern China karst area Soil, *J. Earth Sci.*, 21, 382-391,
16 2010.

17 Curiale, J. A.: A review of the occurrences and causes of migration-contamination in crude
18 oil, *Org. Geochem.*, 33, 1389-1400, 2002.

19 D'Anjou, R. M., Bradley, R. S., Balascio, N. L. and Finkelstein, D. B.: Climate impacts on
20 human settlement and agricultural activities in northern Norway revealed through
21 sediment biogeochemistry, *P. Natl Acad. Sci. USA*, 2012.

22 De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J., Schouten, S. and Sinninghe Damsté, J. S.:
23 Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in
24 soils: Implications for palaeoclimate reconstruction, *Geochim. Cosmochim. Acta*, 141,
25 97-112, 2014.

26 De Leeuw, J. W. and Baas, M.: Early-stage diagenesis of steroids, in: *Biological markers in*
27 *the sedimentary record*, Johns, R. B. (Ed.), Elsevier, Amsterdam, 101-123, 1986.

28 Diefendorf, A.F. and Freimuth, E.J.: Extracting the most from terrestrial plant-derived *n*-alkyl
29 lipids and their carbon isotopes from the sedimentary record: A review, *Org. Geochem.*
30 103, 1-21, 2017.

31 Dignac, M.-F., Bahri, H., Rumpel, C., Rasse, D. P., Bardoux, G., Balesdent, J., Girardin, C.,
32 Chenu, C. and Mariotti, A.: ^{13}C natural abundance as a tool to study the dynamics of
33 lignin monomers in soil: an appraisal at the Closeaux experimental field (France),
34 *Geoderma*, 128, 3-17, 2005.

1 Dinel, H., Schnitzer, M. and Meyhus, G. R.: Soil lipids: Origin, nature, content,
 2 decomposition, and effect on soil physical properties., in: Soil Biochemistry, Bollag, J.
 3 M. and Stotzky, G. (Eds.), Marcel Dekker Inc., New York, 397-429, 1990.

4 Dove, H., Mayes, R. and Freer, M.: Effects of species, plant part, and plant age on the n-
 5 alkane concentrations in the cuticular wax of pasture plants., - Aust. J. Agric. Res., 47,
 6 1333-1347, 1996.

7 Dyson, W. G. and Herbin, G. A.: Variation in leaf wax alkanes in cypress trees grown in
 8 Kenya, Phytochemistry, 9, 585-589, 1970.

9 Eckmeier, E. and Wiesenberg, G. L. B.: Short-chain n-alkanes (C_{16-20}) in ancient soil are
 10 useful molecular markers for prehistoric biomass burning, J. Arch. Sci., 36, 1590-1596,
 11 2009.

12 Eganhouse, R. P.: Molecular markers and environmental organic geochemistry: An overview,
 13 in: ACS Symposium Series 671: Molecular Markers in Environmental Geochemistry,
 14 Eganhouse, R. P. (Ed.), American Chemical Society, Washington, USA, 1-20, 1997.

15 Eglinton, G., Gonzalez, A. G., Hamilton, R. J. and Raphael, R. A.: Hydrocarbon constituents
 16 of the wax coatings of plant leaves: A taxonomic survey, Phytochemistry, 1, 89-102,
 17 1962.

18 Eglinton, G., Hamilton, R. J. and Martin-Smith, M.: The alkane constituents of some New
 19 Zealand plants and their possible taxonomic implications, Phytochemistry, 1, 137-145,
 20 1962.

21 Ernst, N., Peterse, F., Breitenbach, S. F. M., Syiemlieh, H. J. and Eglinton, T. I.: Biomarkers
 22 record environmental changes along an altitudinal transect in the wettest place on Earth,
 23 Org. Geochem., 60, 93-99, 2013.

24 FAO: Guidelines for soil description - 4th edition, Food and Agricultural Organization of the
 25 United Nations, Rome, Italy., 2006.

26 Feng, X. and Simpson, M. J.: The distribution and degradation of biomarkers in Alberta
 27 grassland soil profiles, Org. Geochem., 38, 1558-1570, 2007.

28 Feng, X., Xu, Y., Jaffé, R., Schlesinger, W. H. and Simpson, M. J.: Turnover rates of
 29 hydrolysable aliphatic lipids in Duke Forest soils determined by compound specific ^{13}C
 30 isotopic analysis, Org. Geochem., 41, 573-579, 2010.

31 Flessa, H., Amelung, W., Helfrich, M., Wiesenberg, G. L. B., Gleixner, G., Brodowski, S.,
 32 Rethemeyer, J., Kramer, C. and Grootes, P. M.: Storage and stability of organic matter
 33 and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A
 34 synthesis, J. Plant Nutr. Soil Sc., 171, 36-51, 2008.

1 Frostegard, A. and Bååth, E.: The use of phospholipid fatty acid analysis to estimate bacterial
 2 and fungal biomass in soil, *Biol. Fertility Soils*, 22, 59-65, 1996.

3 Gleixner, G.: Soil organic matter dynamics: a biological perspective derived from the use of
 4 compound-specific isotopes studies, *Ecol. Res.*, 28, 683-695, 2013.

5 Gocke, M. I., Kessler, F., Van Mourik, J. M., Jansen, B. and Wiesenberg, G. L. B.: Paleosols
 6 can promote root growth of the recent vegetation – a case study from the sandy soil-
 7 sediment sequence Rakt, Netherlands, *SOIL*, under review, 2015.

8 Gocke, M., Kuzyakov, Y. and Wiesenberg, G. L. B.: Differentiation of plant derived organic
 9 matter in soil, loess and rhizoliths based on *n*-alkane molecular proxies, *Biogeochemistry*, 112, 23-40, 2013.

10 Gocke, M., Peth, S. and Wiesenberg, G. L. B.: Lateral and depth variation of loess organic
 11 matter overprint related to rhizoliths — Revealed by lipid molecular proxies and X-ray
 12 tomography, *Catena*, 112, 72-85, 2014.

13 Grandmougin-Ferjani, A., Dalpé, Y., Hartmann, M., Laruelle, F. and Sancholle, M.: Sterol
 14 distribution in arbuscular mycorrhizal fungi, *Phytochemistry*, 50, 1027-1031, 1999.

15 Griepentrog, M., Bodé, S., Boeckx, P., Hagedorn, F., Heim, A. and Schmidt, M. W. I.:
 16 Nitrogen deposition promotes the production of new fungal residues but retards the
 17 decomposition of old residues in forest soil fractions, *Global Change Biol.*, 20, 327-340,
 18 2014.

19 Griepentrog, M., Bodé, S., Boeckx, P. and Wiesenberg, G.L.B.: The fate of plant wax lipids
 20 in a model forest ecosystem under elevated CO₂ concentration and increased nitrogen
 21 deposition, *Org. Geochem.*, 98, 131-140, 2016.

22 Griepentrog, M., Eglinton, T. I., Hagedorn, F., Schmidt, M. W. I. and Wiesenberg, G. L. B.:
 23 Interactive effects of elevated CO₂ and nitrogen deposition on fatty acid molecular and
 24 isotope composition of above- and belowground tree biomass and forest soil fractions,
 25 *Global Change Biol.*, 21, 473-486, 2015.

26 Guggenberger, G., Zech, W. and Thomas, R. J.: Lignin and carbohydrate alteration in
 27 particle-size separates of an Oxisol under tropical pastures following native savanna,
 28 *Soil Biol. Biochem.*, 27, 1629-1638, 1995.

29 Gülg, P. G. and Boor, G.: Seasonal variations in epicuticular wax ultrastructures of *Quercus*
 30 *robur* leaves, *Z. Naturforsch. C*, 47, 807-814, 1992.

31 Gülg, P. G. and Muller, E.: Seasonal variation in the composition of epicuticular waxes of
 32 *Quercus robur* leaves, *Z. Naturforsch. C*, 47, 800-806, 1992.

1 Gülg, P. G., Muller, E. and Prasad, R. B. N.: Developmental and seasonal variations in the
2 epicuticular waxes of *Tilia tomentosa* leaves, *Phytochemistry*, 30, 769-773, 1991.

3 Hamer, U., Rumpel, C. and Dignac, M.-F.: Cutin and suberin biomarkers as tracers for the
4 turnover of shoot and root derived organic matter along a chronosequence of Ecuadorian
5 pasture soils, *Eur. J. Soil Sci.*, 63, 808-819, 2012.

6 Hamrouni, I., Ben Salah, H. and Marzouk, B.: Effects of water-deficit on lipids of safflower
7 aerial parts, *Phytochemistry*, 58, 277-280, 2001.

8 Hauteville, Y., Michels, R., Malartre, F. and Trouiller, A.: Vascular plant biomarkers as
9 proxies for palaeoflora and palaeoclimatic changes at the Dogger/Malm transition of the
10 Paris Basin (France), *Org. Geochem.*, 37, 610-625, 2006.

11 Heim, A. and Schmidt, M. W. I.: Lignin turnover in arable soil and grassland analysed with
12 two different labelling approaches, *Eur. J. Soil Sci.*, 58, 599-608, 2007.

13 Hellgren, L. I. and Sandelius, A. S.: Age-dependent variation in membrane lipid synthesis in
14 leaves of garden pea (*Pisum sativum* L.), *J. Exp. Bot.*, 52, 2275-2282, 2001.

15 Herbin, G. A. and Robins, P. A.: Patterns of variation and development in leaf wax alkanes,
16 *Phytochemistry*, 8, 1985-1998, 1969.

17 Herbin, G. A. and Robins, P. A.: Studies on plant cuticular waxes—I: The chemotaxonomy
18 of alkanes and alkenes of the genus *Aloe* (Liliaceae), *Phytochemistry*, 7, 239-255, 1968.

19 Herbin, G. A. and Sharma, K.: Studies on plant cuticular waxes—V. The wax coatings of
20 pine needles: A taxonomic survey, *Phytochemistry*, 8, 151-160, 1969.

21 Höfle, S., Rethemeyer, J., Mueller, C. W. and John, S.: Organic matter composition and
22 stabilization in a polygonal tundra soil of the Lena Delta, *Biogeosciences*, 10, 3145-
23 3158, 2013.

24 Huang, X., Wang, C., Zhang, J., Wiesenberg, G. L. B., Zhang, Z. and Xie, S.: Comparison of
25 free lipid compositions between roots and leaves of plants in the Dajiuju Peatland,
26 central China, *Geochem. J.*, 45, 365-373, 2011.

27 Huang, Y., Bol, R., Harkness, D. D., Ineson, P. and Eglinton, G.: Post-glacial variations in
28 distributions, ^{13}C and ^{14}C contents of aliphatic hydrocarbons and bulk organic matter in
29 three types of British acid upland soils, *Org. Geochem.*, 24, 273-287, 1996.

30 Huang, Y., Eglinton, G., Ineson, P., Bol, R. and Harkness, D. D.: The effects of nitrogen
31 fertilisation and elevated CO_2 on the lipid biosynthesis and carbon isotopic
32 discrimination in birch seedlings (*Betula pendula*), *Plant Soil*, 216, 35-45, 1999.

1 Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E. and Schulze, E. D.:
2 A global analysis of root distributions for terrestrial biomes, *Oecologia*, 108, 389-411,
3 1996.

4 Jackson, R. B., Mooney, H. A. and Schulze, E. D.: A global budget for fine root biomass,
5 surface area, and nutrient contents, *Proc. Natl. Acad. Sci. U. S. A.*, 94, 7362-7366, 1997.

6 Jaffe, R., Elismer, T. and Cabrera, A. C.: Organic geochemistry of seasonally flooded rain
7 forest soils: Molecular composition and early diagenesis of lipid components, *Org.*
8 *Geochem.*, 25, 9-17, 1996.

9 Jambu, P., Fustec, E. and Jacquesy, R.: Les lipides des sols: nature, origine, evolution,
10 propriétés, *Science du Sol*, 4, 229-240, 1978.

11 Jansen, B. and Nierop, K. G. J.: Me-ketones in high altitude Ecuadorian Andisols confirm
12 excellent conservation of plant-specific *n*-alkane patterns, *Org. Geochem.*, 40, 61-69,
13 2009.

14 Jansen, B., Nierop, K. G. J., Hageman, J. A., Cleef, A. and Verstraten, J. M.: The straight-
15 chain lipid biomarker composition of plant species responsible for the dominant biomass
16 production along two altitudinal transects in the Ecuadorian Andes, *Org. Geochem.*, 37,
17 1514-1536, 2006.

18 Jansen, B., Nierop, K. G. J., Tonneijck, F. H., Van der Wielen, F. W. M. and Verstraten, J.
19 M.: Can isoprenoids in leaves and roots of plants along altitudinal gradients in the
20 Ecuadorian Andes serve as biomarkers?, *Plant Soil*, 291, 181-198, 2007.

21 Jansen, B., Van Loon, E. E., Hooghiemstra, H. and Verstraten, J. M.: Improved
22 reconstruction of palaeo-environments through unravelling of preserved vegetation
23 biomarker patterns, *Palaeogeogr. Palaeocl.*, 285, 119-130, 2010.

24 Jansen, B., de Boer, E. J., Cleef, A. M., Hooghiemstra, H., Moscol-Olivera, M., Tonneijck, F.
25 H. and Verstraten, J. M.: Reconstruction of late Holocene forest dynamics in northern
26 Ecuador from biomarkers and pollen in soil cores, *Palaeogeogr. Palaeocl.*, 386, 607-619,
27 2013.

28 Kell, D. B.: Large-scale sequestration of atmospheric carbon via plant roots in natural and
29 agricultural ecosystems: why and how?, *Philos. T. Roy. Soc. B.*, 367, 1589-1597, 2012.

30 Killops, S. D. and Frewin, N. L.: Triterpenoid Diagenesis and Cuticular Preservation, *Org.*
31 *Geochem.*, 21, 1193-1209, 1994.

32 Kim, K. S., Park, S. H. and Jenks, M. A.: Changes in leaf cuticular waxes of sesame
33 (*Sesamum indicum* L.) plants exposed to water deficit, *J. Plant Physiol.*, 164, 1134-1143,
34 2007.

1 Kindler, R., Miltner, A., Thullner, M., Richnow, H. and Kaestner, M.: Fate of bacterial
 2 biomass derived fatty acids in soil and their contribution to soil organic matter, *Org.*
 3 *Geochem.*, 40, 29-37, 2009.

4 Kirkels, F. M., Jansen, B. and Kalbitz, K.: Consistency of plant-specific *n*-alkane patterns in
 5 *plaggen* ecosystems: A review, *Holocene*, 23, 1355-1368, 2013.

6 Koch, B., Harder, J., Lara, R. J. and Kattner, G.: The effect of selective microbial degradation
 7 on the composition of mangrove derived pentacyclic triterpenols in surface sediments,
 8 *Org. Geochem.*, 36, 273-285, 2005.

9 Koch, K., Hartmann, K. D., Schreiber, L., Barthlott, W. and Neinhuis, C.: Influences of air
 10 humidity during the cultivation of plants on wax chemical composition, morphology and
 11 leaf surface wettability, *Environ. Exp. Bot.*, 56, 1-9, 2006.

12 Kögel-Knabner, I.: The macromolecular organic composition of plant and microbial residues
 13 as inputs to soil organic matter, *Soil Biol. Biochem.*, 34, 139-162, 2002.

14 Kolattukudy, P. E.: Structure, biosynthesis, and biodegradation of cutin and suberin, *Annu.*
 15 *Rev. Plant Physiol. Plant Mol. Biol.*, 32, 539-567, 1981.

16 Kramer, C. and Gleixner, G.: Variable use of plant- and soil-derived carbon by
 17 microorganisms in agricultural soils, *Soil Biol. Biochem.*, 38, 3267-3278, 2006.

18 Kreyling, J., Thiel, D., Simmnacher, K., Willner, E., Jentsch, A. and Beierkuhnlein, C.:
 19 Geographic origin and past climatic experience influence the response to late spring frost
 20 in four common grass species in central Europe, *Ecography*, 35, 268-275, 2012.

21 Krull, E., Sachse, D., Mügler, I., Thiele, A. and Gleixner, G.: Compound-specific $\delta^{13}\text{C}$ and
 22 $\delta^2\text{H}$ analyses of plant and soil organic matter: A preliminary assessment of the effects of
 23 vegetation change on ecosystem hydrology, *Soil Biol. Biochem.*, 38, 3211-3221, 2006.

24 Ladygina, N., Dedyukhina, E. G. and Vainshtein, M. B.: A review on microbial synthesis of
 25 hydrocarbons, *Process Biochem.*, 41, 1001-1014, 2006.

26 Larkindale, J. and Huang, B. R.: Changes of lipid composition and saturation level in leaves
 27 and roots for heat-stressed and heat-acclimated creeping bentgrass (*Agrostis stolonifera*),
 28 *Environ. Exp. Bot.*, 51, 57-67, 2004.

29 Lavrieux, M., Breheret, J., Disnar, J., Jacob, J., Le Milbeau, C. and Zocatelli, R.: Preservation
 30 of an ancient grassland biomarker signature in a forest soil from the French Massif
 31 Central, *Org. Geochem.*, 51, 1-10, 2012.

32 Lavrieux, M., Jacob, J., LeMilbeau, C., Zocatelli, R., Masuda, K., Breheret, J. and Disnar, J.:
 33 Occurrence of triterpenyl acetates in soil and their potential as chemotaxonomical
 34 markers of Asteraceae, *Org. Geochem.*, 42, 1315-1323, 2011.

1 Le Milbeau, C., Lavrieux, M., Jacob, J., Breheret, J., Zocatelli, R. and Disnar, J.: Methoxy-
2 serratenes in a soil under conifers and their potential use as biomarkers of Pinaceae, *Org.*
3 *Geochem.*, 55, 45-54, 2013.

4 Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter. *Nature*, 528, 60-
5 68, 2015.

6 Lei, B. K., Fan, M. S., Chen, Q., Six, J. and Zhang, F. S.: Conversion of wheat-maize to
7 vegetable cropping systems changes soil organic matter characteristics, *Science du Sol*,
8 74, 1320-1326, 2010.

9 Lei, G., Zhang, H., Chang, F., Pu, Y., Zhu, Y., Yang, M. and Zhang, W.: Biomarkers of
10 modern plants and soils from Xinglong Mountain in the transitional area between the
11 Tibetan and Loess Plateaus, *Quat. Internat.*, 218, 143-150, 2010.

12 Li, H., Madden, L. J. and Potts, B. M.: Variation in leaf waxes of the Tasmanian *Eucalyptus*
13 species 1. Subgenus *Sympyomyrtus*, *Biochem. Syst. Ecol.*, 25, 631-657, 1997.

14 Li, J., Huang, J., Ge, J., Huang, X. and Xie, S.: Chemotaxonomic significance of *n*-alkane
15 distributions from leaf wax in genus of *Sinojackia* species (Styracaceae), *Biochem. Syst.*
16 *Ecol.*, 49, 30-36, 2013.

17 Lichtfouse, E.: Heterogeneous turnover of molecular organic substances from crop soils as
18 revealed by ¹³C labeling at natural abundance with *Zea mays*, *Naturwissenschaften*, 84,
19 23-25, 1997.

20 Lichtfouse, E., Berthier, G., Houot, S., Barriuso, E., Bergheaud, V. and Vallaey, T.: Stable
21 carbon isotope evidence for the microbial origin of C₁₄-C₁₈ *n*-alkanoic acids in soils,
22 *Org. Geochem.*, 23, 849-852, 1995.

23 Lichtfouse, E., Leblond, C., Da Silva, M. and Behar, F.: Occurrence of biomarkers and
24 straight-chain biopolymers in humin: Implication for the origin of soil organic matter,
25 *Naturwissenschaften*, 85, 497-501, 1998.

26 Lichtfouse, E.: C-13-dating, the first method to calculate the relative age of molecular
27 substance homologues in soil, *Environ. Chem. Lett.*, 10, 97-103, 2012.

28 Lichtfouse, É, Bardoux, G., Mariotti, A., Balesdent, J., Ballantine, D. C. and Macko, S. A.:
29 Molecular, ¹³C, and ¹⁴C evidence for the allochthonous and ancient origin of C₁₆-C₁₈ *n*-
30 alkanes in modern soils, *Geochim. Cosmochim. Acta*, 61, 1891-1898, 1997.

31 Lichtfouse, É, Chenu, C., Baudin, F., Leblond, C., Da Silva, M., Behar, F., Derenne, S.,
32 Largeau, C., Wehrung, P. and Albrecht, P.: A novel pathway of soil organic matter
33 formation by selective preservation of resistant straight-chain biopolymers: chemical and
34 isotope evidence, *Org. Geochem.*, 28, 411-415, 1998.

- 1 Liebig, J., Merck, E. and Mohr, F.: Das aetherische Oel der Getraide, Annalen der Pharmacie,
2 24, 248-251, 1837.
- 3 Liu, W., Yang, H., Ning, Y. and An, Z.: Contribution of inherent organic carbon to the bulk
4 delta C-13 signal in loess deposits from the arid western Chinese Loess Plateau, Org.
5 Geochem., 38, 1571-1579, 2007.
- 6 Lockheart, M. J., Poole, I., Van Bergen, P. F. and Evershed, R. P.: Leaf carbon isotope
7 compositions and stomatal characters: important considerations for palaeoclimate
8 reconstructions, Org. Geochem., 29, 1003-1008, 1998.
- 9 Maffei, M.: Discriminant analysis of leaf wax alkanes in the Lamiaceae and four other plant
10 families, Biochem. Syst. Ecol., 22, 711-728, 1994.
- 11 Maffei, M., Badino, S. and Bossi, S.: Chemotaxonomic significance of leaf wax *n*-alkanes in
12 the Pinales (Coniferales), J. Biol. Res., 1, 3-20, 2004.
- 13 Maffei, M.: Chemotaxonomic significance of leaf wax alkanes in the Gramineae, Biochem.
14 Syst. Ecol., 24, 53-64, 1996a.
- 15 Maffei, M.: Chemotaxonomic significance of leaf wax *n*-alkanes in the Umbelliferae,
16 Cruciferae and Leguminosae (subf papilionoideae), Biochem. Syst. Ecol., 24, 531-545,
17 1996b.
- 18 Maffei, M., Meregalli, M. and Scannerini, S.: Chemotaxonomic significance of surface wax
19 *n*-alkanes in the Cactaceae, Biochem. Syst. Ecol., 25, 241-253, 1997.
- 20 Maffei, M., Mucciarelli, M. and Scannerini, S.: Environmental-factors affecting the lipid-
21 metabolism in *Rosmarinus officinalis* L., Biochem. Syst. Ecol., 21, 765-784, 1993.
- 22 Malik, A., Blagodatskaya, E. and Gleixner, G.: Soil microbial carbon turnover decreases with
23 increasing molecular size, Soil Biol. Biochem., 62, 115-118, 2013.
- 24 Mambelli, S., Bird, J. A., Gleixner, G., Dawson, T. E. and Torn, M. S.: Relative contribution
25 of foliar and fine root pine litter to the molecular composition of soil organic matter after
26 in situ degradation, Org. Geochem., 42, 1099-1108, 2011.
- 27 Marseille, F., Disnar, J. R., Guillet, B. and Noack, Y.: *n*-Alkanes and free fatty acids in
28 humus and A1 horizons of soils under beech, spruce and grass in the Massif-Central
29 (Mont-Lozere), France, Eur. J. Soil Sci., 50, 433-441, 1999.
- 30 Martelanc, M., Vovk, I. and Simonovska, B.: Determination of three major triterpenoids in
31 epicuticular wax of cabbage (*Brassica oleracea* L.) by high-performance liquid
32 chromatography with UV and mass spectrometric detection, J. Chrom. A, 1164, 145-
33 152, 2007.

1 Matteucci, M., D'Angeli, S., Errico, S., Lamanna, R., Perrotta, G. and Altamura, M. M.: Cold
 2 affects the transcription of fatty acid desaturases and oil quality in the fruit of *Olea*
 3 *europaea* L. genotypes with different cold hardiness, *J. Exp. Bot.*, 62, 3403-3420, 2011.

4 Medina, E., Aguiar, G., Gomez, M., Aranda, J., Medina, J. D. and Winter, K.: Taxonomic
 5 significance of the epicuticular wax composition in species of the genus Clusia from
 6 Panama, *Biochem. Syst. Ecol.*, 34, 319-326, 2006.

7 Medina, E., Aguiar, G., Gomez, M. and Medina, J. D.: Patterns of leaf epicuticular waxes in
 8 species of Clusia: Taxonomical implications, *Interciencia*, 29, 579-582, 2004.

9 Mendez-Millan, M., Dignac, M. F., Rumpel, C. and Derenne, S.: Quantitative and qualitative
 10 analysis of cutin in maize and a maize-cropped soil: Comparison of CuO oxidation,
 11 transmethylation and saponification methods, *Org. Geochem.*, 41, 187-191, 2010.

12 Mendez-Millan, M., Dignac, M. - F., Rumpel, C., Rasse, D. P., Bardoux, G. and Derenne, S.:
 13 Contribution of maize root derived C to soil organic carbon throughout an agricultural
 14 soil profile assessed by compound specific ^{13}C analysis, *Org. Geochem.*, 42, 1502-1511,
 15 2012.

16 Mendez-Millan, M., Dignac, M. -., Rumpel, C., Rasse, D. P. and Derenne, S.: Molecular
 17 dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural
 18 abundance ^{13}C labelling, *Soil Biol. Biochem.*, 42, 169-177, 2010.

19 Mendez-Millan, M., Dignac, M., Rumpel, C. and Derenne, S.: Can cutin and suberin
 20 biomarkers be used to trace shoot and root-derived organic matter? A molecular and
 21 isotopic approach, *Biogeochemistry*, 106, 23-38, 2011.

22 Miltner, A., Bombach, P., Schmidt-Bruecken, B. and Kaestner, M.: SOM genesis: microbial
 23 biomass as a significant source, *Biogeochemistry*, 111, 41-55, 2012.

24 Mongrand, S., Badoc, A., Patouille, B., Lacomblez, C., Chavent, M., Cassagne, C. and
 25 Bessoule, J. J.: Taxonomy of gymnospermae: multivariate analysis of leaf fatty acid
 26 composition, *Phytochemistry*, 58, 101-115, 2001.

27 Moseley, G.: Variation in the epicuticular wax content of white and red clover leaves, *Grass*
 28 *Forage Sci.*, 38, 201-204, 1983.

29 Moucawi, J., Fustec, E., Jambu, P., Ambles, A. and Jacquesy, R.: Biooxidation of added and
 30 natural hydrocarbons in soils: effect of iron, *Soil Biol. Biochem.*, 13, 335-342, 1981.

31 Moucawi, J., Fustec, E., Jambu, P. and Jacquesy, R.: Decomposition of lipids in soils: Free
 32 and esterified fatty acids, alcohols and ketones, *Soil Biol. Biochem.*, 13, 461-468, 1981.

1 Mueller-Niggemann, C. and Schwark, L.: Chemotaxonomy and diagenesis of aliphatic
2 hydrocarbons in rice plants and soils from land reclamation areas in the Zhejiang
3 Province, China, *Org. Geochem.*, 83–84, 215-226, 2015.

4 Naafs, D. F. W., Van Bergen, P. F., Boogert, S. J. and de Leeuw, J. W.: Solvent-extractable
5 lipids in an acid andic forest soil; variations with depth and season, *Soil Biol. Biochem.*,
6 36, 297-308, 2004.

7 Naafs, D. F. W., Van Bergen, P. F., de Jong, M. A., Oonincx, A. and de Leeuw, J. W.: Total
8 lipid extracts from characteristic soil horizons in a Podzol profile, *Eur. J. Soil Sci.*, 55,
9 657-669, 2004.

10 Ngosong, C., Gabriel, E. and Ruess, L.: Use of the signature fatty acid 16:1omega5 as a tool
11 to determine the distribution of arbuscular mycorrhizal fungi in soil, *Journal of Lipids*,
12 2012, 236807-236807, 2012.

13 Nguyen Tu, T. T., Derenne, S., Largeau, C., Bardoux, G. and Mariotti, A.: Diagenesis effects
14 on specific carbon isotope composition of plant n-alkanes, *Org. Geochem.*, 35, 317-329,
15 2004.

16 Nguyen Tu, T. T., Derenne, S., Largeau, C., Mariotti, A. and Bocherens, H.: Comparison of
17 leaf lipids from a fossil ginkgolean plant and its extant counterpart at two degradation
18 stages: diagenetic and chemotaxonomic implications, *Rev. Palaeobot. Palynol.*, 124, 63-
19 78, 2003.

20 Nguyen Tu, T. T., Egasse, C., Zeller, B., Bardoux, G., Biron, P., Ponge, J., David, B. and
21 Derenne, S.: Early degradation of plant alkanes in soils: A litterbag experiment using
22 ^{13}C -labelled leaves, *Soil Biol. Biochem.*, 43, 2222-2228, 2011.

23 Nierop, K. G. J. and Jansen, B.: Extensive transformation of organic matter and excellent
24 lipid preservation at the upper, superhumid Guandera Páramo, *Geoderma*, 151, 357-369,
25 2009.

26 Nierop, K. G. J., Jansen, B., Hageman, J. A. and Verstraten, J. M.: The complementarity of
27 extractable and ester-bound lipids in a soil profile under pine, *Plant Soil*, 286, 269-285,
28 2006.

29 Nierop, K. G. J., Van Lagen, B. and Buurman, P.: Composition of plant tissues and soil
30 organic matter in the first stages of a vegetation succession, *Geoderma*, 100, 1-24, 2001.

31 Nierop, K. G. J. and Verstraten, J. M.: Rapid molecular assessment of the bioturbation extent
32 in sandy soil horizons under pine using ester-bound lipids by on-line thermally assisted
33 hydrolysis and methylation-gas chromatography/mass spectrometry, *Rapid Commun.*
34 *Mass Sp.*, 18, 1081-1088, 2004.

1 Nierop, K. G. J. and Verstraten, J. M.: Organic matter formation in sandy subsurface horizons
2 of Dutch coastal dunes in relation to soil acidification, *Org. Geochem.*, 34, 499-513,
3 2003.

4 Nødskov Giese, B.: Effects of light and temperature on the composition of epicuticular wax
5 of barley leaves, *Phytochemistry*, 14, 921-929, 1975.

6 Ohsaki, A., Shibata, K., Kubota, T. and Tokoroyama, T.: Phylogenetic and chemotaxonomic
7 significance of diterpenes in some Portulaca species (Portulacaceae), *Biochem. Syst.*
8 *Ecol.*, 27, 289-296, 1999.

9 Otto, A., Shunthirasingham, C. and Simpson, M. J.: A comparison of plant and microbial
10 biomarkers in grassland soils from the Prairie Ecozone of Canada, *Org. Geochem.*, 36,
11 425-448, 2005.

12 Otto, A. and Simpson, M. J.: Degradation and preservation of vascular plant-derived
13 biomarkers in grassland and forest soils from Western Canada, *Biogeochemistry*, 74,
14 377-409, 2005.

15 Otto, A. and Simpson, M. J.: Sources and composition of hydrolysable aliphatic lipids and
16 phenols in soils from western Canada, *Org. Geochem.*, 37, 385-407, 2006.

17 Pancost, R. D., Baas, M., Van Geel, B. and Damste, J. S. S.: Biomarkers as proxies for plant
18 inputs to peats: an example from a sub-boreal ombrotrophic bog, *Org. Geochem.*, 33,
19 675-690, 2002.

20 Peters, K. E., Walters, C. C. and Moldowan, J. M.: *The Biomarker Guide*, 2 ed., Cambridge
21 University Press, Cambridge, United Kingdom, 2005.

22 Peterse, F., Van der Meer, M. T. J., Schouten, S., Jia, G., Ossebaar, J., Blokker, J. and
23 Damste, J. S. S.: Assessment of soil *n*-alkane δ D and branched tetraether membrane lipid
24 distributions as tools for paleoelevation reconstruction, *Biogeosciences*, 6, 2799-2807,
25 2009.

26 Peterse, F., Nicol, G. W., Schouten, S. and Damste, J. S. S.: Influence of soil pH on the
27 abundance and distribution of core and intact polar lipid-derived branched GDGTs in
28 soil, *Org. Geochem.*, 41, 1171-1175, 2010.

29 Peterse, F., Van der Meer, J., Schouten, S., Weijers, J. W. H., Fierer, N., Jackson, R. B., Kim,
30 J. and Damste, J. S. S.: Revised calibration of the MBT-CBT paleotemperature proxy
31 based on branched tetraether membrane lipids in surface soils, *Geochim. Cosmochim.*
32 *Acta*, 96, 215-229, 2012.

33 Piervittori, R., Usai, L., Alessio, F. and Maffei, M.: Surface *n*-alkane variability in *Xanthoria*
34 *parietina*, *Lichenologist*, 28, 79-87, 1996.

1 Prasad, R. B. N. and Gülz, P. G.: Developmental and seasonal variations in the epicuticular
2 waxes of beech leaves (*Fagus sylvatica* L.), *Z. Naturforsch. C*, 45, 805-812, 1990.

3 Quenea, K., Derenne, S., Largeau, C., Rumpel, C. and Mariotti, A.: Variation in lipid relative
4 abundance and composition among different particle size fractions of a forest soil, *Org. Geochem.*, 35, 1355-1370, 2004.

5 Quenea, K., Largeau, C., Derenne, S., Spaccini, R., Bardoux, G. and Mariotti, A.: Molecular
6 and isotopic study of lipids in particle size fractions of a sandy cultivated soil (Cestas
7 cultivation sequence, southwest France): Sources, degradation, and comparison with
8 Cestas forest soil, *Org. Geochem.*, 37, 20-44, 2006.

9 Rao Z., Wu Y., Zhu Z., Jia G. and Henderson, A.: Is the maximum carbon number of long-
10 chain n-alkanes an indicator of grassland or forest? Evidence from surface soils and
11 modern plants, *Chinese Sci. Bull.*, 56, 1714-1720, 2011.

12 Rao, Z., Zhu, Z., Jia, G., Henderson, A. C. G., Xue, Q. and Wang, S.: Compound specific δD
13 values of long chain n-alkanes derived from terrestrial higher plants are indicative of the
14 δD of meteoric waters: Evidence from surface soils in eastern China, *Org. Geochem.*, 40,
15 922-930, 2009.

16 Rasse, D. P., Rumpel, C. and Dignac, M. F.: Is soil carbon mostly root carbon? Mechanisms
17 for a specific stabilisation, *Plant Soil*, 269, 341-356, 2005.

18 Rethemeyer, J., Kramer, C., Gleixner, G., Wiesenberg, G. L. B., Schwark, L., Andersen, N.,
19 Nadeau, M. J. and Grootes, P. M.: Complexity of soil organic matter: AMS ^{14}C analysis
20 of soil lipid fractions and individual compounds, *Radiocarbon*, 46, 465-473, 2004.

21 Rommerskirchen, F., Eglinton, G., Dupont, L., Guntner, U., Wenzel, C. and Rullkötter, J.: A
22 north to south transect of Holocene southeast Atlantic continental margin sediments:
23 Relationship between aerosol transport and compound-specific $\delta^{13}C$ land plant
24 biomarker and pollen records, *Geochem. Geophys. Geosci.*, 4, 1101, 2003.

25 Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y. and Rullkötter, J.:
26 Chemotaxonomic significance of distribution and stable carbon isotopic composition of
27 long-chain alkanes and alkan-1-ols in C4 grass waxes, *Org. Geochem.*, 37, 1303-1332,
28 2006.

29 Rumpel, C. and Koegel-Knabner, I.: Deep soil organic matter-a key but poorly understood
30 component of terrestrial C cycle, *Plant Soil*, 338, 143-158, 2011.

31 Sachse, D., Radke, J. and Gleixner, G.: δD values of individual n-alkanes from terrestrial
32 plants along a climatic gradient - Implications for the sedimentary biomarker record,
33 *Org. Geochem.*, 37, 469-483, 2006.

1 Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman,
2 K. H., Magill, C. R., McInerney, F. A., Van der Meer, M. T. J., Polissar, P., Robins, R.
3 J., Sachs, J. P., Schmidt, H., Sessions, A. L., White, J. W. C., West, J. B. and Kahmen,
4 A.: Molecular paleohydrology: Interpreting the hydrogen isotopic composition of lipid
5 biomarkers from photosynthesizing organisms, *Annu. Rev. Earth and Pl. Sc.*, Vol 40, 40,
6 221-249, 2012.

7 Sanchez, F. J., Manzanares, M., de Andres, E. F., Tenorio, J. L. and Ayerbe, L.: Residual
8 transpiration rate, epicuticular wax load and leaf colour of pea plants in drought
9 conditions. Influence on harvest index and canopy temperature, *Eur. J. Agron.*, 15, 57-
10 70, 2001.

11 Schefuß, E., Ratmeyer, V., Stuut, J. W., Jansen, J. H. F. and Sinninghe Damsté, J. S.: Carbon
12 isotope analyses of *n*-alkanes in dust from the lower atmosphere over the central eastern
13 Atlantic, *Geochim. Cosmochim. Acta*, 67, 1757-1767, 2003.

14 Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A.,
15 Kleber, M., Koegel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse,
16 D. P., Weiner, S. and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem
17 property, *Nature*, 478, 49-56, 2011.

18 Schouten, S., Hopmans, E.C. and Sinninghe-Damsté, J.S.: The organic geochemistry of
19 glycerol dialkyl glycerol tetraether lipids: A review, *Org. Geochem.*, 54, 19-61, 2013.

20 Schreiber, L., Hartmann, K., Skrabs, M. and Zeier, J.: Apoplastic barriers in roots: Chemical
21 composition of endodermal and hypodermal cell walls, *J. Exp. Bot.*, 50, 1267-1280,
22 1999.

23 Shelvey, J. D. and Koziol, M. J.: Seasonal and SO₂-induced changes in epicuticular wax of
24 ryegrass, *Phytochemistry*, 25, 415-420, 1986.

25 Shepherd, T. and Griffiths, D. W.: The effects of stress on plant cuticular waxes, *New
26 Phytol.*, 171, 469-499, 2006.

27 Shepherd, T., Robertson, G. W., Griffiths, D. W., Birch, A. N. E. and Duncan, G.: Effects of
28 environment on the composition of epicuticular wax from kale and swede,
29 *Phytochemistry*, 40, 407-417, 1995.

30 Simpson, M. J., Otto, A. and Feng, X.: Comparison of solid-state ¹³C nuclear magnetic
31 resonance and organic matter biomarkers for assessing soil organic matter degradation,
32 *Soil Sci. Soc. Am. J.*, 72, 268-276, 2008.

33 Simpson, M. J. and Simpson, A. J.: The chemical ecology of soil organic Matter Molecular
34 Constituents, *J. Chem. Ecol.*, 38, 768-784, 2012.

1 Sonibare, M. A., Jayeola, A. A. and Egunyomi, A.: Chemotaxonomic significance of leaf
2 alkanes in species of *Ficus* (Moraceae), *Biochem. Syst. Ecol.*, 33, 79-86, 2005.

3 Srivastava, K., Jentsch, A., Glaser, B. and Wiesenberg, G. L. B.: Plant and soil *n*-alkane
4 composition is not affected by annual drought in temperate grassland and heathland
5 ecosystems, *J. Plant Nutr. Soil Sci.*, (submitted).

6 Stevenson, F. J.: Lipids in soil, *Journal of the American Oil Chemists'*, 43, 203-210, 1966.

7 Stevenson, F. J.: *Humus Chemistry: Genesis, Composition, Reactions*, John Wiley & Sons,
8 Inc., New York, 1994.

9 Stewart, C. E., Neff, J. C., Amatangelo, K. L. and Vitousek, P. M.: Vegetation effects on soil
10 organic matter chemistry of aggregate fractions in a Hawaiian forest, *Ecosystems*, 14,
11 382-397, 2011.

12 Strimbu, K. and Tavel, J. A.: What are biomarkers?, *Curr. Opin. HIV AIDS*, 5, 463-466,
13 2010.

14 Sun, Y., Chen, Z., Xu, S. and Cai, P.: Stable carbon and hydrogen isotopic fractionation of
15 individual *n*-alkanes accompanying biodegradation: evidence from a group of
16 progressively biodegraded oils, *Org. Geochem.*, 36, 225-238, 2005.

17 Thevenot, M., Dignac, M. and Rumpel, C.: Fate of lignins in soils: A review, *Soil Biol.*
18 *Biochem.*, 42, 1200-1211, 2010.

19 Tissot, B. P. and Welte, D. H.: *Petroleum Formation and Occurrence*, 2 ed., Springer-Verlag,
20 Berlin, Germany, 1984.

21 Tonneijck, F. H., Jansen, B., Nierop, K. G. J., Verstraten, J. M., Sevink, J. and De Lange, L.:
22 Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural
23 Andean ecosystems of northern Ecuador, *Eur. J. Soil Sci.*, 61, 392-405, 2010.

24 Tulloch, A. P.: Composition of leaf surface waxes of *Triticum* species: Variation with age
25 and tissue, *Phytochemistry*, 12, 2225-2232, 1973.

26 Van Bon, L., Affandi, A. J., Broen, J., Christmann, R. B., Marijnissen, R. J., Stawski, L.,
27 Farina, G. A., Stifano, G., Mathes, A. L., Cossu, M., York, M., Collins, C., Wenink, M.,
28 Huijbens, R., Hesselstrand, R., Saxne, T., DiMarzio, M., Wuttge, D., Agarwal, S. K.,
29 Reveille, J. D., Assassi, S., Mayes, M., Deng, Y., Drenth, J. P. H., de Graaf, J., den
30 Heijer, M., Kallenberg, C. G. M., Bijl, M., Loof, A., Van den Berg, W. B., Joosten, L. A.
31 B., Smith, V., de Keyser, F., Scorza, R., Lunardi, C., Van Riel, P. L. C. M., Vonk, M.,
32 Van Heerde, W., Meller, S., Homey, B., Beretta, L., Roest, M., Trojanowska, M.,
33 Lafyatis, R. and Radstake, T. R. D. J.: Proteome-wide Analysis and CXCL4 as a
34 Biomarker in Systemic Sclerosis, *N. Engl. J. Med.*, 370, 433-443, 2014.

1 Van Mourik, J. M. and Jansen, B.: The added value of biomarker analysis in palaeopedology;
2 reconstruction of the vegetation during stable periods in a polycyclic driftsand sequence
3 in SE-Netherlands, *Quat. Internat.*, 306, 14-23, 2013.

4 Vogts, A., Moossern, H., Rommerskirchen, F. and Rullkoetter, J.: Distribution patterns and
5 stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of
6 African rain forest and savanna C3 species, *Org. Geochem.*, 40, 1037-1054, 2009.

7 Volkman, J. K.: Sterols and other triterpenoids: source specificity and evolution of
8 biosynthetic pathways, *Org. Geochem.*, 36, 139-159, 2005.

9 Von Lützow, M., Kögel-Knabner, I., Ludwig, B., Matzner, E., Flessa, H., Ekschmitt, K.,
10 Guggenberger, G., Marschner, B. and Kalbitz, K.: Stabilization mechanisms of organic
11 matter in four temperate soils: Development and application of a conceptual model, *J. Plant Nutr. Soil Sci.*, 171, 111-124, 2008.

12 Wang, G., Huang, L., Xin Zhao, Niu, H. and Dai, Z.: Aliphatic and polycyclic aromatic
13 hydrocarbons of atmospheric aerosols in five locations of Nanjing urban area, China,
14 *Atmos. Res.*, 81, 54-66, 2006.

15 Weijers, J. W. H., Schouten, S., Spaargaren, O. C. and Damste, J. S. S.: Occurrence and
16 distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86
17 proxy and the BIT index, *Org. Geochem.*, 37, 1680-1693, 2006.

18 Weijers, J. W. H., Bernhardt, B., Peterse, F., Werne, J. P., Dungait, J. A. J., Schouten, S. and
19 Damste, J. S. S.: Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils,
20 *Geochim. Cosmochim. Acta*, 75, 3179-3190, 2011.

21 Wiesenberg, G. L. B., Andreeva, D. B., Chimitdorgieva, G. D., Erbajeva, M. A. and Zech,
22 W.: Reconstruction of environmental changes during the late glacial and Holocene
23 reflected in a soil-sedimentary sequence from the lower Selenga River valley, Lake
24 Baikal region, Siberia, assessed by lipid molecular proxies, *Quat. Internat.*, 365, 190-
25 202, 2015.

26 Wiesenberg, G. L. B., Lehndorff, E. and Schwark, L.: Thermal degradation of rye and maize
straw: Lipid pattern changes as a function of temperature, *Org. Geochem.*, 40, 167-174,
27 2009.

28 Wiesenberg, G. L. B., Schmidt, M. W. I. and Schwark, L.: Plant and soil lipid modifications
under elevated atmospheric CO₂ conditions: I. Lipid distribution patterns, *Org.*
29 *Geochem.*, 39, 91-102, 2008a.

30 Wiesenberg, G. L. B., Schneckenberger, K., Schwark, L. and Kuzyakov, Y.: Use of
31 molecular ratios to identify changes in fatty acid composition of *Miscanthus x giganteus*

1 (Greef et Deu.) plant tissue, rhizosphere and root-free soil during a laboratory
2 experiment, *Org. Geochem.*, 46, 1-11, 2012.

3 Wiesenberg, G. L. B., Schwarzbauer, J., Schmidt, M. W. I. and Schwark, L.: Plant and soil
4 lipid modification under elevated atmospheric CO₂ conditions: II. Stable carbon isotopic
5 values ($\delta^{13}\text{C}$) and turnover, *Org. Geochem.*, 39, 103-117, 2008b.

6 Wiesenberg, G. L. B., Schwarzbauer, J., Schmidt, M. W. I. and Schwark, L.: Source and
7 turnover of organic matter in agricultural soils derived from *n*-alkane/*n*-carboxylic acid
8 compositions and C-isotope signatures, *Org. Geochem.*, 35, 1371-1393, 2004.

9 Wiesenberg, G. L. B. and Gocke, M.: Reconstruction of the late Quaternary
10 paleoenvironments of the Nussloch loess paleosol sequence-Comment to the paper
11 published by Zech et al., *Quaternary Research* 78 (2012), 226-235, *Quatern. Res.*, 79,
12 304-305, 2013.

13 Wiesenberg, G. L. B., Schneckenberger, K., Kuzyakov, Y. and Schwark, L.: Plant lipid
14 composition is not affected by short-term isotopic (^{13}C) pulse-labelling experiments, *J.*
15 *Plant Nutr. Soil Sci.*, 172, 445-453, 2009.

16 Wiesenberg, G. L. B. and Schwark, L.: Carboxylic acid distribution patterns of temperate C3
17 and C4 crops, *Org. Geochem.*, 37, 1973-1982, 2006.

18 Wiesenberg, G. L. B., Schwarzbauer, J., Schmidt, M. W. I. and Schwark, L.: Source and
19 turnover of organic matter in agricultural soils derived from *n*-alkane/*n*-carboxylic acid
20 compositions and C-isotope signatures, *Org. Geochem.*, 35, 1371-1393, 2004.

21 Williams, M., Robertson, E. J., Leech, R. M. and Harwood, J. L.: Lipid metabolism in leaves
22 from young wheat (*Triticum aestivum* cv. Hereward) plants grown at two carbon dioxide
23 levels, *J. Exp. Bot.*, 49, 511-520, 1998.

24 Williams, M., Shewry, P. R. and Harwood, J. L.: The influence of the Greenhouse-Effect on
25 wheat (*Triticum aestivum* L.) Grain Lipids, *J. Exp. Bot.*, 45, 1379-1385, 1994.

26 Williams, M., Shewry, P. R., Lawlor, D. W. and Harwood, J. L.: The effects of elevated
27 temperature and atmospheric carbon dioxide concentration on the quality of grain lipids
28 in wheat (*Triticum aestivum* L) grown at 2 levels of nitrogen application, *Plant Cell*
29 *Environ.*, 18, 999-1009, 1995.

30 Wöhler F. and Liebig, J.: Zusammensetzung einiger ätherischen Oele, *Annalen der*
31 *Pharmacie*, 32, 284-287, 1839.

32 Xie, M., Wang, G., Hu, S., Han, Q., Xu, Y. and Gao, Z.: Aliphatic alkanes and polycyclic
33 aromatic hydrocarbons in atmospheric PM10 aerosols from Baoji, China: Implications
34 for coal burning, *Atmos. Res.*, 93, 840-848, 2009.

1 Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., Stevens,
 2 T., Sümegei, P., Wiesenberg, G. and Zöller: L.: Reconstructing Quaternary vegetation
 3 history in the Carpathian Basin, SE Europe, using n-alkane biomarkers as molecular
 4 fossils - Problems and possible solutions, potential and limitations, E&G Quat. Sci. J.,
 5 58, 148-155, 2009.

6 Zech, M., Leiber, K., Zech, W., Poetsch, T. and Hemp, A.: Late Quaternary soil genesis and
 7 vegetation history on the northern slopes of Mt. Kilimanjaro, East Africa, Quat. Internat.,
 8 243, 327-336, 2011.

9 Zech, M., Zech, R., Morras, H., Moretti, L., Glaser, B. and Zech, W.: Late Quaternary
 10 environmental changes in Misiones, subtropical NE Argentina, deduced from multi-
 11 proxy geochemical analyses in a palaeosol-sediment sequence, Quat. Internat., 196, 121-
 12 136, 2009.

13 Zech, R., Gao, L., Tarozo, R. and Huang, Y.: Branched glycerol dialkyl glycerol tetraethers
 14 in Pleistocene loess-paleosol sequences: Three case studies, Org. Geochem., 53, 38-44,
 15 2012.

16 Zeng, F., Xiang, S., Zhang, K. and Lu, Y.: Environmental evolution recorded by lipid
 17 biomarkers from the Tawan loess-paleosol sequences on the west Chinese Loess Plateau
 18 during the late Pleistocene, Environ. Earth Sci., 64, 1951-1963, 2011.

19 Zhang, Y., Togamura, Y. and Otsuki, K.: Study on the *n*-alkane patterns in some grasses and
 20 factors affecting the *n*-alkane patterns, J. Agric. Sci., 142, 469-475, 2004.

21 Zhang, Z. H., Zhao, M. X., Eglinton, G., Lu, H. Y. and Huang, C. Y.: Leaf wax lipids as
 22 paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over
 23 the last 170 kyr, Quat. Sci. Rev., 25, 575-594, 2006.

24 Zhou, J., Wang, T., Zhang, Y., Zhong, N., Medeiros, P. M. and Simoneit, B. R. T.:
 25 Composition and sources of organic matter in atmospheric PM10 over a two year period
 26 in Beijing, China, Atmos. Res., 93, 849-861, 2009.

27 Zocatelli, R., Lavrieux, M., Disnar, J., Le Milbeau, C., Jacob, J. and Breheret, J. G.: Free
 28 fatty acids in Lake Aydat catchment soils (French Massif Central): sources, distributions
 29 and potential use as sediment biomarkers, J. Soils Sediments, 12, 734-748, 2012.

1 Tables

2 Table 1: Compounds frequently used as molecular proxies in soils

Compound (the ones considerd in this review indicated in bold)	Most commonly used as proxy for:	Examples of recent publications ^a :	Number of articles published until 2017 (<i>publications 2007-2016</i>) ^b
Molecules of plant origin			
<i>n</i>-alkanes, <i>n</i>-alcohols (<i>n</i>-alkanol), <i>n</i>-fatty acids (<i>n</i>-alkanoic acid)	(groups of) plant species	(Zhang et al., 2006; Zeng et al., 2011; Jansen et al., 2013; Gocke et al., 2013)	alkane: 1588 (1025) alcohol: 1972 (1123); alkanol: 18 (11) <i>n</i> -fatty acids: 43 (27); <i>n</i> -alkanoic acid: 67 (41)
<i>n</i>-methyl ketones	degradation/transformation of soil organic matter	(Bai et al., 2006; Jansen and Nierop, 2009; Lei et al., 2010)	methyl ketone 104 (50)
plant sterols and pentacyclic triterpenoids	(groups of) plant species	(Volkman, 2005; Jansen et al., 2007; Lavrieux et al., 2011)	plant sterol: 1682 (590) pentacyclic triterpenoid: 25 (10)
lignin monomers	coniferous species vs. broadleaf species vs. grasses and organic matter transformation	(Dignac et al., 2005; Nierop et al., 2006; Heim and Schmidt, 2007; Thevenot et al., 2010;	lignin monomer: 115 (74)

		Simpson and Simpson, 2012)	
cutin and suberin monomers	root vs. aboveground biomass input	(Mendez-Millan et al., 2011; Hamer et al., 2012)	cutin monomer: 25 (17) suberin monomer: 32 (18)
Molecules of animal or bacterial origin			
Manure compounds such as coprostanol, 5β-stigmastanol, sitosterol and their epimers	Human impact, animal husbandry	(D'Anjou et al., 2012; Birk et al., 2012)	coprostanol: 35 (17) stigmastanol: 12 (7) sitosterol: 70 (47)
glycerol dialkyl glycerol tetraethers (GDGT)	mean ambient air temperature, paleo-elevation and soil pH	(Luo et al., 2011; Weijers et al., 2011; Peterse et al., 2012; Ernst et al., 2013; De Jonge et al., 2014)	GDGT: 148 (144)
phospholipid fatty acids (PLFA)	microbial biomass	(Kramer and Gleixner, 2006; Kindler et al., 2009; Ngosong et al., 2012; Malik et al., 2013)	Phospholipid fatty acid: 2157 (1628) PLFA: 1525 (1140)
Compound-specific stable isotope signal of one or more of the			

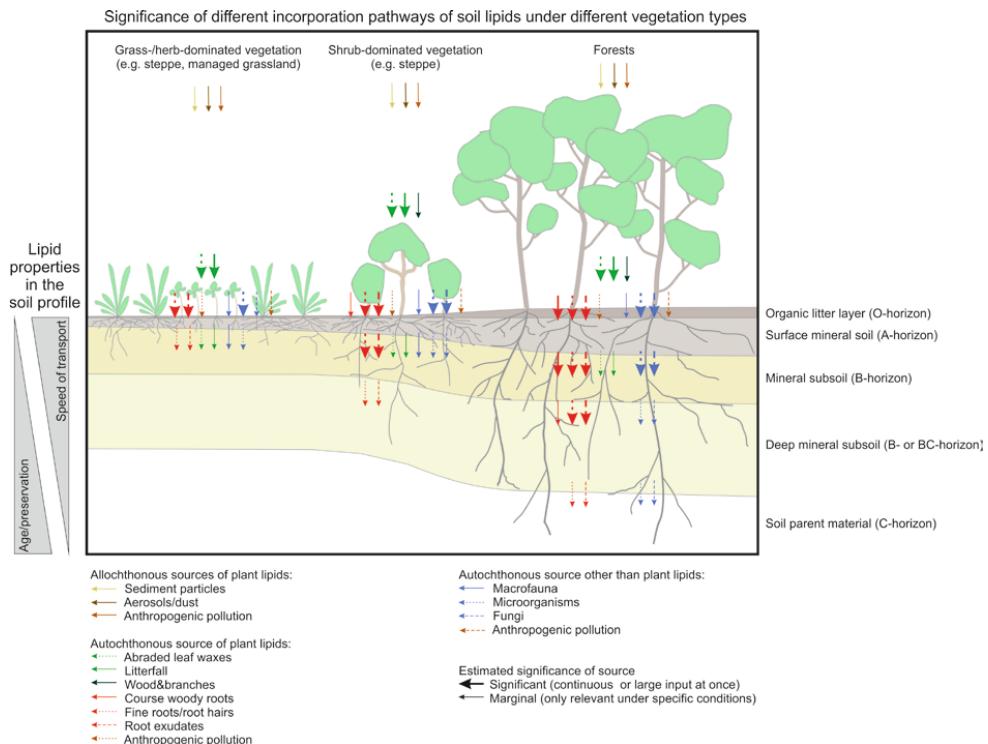
above ^c			
$\delta^{13}\text{C}$	C_3 vs. C_4 plants and tracing carbon transformations e.g. by free air CO_2 enrichment (FACE)	(Sun et al., 2005; Feng et al., 2010; Mendez-Millan et al., 2012)	^{13}C : 13 (11)
$\delta^{15}\text{N}$	(past) land management	(Bol et al., 2005; Griepentrog et al., 2014)	^{15}N : 2 (2)
$\delta^2\text{H}$ (deuterium)	precipitation and paleo-elevation	(Peterse et al., 2009; Bai et al., 2011; Luo et al., 2011; Sachse et al., 2012)	^2H : 6 (4) deuterium: 9 (7)
$\Delta^{14}\text{C}$ (radiocarbon)	Age and contamination determination	Marschner et al., 2008; Mendez-Millan et al., 2014	^{14}C : 3 (1) radiocarbon: 35 (30)

1 ^aPublished from 2007 until 2017.

2 ^bAccording to ISI Web of Science, checked for 'soil' and 'target compound' in the topic of
3 articles on 27th February 2017 included in all available databases.

4 ^c'Compound-specific' and the respective isotope (i.e. ^{13}C , ^{15}N , ^2H , and ^{14}C respectively) were
5 used as separate keywords in addition to 'soil'.

1 Table 2: average maximum rooting depth, biomass/depth distribution and root/shoot ratios in
2 different biomes (Canadell et al., 1996; Jackson et al., 1996)


Biome:	Average maximum rooting depth:	Average percentage of roots in the top 30 cm:	Average root/shoot ratio:
Boreal forest	2.0±0.3m	83	0.32
Cropland	2.1±0.2m	70	0.10
Desert	9.5±2.4m	53	4.5
Sclerophyllous shrubland and forest	5.2±0.8m	67	1.2
Temperate coniferous forest	3.9±0.4m	52	0.18
Temperate deciduous forest	2.9±0.2m	65	0.23
Temperate grassland	2.6±0.2m	83	3.7
Tropical deciduous forest	3.7±0.5m	70	0.34
Tropical evergreen forest	7.3±2.8m	69	0.19
Tropical grassland/savannah	15.0±5.4m	57	0.70
Tundra	0.5±0.1m	93	6.6

3

1 Figures

2 Figure 1

3

4

5 Figure caption

6 Conceptual overview of different incorporation pathways of lipids in soils originating from
 7 different biological sources and anthropogenic contamination. The different sources are
 8 indicated by distinct colors and lines of the arrows. The line thickness is an estimated
 9 significance of individual sources, without providing quantitative measure for different
 10 sources. Autochthonous sources are further distinguished by their significance in different
 11 soil depths or soil horizons, respectively. Further, the transport and age/probability of
 12 preservation as general properties of lipids are given at the left side of the figure.

13