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Abstract. The mapping of soil functionsSpatial information on soil function fulfillment (SFF) is increasingly being used to 

inform decision-making in spatial planning processes related to the capacity of soils to contribute to ecosystem servicesto 

support sustainable use of soil resources. Maps are created by statically assessing soils abilities to fulfil their functions, e.g. 

regulating water and nutrient flows, providing habitats and supporting biomass production based on soil properties. Informed 

and transparent decision-making relies on transparent information. In this study, we add to the transparency of soil function 20 

maps by 1) indicating uncertainties arising from prediction uncertainties of soil properties used for soil function assessment 

(SFA) as generated by digital soil mapping (DSM) and 2) showing behaviour of different SFA methods in view of 

uncertainty propagation. For a study area in the Swiss Midlands, we map 10 static soil functionssoil sub-functions for 

agricultural soils together with their uncertainties, using soil property data generated by DSM. Mapping the ten soil 

functionssoil sub-functions using simple ordinal assessment scales reveals pronounced spatial patterns with a high variability 25 

of soil function fulfillment (SFF) across the region, linked to the inherent properties of the soils and terrain attributes and 

climate conditions. Uncertainties in soil properties propagated through SFA methods generally lead to substantial uncertainty 

in the mapped soil functionssoil sub-functions. We propose two types of uncertainty indicating maps that can be readily 

understood by stakeholders. Cumulative distribution functions of SFF scores indicate that SFA methods respond differently 

to the propagated uncertainty of soil properties. Even where methods are comparable on the level of complexity and 30 

assessment scale, their comparability in view of uncertainty propagation might be different. We conclude that comparable 

uncertainty indications in soil function maps are required relevant to enable informed and transparent decisions on the 

sustainable use of soil resources.  
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1 Introduction 

Human wellbeing relies on soil resources, and soil should therefore be better integrated into ecosystem service frameworks 

that inform decision-making and environmental policies (Dominati et al., 2010). Soil acts in multi-functional ways, and 

fulfils many functions in the regulation of the nutrient and water cycle, in carbon sequestration or the filtering of chemical 

compounds, providing biodiversity and habitats for flora and fauna, and it is essential for the production of food, fibre and 5 

biomass (Adhikari and Hartemink, 2016; Haygarth and Ritz, 2009). The capacity of soils to deliver ecosystem services is 

largely determined by its functions, and each individual soil function can be seen as providing a soil-related contribution to 

ecosystem services (Bouma, 2014). The concept of soil functions has been increasingly been applied to reveal the role 

played by soils in sustaining the wellbeing of humans and of society, emphasizing the multi-functionality of soils and their 

chemical, physical and biological properties. (Dominati et al., 2014; EC, 2006; Haygarth and Ritz, 2009; Makó et al., 2017; 10 

Schulte et al., 2014; Schwilch et al., 2016; Tóth et al., 2013). In general, soil function assessment (SFA) entails the rating of 

soils according to their capacity to fulfill an individual soil function, the so-called soil function fulfillment (SFF). Simplified 

static SFA methods result in scores that can be integrated into spatial planning procedures (Greiner et al., 2017). Maps that 

enable visualization of SFF, so-called soil function maps, are well suited to communicating the importance of soils to spatial 

planners and other disciplines (Haslmayr et al., 2016; Sanchez et al., 2009) and can inform stakeholders on the role of soils 15 

for society and the environment (Bouma, 2010; Haygarth and Ritz, 2009; Miller, 2012). The European soil protection 

strategy (EC, 2006), even though not adopted, brought soil functions into public discussions.  

In order to allow informed and transparent decision-making in spatial planning programs, however, balancing the social 

aspects of urbanization and environmental factors (Grêt-Regamey et al., 2017), not only must the state of soils with regard to 

their functions be made available, but information on the reliability of the soil function maps is also required. Information on 20 

the accuracy of soil function maps facilitates decision-making for environmental policy, increases confidence among 

stakeholders, thereby helping to avoid poorly informed policy decisions with significant long-term environmental and social 

consequences (Maxim and van der Sluijs, 2011). At the same time, providing information on the uncertainty of soil function 

maps might delay decisions (Höllermann and Evers, 2017) or lead to discussions and negotiations in the spatial planning 

process (Taylor et al., 2015). Nevertheless, the demand for soil information is considerable and stakeholders require not only 25 

the state of the soil in terms of soil quality, but also any indication of uncertainties associated with the soil information 

(Campbell et al., 2017). 

Various sources of uncertainty can lead to spatially heterogeneous degrees of reliability in mapping soil functions. In 

general, the following types of uncertainties can be distinguished in assessing and mapping soil functions (Keller et al., 

2002): (i) model uncertainty that might arise from incomplete or incorrect methodological approaches and incomplete 30 

process descriptions, (ii) informational uncertainty of input data and model parameters, and (iii) temporal and spatial 

variation of soil properties. In the case of SFA, informational uncertainties in input data may result for instance from 

processing soil legacy data (Nussbaum et al., 2017a), prediction of soil properties using digital soil mapping approaches 
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(DSM) (e.g., Nussbaum et al., 2017a; Sanchez et al., 2009; Vaysse and Lagacherie, 2015) or the application of pedotransfer 

functions (PTF)  (Chirico et al., 2010; Schaap, 2004) to deduce soil parameters from other soil properties.  

We distinguish two SFA approaches that differ in their levels of complexity (Greiner et al., 2017). The static approach uses 

simplified empirical methods to assess the capacity of a soil to fulfil a specific function, neglecting the impacts of land use 

and land management practices. The static approach is particularly suitable for land-use planning to support the sustainable 5 

use of soil resources (Lehmann and Stahr, 2010). The dynamic approach takes into account soil processes and site-specific 

environmental factors, as well as land use and land management practices. Dynamic models exist for nutrient and water 

cycling, carbon sequestration, crop production, and other soil sub-functions (Vereecken et al., 2016). The use of dynamic 

soil models is both data-demanding and time-consuming, but is a powerful means of modelling the impacts of past and 

future land use and land management practices on soil functions. The assessment of uncertainties in environmental 10 

(dynamic) modelling has been demonstrated in numerous studies (Bastin et al., 2013; Brown et al., 2005; Heuvelink et al., 

2007, 2010; Krayer von Krauss et al., 2005; Lesschen et al., 2007) and various frameworks have been proposed to take into 

account sources of uncertainty (Bastin et al., 2013; Heuvelink et al., 2007). In contrast, uncertainties among static SFA 

approaches have hardly been accounted for at all.  

In this study, we propagate prediction uncertainties in soil properties (informational uncertainty) through the calculation of 15 

ten static SFAs for a case study area in the Swiss Plateau. The SFA methods used are presented in (Greiner et al., 2017) and 

were chosen to reveal the breadth of multi-functionality of soils. We used soil property maps generated using a digital soil 

mapping approach (DSM) that exploits soil legacy data (Nussbaum et al., 2017b) and has the advantage that the prediction 

intervals for soil properties are provided. The objectives of our study were to propagate soil property predictions through 

static SFA, in order to 1) indicate how accurate the SFA results are in response to informational uncertainty and spatial 20 

variation of soil properties as quantified by the DSM approach, and 2) to gauge how sensitive the SFA methods are to 

predictive distribution in soil properties.  

 

 

 25 

2 Materials and Methods 

 

2.1 Study area 

Our study area is located in the Swiss Plateau in the Canton of Zürich around Lake Greifensee, see Figure 3Figure 1. The 

region is dominated by urban areas and agricultural land (crop production, mixed and dairy farming). We only assessed soils 30 

under agricultural use. Urban areas, forest, wetlands, parks, and city gardens are excluded from this study, resulting in a total 

study area of 170 km2. Fluvisols, Luvisols, Chromic, Calcaric and Eutric Cambisols (63% of study area), Stagnic, 

Reductigleyic and Calcaric Gleysols (20% of study area), Haptic Luvisols (11% of study area) and Hemic, Drainic Histosol 
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and Calcaric , Eutric Fluvisols or Regosols, Gleysols or Histosols have developed in a variableersatile geology, but in 

general on quaternary molasses and moraines. The region lies at about 390-840 metres above sea level, and the vegetation 

timegrowing season amounts to approximately 190 days per year. Slopes greater than 35% can only be found alongside 

moraines, otherwise the slopes are between 10 and 15% (Jäggli et al., 1998). The shape of the study area is formed by 

administrative boundaries in the south east and otherwise by APEX spectroscopy flight bands (www.seon.uzh.ch). More 5 

details on the region, its soils and its extent are provided in (Jäggli et al., (1998) and; Nussbaum et al., (2017b). 

 
Figure 1 Study area in the Swiss Midlands, 672489 - 715769 X, 228156 – 259960 Y, GCS_CH1903. (Orthophotos study area: 

SWISSIMAGE 2005, ©SWISSTOPO. Administrative boundaries Europe: NUTS 2010, ©EuroGeographics) 

 10 

2.2 Soil function assessment  

We assessed regulation, habitat and production functions for 10 soil (sub)-functions (Table 1) as proposed in a previous 

review by Greiner et al (2017). Each SFA method addresses a certain domain of the soils multi-functionality depicting a 
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specific assessment criterion, e.g., the nutrient storage capacity of soils for the nutrient cycle. The SFA methods require data 

on soil properties, PTFs, and other environmental data (Table 1).  

 

2.2.1 Regulation functions 

We assessed the regulation of the water cycle (R-water) following the method proposed by (Danner et al., 2003), which 5 

combines the water storage capacity (WSC in mm/m2) of soils with their saturated hydraulic conductivity (SHC in cm/day) 

for a reference soil depth down to 1m. The nutrient storage capacity (NSC in molc/m2) of soil is one of its most important 

parameters, determining the nutrient cycle (R-nutric). We calculated the NSC according to (Lehmann et al., 2013), 

multiplying the fine earth fraction (mass of clay and silt) and the amount of soil organic matter for each soil layer with its 

effective cation exchange capacity (CECeff) down to a soil depth of 1 m. The method proposed by (Jäggli et al., 1998) 10 

evaluates the capacity of soils to prevent the loss of soil nutrients by runoff and percolation to ground and surface water (R-

nutril). The SFA method takes into account basic soil properties as well as the hydromorphic properties of soils 

(waterlogging) and environmental site conditions. The capacity of the soil to filter and buffer trace metals (R-icont) were 

assessed for cadmium, copper and zinc using a method developed by the German Association of Water, Wastewater and 

Waste (DVWK, 1988) to prevent groundwater pollution by trace elements. The SFA method evaluates the filtering capacity 15 

of topsoils (0- 30 cm) to retain trace metal cations based on sorption sites of organic matter, clay minerals, and sesquioxides 

in conjunction with soil pH and redox potential (DVWK, 1988). Agricultural soils are potentially treated with commercial 

fertilizers, animal manure, compost, waste-derived fertilizers, and pesticides, which contain nutrients and trace metals such 

as cadmium, copper and zinc. While copper mainly stems from fertilizers, cadmium and zinc are brought into soils by 

manure as well. Additionally, farmers may use pesticides containing zinc and copper (Jensen et al., 2016; Six and Smolders, 20 

2014; Keller and Schulin, 2003): 

 

The regulation of organic compounds (R-ocont) is assessed using the method of Litz (1998) for four frequently used 

herbicides in Switzerland: glyphosate, pendimethalin, metamitron and isoproturon (Franzen et al., 2017). The SFA method 

assesses the potential sorption and fixation of an organic compound on clay and organic material (binding) and the potential 25 

biological activity of a soil to decompose an organic compound (decomposition). In a second step, both assessment criteria 

are combined to evaluate the retention potential of a soil for a specific chemical compound (retention). To account for the 

ability of soils to buffer acids (R-acid), we applied the SFA method proposed by (Bechler and Toth, 2010). The method takes 

into account the amount of clay and organic matter down to a soil depth of 1 m, and soil pH. To address the role of soils in 

the carbon cycle (R-carbon) we simply calculated the soil carbon stock to 1m depth. 30 
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2.2.2 Habitat and production functions 

We used the method proposed by (Siemer et al., 2014) to assess the capacity of soils to provide niches for rare plant species 

(H-plant). This is applied to sites with extreme soil properties and shallow soils that lead to relatively dry or wet soil 

conditions or low nutrient availabilities, which provide niches for rare plant species. As an indicator of the habitat function 

we estimate soil biological activity based on empirical regression functions to estimate microbial biomass in grassland and 5 

arable soils (H-micoorg) (Oberholzer and Scheid, 2007). These PTFs were derived for hundreds of grassland and arable sites 

across Switzerland.  

We assessed the agricultural production function (P-agri) using the method of Jäggli et al. (1998). This SFA method 

combines basic soil properties, climate data (climate suitability classes depending on temperature, precipitation and length of 

growing period (BLW, 2012)), and site conditions (slope, topography) to classify soils into 10 classes according to their 10 

suitability for crop growth.  

The results of SFA methods are usually given in physical or chemical units and transformed to an ordinal scale, i.e., an SFF 

score, to facilitate the communication of multi-functionality to stakeholders. In agreement with other studies assessing soil 

functions (e.g., Miller 2012, Haslmayr et al. 2016, Lehmann and Stahr 2010), we applied an ordinal scale with five levels, 

which we calibrated to Swiss soil variety represented by 100 soil monitoring sites (Gubler et al., 2015): SFF score = 1 (very 15 

low/very poor), SFF = 2 (low/poor); SFF=3 (medium), SFF= 4 (high/rich) and SFF=5 (= very high/very rich). 

 

Table 1. The ten assessed soil functionsoil sub-functionss for the case study area, their assessment criteria and required input data. 

For the uncertainty assessment soil properties were treated as fixed (SPm) or as random variables (SPd) (see Chapter 2.4 for 

explanation). SOM: soil organic matter, SC: stone content, WH: presence or absence of waterlogged horizons, DC: Drainage 20 

Class, AAC: available air capacity in mm, AWC: available water capacity, BD: bulk density, CECpot and CECeff: potential and 

effective cation exchange capacity, MB: microbial biomass, SHC: saturated hydraulic conductivity, S-value: amount of 

exchangeably bound basic cations, type of method (see section 2.4. and Figure 2). * SOM for 50-100 cm depth: SPm 

Soil 

function  Assessment criterion 

Source of 

method SPd  SPm PTF3 
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e of 

met
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Soil (sub-)function  

  
  

C
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y
 

S
O

M
*
1

,2
 

S
C

1
 

p
H

 

S
il

t 

D
ep

th
 

W
H

1
 

D
C

1
     

 
  

Regulation function 
 

                  

  

   

Water cycle 

Water infiltration (cm/d) and 

storage capacity (mm/m2) 

combined in semi-quantitative 

look-up table  

Danner et 

al. (2003) 
x x x   x x x   

BD, 

SHC, 

AWC, 

AAC 

Slope, 

geology, 

climate 

2 

R-water 

Nutrient 

cycle 

Nutrient storage capacity of 

fine earth down to 1 m soil 

depth (molc/m2 ) 

Lehmann 

et al. 

(2013) 

x x x x x x x   
BD, 

CECeff 
  

1 

R-nutric 



7 

 

Nutrient 

losses 

Retention capacity against 

nutrient losses, e.g., nitrate 

(semi-quantitative look-up 

tables) 

Jäggli et 

al. (1998) 
x x x 

 

x x x x BD 
Slope, 

geology, 

climate 

2 

R-nutril 

Heavy 

metals 

Sorption capacity for inorganic 

pollutants (semi-quantitative 

look-up tables) 

DVWK 

(1988) 
x x x x   x     BD  

2 

R-icont 

Organic 

compounds 

Retention capacity for organic 

contaminants against 

percolation into ground water 

(semi-quantitative look-up 

tables) 

Litz (1998) x x x x x x x x 

BD, 

AWC, 

CECpot, 

S-value 

Properties 

organic 

compounds, 

mean annual 

temperature 

and 

evaportranspira

tion, climate 

2 

R-ocont 

Acids and 

conta-

minants 

Buffering and binding capacity 

for acids and contaminants 

assessed by soil organic matter 

content (in kg/m2, clay content 

(in kg/m2) and maximum pH in 

assessment depth combined in 

a semi-quantitative look-up 

table 

Bechler 

and Toth 

(2010) 

x x x x   x x   BD   

2 

R-acid 

Carbon cycle 
Amount of organic matter pool 

in soil (C-storage) (kg C/m2) 

Greiner et 

al. (2018) 
  x x     x     BD   

1 
R-

carbon 

Habitat function 
 

                       

Plants 

Soils providing niches for plant 

species, with  very dry, wet or 

low nutrient properties 

(assessed by available water 

capacity in mm, presence of 

hydromorphic horizon and 

effective cation exchange 

capacity in cmolc/kg) 

Siemer et 

al. (2014) 
x x   x x x x   

BD, 

AWC 
  

2 

H-plant 

Micro-

organisms 

Amount of microbial biomass 

(mg/kg dried soil) 

Greiner et 

al. (2018) 
x x   x x x     MB Land use 

1 H-

microor

g 

Production function 
 

                       

Agricultural 

production 

Suitability for agricultural 

production (semi-quantitative 

look up tables) 

Jäggli et 

al. (1998) 
x x x x x x x x BD 

Relief, slope, 

climate 

2 

P-agri 

 
1SOM: soil organic matter, SC: stone content, WH: presence or absence of waterlogged horizons, DC: Drainage Class  
2 SOM for 50-100 cm depth: SPm 
3AAC: available air capacity in mm, AWC: available water capacity, BD: bulk density, CECpot and CECeff: potential and 

effective cation exchange capacity, MB: microbial biomass, SHC: saturated hydraulic conductivity, S-value: amount of 5 

exchangeably bound basic cations 
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4 Type 1: SFA method consists of empirical equations or PTFs, Type 2: SFA method consists of look-up tables 

 

 

2.3 Soil property maps and other data 

Soil property maps were generated using the digital soil mapping (DSM) approaches of Nussbaum et al. (2017b) generated 5 

soil property maps using digital soil mapping (DSM) approaches for the case study area with a spatial resolution of 20 m 

raster cells. This resulted in a total of about 450 000 raster cells for the agricultural soils. In the DSM approach Nussbaum et 

al. (2017b) used a new boosted geoadditive modelling framework (geoGAM) in which they modelled nonlinear relationships 

and selected parsimonious models from a large number of covariates. Table 2 presents summary statistics of the modelled 

soil properties in our case study for the four soil layers that were distinguished. The accuracy of the predictions, validated 10 

using independent data, was similar to other DSM studies. Independent models were fitted for each soil property and each 

soil depth (Nussbaum et al. 2017b). To predict soil properties, harmonized soil legacy data on about 4000 profiles (Walthert 

et al. 2016) from a 1:5000 soil mapping survey between 1988 and 1997 by the Canton of Zurich (Jäggli et al. 1998) was used 

under a non-public data license. Details are described in publications by Nussbaum et al. (2017a, 2017b). 

In order to apply the SFA methods, PTFs suitable for diverse soil parameters are required (see Table 1). To estimate soil 15 

bulk density we used the PTF of Nussbaum and Papritz (2015), and for the cation exchange capacity we used the PTF of 

Gerber (2014). Both PTFs were developed for Swiss soils based on soil legacy data. Available water capacity (AWC) and 

other soil hydraulic properties were estimated using the German soil mapping guidelines (KA5, 2005). Other environmental 

data such as slope, relief, climate, geology, geomorphology, properties of organic compounds, and land use were gathered 

from available databases (BFS, 2010; BLW, 2012; HADES, 2017; PPDB, 2017; Swisstopo, 2008, 2014). 20 

 

Table 2. Summary statistics of modelled soil properties generated by the DSM approach by Nussbaum et al. (2017) for the 

Greifensee study area. 

 
Soil property Depths 

Mean STD 
Distribution 

Q0.1 Q0.5 Q0.9 Q0.1 Q0.5 Q0.9 

SPd 

Clay (%) 

0-10 19.4 24.3 29.4 5.5 5.7 5.8 - 

10-30 20.4 25.6 31.2 5.5 5.7 5.8 - 

30-50 20.4 25.4 31.2 6.6 6.8 7.0 - 

50-100 18.9 24.7 30.3 7.3 7.5 7.7 - 

Soil organic matter (%) 

0-10 4.4 5.8 8.2 1.7 2.2 3.1 - 

10-30 4.3 5.8 8.5 1.9 2.5 3.7 - 

30-50 1.7 5.9 10.7 6.7 15.5 22.2 - 

Stone content (%) 

0-10 3.1 7.6 12.6 3.5 5.8 7.5 - 

10-30 3.4 8.3 13.7 3.7 6.0 7.9 - 

30-50 4.0 9.9 18.1 4.6 7.7 10.5 - 

50-100 5.4 12.6 21.2 6.4 10.2 13.5 - 

pH 
0-10 6.2 6.5 7.0 0.5 0.5 0.5 - 

10-30 6.1 6.5 6.9 0.5 0.5 0.5 - 
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30-50 6.1 6.5 7.0 0.6 0.6 0.6 - 

50-100 6.2 6.6 7.0 0.6 0.6 0.6 - 

SPm 

  

Soil organic matter (%) 50-100 1.0 0 - 

Silt (%) 

0-10 34.8 2.2 - 

10-30 35.5 2.3 - 

  30-50 32.9 3 - 

  50-100 33.6 3.1 - 

  Soil depth (cm) - 70.1 14.6 - 

 

 

 

2.4 Indication of uncertainty in mapping soil functions 

In this study, we propagated uncertainties for four basic soil properties, i.e., clay content, SOM, pH and stone content, 5 

through the calculation of the ten static SFA methods. These four soil properties were treated in the calculations as random 

variables for each raster cell and soil depths 0-10 cm, 10-30 cm, 30-50 cm and 50-100 cm (Table 1). For the soil depth of 50-

100 cm, SOM was treated as a fixed input variable (SPm) because its predictive performance was too low (Nussbaum et al. 

2017). For SOM at this depth we used the median of the available soil data (n = 418). The probability distributions of these 

soil properties (SPd) were derived from the DSM approach mentioned above, performing 1000 simulations for each raster 10 

cell and soil depth (Nussbaum et al. 2017). For the calculation of the SFA we drew an independent set of the four SPd values 

(drawn and replaced) N=1000 times, and compared range, mean and variance of the generated SPd set with the original 

distributions of the four soil properties predicted using the DSM approach. 

We restricted the number of random variables to these four soil properties due to the required computation time for such a 

large number of raster cells (n = 4x105) with four soil depths. Therefore, for other soil properties such as silt content, soil 15 

depth, the presence or absence of waterlogged horizons, and drainage class were treated as fixed value per raster cell and soil 

depth, i.e., the mean of the DSM simulations was used (SPm) (Table 1, Table 2). The presence of waterlogged soil horizons 

in the top soil layer (0-30 cm) was found for about 13 % of the case study area, for the 0-50 cm soil depth the figure was 27 

%, and for the depth 0-100 cm, it was 40 % of the area. We assumed there was no waterlogging for the 0-10 cm depth 

because this was rarely observed in the data. About 74% of the agricultural soils were well drained (drainage class 1), 11% 20 

were moderately well drained (class 2), and 15% were poorly drained (class 3)(Nussbaum et al., 2017b). 

For the error propagation and the analysis of the uncertainty assessment results we distinguish two different types of SFA-

methods depending on how the chosen random variables are taken into account in the calculation of the SFA methods 

(Figure 2). In cases where the SFA method consists of empirical equations (e.g., regression functions) or continuous PTFs, 

the variation of each soil property with probability distribution, SPd,  is fully propagated through these (type 1 equation). In 25 

our study this is the case for methods assessing regulation of nutrient cycle, carbon cycle and habitat for microorganisms (R-

nutric, R-carbon, and H-microorg). Some SFA methods assessing soils regulation of water cycle, nutrient losses, 

acidification, inorganic contaminants, habitat for plants or agricultural production functionsuch as (R-water, R-nutril, R-acid, 



10 

 

R-icont, H-plant, and P-agri) are partly based on look-up tables using a classification of soil properties in the calculation, 

including PTFs that classify the estimation of secondary soil properties such as AWC available water capacity (type 2 look-

up tables). In particular, the method assessing soils regulation of organic contaminants (R-ocont) classifies soil properties at 

the very beginning and groups the calculation of the retention of organic compounds in soils according to this classification. 

 5 

Figure 2 Schematics of types of soil function assessment methods used in this study: a Type 1 equation directly rates a soil 

property (SP, possibly deduced by PTF, weighed or summed for a certain depth), a Type 2 look-up table combines two or more 

soil properties in a table to deduce SFF 

We computed a) two measures of uncertainty for SFF scores, b) two types of maps visualizing uncertainties, c) two measures 

for overall uncertainty per soil sub-function in our study area and show d) uncertainties of SFF scores per soil sub-function 10 

in detail.  

a) As a measure of uncertainty of the SFF scores for the ten SFA methods, we computed the interquartile range (IQR) for 

each raster cell, i.e., the difference between the 75% and 25% percentiles, and the ratio of IQR to the mean as an 

approximation for the coefficient of variation for the ordinal-scaled SFF scores.  

b) In order to visualize the uncertainty of the SFF scores in the soil function maps we generated two different map types.  15 

We visualized the uncertainty of the SFF scores resulting from the uncertainty of the four SPd values with the aim of 

facilitating communication in the decision-making process, and computed the probabilities < 10 %, 10-30% and >30% that 

the SFF score of a raster cell might deviate from the mean SFF score (only SPm used for SFA) for ± 1 or ± 2 or more SFF 

units. In this way, stakeholders might gain an overview of the areas of the case study area for which the SFF scores of 

individual soil functionssoil sub-functions have more or less confidence, expressed on the ordinal scale. The other type of 20 

maps allow visualization of  SFF scores in a raster cell only where ≥90%  of the 1000 simulated SFF scores were equal 

(C90), i.e., ≥90% of the simulated SFF scores revealed no variation indicating a high reliability of the result, whereas raster 
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cells that do not meet this criteria are displayed as empty cells in the map. Additionally, 5% and 95% percentiles are 

displayed.  

c) As a measure of the overall uncertainty of a soil function, we calculated for each raster cell the median absolute deviation 

(MAD) and took the average of the MAD for all raster cells (MMAD).  

d) Finally, for more detailed analysis of the resulting uncertainty in the SFF scores for each assessed soil function, we 5 

computed the cumulative distribution functions (cdf) of the SFF scores including the mean of the deviations from the mean 

SFF score of a raster cell (MDM) for the 1000 simulations. The MDM was calculated separately for a) all simulations that 

were larger or b) smaller than the mean SFF score. 

 

3 Results and Discussion 10 

3.1 Mapping uncertainty of soil functionssoil sub-functions 

Mapping the ten soil functionssoil sub-functions for the agricultural soils of the case studystudy area revealed pronounced 

spatial patterns, with a high variability of SFF scores across the region, linked to the inherent properties of the soils, terrain 

attributes, and climate conditions. The propagated uncertainties of soil properties SPd as produced by the SFA methods 

generally led to substantial uncertainty in the mapped soil functionssoil sub-functions, though to a different extent for 15 

individual soil functionssoil sub-functions and for subregions. Figure 3Figure 2 presents the mean SFF scores for three 

selected soil functionssoil sub-functions and the associated uncertainties; the same maps for the other soil functionssoil sub-

functions can be found in the Appendix. Figure 4Figure 3 provides a general overview of the range of the SFF scores for the 

ten mapped soil functionssoil sub-functions and their uncertainties. 

For instance, the regulation function for water (R-water) is in general higher for arable soils in the north-eastern part of the 20 

case study area, but is also associated with larger uncertainties. The water storage capacity (WSC) in our study area ranges 

between 44 mm and 270 mm (10% - 90% quantile, median: 204 mm) and the saturated hydraulic conductivity (SHC) ranges 

between 17 cm/d and 183 cm/d (median: 32 cm/d). The probability maps indicate that in the north-eastern part, 30% or more 

of the N= 1000 simulations did not fall in the “very high” SFF score, but scored one or two SFF categories lower, i.e., high 

or medium (Figure 3Figure 2). Furthermore, the soils between Lakes Greifensee and Zürichsee in the western part of the 25 

region with predominantly medium and low SFF scores were quite sensitive to uncertainties in soil properties. For the 

majority of soils in this subarea there is a relatively high probability that the mean SFF score for R-water might deviate by ± 

1 SFF unit. 

As expected, the calculation of the soil carbon pools was very sensitive to uncertainty in soil organic matter and stone 

content data (Figure 3Figure 2, R-carbon). Carbon pools in agricultural soils are very heterogeneous across the case study 30 

area, with low SFF scores mainly in the northern part (< 10 kg/m2), with medium (13-15 kg/m2) and high SFF scores (15-21 

kg/m2) in the southern part of the region. Mapping the associated uncertainty of soil carbon pools on an ordinal scale 

indicated, across almost the whole case study area, high probabilities that the SFF scores might deviate for ± 1 or even ± 2 

SFF units. In contrast, the agricultural soils of the case study area showed high nutrient storage capacities throughout the 



12 

 

region (Figure 3Figure 2, R-nutric) and therefore, SFF scores of R-nutric were not that sensitive to the propagation of 

uncertainties of SPd through this SFA method. Only in the north-eastern area did we observe some probabilities that SFF 

scores for R-nutric might be one SFF unit lower.  Overall, the uncertainty of individual soil function maps showed diverse 

spatial patterns., and mMapping their uncertainty in the ordinal scale, as proposed in Figure 2, has may increasethe 

advantage that the communication the common understanding of spatially heterogenic uncertainties in SFF of such 5 

uncertainties between actors in decision-making in spatial planning processes improves levels of understanding. This adds 

information on reliability for the , to the well suited soil function maps used to communicate the value of soils values to 

spatial planners and other disciplines (Haslmayr et al., 2016; Sanchez et al., 2009), thus supporting allowing for  a 

bettermore confidence in accurate land use decisions. Moreover, revealing the reliability of soil function maps  transparent, 

and thereby higher quality soil function maps  mightcan also support efforts to strengthen the link between soil functions and 10 

ecosystem services. This link is important,  as proposed by (Bouma, 2014). Bouma (2014) stresses: that this communication 

is a dialogue in which soil scientists should engage in order to link soil functions with ecosystem services are, as a means of 

connecting them soil functions to the demands and needs of stakeholders to find a balance in land-use planning between 

economic, social, and environmental aspects, a balance crucial to find (e.g.,.Bouma 2014; Grêt-Regamey et al., 2017; 

Valujeva et al. 2016). 15 

 

 

2 Selected soil function maps for the agricultural land of the case study area and indication of their uncertainties in the ordinal 

scale: a) mean SFF scores (1st column) and b) probability that the mean SFF score of a raster cell deviates in the ordinal scale for ± 

1 (2nd column) or  c) ± 2 or more SFF units (3rd column) (raster cells 20 x 20 m2, N=1000 simulations).  20 

The responses of the SFF scores for the assessed soil functionssoil sub-functions to uncertainty in the four simulated soil 

properties depend not only on the SFA method itself but also on the associated classification of the SFA results into the 

ordinal scale. In agreement with the very high nutrient storage capacity of the soils, the basic soil properties of the grassland 

and arable soils are in a range that provides high and very high retention of trace metals (R-icont) as well, while the retention 

of organic chemical compounds in soil (R-ocont) is very low throughout the region (Figure 4Figure 3) according to the 25 

assessment scale proposed in this SFA method (Litz 1998). Accordingly, the SFF scores for R-nutril, R-icont, and R-ocont 

are relatively insensitive to uncertainty in soil properties, and the overall coefficient of variation is very small for these soil 

functionssoil sub-functions. The highest overall coefficient of variation was found for R-carbon and H-microorg, followed 

by R-acid and R-water (Figure 4Figure 3). These results raise a question about the appropriate classification of SFA results 

from physical or chemical units into an ordinal assessment scale, and the adaption of such a classification for individual soil 30 

functionssoil sub-functions according to the range of soil properties for the case study area of interest or according to 

national references. Only where the SFF scores on the ordinal scale of a certain soil function show substantial spatial 

variation can the influence of uncertain soil properties on the SFA results be investigated.     

In this regard, H-plant is a special case for the assessment of uncertainties, because the outcome of this SFA method is a 

binomial variable, i.e., it indicates whether the soil provides niches conditions for rare plant populations or not. The simple 35 
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SFA revealed that 14% of the soils in the case study area are suitable for providing niches for rare plants in terms of wet or 

dry soil conditions, low nutrient availability and shallow soils. Such extreme soil conditions are mainly determined by soil 

depth, soil hydromorphic features, and other soil properties and only to some degree by the considered uncertainty of the soil 

properties SPd. Therefore, for a proper uncertainty assessment of the SFA-method H-plant, not only must soil properties be 

taken into account, but the uncertainty of the aforementioned variables should also be considered.  5 

 

 
Figure 3 General overview of the resulting range of SFF scores for the ten mapped soil functionssoil sub-functions (left), and of 

their coefficient of variation (right) expressed as the ratio of the interquartile range (IQR) and the median of the SFF scores for 

each raster cell. Circles with dots indicate the median coefficient of variation of the SFF scores across the case study area. 10 

In addition to the uncertainty maps described above, we generated supplemental information on the uncertainty of soil 

function maps addressing a given quality assurance criterion (Figure 5Figure 4). We defined the C90 criteria, i.e., mean SFF 

scores for raster cells are displayed if at least 90% of the SFF score simulations result in the same SFF unit, otherwise the 

study area is shown as a grey area. In this way, stakeholders can easily gain an overview of those areas for which the soil 

function maps are reasonably reliable. Figure 5Figure 4 illustrates such supplemental maps and the visual effect of the C90 15 

criteria for three SFA methods with high (R-nutril), medium (R-icont), and low reliability (H-microorg). Independent of the 

SFF scores, the number of raster cells displayed decreases for these three soil functionssoil sub-functions, in the same order.  

In sum, the uncertainty analysis shows that R-nutril and R-nutric fulfil the C90 criteria for most of the assessed agricultural 

area (85-90%); P-agri, R-water, R-icont, R-ocont fulfil them for about 41-51%; while R-acid, H-microorg and R-carbon 

apply for less than 5% of the case study area. Accordingly, the average MAD of the SFF scores across the whole region 20 

increase noticeably for these three groups in the same order, from < 0.01 for the first group to 0.01 – 0.07 for the second, and 

0.43-0.88 for the third group. For the last group, the range of SFF scores (5% and 95% percentiles for each raster cell) in 
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terms of SFF units varies for large areas from very low to very high, as illustrated for instance for H-microorg in the north-

eastern part of the region (see Figure 5Figure 4).  



15 

 

 
 Figure 4 Uncertainty indication for soil function maps of R-nutril, R-icont and H-microorg: a) only mean SFF scores for raster 

cells are displayed if at least 90% of the N= 1000 simulations per raster cell revealed the same SFF score (first column). In 
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addition, the range of SFF scores for each raster cell is shown: b) 5% and c) 95% percentiles of SFF scores, respectively (SFF = 

soil function fulfillment, grey: not C90 or no assessment, light grey: Lakes, “Arealstatisik”2009, 72 classes, © BFS 2010, 

GEOSTAT) 

 

 5 

3.2 Cumulative distribution functions of SFF scores 

Cumulative distribution functions (cdfs) of the SFF scores for all raster cells provided deeper insight into the sensitivity of 

the SFA methods related to the uncertainty of the basic soil properties SPd with regard to the uncertainty for each SFF unit 

for each soil function. In general, we observed two different patterns in the cdfs of the SFF scores for type 1 (equation) and 

type 2 (look-up table) SFA methods (Figure 6Figure 5 and 7).   10 

For type 1 SFA-methods the uncertainty in the soil properties can be propagated entirely through regression functions and 

deterministic equations, and cdfs of the corresponding SFF scores indicate a smooth pattern of mean SFF scores and their 

uncertainties from very low to very high SFF scores (Figure 6Figure 5). In contrast, dependent on the classification of soil 

properties in the look-up tables used in type 2 SFA -methods, the cdf for R-nutril and P-agri show pronounced, and for P-

water and P-acid less pronounced, step-functions for the mean SFF scores. Both of the first two SFA methods combine 15 

information on soils and environmental site conditions (e.g., geology, drainage systems, slope, altitude and climate) using 

various comprehensive look-up tables, leading to a strong discrimination of the final SFF scores for distinct ranges of soil 

properties. Therefore, the outcomes of these SFA methods for a given region is not straightforward. For example, R-nutril 

combines texture, stone and soil organic matter content, bulk density, soil depth, drainage class, and environmental 

conditions as input data in various look-up tables. Thus, other input parameters including soil properties might also 20 

determine the main outcome of R-nutril for certain SFF units. For R-nutril and P-agri, soil depth and drainage class showed 

strong discrimination between SFF classes.  

Figure 7Figure 6 indicates that the SFF scores for R-nutril are only sensitive to some degree to the uncertainty in the soil 

properties SPd for high and very high SFF units, while for other SFF units other environmental data are dominant.  

Interestingly, we observe that certain SFF units of the type 2 SFA methods are more or less sensitive to the propagated 25 

uncertainty of soil properties SPd (Figure 7Figure 6). This different response in the uncertainty of the SFF scores for the type 

2 SFA methods was a priori unexpected and highlights the importance of such an uncertainty analysis of static SFA methods. 

The analysis provides insight in terms of those SFF units for which uncertainty in soil property data plays an important role. 

For soils with a low suitability for food production the range of soil properties is not important (see Figure 7Figure 6d) given 

that waterlogging or soil depth might be the dominant factors. However, for soils with medium and high suitability the range 30 

of soil organic matter, clay and stone content, and soil pH are decisive.  

In line with the analysis of the uncertainty maps discussed above, relatively large uncertainty was found for all raster cells 

for R-carbon and H-microorg (Figure 6Figure 5). The SFA method H-microorg, for example, links microbial biomass for 

grassland and arable land use to soil organic matter, pH and clay content through an empirical PTF, and is therefore very 

sensitive to changes in soil properties. For R-water and P-agri for medium to very high SFF units the uncertainty in the soil 35 
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properties SPd also leads to rather less confident SFF scores. Consequently, the analysis suggests on a specific level that 

further measurements of basic soil properties are required in the case study area to reduce the uncertainty in the spatial 

prediction of soil properties obtained from the DSM approach used by Nussbaum et al. (2017).  

Moreover, our analysis clearly indicates that SFA results are not comparable between type 1 and type 2 methods and among 

type 2 methods in view of uncertainty indication. One of the core aspects of the soil function concept is to assess soils 5 

multifunctionality and the role soils play for humans and the environment in general and to support land use decisions (e.g., 

Haygarth and Ritz, 2009; Schulte et al., 2014). In this study, we argue that the weighing between the importance of different 

soil functions and other goods should be the result of a regional or political valuation process. The valuation of soil is more 

straightforward, if SFF scores are comparable and retain a comparable amount of uncertainty – even though soil functions 

are not or only weakly comparable of course. This ordinal comparability allows to deliberate on the importance of soil 10 

functions via SFF scores and soil function maps. Deliberation is seen as a promising tool to value environmental goods or 

services (Vatn, 2009). Soil function maps including uncertainty indications can also be used in multi-criteria decision 

analysis (MCDA), for an example in spatial planning including soil, see Grêt-Regamey et al. (2017). In terms of ecosystem 

services-language: soil function maps show the supply of a soil contribution to ecosystem service, the demand of these 

services has to be assessed on another level. Still, the supply-information should meet the needs of the further processes. 15 

 

 

 
Figure 5: Cumulative distribution function (cdf) of SFF scores for type 1 (equation) for  R-carbon and) H-microorg for 

agricultural soils of the case study area and the uncertainty resulting from four basic soil properties. (SFF score 1: very low to 5: 20 



18 

 

very high; black: mean SFF score per raster cell, grey: range ± MDM per raster cell, number of raster cells: about 450 000; total 

area = 170 km2). 

 

 

 5 
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Figure 6: Cumulative distribution function (cdf) of SFF scores for type 2 (look-up table) for R-water, R-nutril, R-acid and  P-agri 

for agricultural soils of the case study area and the uncertainty resulting from four basic soil properties. (SFF score 1: very low to 

5: very high; black: mean SFF score per raster cell, grey: range ± MDM per raster cell, number of raster cells for these soil 

functionssoil sub-functions ranged between 420 000-445 000; total area = 170 km2). 

 5 

3.3 Thoughts on uUncertainty communicationindication 

Uncertainty is usually expressed as a probability of a state or an event, and can be presented numerically, verbally or 

graphically (IOM, 2013). Its presentation must fit the needs of the audience, the circumstances, and the purpose (IOM, 

2013). We argue that the easiest way to interpret and the most suitable way of communicating (un-)certainties to actors in 

land-use decisions is in the form of maps because this enables the visualization of spatial variability. Clearly, for a general 10 

overview of the study area, insight into method behaviour or comparisons between soil function, and information in the form 

of a table or a plot may also be suitable. In this study, we present readily communicable uncertainty indications for soil 

function maps. There are many other possibilities as well, of course, including statistically advanced methods to display 

(un)certainties in soil function maps. Rather than providing statistical measures, however, we advocate provision of simple 

uncertainty maps such as those illustrated in Figures 3 and 5 as a means of facilitating the communication of uncertainties 15 

with stakeholders who may not be familiar with soil science and the contribution of soils to ecosystem services.  

Experience of communicating uncertainty in the context of climate (Budescu, 2016) has shown that the use of simple phrases 

such as “very likely” combined with a numerical score (e.g., >90%) are of most value because stakeholders understand this 

kind of message the best. Communication of uncertainty through phrases has the advantage that they capture the attention of 

stakeholders, although they are also somewhat open to individual interpretations in different contexts. According to (IOM, 20 

2013), although graphical communications indications can “capture and hold people’s attention”, the interpretation may vary 

among individuals. A correspondentOne option to evaluate in the future would be to communicate a general phrase about the 

uncertainty of a soil function map, combined with a map that shows the details of the spatial variation of the uncertainty.  

Depending on the method used, uncertainties in soil information input in SFA may be more or less disclosed or obvious, and 

with this in mind the question itself is then what degree of uncertainty in data input in SFA should be transported through the 25 

SFA to match the needs of decision-makers in spatial planning processes. The optimal degree of uncertainty communication 

indication depends on the stakeholders involved in decision-making and the kind of decisions. The mindsets of the actors 

involved influence how the decision can profit from good quality soil function maps, including uncertainty indications. Time 

and resources for decision-making may vary and require a variable quality of information. 

 30 

4 Conclusions 

Decision-making in spatial planning processes should be well informed on the role of soils for society and the environment. 

Mapping of soil functions underpins the contribution of soils to ecosystem services, and is appropriate for communicating 

the importance of soils to spatial planners and other disciplines. Transparency in the mapping of soil functions adds to the 

quality of the information used for decision-making. In this study, we try to foster transparency in two ways.  35 
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1) We demonstrate how the reliability of soil function maps can be assessed and communicated presented to allow for 

informed and transparent decisions in spatial planning processes, thereby helping to avoid poorly informed policy decisions 

with regard to available soil resources. We propose two types of maps for the indication of uncertainties in soil function 

assessmentSFA, which supplement each other. We advocate that uncertainties in soil function maps should be made as 

transparent as possible and be visualized in easily understandable maps.   5 

2) Taking account of the uncertainty of basic soil properties, the performed uncertainty analysis for soil function 

assessmentSFA provides deeper insight into the sensitivity of soil function mapsthe SFA methods for the uncertainties of 

four soil properties in our case study area. The cumulative distribution functions for the SFF scores of individual soil 

functions showed different patterns for SFA-methods based on empirical equations and SFA-methods using simplified look-

up tables. We propose two types of maps for the indication of uncertainties in soil function assessment, which supplement 10 

each other. We advocate that uncertainties in soil function maps should be made as transparent as possible and be visualized 

in easily understandable maps.  

The main limitations of this study are clear: Mainly because of computational limitations, wWe restricted our uncertainty 

analysis propagation in SFA for to predictive distributions to of four soil properties at four depths out of eight soil properties 

used for SFA, mainly because of computational limitations. Other sources of uncertainty such as informational uncertainty of 15 

on soil depth, soil hydromorphic features, and other environmental variables such as climate data and the reliability of PTFs 

should also be considered. Further,   we used one SFA method per soil function and besides this fact one can challenge the 

methods: for example on the soil data used, the inclusion of other environmental data, the use of PTFs, the assessment depth, 

the ordinal assessment scale, the calibration of the assessment scales, the simplifications made to depict static soil function 

fulfillment.  The SFA approach in general is flexible and modular, methods can be adapted or exchanged, but an issue of the 20 

approach is that validation of an assessment result is hardly possible (Calzolari et al., 2016). Although we used established 

SFA methods, we still consider the development of SFA methods an ongoing task and hope to contribute by showing that the 

choice of method matters in view of uncertainty propagation. Additionally, soil data availability for the study area was good 

in comparison to other areas in Switzerland. To achieve the same degree of detail in applying this approach for larger areas 

without soil sampling could therefore be challenging. 25 
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