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Abstract. Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil

Partnership (GSOCmap-GSP). This endeavor requires harmonizing heterogeneous datasets and building country-specific ca-

pacities for digital soil mapping (DSM). We identified country-specific predictors for SOC and tested the performance of five

predictive algorithms for mapping SOC across Latin America. The algorithms included: support vector machines (SVM), ran-

dom forest (RF), kernel weighted nearest neighbors (KK), partial least squares regression (PL), and regression-Kriging based5

on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5x5km pixel resolution) were

obtained from ISRIC-World-Soil-Information-Institute. Temperature, soil type, vegetation indices and topographic constraints

were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America.

We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range

between <1% and <60%, with no universal predictive algorithm among countries. A global (n=11268) ensemble of these algo-10

rithms was able to explain ∼ 39% of SOC variability from repeated 5 fold cross-validation. We report a combined SOC stock

of 77.8 ±43.6 Pg (uncertainty represented by the full conditional response of model-independent residuals). SOC stocks were

higher in tropical forests (30 ±16.5 Pg) and croplands (13 ±8.1 Pg). Country-specific and the regional ensemble reveal spatial

discrepancies across geopolitical borders, higher elevations and coastal plains, but provide similar stocks (77.8 ±42.2 and

76.8 ±45.1 Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the15

Harmonized World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia,

Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their pre-

dictions. We highlight that expert opinion is needed to set boundary prediction limits unrealistic high estimates. . Maximizing

explained variance while minimizing prediction bias, selecting predictive algorithms for SOC mapping should consider density

of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial20

uncertainty in SOC measurements across Latin America. We provide a reproducible framework for improving country-specific

mapping efforts and reducing current discrepancy of global, regional and country-specific SOC estimates.

1 Introduction

Soils store around 1500 Pg of carbon and represent the largest terrestrial carbon pool (Jackson et al., 2017); thus, it is critical to

accurately quantify the variability of soil organic carbon (SOC) from local-to-global scales. During the 4th Session of the Global25

Soil Partnership (GSP) Plenary Assembly held in May 2016 in Rome, it was agreed to develop a Global Soil Organic Carbon

Map (GSOCmap) (FAO, 2017). The overarching goal is that a Global SOC Map of the Global Soil Partnership (GSOCmap-

GSP) will be developed using a distributed approach relying on country-specific SOC maps. Country-specific maps represent a

valuable source of information to explain the high discrepancy of current global SOC estimates (e.g., the SoilGrids250m system

and the Harmonized World Soil Database, see (Tifafi et al., 2018)). The Food and Agriculture Organization (FAO) recently30

compiled how different statistical methods (e.g., regression-kriging and machine learning) could be used to generate country-

specific SOC maps and calculate uncertainty (Yigini et al., 2018). All these approaches consider the reference framework of

the SCORPAN model for digital soil mapping (DSM; McBratney et al. (2003)). In the SCORPAN reference framework a
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soil attribute (e.g., SOC) can be predicted as a function of the soil forming environment, in correspondence with soil forming

factors from the Dokuchaev hypothesis and Jenny’s soil forming equation based on climate, organisms, relief, parent material

and elapsed time of soil formation (Florinsky, 2012). The SCORPAN (Soils, Climate, Organisms, Parent material, Age and (N)

space or spatial position, see (McBratney et al., 2003)) reference framework is an empirical approach that can be expressed as

in Eq. (1):5

Sa[x;y t] = f(S[x;y t],C[x;y t],O[x;y t],R[x;y t],P[x;y t],A[x;y t]) (1)

where Sa is the soil attribute of interest at a specific location N (represented by the spatial coordinates of field observations

x; y) and representing a specific time frame (t); S is the soil or other soil properties that are correlated with Sa; C is the

climate or climatic properties of the environment; O are the organisms, vegetation, fauna or human activity; R is topography or

landscape attributes; P is parent material or lithology; and A is the substrate age or the time factor. To generate predictions of10

Sa across places where no soil data is available, N should be explicit for the information layers representing the soil forming

factors. These predictions will be representative of the time period (t) when soil available data was collected. Therefore, the

prediction factors ideally should represent, the conditions of the soil forming environment for the same period of time (as much

as possible) when soil available data was collected. In Eq. (1) the left side is usually represented by the available geo-spatial

soil observational data (e.g., from legacy soil profile collections) and the right side of the equation is represented by the soil15

prediction factors. These prediction factors are normally derived from four main sources of information: a) thematic maps (i.e.,

soil type, rock type, land use type); b) remote sensing (i.e., active and passive); c) climate surfaces and meteorological data; and

d) digital terrain analysis or geomorphometry. The SCORPAN reference framework is widely used, but one critical challenge

is to quantify the relative importance of the soil forming factors (i.e., prediction factors) that could explain the underlying soil

processes controlling the spatial variability of a specific soil attribute (i.e., SOC).20

Arguably, there are two visions for statistical modeling (Breiman, 2001) that influence the predictions of the spatial vari-

ability of SOC. One assumes that the variability of observations can be reproduced by a given stochastic data model (e.g.,

with hypothesis about the spatial structure of the variable). The other uses algorithms and treats as unknown the mechanisms

generating the structure of values in available datasets (e.g., with hypothesis about the statistical distribution and moments of

the variable). For SOC modeling, the accuracies of global models compared with country-specific estimates have not been25

evaluated on detail. While globally available SOC predictions rely on large and complex multivariate spaces to represent the

soil forming environment, local (i.e., more simple models) may be useful for validation purposes and required to measure the

bias of global SOC estimates at particular sites/countries where SOC drivers may be easier to identify due to a smaller range

of SOC variance. In addition, the assumptions of global models compared with local efforts may be different, and the quality

of local datasets may be higher that sources for global information. Different mapping approaches use a set of given available30

predictors in different ways. Thus, comparing different approaches and methods is useful to quantify the relative importance

of prediction factors across data configurations and distributional properties. We argue that a systematic analysis of predictive
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algorithms and consequently selection of predictors (by each one of the algorithms) could provide insights about the underlying

factors that control the spatial variability of SOC.

The last decade has seen an increasing diversity of approaches for DSM. Data mining techniques have been successfully used

to model and predict the spatial variability of soil properties (Rossel and Behrens, 2010; Hengl et al., 2017; Shangguan et al.,

2017) and generate some country-specific SOC maps (Viscarra Rossel et al., 2014; Adhikari et al., 2014). The combination5

of regression modeling approaches with geostatistics of model residuals (i.e., regression Kriging) is a combined strategy that

has been widely used to map SOC (Hengl et al., 2004; Mishra et al., 2009; Marchetti et al., 2012; Kumar et al., 2012; Peng

et al., 2013; Adhikari et al., 2014; Yigini and Panagos, 2016; Nussbaum et al., 2014; Mondal et al., 2017). Machine learning

algorithms such as random forests or support vector machines have also been used to increase statistical accuracy of soil carbon

models (Martin et al., 2011; Hashimoto et al., 2017; Hengl et al., 2017) including applications for SOC mapping (Grimm et al.,10

2008; Sreenivas et al., 2016; Yang et al., 2016; Hengl et al., 2017; Delgado-Baquerizo et al., 2017; Ließ et al., 2016; Viscarra

Rossel et al., 2014). Machine learning methods do not necessarily allow to extract information about the main effects of

prediction factors in the response variable (e.g., SOC); consequently, a variable selection strategy is always useful to increase

the interpretability of machine learning algorithms. With this diversity of approaches one constant question is if there is a

method that systematically improves the prediction capacity of the others aiming to predict SOC across large geographic areas15

(e.g., Latin America). We postulate that probably there is no universal method (i.e., silver bullet) for DSM, but both global

and country-specific efforts are needed to test a variety of predictive algorithms including variable and parameter selection

strategies for maximizing explained variance while minimizing prediction bias.

Across Latin America, site or region-specific modeling efforts report high explained variance mapping SOC (Reyes-Rojas

et al., 2018). SOC maps are required to quantify SOC stocks and identify areas with the potential for soil carbon sequestration,20

and distinguish them from areas with high SOC. However, site specific efforts to map SOC across the Argentinean Pampas

highlight the challenge of predicting pedologically sound soil maps due to the complexity of SOC spatial variability (Angelini

et al., 2016), including the inconsistencies of using simple linear approaches to explain soil and depth interrelationships (An-

gelini et al., 2017). Site-specific SOC mapping efforts across Brazil suggest that variable selection and the spatial detail of

SOC prediction factors are also contributing with the inconsistencies of SOC prediction accuracy (Samuel-Rosa et al., 2015).25

The constant challenge is how to increase SOC prediction accuracy while also reducing the granularity of SOC grids. The use

of high performance computing through open source platforms (i.e., Google Earth) represent a valuable resource to make and

continuously update (as new and better data become available) fine grained SOC predictions across countries (Padarian et al.,

2017). These SOC predictions are required to build baseline reference estimates to quantify SOC stocks and contribute with

better parameterization for projections of SOC under future weather and land degradation scenarios. Therefore, SOC estimates30

should be ideally based on all available information for each country or region of interest, from both national and global infor-

mation sources. However, the availability of public SOC information is limited across large areas of Latin America and large

discrepancy exist in current global SOC estimates (Tifafi et al., 2018). Thus, there is a pressing need to validate the accuracy of

global SOC estimates and contribute with the capacity of countries to meet the GlobalSoilMap specifications (Arrouays et al.,

2017) to inform policy decisions around climate change mitigation strategies.35
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The overarching goal of this study is to compare different predictive algorithms across 19 data/country scenarios with

publicly available information to support the development of country-specific SOC maps to be included in the GSOCmap-

GSP. Currently, SOC information across Latin America is derived from global models such as the SoilGrids system, or the

Harmonized World Soil Database (Hengl et al., 2017; Köchy et al., 2015), which lack quantification of uncertainty and large

areas remain parameterized with limited country-specific information. This challenge is not unique for Latin America as many5

regions around the world (e.g., Africa, Siberia) have limited SOC information to parameterize models to simulate the soil

carbon pool. To inform future SOC mapping efforts, this study addresses two specific questions: a) Which environmental

variables (derived from publicly available information) have the highest correlations with country-specific SOC information?;

and b) Which is the best method (i.e., predictive algorithm) to represent SOC across Latin America and within each country?

We assume that methods should inform each other as they are able to explain different aspects of SOC variability. The ultimate10

aim of this study is to empower capacities for digital SOC mapping across Latin America, and to contribute with the discussion

about the importance of integrating country-specific information for representing and predicting soil-related variables (e.g.,

SOC) to improve regional to global SOC predictions.

2 Methods

We base our methodological approach in public sources of information and transparent methods implemented on open sources15

platforms for statistical computing. Thus, our statistical framework for modeling SOC stocks (illustrated in Fig. 1) could be

reproduced across the world for comparative purposes between country specific and global estimates.

2.1 SOC observations

Soil organic carbon information was extracted from the WoSIS soil profile database. This dataset represent a great harmoniza-

tion effort in which a large number of national legacy datasets have been brought together. It includes local-to-national soil20

profile collections with a sampling strategy generally based on morphological soil attributes (Batjes et al., 2017). The goal of

the GSOCmap-GSP is to produce global information for the first 30 cm; thus, we generated synthetic horizons for this depth

using a mass preserving spline approach (Bishop et al., 1999). We applied a pedotransfer function based on organic matter

(OM) if the bulk density (BLD) information was missing: BLD = 1/(0.6268 + 0.0361 * OM) (Yigini et al., 2018). We decided

to use this equation because showed less extreme values than other available pedotransfer functions during preliminary discus-25

sion and training exercises (data not shown). Another reason is that there is not a single pedotransfer function applicable to all

conditions in Latin America. This equation is representative for soils with organic matter content between 0.17 to 13.5% (Drew,

1973). For coarse fragments (CRFVOL), a value of 0% was used for missing information prior to the mass preservative spline

modeling.SOC estimates (0 to 30 cm) were derived following a standardized SOC calculation method (Nelson and Sommers,

1982) (Eq. 2):30

SOCstock =
ORC

1000
× H

100
×BLD× (100−CRFV OL)

100
(2)
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Figure 1. Flow diagram of the main methodological steps that we performed in order to generate the country-specific and global SOC

predictions. The WoSIS dataset was harmonized with the worldgrids.orgenvironmental data using 5km grids. SOC stocks were calculated

at points and correlated predictors identified. Five methods were parameterized and ensembled using a generalized linear model. Accuracy

of models and ensembles was assessed with repeated cross validation and country-specific and global (Latin America) ensembles were

compared. KK kernel weighted nearest neighbors, SVM support vector machines, RF random forests, PL partial least squares regression,

RK regression kriging.

where ORC is SOC density (g · kg−1) and H is soil depth (30 cm).

Because the limitations and uncertainty in the available BD and CRFVOL data, we also include an error approximation of

SOC estimates. This error was derived using Global Soil Information Facilities (GSIF, (Hengl, 2017)) as explained in the next

section.

2.2 SOC error estimates5

The GSIF approach to estimate SOC (function OCSKGM) includes an approximate error which we use to quantify the relia-

bility of SOC estimates (Hengl et al., 2017). This error is approximated using the Taylor Series Method, by a truncated Taylor

series centered by the means as explained in previous studies (Heuvelink, 2018). We map the error trend of SOC estimates by

interpolating the values in a country basis using the generic framework for predictive modeling based on machine learning and
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buffer (geographical) distances (Hengl et al., 2018). We followed this method to provide a spatial explicit measure of the SOC

estimation error. We use this method because it can be implemented without prediction factors (e.g., only buffer distances)

and because it is practically free of assumptions but consider the geographical proximity to and composition of the sampling

location points as explained by its developers (Hengl et al., 2018). SOC error estimates represent a component of uncertainty1

the overall quality of country specific input data.5

2.3 SOC training data and exploratory analysis

Each country-specific SOC dataset was transformed to its natural logarithm to reduce the right-skewed distribution of SOC

values and because exploratory analysis showed that this transformation can improve the prediction capacity of further mod-

eling methods. To analyze the statistical distribution of SOC values, a probability distribution function was plotted and a

Shapiro-Wilk test of normality was conducted on each dataset. The units of the SOC estimates are kg ·m−2. Our global (Latin10

America) dataset of 11268 SOC estimates was divided using a simple bootstrapping technique (Kuhn. et al., 2017) and 25% of

data was used for independent validation purposes, and the remaining 75% of data for training prediction models. We couple

this information with a public source of prediction factors.1

2.4 Soils prediction factors

We used environmental information from WorldGrids (worldgrids.com), which is an initiative of ISRIC-World Soil Informa-15

tion. We downloaded and masked 118 environmental layers (i.e., prediction factors) for each country to quantitatively represent

the soil forming environment. The prediction factors were harmonized into a 1x1km global grid by the WorldGrids project from

three main information sources: remote sensing, climate surfaces, and digital terrain analysis (http://worldgrids.org/doku.php/wiki:layers).

Additional terrain parameters (e.g., terrain slope, aspect, catchment area, channel network base level, terrain curvature, topo-

graphic wetness index, length-slope factor) from elevation data were calculated in SAGA GIS for each country following the20

standard implementation for basic terrain parameters (Conrad et al., 2015). We re-sampled the prediction factors into a 5x5km

pixel size grid to reduce the computational demand required to make predictions and facilitate the reproducibility of this DSM

framework without the need of High Performance Computing to mke predictions of SOC.

2.5 Prediction of SOC

We predict in a country specific and in a regional (Latin American) basis. We base our prediction framework in the following25

six steps:

– First, the relationship between SOC and prediction factors was explored using simple correlation analysis.

– Second, the 10 prediction factors with highest correlations with SOC data were identified for each country and used for

further analyses.

– Third, we explore, parameterize and compare five statistical methods with different assumptions to model SOC variability30

across Latin America: Regression-Kriging (based on a multiple linear regression model (RK) and partial least squares
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regression (PLS), support vector machines (SVM), random forests (RF), and kernel weighted nearest neighbors (KK). A

brief explanation for each modeling approach is provided in Appendix A.

– Fourth, we re-fit the aforementioned models and using the caretEnsemble tools for stacking models (Deane-Mayer and

Knowles, 2016; Kuhn. et al., 2017). The caretEnsemble approach uses the RMSE to weight and ensemble regression

models under a generalized linear model to create a linear blend of predictions. The RMSE was derived from the residuals5

of the new models via repeated 5-fold cross validation.

– Fifth, we calculate independent model residuals (by predicting to the 25% not used for modeling). For each 5x5km

pixel we estimate the full conditional response of these residuals to the SOC prediction factors following the quantile

regression method available within the quantregForest modeling framework (Meinshausen, 2017, 2006). We use this

map as surrogate of model uncertainty complementary to the approximated error trend of SOC estimates.10

– Sixth, we use all Latin American data in the WoSIS system to repeat the fourth and fifth steps of our modeling frame-

work, generating regional predictions of SOC and comparing with country-specific results and global estimates. We also

evaluate the prediction capacity of these models.

2.6 Model evaluation and accuracy15

First, for each single model we perform a 10-fold validation strategy following a generic recommendation (Borra and Di Ciac-

cio, 2010) to select the optimal model parameters. For each model the train function of the caret package (Kuhn. et al., 2017)

includes simple re-sampling techniques for automatic model parameter selection (see parameter description Appendix A).

Thus we obtained unbiased residuals for each model on each country that we compared using Taylor diagrams (Carslaw and

Ropkins, 2012). A Taylor Diagram summarizes multiple aspects of model performance, such as the agreement and variance20

between observed and predicted values (Taylor, 2001). In a Taylor Diagram, each model is represented by a point in the plot

describing how well the patterns of observed and modeled match each other. Two models will have a similar predictive capacity

if they overlap across the intersection of an error vector, a variance ratio and a correlation vector.

We analyzed the overall ratio (ECr) between model errors (RMSE) and the correlation between observed and predicted

values (corr) for each model across all countries. We propose this ratio ECr as an approach to better understand the agreement25

between the correlation (calculated by the means of cross validation) and the RMSE (derived from the unbiased residuals of

cross validation). Before calculating the RMSE/correlation ratio, the RMSE and the correlation between observed and predicted

were standardized (by its maximum and minimum values) to a range between 0 and 1 using:

RMSEstd =
RMSEi −min(RMSE)

range(RMSE)
(3)
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corrstd =
corri −min(corr)

range(corr)
(4)

ECr =
RMSEstd

corrstd
(5)

Where ECr is the proposed ratio between errors and correlation between observed and predicted; RMSEi is the observed5

RMSE for the ith model; min(RMSE) is the minimum observed value of RMSE, and range(RMSE) is the difference between

the maximum and minimum observed values of RMSE; corri is the observed correlation for the ith model; min(corr) is the

minimum observed value of correlation, and range(corr) is the difference between the maximum and minimum observed

values of correlation

If the value of the ECr was close to 0, then there is a stronger agreement between high RMSE and low correlation, or low10

RMSE and high correlation. If this value deviated from 0 (up to 1 or more), then the RMSE would tend to be high while the

correlation was also high, suggesting that the method represents the variability of SOC but with high bias.

Model accuracy (also represented by the RMSE and R2) was assessed for the model ensembles with a more strict (but

computationally expensive) 5-fold and five times repeated cross validation strategy. This model re-fitting allows more stable

accuracy results with the ultimate goal of comparing country-specific and global (Latin America) estimates. Repeated 10 and15

5-fold cross validation have both been used to compare both machine learning and geo-statistical approaches for mapping soil

properties from book examples to real applications at the global scale (Hengl et al., 2018, 2017). In addition, model independent

residuals were obtained also from the 25% of data not used in the coutry-specific and global ensembles to estimate a spatial

explicit measure of uncertainty (as explained in the step five of our prediction framework).

2.7 SOC stocks20

First we analyzed the influence of the maximum allowed prediction limits for each prediction algorithm. The sensitivity

of the total SOC stock to the model prediction limit was tested by increasing (every 10) the maximum prediction limit

from 0.5 Ton ·Ha until finding a stable rate. Geopolitical limits were obtained from the Global Administrative areas project

(https://gadm.org/). Using these country limits we report our country-specific and Latin American SOC estimates. For compara-

tive purposes we also extract for each country the global SOC estimates from the SoilGrids system (Hengl et al., 2017), the Har-25

monized World Soil Database (Köchy et al., 2015) and the GSOCmap-GSP (see http://54.229.242.119/apps/GSOCmap.html).

We also report stocks across the land cover classes derived from the Latin American Network for Monitoring and Studying of

Natural Resources, (a product with an estimated accuracy of 84% (Blanco et al., 2013)). We report the overall uncertainty of

these stocks as the sum of the model independent residual map and the approximated error trend of the SOC estimates. Some

no data countries were filled with the average of surrounding extent SOC predictions. All analyzes were performed using the30

R language for statistical computing (R Core Team, 2017).
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Figure 2. Spatial distribution of available SOC in WoSIS for Latin America, in A the SOC estimates and in B the approximated error based

on Taylor series as implemented in the R-GSIF package.

3 Results

3.1 Descriptive statistics

SOC across different countries showed a wide diversity of data-scenarios (Table 1). Costa Rica (with a mean of 11.05 kg ·m2),

Chile (with a mean of 9.88 kg ·m2) and Colombia (with a mean of 8.15 kg ·m2) are the countries with the highest SOC

values. Brazil (n=5616) and Mexico (n=4321) were the countries with highest data availability. In contrast, Honduras (n=11),5

Guatemala (n=20) and Belize (n=21) were the countries with less density of of SOC estimated values (Table 1). With the

original (untransformed) dataset, the only countries that showed a normal distribution after the Shapiro- Wilk test of normality

with an alpha of 0.05 were Belize, Guatemala, Honduras and Suriname.

3.2 Spatial distribution and point error estimates

There are large areas of Latin America with no available SOC observational data in the WoSIS system (e.g., Chile, Argentina10

and Central America). We found significant error estimates across large areas with high density of SOC data but low carbon

contents, such as northern Mexico or the Brazilian semiarid savanna located at the eastern side of the country (Fig. 2)..
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Table 1. Descriptive statistics of SOC estimates kg ·m2 and total land area for each analyzed country. N is the number of observations. We

provide quantiles, median, mean and the standard deviation of SOC data. The columns p and plog represent the probability values derived

from the Shapiro-Wilk test of normality before (p) and after (plog) the log transformation of SOC values. When p is larger than plog, the

log transformation of the data did not increased the probability of normality in the dataset. For comparative purposes we provide (as a sup-

plementary Figure S1) the probability distribution functions of available data before and after the log transformations. ARG=Argentina,

BLZ=Belize, BOL=Bolivia, BRA=Brazil, CHL=Chile, COL=Colombia, CRI=Costa Rica, CUB=Cuba, ECU=Ecuador, ESP=Espana,

GTM=Guatemala, HND=Honduras, JAM=Jamaica, MEX=México, NIC=Nicaragua, PAN=Panama, PER=Peru, SUR=Suriname, SLV=El

Salvador, URY=Uruguay, VEN=Venezuela.

Country n Land Area (km2) Min 1st Q Med Mean 3rd Q Max SDev p / plog

ARG 231 2736690 0.34 1.88 3.21 5.65 5.96 86.85 9.33 <0.001 / 0.03

BLZ 21 22970 1.84 4.49 6.72 7.71 9.99 19.48 4.32 0.08 / 0.99

BOL 76 1083301 0.64 1.83 2.56 2.64 3.20 7.65 1.21 <0.001 / 0.08

BRA 5616 8358140 0.07 1.99 2.67 3.23 3.34 573.76 9.18 <0.001 / <0.001

CHL 44 743812 0.43 3.58 5.19 9.88 16.52 31.87 8.86 <0.001 / 0.01

COL 166 1038700 0.66 3.44 5.78 8.15 9.95 52.62 7.35 <0.001 / 0.96

CRI 43 51060 2.27 4.07 7.23 11.05 10.85 82.57 14.90 <0.001 / 0.001

CUB 48 109820 0.36 2.85 3.61 4.32 5.73 10.98 2.23 0.004 / <0.001

ECU 77 276841 0.99 2.37 3.65 5.15 4.36 24.36 5.15 <0.001 / <0.001

GTM 20 107159 2.60 5.66 8.48 7.73 9.75 12.41 3.11 0.14 / 0.007

HND 11 111890 2.69 5.25 6.48 6.71 8.32 12.38 2.78 0.72 / 0.39

JAM 76 10831 1.29 3.01 3.99 4.35 4.83 12.90 1.99 <0.001 / 0.72

MEX 4321 1943945 0.00 1.73 2.49 2.56 3.25 35.55 1.49 <0.001 / <0.001

NIC 26 119990 2.93 3.94 7.31 7.50 9.04 15.91 3.78 0.05/0.09

PAN 25 74177 3.39 4.90 7.53 7.59 9.13 19.89 3.76 0.003 / 0.49

PER 145 1279996 0.19 1.89 2.93 2.92 3.55 8.35 1.42 0.005 / <0.001

SUR 27 156000 1.38 2.60 3.35 3.37 4.07 6.01 1.20 0.69 / 0.51

URY 130 175015 0.82 2.70 3.38 4.34 3.90 46.54 4.67 <0.001 / <0.001

VEN 164 882050 0.31 2.58 4.14 5.92 6.57 44.35 6.37 <0.001 / 0.11

3.3 Correlation of SOC and its predictors

Best correlated predictors were not the same across countries. We found higher correlations with the original data sets trans-

formed to its natural logarithm, as data had a right-skewed distribution and did not follow a normal distribution (i.e., log-

normal). Highest correlations of available SOC data and its environmental predictors were associated with temperature-related-

variables across Honduras, Costa Rica, Peru, Chile, Guatemala and Suriname (the r2 varied from from 0.35 to 0.58). However,5

there were a low number of available SOC observations across these countries in the WoSIS system (between 11 to 34).
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Similarly, across countries with high data availability (e.g., Mexico and Brazil) the strongest correlations between SOC and

prediction factors were associated with temperature-related variables (Table 2). In all cases, the relationship between SOC

and temperature-related variables was negative. In contrast, SOC had a positive relationship with elevation-derived terrain

parameters ( r2 varied from 0.43 to 0.59) such as terrain curvature, potential incoming solar radiation, and slope of terrain.

Lower correlations of SOC data with prediction factors were found across Brazil, Bolivia, Uruguay, Cuba, Panama, Venezuela5

and Argentina (e.g.r2 <0.2). The correlation analysis was useful to formulate a working hypothesis about the major drivers

of the spatial variability of SOC across countries based on our DSM conceptual framework (e.g. SOCARG = f [px4wcl3a +

px3wcl3a + evmmod3a + l07igb3a + px2wcl3a + ...]). For example, the best correlated predictors with SOC for Argentina were

precipitation-related variables (px4wcl3a, px3wcl3a, px2wcl3a), remote sensing based vegetation indexes (evmmod3a), and a

probability-based shrubland map (l07igb3a) (Table 2) (see sources of this maps in http://worldgrids.org/doku.php/wiki:layers).10

3.4 SOC related properties

Correlations between ORCDR and prediction factors were higher with maximum and mean night-time temperature, where

Costa Rica and Chile had the highest correlations (r2 varied from 0.61 to 0.71). The best correlated variables with BLD

were terrain parameters: relative slope position, vertical distance to channel network, flow accumulation areas, and potential

incoming solar radiation. These correlations were stronger across Guatemala, Belize and Panama (r2 varied from 0.52 to15

0.67). We found that terrain slope and the standard deviation of temperature were the variables with highest correlations with

CRFVOL; where Nicaragua, Honduras and Argentina had the highest correlations (r2 varied from 0.40 to 0.55). We did not

found a dominant algorithm to predict SOC related properties. Slightly higher correlations between observed and predicted

values were achieved with RF, but in most cases different methods showed similar prediction capacity. The highest prediction

error was found with RK for CRFVOL, but for all other output variables all prediction algorithms had a similar range of errors20

(Fig. 3). The PLS and SVM had the lowest variance for prediction of each one of the four soil properties. The r2 values for

predicting the combined SOC related properties (ORCDR, CRFVOL and BLD) for each prediction algorithm where: RK(r2

0.67 to 0.76), RF(r2 0.56 to 0.74), SVM (r2 0.32 to 0.71), PL (r2 0.46 to 0.69) and KK (r2 0.19 to 0.64). Across countries

with lower data availability and sparse distribution SVM and RK algorithms resulting in lower model performance.

3.5 Country-specific SOC predictions25

We did not find a dominant algorithm to predict SOC in a country-specific basis (Fig. 4). Overall, machine learning prediction

algorithms generated similar results. Higher agreement of machine learning prediction algorithms was found in small countries

where environmental conditions and land cover/use characteristics tend to be more homogeneous (e.g. Jamaica, Suriname).

RK showed higher discrepancies in countries where data distribution was sparse (e.g., Suriname, Chile, Guatemala), but was

effective across countries with higher and/or well distributed data availability (e.g., Mexico, Brazil). Machine learning SOC30

predictions were conservative compared with RK (RK generated the higher density of extreme and unreliable SOC values).

PL had comparable results with machine learning algorithms (i.e., KK, SVM, RF). From the cross-validation strategy, higher

r2 values between observed and predicted data were found for Costa Rica (0.58; n=21) using SVM while the lowest error was
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Figure 3. Taylor diagram showing the performance of the 5 models evaluated. In A SOC stock, in B SOC density (ORCD), in C bulk density

(BLD) and in D coarse fragments (CRFVOL) (OCR, BLD and CRFVOL), This analysis is based in all available data across Latin America.

Note that although RF tend to generate higher correlation, it also shows high variance in predictions. Note how the points are close each other

and that the differences on accuracy between them generally falls within the same intersection of error, variance and correlation, suggesting

a similar prediction capacity of the implemented approaches.
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found Suriname (0.36 kg ·m−2; n =37) using PL. In contrast, algorithms had lower prediction capacity for countries with large

areas (e.g., Brazil, Mexico) despite the large data availability.

The simple correlation (main effect) between the r2 and rmse for RF, PL, KK and RK was positive (0.18, 0.35, 0.32 0.1;

respectively). In contrast, this correlation was stronger for SVM (but negative; -0.65) where increasing the explained variance

resulted in a lower error. These results suggest a low level of agreement between these two information criteria (r2 and rmse)5

commonly used on DSM to assess performance of prediction algorithms.

Agreement between the rmse and r2 was found only in 12 of the 19 countries, resulting in country-specific “recommended”

prediction algorithms. Here we list the prediction algorithms that generated the best correlation and the best rmse for each

country: ARG (RK, RK), BLZ (RF, RK), BOL (SVM, KK), BRA (RF, RF), CHL (PL, PL), COL (RF, RF), CRI (SVM, SVM),

CUB (PL, PL), ECU (RK, RK), GTM (KK, RF), HND (SVM, KK), JAM (RF, RF), MEX (RK , RK), NIC (RF, RF), PAN (PL,10

KK), PER (KK, KK), SUR (SVM, PL), URY (RF, RK) and VEN (RK, RK) (see country codes in Table 1). Brazil and Mexico

had the highest number of observations (nearly 80% of the total) and the same method yields the highest r2 and the lowest

RMSE. We clarify that the best within country method is not the same for each country. The higher ECr was found with PL

(0.96) followed by RF (0.54) and KK (0.43), informing that these predictive algorithms do not minimize prediction bias while

increasing the explained variance. SVM (with 0.008) and RK (with 0.003) had the lowest ECr, informing that they maximize15

the explained variance while minimizing prediction bias.

3.6 Model ensembles and SOC maps

High discrepancy was found among the country-specific SOC predictions and between country-specific and regional SOC

predictions. Although both maps predict SOC following the a similar general pattern, the country-specific ensemble shows a

higher density of unrealistic patterns across Guatemala, Venezuela, Northern Brazil or the surroundings of Uruguay (Fig. 5A).20

These areas correspond to areas where we report both higher SOC calculation errors and model uncertainty (Fig. 6).

The regional model shows a smooth pattern and a notable discrepancy predicting higher SOC across higher elevations of

Southern Andes and boundaries of the Amazon Basin (Fig. 5B). Based on the 5-fold repeated cross validation, we report a

r20.39 value for the regional model and r2 values for the country-specific approach that vary from 0.01 to 0.55.

However, high uncertainty was found across some areas in these countries, mainly in the semiarid regions. Residual uncer-25

tainty from independent validation show higher errors across Geopolitical borders (in Chile, Argentina, Colombia, Ecuador

and Venezuela and the Brazilian savanna) while the residual uncertainty map from the global model reveal higher uncertainty

across ecologically meaningful transitions, with no evident effect of geopolitical borders. The trend of the mean approximated

error suggest that higher uncertainty exist in the SOC calculation than in the modeling framework (Fig. 6), however this map

is just to visualize the general continuous trend or error estimates based only on buffer distances.30

Primarily, the pacific coastal plains, the Amazonas delta, some closed watersheds and wetlands across Mexico and some

sparse points across central America showed the higher discrepancies. Mexico and Brazil, with higher density of SOC data,

were the countries showing less discrepancy between country and global models (Fig. 8A). The global model showed more

conservative across large areas of Latin America, we report that the geographical areas where country-specific models tend to
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Figure 4. Taylor diagram showing the performance of the 5 models evaluated for country-specific SOC estimates across Latin America.

Please note that the position of each point/method vary from each dataset to another, suggesting that the predictive capacity changes when

data characteristics are different.
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Figure 5. A Country-specific ensemble of methods and B global (Latin America) prediction.

Figure 6. In A The full conditional response of residuals to the prediction factors in a country-specific basis. In B the full conditional response

of residuals to the SOC prediction factors in the global (Latin America) model. In C the trend of the approximated error of SOC estimates

derived from buffer distances and the random forest spatial framework.
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predict higher SOC values are larger than otherwise (Fig. 6B). However, we report a similar SOC stock from both modeling

approaches.

3.7 SOC stocks and model uncertainties

For our model, the uncertainty of the maximum prediction limit was estimated to be ±10 Pg, which was the variance of the

SOC stock by increasing the prediction limit from 1 to 700 Ta/Ha. This relationship showed a stable (close to 0) trend after5

200 Ta/Ha. The larger density of extreme values was found with the regional model, and we calculated a maximum possible

SOC stock 83.62 Pg from this model.

Despite the spatial differences reported for the country-specific and regional ensembles, we report a similar stocks be-

tween both approaches (77.8 ±42.2 and 76.8 ±45.1 Pg respectively). We found the global ensemble yielding a slightly higher

uncertainty. Our country-specific ensembles are suggesting that countries with highest SOC stocks were Brazil, Argentina,10

Colombia, Mexico, Peru and Venezuela (Table 3).

Consistently, all models show that Tropical broadleaf evergreen forest, Croplands and Temperate shrublands are the land

cover classes that have higher SOC across all SOC available estimates (Table 4). However, using only the dataset contained in

the WoSIS system, we predict nearly the half of SOC compared with global models.

The model variance of predicted SOC reached values over 300% for countries such as Mexico and Bolivia. In contrast,15

countries with higher SOC per unit area and a relatively low prediction variances were Panama, Guatemala, Costa Rica,

Nicaragua and Belize. Overall, we found a median model prediction variance of 53% across countries in Latin America. Areas

with high uncertainty and model variance were across northern Mexico, Central America, limits between Colombia and Brazil,

and the border between Chile and Argentina.

4 Discussion20

We developed a reproducible DSM framework to characterize the spatial variability of SOC across Latin America. Our results

suggest that a multi-model approach is suitable to better understand modeling bias and uncertainty of SOC maps. We argue that

uncertainty on SOC mapping can be associated with a) the property of interest (i.e., SOC), b) the environmental complexity

and area/country of interest, and c) the characteristics of available data (e.g., spatial distribution and representativeness) to meet

model-specific assumptions. Thus, when legacy soil profile collections that were collected for different purposes along large25

periods of time (i.e., decades) a multi-model approach (i.e., ensemble) would be convenient to maximize, as much as possible,

the predictive capacity considering the available information.

To maximize accuracy of our models, we use a simple linear blend of single predictions that at the continental scale was able

to explain 39% of SOC variance using only the information available in the WoSIS system. This result falls within the range

of the prediction capacity of country-specific models . Besides the low density of observation points, the performance could30

be partially affected by the generalization from the 1:1 scale of a soil profile (or field SOC observation) to a 5x5km grid, rep-

resenting an additional source of uncertainty. Higher discrepancy between country-specific and global efforts is evident across
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Figure 7. In A The absolute distance between the country-specific and the global ensemble. In B the areas in white are areas where the

country specific (Country >) is predicting higher carbon than the global ensemble (Global >).
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Figure 8. The relationship between the SOC stock and the prediction limit. The averaged breakdown points of this relationship are shown in

the vertical line at the right of the plot.

Brazil, the largest country, where our models tend to predict nearly the half of SOC than previous efforts. The SoilGrids system

tends to predict the highest values while our country-specific ensemble the lowest. The GSOCmap-GSP and our ensembles

predicted <100 Pg of SOC across the analyzed countries, while all other products suggest higher stocks 3).

Another source of discrepancy can be associated with the lack of available data to represent the SOC stock at the depth of

interest (i.e., -30 cm of mineral soil). The predictive performance of the mass preservative spline to continuously represent the5

SOC and depth relationships in some cases could be strongly influenced by the lack of observations across highly variable soil

profiles, such as those SOC rich agricultural soil profiles constantly transformed for food production purposes, or a volcanic

setting. These high levels of missing data lead the trend map of approximated error (Fig. 6), which provides an idea of the

uncertainty in the SOC estimates.

The GSOCmap-GSP, for example, was generated in a country-basis, but the amount of SOC observations used for the10

countries to generate these maps was considerable higher than the available data in the WoSIS system (> 1000000 points).

Both of our models predicted more conservative results than the GSOCmap-GSP, which at the same time, the GSOCmap-GSP

predicted less SOC than the SoilGrids system and the Harmonized World Soil Database. Respectively, the SoilGrids system

relies on a multivariate space suitable to represent the global soil forming environment, however, a model would assume a

similar relation of each covariate with the response across all land area in the world. The Harmonized World Soil Database in15

other hand may be a pedologically sound product, but large areas of Latin America have not been mapped at detailed scales

(i.e., larger scales than 1:1 million) and results in a polygon-based approach relying on wide generalizations.
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Despite the aforementioned limitations, across Latin America there is an increasing availability of relevant SOC information

across site and country-specific regions (e.g., (Reyes-Rojas et al., 2018; Vasques et al., 2016; Angelini et al., 2017; Samuel-

Rosa et al., 2015; Angelini et al., 2016; Padarian et al., 2017)) which could serve for validating and calibrating global SOC

estimates. Thus, regional approaches considering multiple Latin American countries and SOC models could be a valuable

resource to explain discrepancies between site or country-specific and global SOC models.5

Our results incorporate a multi-model perspective for quantifying/evaluating the spatial variability of SOC. The model with

higher predictive capacity in terms of cross validated r2 was RF, an ensemble of regression trees based on bagging, however this

method yields high ECr and therefore it tends to capture the trend but with high bias. SVM and RK were methods with higher

agreement between RMSE and corr and therefore, lower ECr. Large values of ECr represent an accuracy limitation that

was evident for RF, PL, and KK. To overcome these type of modeling biases, previous studies have suggested that the theory10

of ensemble learning applied to soil datasets could increase the accuracy of results (Finke, 2012; Nussbaum et al., 2018).

Furthermore, recent studies highlight the applicability of selective ensembles across a large diversity of model algorithms

useful for digital soil mapping purposes (Møller et al., 2018) Thus, our modeling approach includes the combination of multiple

predictions by using a linear stack of models as implemented in the caretEnsemble package of R (Deane-Mayer and Knowles,

2016), with the ultimate goal of reducing the uncertainty on SOC mapping efforts.15

This study is expected to increase the capacity of Latin American institutions to provide accurate baseline estimates of SOC

with a country-specific perspective following recommendations of GSOCmap-GSP. Ultimately, these efforts will enhance the

development of new guidelines for measuring, mapping, reporting, verification and monitoring SOC stocks at national level

(Vargas et al., 2013). Accurate country-specific DSM frameworks for SOC are required to facilitate interoperability and inform

environmental policy across developing countries (Vargas et al., 2017). Our results highlight that attention is needed to better20

understand the influence of model prediction limits (e.g., the full conditional distribution) for the predicted SOC stocks. Setting

an unreliable (excessive or low) prediction limit can have important effects (under or overestimating) on the overall estimated

stocks (Table. 3). Therefore, we argue that data science systems for DSM carbon assessments should be fundamentally based

on SOC expert knowledge and informed by expert-based soil mapping systems.

Across Latin America we did not find a common predictive algorithm for SOC. These results suggest that country-specific25

environmental predictors and available data influence the applicability of different approaches. This assessment is needed

to address the requirements from the GSOCmap-GSP with the official mandate to generate and update country-specific soil

information by the means of DSM. Thus, we argue that the DSM form of each country should assess and incorporate country-

specific available data and environmental predictors to select the best prediction algorithm. The FAO SOC mapping cookbook

explores possibilities to derive country-specific SOC maps from a variety of prediction algorithms (Yigini et al., 2018), and30

multiple resources have described the state of the art of modeling methods focused on DSM of soil carbon (Minasny et al.,

2013; Malone et al., 2017) including geostatistics (Hengl, 2009, 2017). Thus, data characteristics (e.g., spatial structure, rep-

resentativeness) are specifically important for developing a DSM framework as legacy soil profile collections, generated with

long-term soil inventory purposes, will determine data availability and spatial distribution within a country.
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This country-specific approach to map regional SOC results in artifacts across geo-political borders. Therefore, data sharing,

model validation and calibration experiments across borders (i.e., between countries) are required to better capture the spatial

variability of SOC. The use of a natural-defined prediction domain (e.g., ecoregional or physiographic map) could reduce the

border effects. However, we understand that geo-political limits are required for public policy decisions around country-specific

needs. We highlight that there is a lack of publicly available country-specific data that ultimately influence the performance of5

both country-specific and global SOC estimates .

To achieve the highest possible accuracy of country-specific SOC estimates, the availability of point data sources for SOC

modeling and mapping is an important consideration selecting an efficient modeling strategy, specially dealing with legacy

SOC datasets. Our results highlight important uncertainty levels ( >100%) across large areas of Latin America 6. The data

contained in WoSIS has a low-density distribution given the large area and environmental complexity of several analyzed10

countries. Thus, larger uncertainty dominates countries with larger carbon pools probably because available data does not

capture the large spatial heterogeneity of SOC stocks. We highlight that the WoSIS dataset is a unique and invaluable effort

that has proven to generate global SOC predictions (Hengl et al., 2017; Sanderman et al., 2017), but there is a global need to

increase information and networking capabilities for SOC (Harden et al., 2017).

This study generated predictions of SOC across Latin America, but also provided information about the main relationships15

driving the spatial distribution of SOC. Machine learning (i.e., data driven) models have proven to be more efficient to model

non-linear relationships of SOC (Hengl et al., 2015), but our results suggest that linear-based models (e.g., RK) could out-

perform machine learning methods under well distributed and representative SOC data scenarios. Similar results were found

across productive landscapes of Brazil (Bonfatti et al., 2016). We argue that our capacity to meet modeling assumptions will

determine the most suitable prediction algorithm or ensemble methods (i.e., stack, blend, bucket of models). Machine learn-20

ing models are usually conceived as black boxes and the influence of non-informative SOC prediction factors on machine

learning-based SOC models has not been evaluated in detail. Therefore, we propose that the use of simple linear methods (i.e.,

correlation of available data and its predictors) can be a useful and parsimonious first step to inform data driven approaches and

enhance the interpretability of machine learning models to predict SOC. Although ideally, the simple selection of prediction

factors based on simple correlation analysis does not prevent multi-collinearity, in which hypothesis driven methods (e.g., RK)25

may be in risk to fail, other approaches may be able to avoid the bias associated with the statistical redundancy (e.g., PL) or

machine learning method where no assumption about multicollinearity exist (e.g., RF). Furthermore, our data suggests that

country-specific predictor factors are needed to better parameterize models but also could be useful for country-specific model

interpretation. These results have important implications because it has been proposed that an extensive set of prediction fac-

tors are required to capture the large variance of the global SOC pool (Hengl et al., 2017). Thus, we propose that a limited but30

informative country-specific prediction factors should be explored to describe the local biophysical characteristics controlling

SOC variability.
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5 Conclusions

We provide a multi-model comparison approach to map SOC stocks across Latin America and found that there is not a dominant

best prediction algorithm given available data. The relatively performance of the different methods vary from one place to

another as well as the relatively correlation of SOC with the prediction factors given available data. We compared and combine

hypothesis driven approaches (e.g. linear Geo-statistics) and data driven algorithms (e.g. machine learning) which are used,5

respectively, to generate interpretable and predictable models of soil variability. We argue that models should not be conceived

as competitors, because they have different assumptions (about the data itself, or about the empirical relationship between the

response variable and its predictors). Therefore, different models will capture different portions of soil variability. There are no

silver bullets on digital soil mapping across the 19 analyzed countries given available data in the WOSIS system. We highlight

potential levels of uncertainty in SOC stocks associated with the maximum allowed prediction limit. Public data may not be10

representative across large areas and we call for the countries to strength digital soil mapping capacity building initiatives,

reproducible research and data sharing. The use country-specific information and the use of different modeling approaches

will enhance regional soil carbon mapping efforts, so we can easily identify where and the reasons why different modeling

approaches generate different results.

Code availability. The code used for this work will be available under the AGPL 3.0 license at https://github.com/DSM-LAC/NoSilverBulletsForDSM15

(Guevara et al., 2018)

Data availability. The soil dataset used is this paper is kindly provided by ISRIC-World-Soil-Information. It can be downloaded from

WOSIS http://www.isric.org/explore/wosis and correponds to the July 2016 snapshot (Batjes et al., 2017). Soil covariates are available

thanks to the ISRIC initiative worldgrids.org

Appendix A20

A1 Brief description of implemented methods

RK is a hybrid model with both, a deterministic and a stochastic component (Hengl et al., 2004). The regression part took

form of a step-wise (back and forward) multiple linear regression to avoid statistical redundancy among the best prediction

factors. The residual kriging was ordinary. The variogram parameters supporting the spatial interpolation were automatically

fitted using the framework proposed by Hiemstra et al. (2008). RK was applied only to countries with 10 or more available25

observations.

PLS is a common method to deal with the presence of highly correlated predictors. The PLS algorithm integrates the

compression and regression steps and it selects successive orthogonal factors that maximize the covariance between predictor
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and response variables (Wold, 1983; Viscarra Rossel et al., 2014). Most of its development and application is in the fields of

chemometrics, but is used in several research areas to effectively solve regression and classification problems.

SVM apply a simple linear method to the data but in a high-dimensional feature space non-linearly related to the input space

(Karatzoglou et al., 2006). It creates a hyperplane through n-dimensional spectral-space. Then, SVM separates numerical data

based on a kernel function and parameters (e.g. gamma and cost) that maximize the margin from the closest point to the5

hyperplane that divides data with the largest possible margin, being the support vectors the points which fall within (Heumann,

2011). Then, linear models are fitted to the support vectors.

RF is an ensemble of regression trees based on bagging (Breiman, 1996). This machine learning algorithm uses a different

combination of prediction factors to train multiple regression trees. Each tree is generated using a different subsets of available

data (Breiman, 2001). The number of prediction factors to use on each tree is known as the mtry parameter. The final prediction10

is the weighted average of all individual trees.

KK is a pattern recognition technique which is based on the distances to training examples in the feature space (Silverman

and Jones, 1989). The observations within the learning set, which are particularly close to the new observation (y, x), should

get a higher weight in the decision than such neighbors that are far away from (y, x) (Hechenbichler and Schliep, 2004).

The parameter k determines the number of neighbors from which information will be considered for prediction and a kernel15

function (eg. triangular, Gaussian among others) converts distances into weights which will be used for regression problems.
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Table 2. Best correlated predictors and its frequency across the analyzed data country-scenarios, given available data in the

WOSIS system. See the predictor codes in http://worldgrids.org/doku.php/wiki:layers. ARG=Argentina, BLZ=Belize, BOL=Bolivia,

BRA=Brazil, CHL=Chile, COL=Colombia, CRI=Costa Rica, CUB=Cuba, DOM=Dominican Republic, ECU=Ecuador, ESP=Espana,

GTM=Guatemala, HND=Honduras, JAM=Jamaica, MEX=México, NIC=Nicaragua, PAN=Panama, PER=Peru, SUR=Suriname, SLV=El

Salvador, URY=Uruguay, VEN=Venezuela

Var factor subfactor freq Country

gachws3a Soil Soil type 2 CUB, SUR
garhws3a Soil Soil type 2 PER, URY
ghshws3a Soil Soil type 2 BLZ, URY
gphhws3a Soil Soil type 2 CUB, JAM
gplhws3a Soil Soil type 2 BLZ, BOL
gvrhws3a Soil Soil type 2 JAM, URY

tdmmod3a Climate Temperature 11 ARG, BOL, BRA, CHL, COL, CRI, CUB, ECU, MEX, PER, VEN
tx1mod3a Climate Temperature 10 ARG, BOL, BRA, COL, CUB, ECU, JAM, NIC, PER, URY
tx4mod3a Climate Temperature 10 BRA, CHL, CRI, CUB, ECU, GTM, JAM, MEX, PER, VEN
tx5mod3a Climate Temperature 9 BOL, BRA, CHL, CUB, ECU, JAM, MEX, PER, VEN
tx6mod3a Climate Temperature 9 ARG, BOL, BRA, CHL, COL, CRI, ECU, MEX, VEN
tnhmod3a Climate Temperature 8 BLZ, COL, CRI, GTM, HND, JAM, PAN, VEN
tnmmod3a Climate Temperature 8 BLZ, COL, CRI, GTM, HND, PAN, URY, VEN
tx3mod3a Climate Temperature 7 BRA, CHL, CUB, ECU, PAN, PER, VEN
tdhmod3a Climate Temperature 6 ARG, CUB, ECU, JAM, MEX, URY
tdlmod3a Climate Temperature 6 BRA, CHL, COL, ECU, GTM, JAM
tnsmod3a Climate Temperature 5 ARG, MEX, NIC, PAN, SUR
tx2mod3a Climate Temperature 4 ARG, ECU, PER, URY
tdsmod3a Climate Temperature 3 MEX, PAN, SUR
tnlmod3a Climate Temperature 3 BLZ, COL, GTM
px2wcl3a Climate Precipitation 2 BOL, PAN
px3wcl3a Climate Precipitation 2 CHL, MEX
px4wcl3a Climate Precipitation 2 BRA, CHL
etmnts3a Climate ET 2 ARG, MEX

evmmod3a Organism Vegetation 5 ARG, ECU, HND, MEX, VEN
l07igb3a Organism Vegetation 2 ARG, CHL

DEMSRE3a Topography 5 COL, CRI, GTM, HND, SUR
twisre3a Topography 5 BRA, JAM, NIC, PAN, SUR
ChannNetworkBLevel Topography 4 COL, HND, PAN, SUR
l3pobi3b Topography 4 COL, CRI, PAN, VEN
inssre3a Topography 3 BLZ, HND, SUR
opisre3a Topography 3 CRI, NIC, SUR
SLPSRT3a Topography 3 CRI, NIC, SUR
AnalyticalHillshading Topography 2 BLZ, CUB
Aspect Topography 2 BLZ, BOL
CovergenceIndex Topography 2 BOL, HND
inmsre3a Topography 2 CRI, GTM
ValleyDepth Topography 2 BLZ, JAM

geaisg3a Age 3 CHL, NIC, SUR
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Table 3. SOC stocks (Pg) at the contextual resolution of 5x5km grids. ens = country-specific, global=Latin America ensemble, sg= SoilGrids

system, GSOCmap-GSP= country-specific 1km, hw=Harmonized Word Soil Data Base.

country ens global sg GSOCmap-GSP hw

1 ARGENTINA 13.19 12.77 24.45 18.00 18.13

2 BELIZE 0.24 0.12 0.28 0.28 0.19

3 BOLIVIA 3.29 3.39 8.39 6.99 5.96

4 BRAZIL 26.82 27.16 68.45 42.79 47.20

5 CHILE 6.31 7.20 15.15 1.93 8.28

6 COLOMBIA 7.01 5.96 15.50 5.12 14.99

7 COSTA RICA 0.56 0.34 0.83 0.83 0.71

8 CUBA 0.52 0.51 1.48 0.82 0.64

9 ECUADOR 1.31 1.36 4.04 1.57 2.63

10 GUATEMALA 1.02 0.57 1.27 1.27 0.99

11 JAMAICA 0.05 0.05 0.14 0.07 0.07

12 MEXICO 5.98 6.12 14.43 9.04 17.59

13 NICARAGUA 0.74 0.62 1.42 0.71 0.92

14 PANAMA 0.56 0.43 1.10 0.33 0.69

15 PERU 4.38 5.13 17.08 3.14 10.51

16 SURINAME 0.56 0.51 1.20 0.45 1.33

17 URUGUAY 0.92 0.88 1.99 0.84 2.27

18 VENEZUELA 4.71 3.77 9.39 5.28 5.64
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Table 4. SOC stocks at the contextual resolution of 5x5km across Land cover classes of Latin America for the 18 analyzed countries. ens

= country-specific, global=Latin America ensemble, sg= SoilGrids system, GSOCmap-GSP= country-specific 1km, hw=Harmonized Word

Soil Data Base.

land cover ens GSOCmap-GSP hw sg global

1 Tropical broadleaf evergreen forest 30.39 40.30 59.15 80.44 29.73

2 Tropical broadleaf deciduous forest 0.43 0.65 1.00 1.09 0.42

3 Sub-tropical broadleaf evergreen forest 2.38 3.91 4.51 6.57 2.25

4 Sub-tropical broadleaf deciduous forest 1.42 2.04 1.87 2.55 1.07

5 Temperate broadleaf evergreen forest 3.32 1.26 4.97 6.91 3.56

6 Temperate broadleaf deciduous forest 0.48 0.52 1.02 1.21 0.63

7 Sub-tropical needleleaf forest 0.00 0.01 0.00 0.01 0.00

8 Temperate needleleaf forest 0.23 0.36 0.45 0.54 0.24

9 Mixed forest 0.67 1.08 1.34 1.66 0.66

10 Tropical shrubland 4.25 6.58 6.98 10.30 4.18

11 Sub-tropical shrubland 3.17 4.18 6.62 6.33 2.90

12 Temperate shrubland 4.56 5.08 7.33 9.97 5.32

13 Tropical grassland 3.01 2.48 3.56 5.46 2.45

14 Sub-tropical grassland 1.15 1.35 2.28 2.58 1.12

15 Temperate grassland 2.75 3.31 4.86 5.92 3.04

16 Water 1.21 1.37 2.07 3.45 1.21

17 Urban area 0.24 0.31 0.45 0.55 0.22

18 Permanent ice and snow 0.14 0.08 0.14 0.38 0.17

19 Barren land 1.74 2.38 2.43 2.95 1.70

20 Cropland 12.95 19.33 21.89 27.94 12.42

21 Wetland 0.37 0.56 0.66 1.24 0.35

22 Salt flat 0.13 0.17 0.16 0.18 0.10

23 Sea water 1.59 1.39 2.23 4.31 1.78
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