

Challenges of soil carbon sequestration in NENA Region

Darwish^{1,3*}, Talal ; Atallah², Thérèse ; and Ali Fadel¹

1. National Council for Scientific Research, Beirut, Lebanon

2. Faculty of Agricultural and Veterinary Sciences, Lebanese University

3. Intergovernmental Technical Panel on Soil (ITPS)

* Corresponding author: tdarwich@cnrs.edu.lb

Abstract

Near East North Africa (NENA) region spans over 14% of the total surface of the Earth and hosts 10% of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and food security will depend much on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the status of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries (17 out of 20), suffer from low productive lands (>80%). Stocks of SOC were mapped (1:5 Million) in topsoils (0-0.30 m) and subsoils (0.30-1 m). The maps showed that 69% of soil resources present a stock of SOC below the threshold of 30 tons ha^{-1} . The stocks varied between ≈ 10 tons ha^{-1} in shrublands and 60 tons ha^{-1} for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of soil inorganic carbon (SIC) were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 tons ha^{-1} , against 20 to 45 tons ha^{-1} for SOC. Results highlight the contribution of NENA region to global SOC stock in the topsoil (4.1%). The paper also discusses agricultural practices that are favorable to carbon sequestration such as organic amendment, no till or minimum tillage, crop rotation, and mulching and the constraints caused by geomorphological and climatic conditions. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exist, especially in aspects related to the impact of climate change and effect of irrigation on SOC, and on SIC at the level of soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy relevant and socio-economic in nature, rather than scientific.

Keywords: Drylands, soil organic carbon, soil inorganic carbon, land capability, C stock, conservation practices.

1. Introduction

The Near East North Africa (NENA) region spans over 14% of the total surface of the Earth and hosts 10% of its population (Elhadi, 2005). The largest importer of wheat in the world, this region is also one of the poorer (FAO, 2015). A recent assessment of global hunger index (GHI), based on four indicators -undernourishment, child wasting, child stunting, and child mortality- showed that most of the NENA countries present low to moderate GHI. Countries suffering from armed conflicts, Syria, Iraq and Yemen, are at a serious risk (von Grebmer et al., 2017). With the scarce natural resources and difficult socio-economic conditions, it is questionable whether food security will be reached by

47 2030, unless a significant change in agricultural practices and governance occurs (FAO,
48 2017).

49

50 Most of the land area of the NENA region falls in the hyper-arid, arid and semi-arid
51 climatic zones. Climate change is expected to exacerbate the scarcity of **water** and
52 drought. Weather variability, drought and depleting vegetation are major concerns in the
53 loss of soil productivity and agricultural sustainability. Changes in soil organic carbon
54 (SOC) can affect the emission of greenhouse gases to the atmosphere and negatively
55 influence the global climate (Lal, 2003). In fact, destructive land management practices
56 are impacting soil functions. Land use change, mono-cropping and frequent tillage are
57 considered to cause a rapid loss of SOC (Guo et al., 2016). These agricultural practices
58 disturb the stability of soil characteristics, built under local land cover and climate (Bhogal
59 et al. 2008). Thus, most NENA lands contain ~1 % of SOC, and frequently less than
60 0.5%.

61

62 NENA pedo-climatic conditions present major constraints to carbon sequestration (Atallah
63 et al., 2015). To maintain soil productivity and land quality, several technical and socio-
64 economic measures need to be adopted. Additional efforts oriented to maintaining and
65 increasing SOC can contribute to poverty reduction and achieve food security (Plaza-
66 Bonilla et al., 2015). Good agricultural practices, based on low tillage or no tillage, may
67 result in the reduction of SOC breakdown and the enhancement of the soil carbon pool
68 (Atallah et al., 2012; Cerdá et al., 2012; Boukhoudoud et al., 2016).

69

70 Mapping the spatial distributions of OC stocks can be used to monitor regional and global
71 C cycles. Accurately quantifying SOC stocks in soils and monitoring their changes are
72 essential to assessing the state of land degradation. At the same time, the predominantly
73 calcareous soils of NENA region are rich in soil inorganic carbon (SIC). The dynamics of
74 SIC and its potential in sequestering soil carbon are largely unknown and deserves
75 thorough investigation. This paper analyzes the state of SOC and SIC in NENA countries
76 and outlines challenges and barriers for devising organic carbon sequestration in NENA's
77 impoverished and depleted soils. It also highlights several questions which scientists need
78 to resolve. Finally, it discusses practical agricultural measures to promote SOC
79 sequestration.

80

81

82 Materials and Methods

83

84 Data on SOC and soil inorganic carbon (SIC) contents in soils were retrieved from the soil
 85 database of the FAO-UNESCO digital soil map of the world (DSMW) at 1:5 Million.
 86 Within the database, 1700 geo-referenced soil profiles, collected from all member states of
 87 the NENA region, are included (FAO, 2007).

88

89 In terms of area, the largest soil units are Yermosols (4670.6 km^2), Lithosols (2914.3 km^2)
 90 and Regosols (1193.2 km^2). The great majority of soil classes presents very low to low
 91 resistance to erosion and degradation (Table 1). To the contrary, Cambisols, Fluvisols and
 92 Regosols are highly resistant to erosion. For the SIC, soil classes dominated by calcareous
 93 rocks (Solonchaks, Rendzinas and Aridisols) have the highest contents (Table 1). While
 94 Lithosols and Xerosols, subject to regular water and wind erosion, show the smallest SIC.

95

96 Table 1. Soil inorganic carbon level and the resistance to land degradation in the major
 97 soil units of Near East North Africa region (Source: DSMW, FAO, 2007).

98

Soil Classes	Area, 1000 km ²	Resistance to Land Degradation	Average SIC content (%)	
			topsoil	subsoil
Cambisols	178.9	High	0.25	0.64
Fluvisols	232.7	High	1.12	1.40
Kastanozems	26.0	High	1.69	3.96
Regosols	1193.2	High	1.18	0.23
Luvisols	121.6	Moderate	0.02	0.11
Phaeozems	3.8	Moderate	0.40	0.70
Rendzinas	25.6	Low	2.80	4.80
Lithosols	2914.3	Low	0.01	0.06
Vertisols	45.4	Low	0.45	0.72
Xerosols	498.5	Low	0.25	0.45
Yermasols (Aridisols)	4670.6	Low	2.50	2.30
Solonchaks	230.1	Very low	3.60	3.90
Solonetz	31.2	Very low	0.06	0.36
Arenosols	384.0	Very low	0.00	0.00

99

100

101 The SOC content can vary depending on soil type, topography, land cover, erosion-
 102 sedimentation and soil management. Within the topsoil (0-0.30 m), the SOC contents are
 103 between 0.13% and 1.74%, while in the subsoil (0.30-1 m) values range between 0.16 and
 104 0.9% (Figure 1). Two out of the three predominant soil classes (Xerosols and Aridisols)

105 have SOC contents below 0.5%. Overall, the NENA soils are poor in SOC, as less than
106 20% of soil resources have SOC contents above 1.0%.

107

108

109 Figure 1. SOC content (%) in topsoil and subsoil in the major soil groups of NENA
110 region with standard deviation related to soil class.

111

112 The soil map is prepared using the topographic map series of the American Geographical
113 Society of New York, as a base, at a nominal scale of 1:5.000.000. Country boundaries are
114 checked and adjusted using the FAO-UNESCO Soil Map of the World. Soil classification
115 is based on horizon designation, depth, texture, slope, and soil physico-chemical
116 properties. Main agricultural soil properties are assessed using the statistical (weighted)
117 average in the topsoil and subsoil. For the production of the maps of C stocks and
118 distribution (FAO, 2007), ArcMap 10.3 is used to join the geometric database with the C
119 stocks. These are ranked into five categories for SOC density (0-14, 14-22, 22-31, 31-61
120 and 61-236 tons/ha) and five others for SIC (0, 0.1-30, 30-45, 46-74 and 74-200 tons/ha).

121 The land cover map is that of ESA, at 300 m spatial resolution. The Reference Coordinate
122 System used is a geographic coordinate system based on the World Geodetic System 84
123 (WGS84) reference ellipsoid. The legend assigned to the global LC map has been based
124 on UN-Land Cover Classification System.

125

126 Total SOC and SIC stocks are calculated separately for the topsoil (0-0.3m) and subsoil
127 (0.3-1.0 m) using the following equations:

128

129 National C Stock (ton) = [Area (m²)*Depth (m)*Bulk Density (ton m³)*OC content (%)]/100 (1)
130

131 SOC or SIC density (ton ha⁻¹) = Stock in given soil unit (ton)/Soil Unit Area (ha) (2)
132

133 Stocks of SOC under different land cover/land use are evaluated, as well. Since 1990, the
134 European Space Agency, (Climate Change Initiative project), started to produce land
135 cover (LC) maps of the NENA region. The version used in the study corresponds to the
136 second phase of the 2015 global LC (<http://maps.elie.ucl.ac.be/CCI/viewer/index.php>) with a
137 spatial resolution of 300 m.

138

139 3. Results and Discussion

140

141 3.1. Land capability and SOC in NENA region

142 According to the results based on the land capability model, 40 to 100% of soils in the
143 region fall within the low, very low and non-arable classes (Figure 2). Thus, the proportion
144 of highly and medium productive soils varies between 0% (Bahrain, Qatar, Oman and
145 UAE) and 60% (Jordan). Countries like Iraq, Lebanon, Morocco, Palestine, Somalia, Syria
146 and Tunisia, present between 9 and 20% of highly to medium productive soils. The
147 remaining NENA countries have less than 5% of their lands as high and medium
148 productive. Some of these countries belong to the food insecure nations.

149

150

151
152 Figure 2. Distribution of land capability classes (% of total national area) for 20 countries
153 of the NENA region, based on the USDA model (1999) and Digital Soil Map of the World
154 (FAO, 2007).

155
156 The soil productivity concept is based strictly on soil properties. But, with the lack of
157 water in drylands and the prevalence of rainfed agriculture, the soil cannot show its full
158 potential for food production. Similarly, irrigation with brackish water restricts crop
159 productivity due to the development of secondary soil salinity. With properly managed
160 irrigation, the medium productive lands can provide moderately good harvests. For
161 instance, our field observation in Jordan showed that a large area of productive lands was
162 cropped with barley, not because of land suitability, but due to low rainfall (< 200 mm). In
163 drought affected years, the land is converted into grazing area for small ruminants
164 following crop failure to make the minimal profit from the exploitation.

165
166 The low productivity of the soil is reflected in the SOC contents. The accumulation of
167 SOC in NENA region is ~~refrained~~ by the high mineralization rate (Bosco et al., 2012).
168 Climate change and recurrent drought events affect SOC sequestration in the soil. It is
169 estimated that a rise in temperature of 3 °C would increase the emission of carbon dioxide
170 by 8% (Sharma et al., 2012).

171
172 Among the soil properties affecting SOC, the clay and calcium carbonate contents are
173 most relevant. High clay content tends to counteract the decomposition of SOC, as found
174 in clay soils of Morocco and in Vertisols of northern Syria (FAO and ITPS, 2015). But,

175 the dominant soil classes (Table 1) characterized by sandy and sandy loam textures, are
176 subject to fast decomposition. Next to the clay texture, the presence of calcium carbonate
177 decreased the decomposition of composted organic material in sub-humid coastal Lebanon
178 (Al Chami et al., 2016). This slower turnover of organic matter was explained by the low
179 porosity and prevalence of micropores in soil macro-aggregates (Fernández-Ugalde et al.,
180 2014).

181

182 3.2. Mapping of soil carbon stocks

183

184 In order to compare situations and problems, global soil organic carbon maps are a
185 priority. As recently as December 2017, the GSP-FAO, ITPS launched the version 1 of the
186 global soil organic carbon map, showing the SOC stock in topsoil (<http://www.fao.org/3-a-18195e.pdf>). A preliminary assessment of regional SOC stocks, using unified background
187 information, is needed to analyze the challenges facing C sequestration.
188

189

190 Based on the mapping of SOC density (ton ha^{-1}), 69% of the regional soils have a density
191 below to 30 tons ha^{-1} (Figure 3), value considered as a threshold for C deficient soils
192 (Batjes and Sombroek, 1997). This could be linked to the arid conditions prevailing in the
193 region with flat lands and limited humid mountain areas. Consequently, the majority of
194 the countries of NENA region presents moderate to relatively low total stocks of SOC.

195
196 Figure 3. Spatial distribution of SOC density (ton ha^{-1}) in topsoils (a) and subsoils (b)
197 of the NENA region.

195

196 This is especially relevant to the Gulf countries, Iran, Tunisia and Morocco, with values
197 below 221 Mega tons (Figure 4). Such low OC sequestration potential can be explained by

198 the rare natural vegetation and the reliance on irrigation to produce food and feed crops. A
199 regional implementation plan for sustainable management of NENA soils appeared in
200 2017 (<http://www.fao.org/3/a-bl105e.pdf>). In fact, the total stocks in the topsoils (0-0.3 m)
201 of NENA countries, represent only 4.1% of the world global stock
202 (https://drive.google.com/drive/folders/1454FhX_p2_GxjZT-fsi0-RncL2QpSN).
203

204
205 A comparison has been undertaken between the FAO methodology, adopted in the present
206 work (two soil layers: 0-0.3 m; 0.3-1 m), and a previous study where the soil profile was
207 divided into six depths down to 2 m (Hengl et al., 2014). Both approaches agree about the
208 NENA region (SOC content: 1-2% and SOC stock: 20-204 ton ha⁻¹), as confirmed by the
209 Global Soil Organic Carbon Map (<http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data/global-soil-organic-carbon-gsoc-map/en/>). The global
210 gridded soil information based on machine learning (SoilGrid250m) contains 1.6 billion
211 pixels also predicted SOC density but the arid and semi-arid zones are under measured and
212 thus pseudo observations based on expert knowledge were introduced to predict the SOC
213 content in the soil at seven standard soil depths (Hengl et al., 2017).
214

215
216 The choice of scale when using or producing soil maps may lead to uncertainty in small
217 countries and fragmented land use (Darwish et al., 2009). The coarse scale adopted in this

218 work (1:5 Million) could be a source of uncertainty. Practically, this corresponds to a
219 polygon of 0.5 cm x 0.5 cm (area < 0.25 cm²), the equivalent of an area of 6.25 km² on the
220 ground. To test this, the results of the current estimation (1:5 Million) of SOC stocks in
221 Lebanon, were compared with the large scale mapping at 1:50,000 for Lebanon (Darwish
222 et al., 2006). The FAO scale gave an overestimation of 11.2% in the topsoil,
223 underestimation of 16.4% in subsoil and a 14.4% underestimation in the whole profile
224 (Darwish and Fadel, 2017). Therefore, the level of mapping uncertainty falls within the
225 admitted diagnostic power of soil maps, with a matching close to 65-70% (Finke et al.,
226 2000). In our study, the matching reached 83.6-88.2%. Any loss of information related to
227 small, non-mappable soil units in coarse scale mapping (1:5 Million or 1:1 Million) could
228 be rectified by national and sub-regional large scale soil mapping (1:50,000 and 1:20,000).

229

230 Another source of error can be associated with the SOC content in soil classes or major
231 groups from the DSMW (FAO, 2007). The level of uncertainty in the assessment of the
232 SOC density in NENA countries depends on the variability of SOC, as suggested by the
233 standard deviations of the means (Figure 1). Therefore, the SOC content is the major
234 source of variability for the SOC density at the soil class level. Cambisols and Fluvisols
235 present the largest standard deviation, caused by a long land use history and large
236 anthropologic impact. Subsoil is less subject to pedoturbation and direct human influence,
237 thus SOC content has lower variability.

238

239 3.3. Land cover mapping and stocks of SOC

240 Based on the land cover map of ESA, the bare lands correspond to 80% of the whole
241 NENA region (Figure 5). Grassland, sparse vegetation cover and rainfed agriculture
242 represent 4.39 -5.27%. The irrigated crops do not exceed 0.66% of the total area,
243 distributed in limited useful area (Figure 5). The NENA region possesses a land area about
244 15 million km², with a total population exceeding 400 million inhabitants (about 6% of
245 world population) but with only 1% of the world's renewable water resources
246 (<https://www.slideshare.net/FAOoftheUN/plenary1-keynote-speech-16dec2013az>). In fact,
247 the irrigated area corresponds to 247.5 m² per capita. This could be one of the reasons for
248 the high dependency on imported food, exacerbated by demographic pressure, rapid
249 urbanization, water scarcity and climate change (FAO, 2015).

*Others: Mixed trees, Needleleaved, evergreen trees and Urban

250
251 Figure 5. Proportion of main land cover (% total land area) and land use in NENA region.
252
253 <http://maps.elie.ucl.ac.be/CCI/viewer/index.php>, 2015)

254

255

256

257 The combination of SOC stock map with the land cover map showed a significant effect of
258 land cover on SOC stocks in NENA region. As can be expected, shrublands, sparse
259 vegetation and bare lands gave the smallest values, between 14 and 26 ton ha⁻¹ (Figure 6).
260 In a mixture of shrublands and herbaceous vegetation, the SOC increases to 40 ton ha⁻¹.
261 The highest density (30 and 60 ton ha⁻¹) is found under forest stands.

262

263 Despite the expected impact of frequent plowing, the soils under mixed trees and irrigated
264 crops have higher SOC density than rainfed crops. The highest SOC stock is observed
265 under evergreen forests whose area is very limited (3380 km² corresponding to 0.02% of
266 the total area). Surprisingly, the stock found under urban soils (\approx 30 tons ha⁻¹) is moderate.
267 This could be related to the urban encroachment on prime soils. Between 1995 and 2015,
268 rapid urban growth caused the loss of over 53 Million tons of soils, 16% of which
269 correspond to prime soils (Darwish and Fadel, 2017). The assessment of SOC content in
270 NENA region showed a decline of OC content in topsoil by up to 1% between 2001 and
271 2009 (Stockman et al., 2015). Overtime, land cover change is considered as the primary
272 agent of change of SOC, followed by temperature and precipitation.

273

274

275 **Figure 6.** SOC density (tons ha^{-1}) in the topsoil (0-0.3 m) and subsoil (0.3-1.0 m),
276 calculated from the FAO DSMW (FAO, 2007), under corresponding land cover
277 (<http://maps.elie.ucl.ac.be/CCI/viewer/index.php>).

278 In addition to the stocks of SOC in relation to land cover-land use, the stocks of SOC and
279 SIC were established per country (Figure 7). The range of SIC stocks is very wide, from
280 less than 25 tons ha^{-1} (Gaza subsoil) to 450 tons ha^{-1} (Bahrein subsoil), while that of SOC
281 vary between $\approx 20 \text{ tons ha}^{-1}$ (Bahrein subsoil) and 45 tons ha^{-1} (Sudan subsoil). Based on
282 the stocks of SIC in the subsoils, the countries are separated into three groups. The first
283 (Bahrein, Oman, Egypt, Saudi Arabia, UAE and Yemen) is dominated by calcareous
284 parent materials, with values in the subsoil exceeding 200 tons ha^{-1} (Figure 7). The second
285 group (Kuwait, Libya, Iran, Iraq, Algeria, Qatar, Morocco and Tunisia), presents a SIC
286 density between 100 and 200 tons ha^{-1} . Finally, the third group (Gaza, Jordan, Lebanon,
287 Mauritania, Syria and Sudan) has less than 100 tons ha^{-1} .

290 **Figure 7.** Stocks of soil organic carbon and soil inorganic carbon (tons ha⁻¹) in the topsoils
291 (0-0.3 m) and subsoils (0.3-1.0 m) of the 20 countries in the NENA region. The red line
292 represents the threshold for organic carbon, and the yellow lines correspond to the limits
293 of classes.

294

295 3.3. Challenges of carbon sequestration in NENA agro-ecosystems

296 Climatic conditions characterized by wetting/drying cycles, a long dry and hot season
297 (Boukhoudoud et al., 2016) promote the decomposition of SOC. Further, frequent
298 cultivation, irrigation with saline water, and soil salinity rise in coastal areas exert
299 significant effects on soil microbial functional properties. For instance three months after
300 the application of glyphosate-based herbicide under olive in coastal Lebanon, lipase
301 activities significantly decreased (Boukhoudoud et al., 2017). Soil classification and SOC
302 mapping help identifying hot spots that need to be improved or require special
303 management measures and bright spots with satisfactory C accumulation levels that need

304 to be protected. In this section, major practices affecting SOC will be presented followed
305 by a discussion of preventive and remediation measures.

306

307 3.3.1. Tillage and SOC

308 Tillage practices contribute to the vulnerability of soils to water erosion. If not properly
309 managed, **some 41 million hectares** would be affected by water erosion (FAO and ITPS,
310 2015). The erosion of soil surface layers can affect the soil carbon in two possible ways.
311 The greater exposure of carbonates to climatic elements could increase the loss of SIC to
312 the atmosphere and ground water. Compared to stable soils, the higher decomposition of
313 SOC in eroded soils decreases the productivity of cultivated crops and can reduce SOC
314 stock, if not properly managed (Plaza-Bonilla et al., 2015).

315

316 A possible measure to reduce the risk of erosion is the no-tillage practice. No-tillage
317 coupled with mulching, to reduce weed development and omit herbicide application, as
318 part of conservation agriculture (CA), aims to return more plant residues to the soil,
319 enhance C sequestration, increase soil aggregates, improve water infiltration and protect
320 soil carbon from decomposers (Palm et al., 2014). Through a modification of common
321 practices, such as the frequency and depth of tillage, changes in the SOC could be
322 promoted in most soils. Experiments conducted by ICARDA, Syria, showed that no-tillage
323 performed well in terms of energy and soil conservation (Plaza-Bonilla et al., 2015).
324 Elsewhere, in Palestine soil conservation was found to pay, with a net profit 3.5 to 6 times
325 higher than without conservation measures (FAO and ITPS, 2015). In dryland regions,
326 agricultural activities based on CA practices are beneficial as crop residues are left on the
327 soil surface (Plaza-Bonilla et al., 2015). The presence of residues would protect the soils
328 from high evaporation, water and wind erosion. This is especially relevant to soils that are
329 sensitive to degradation, such as the very shallow Lithosols, the periodically swelling and
330 shrinking Vertisols, Gypsic Yermasols (Aridisols), the poorly-structured Solonchaks and
331 Solonetz, the sandy-textured Arenosols, and the desert soils (Xerosols).

332

333 Major constraints facing soil conservation measures, in East Mediterranean, were due to
334 knowledge and perception, prevailing practices of complete removal as hay or forage and
335 sometimes burning of residues after harvest, land tenure and type of landscape (FAO,
336 2012; FAO and ITPS, 2015). These factors are socio-economic in nature, rather than
337 scientific. They are related to the ability of growers to accept new techniques and adopt

338 them. In many situations, the transfer from the research stations to the farmers was not
339 smooth. For instance, CA was successfully tested in experimental stations in Morocco and
340 Lebanon, but several social and technical barriers prevented it from reaching farmers
341 (Mrabet et al., 2012; FAO, 2012).

342

343 A debate has been taking place about the effect of no-tillage on SOC. Many authors agree
344 that under CA, SOC increases near the soil surface, but not necessarily throughout the
345 profile. A study compared 100 pairs, where no-tillage has been practiced for over 5 years.
346 The absence of tillage lead to higher C stocks (0-0.3 m soil depth) in 54% of pairs, while
347 39% showed no difference in stocks (Palm et al., 2014). In the absence of tillage, the
348 slower decomposition of residues would result in higher C accumulation on the soil
349 surface. Over a period of 5 years, zero tillage promoted an increase in SOC equal to 1.38
350 Mg ha⁻¹ as compared to the conventional tillage in northern Syria (Sommer et al., 2014).

351

352 3.3.2. Agricultural practices and SOC

353 Practices such as the application of N fertilizers, organic amendments, incorporation of
354 residues and crop rotations, influence the levels of SOC. In soil mining practices without
355 minimal input of fertilizers, the lack of available nutrients makes most crops entirely
356 reliant on the mineralization of accumulated SOC (Plaza-Bonilla et al., 2015). In East
357 Africa, 14-years of continuous cultivation without any input decreased SOC from 2% to
358 1% (Sharma et al., 2012). The application of N fertilizers was associated with increased
359 levels of soil C, as compared to the absence of N fertilizers (Palm et al., 2014). In a 10-
360 year rotation of wheat-grain legume in northern Syria, the application of nitrogen
361 fertilizers to the cereal caused a notable increase of SOC in the top 1m of soil, equal to
362 0.29 Mg ha⁻¹ year⁻¹ (Sommer et al., 2014). Similarly, in semi-arid Lebanese area (Anti-
363 Lebanon mountains), legumes (*Vicia* sp., *Lathyrus* sp.) intercropped with barley (*Hordeum*
364 *vulgaris*) significantly increased SOC in cherry orchards (Darwish et al., 2012). Roots of
365 cover crops contributed some 140 and 250 kg ha⁻¹ season⁻¹ of organic matter (OM) against
366 95-665.7 kg ha⁻¹ season⁻¹ of OM for the aboveground parts.

367

368 The effects of crop rotations on SOC are related to the amounts of above and belowground
369 biomass produced and retained in the system. In a study conducted in semi-arid northern
370 Syria, a 12-year rotation gave higher SOC in wheat-medic (12.5 g SOC kg⁻¹ soil) and
371 wheat-vetch (13.8 g SOC kg⁻¹ soil) rotations, as compared to continuous wheat (10.9 g

372 SOC kg⁻¹ soil) or wheat-fallow (Masri and Ryan, 2006). In this rainfed system, the
373 introduction of a forage legume (vetch/medic) with wheat, over a decade, was able to
374 significantly raise the level of SOC. Further, the combination of crop rotations and no-
375 tillage was found to sequester more C than monocultures (Palm et al., 2014). One means
376 of building up biomass is through winter cover crops. Their beneficial impact on C
377 sequestration and water infiltration has been demonstrated. The presence of a cover crop
378 on the soil surface protects the soil against erosion. **In the NENA region, land cultivation**
379 **is restricted to dry sub-humid and humid areas (> 600 mm with short rainfall season) as**
380 **fully irrigated, partially irrigated and rainfed cropping system.** Still, more research is
381 needed about the best species to be used, the optimum termination strategies of the cover
382 crop as well as the best date and density of planting and best management practices of
383 consequent crops (Plaza-Bonilla et al., 2015).

384

385 In poor dryland regions, especially in the rainfed agricultural systems, some practices
386 hinder the accumulation of SOC. Overall, crop residues serve as fodder or for household
387 cooking or heating, leaving little plant material on the soil surface. Even animal dung is
388 used as cooking fuel in many regions. The low SOC content could be improved by
389 increasing the crop residues produced and incorporated. **Such an approach requires the**
390 **application of fertilizers in order to avoid the depletion of soil nutrients** (Plaza-Bonilla et
391 al., 2015).

392

393 Some authors question the validity of remediation measures to promote SOC accumulation
394 in most of the NENA region. Results from research stations in Egypt and Syria provide
395 **proofs** to the contrary. In a trial in north-east Cairo, Egypt, the irrigation of a sandy soil
396 with sewage water, for 40 years, changed its texture to loamy sand (Abd el-Naim et al.,
397 1987). This modification of the soil texture leads to a significant improvement of the soil
398 physical properties. Further, within the same long-term trial, the irrigation with sewage
399 water, for 47 years, increased SOC to 2.79%, against 0.26% in the control (Pescod and
400 Arar, 2013). This rather slow accumulation could be related to the sandy soil texture and
401 to the input of the organic matter in labile, soluble forms.

402

403 The addition of more stable composted materials was tested in semi-arid north Syria. The
404 amount of compost, 10 Mg ha⁻¹ every two years, needed to raise the SOC, was **too large** in
405 these rainfed systems. Rather than relying on composts, the authors found that a

406 combination of reduced tillage and a partial retention of crop residues moderately
407 increased SOC (Sommer et al., 2014). The quality of residues seems to affect the SOC on
408 the short-term but on the medium-term it is the quantity that matters (Palm et al., 2014).

409

410 3.3.3. Impact of irrigation on agricultural soils

411 The irrigated land represents a minor fraction of agriculture in NENA region, but irrigated
412 crops are essentially found on prime soils (Figure 4). Frequent wetting of irrigated soils
413 make them more likely to lose C as compared to dry soils. But, this partial loss is
414 compensated by higher biomass production and greater OM inputs from roots, even if
415 residues are removed. Lack of moisture limits soil mineralization (Sharma et al., 2012).
416 Irrigated soils promote intense microbial activity and a rapid decomposition of SOC. In
417 the fertile region of Doukkala, Morocco, known for producing wheat and sugar beet, a
418 decade of irrigated farming decreased soil organic matter by 0.09% per year (FAO and
419 ITPS, 2015). This loss could have been reduced through the incorporation of crop
420 residues. But, in these mixed farming systems, aboveground residues are consumed by
421 farm animals.

422

423 The irrigation of soils in NENA region is expected to affect the SIC. Dryland soils were
424 considered to contain equivalent stock of SIC as SOC (Sharma et al., 2012). But higher
425 SIC than SOC were found in this study, notably in the subsoils. Despite this large stock,
426 there is a major knowledge gap regarding the effects of land use and management on the
427 dynamics of SIC. This is especially relevant to the irrigation with calcium or sodium-
428 enriched groundwater (Plaza-Bonilla et al., 2015). In these conditions, the formation of
429 calcium carbonate could be accompanied by some release of carbon dioxide while the
430 development of sodicity can cause irreversible SOC loss.

431

432 4. Conclusions

433 NENA area consisting of 14% of the earth surface contributes only 4.1% of total SOC
434 stocks in topsoil. The soil resources of NENA region are developed under dry conditions
435 with prevailing of rainfed agriculture. The majority of lands in NENA countries are of low
436 productivity. The current mapping of SOC density showed that 69% of soil resources
437 represent a SOC stock below 30 tons ha⁻¹, indicating the soils of NENA region are not
438 enriched with OC. Highest stocks (60 tons ha⁻¹) were found in forests, irrigated crops,
439 mixed orchards and saline flooded vegetation. This means that SOC can be increased in

440 the soils of the NENA region under appropriate and sustainable soil management
441 practices. The moderate density (≈ 30 tons ha^{-1}) in urban areas indicates land take by urban
442 growth and expansion on prime lands. The stocks of SIC were higher than SOC density,
443 due to the calcareous nature of soils. In subsoil, the SIC stock ranged between 25 and 450
444 tons ha^{-1} , against 20 to 45 tons ha^{-1} for SOC. The OC sequestration in the NENA region is
445 a possible task to mitigate climate change and sustain food security despite the hostile
446 climatic conditions and poor land stewardship and governance. Practices of conservation
447 agriculture (no-tillage, intercropping and agro-pastoral system, **winter soil cover**, proper
448 rotation) could be effective in reducing evaporation, water and wind **erosions** and
449 promoting aboveground and belowground biomass production. Land cover and land use
450 affected the amounts of SOC retained in the soil ecosystem. A good result was achieved in
451 Lebanon through winter cover crop consisting of fruit trees-legume-barley intercropping
452 system. Knowledge gaps **are related to** the effect of irrigation on SOC and SIC.
453 Constraints facing soil conservation measures and carbon sequestration in the NENA
454 region can be faced with awareness raising and capacity building at the level of
455 stakeholders and decision-makers. Sustainable soil management can contribute to alleviate
456 the pressure on soil resources, improve SOC sequestration and maintain soil resistance to
457 degradation.

458

459 5. Acknowledgements

460 This paper was supported by the FAO, GSP-ITPS, UNESCWA and CNRS Lebanon
461 within a land degradation assessment and SOC mapping project related to food security.

462

463 6. References

464 Abd Elnaim E.M., M.S. Omran, T.M. Waly and B.M.B. El Nashar (1987) Effects of
465 prolonged sewage irrigation on some physical properties of sandy soil. *Biological
466 Wastes* 22: 269:274.

467 Al Chami Z., S. Bou Zein Eldeen, L. Al Bitar, and T. Atallah (2016) Decomposition of
468 olive-mill waste compost, goat manure and *Medicago sativa* in Lebanese soils as
469 measured using the litterbag technique. *Soil Research* 54, 191-199.

470 Atallah T., C. Jamous, P. Debs and T. Darwish (2012) Biosolid recycling to enhance
471 carbon sequestration in mountainous Lebanese conditions. Lebanese Science Journal
472 13 (2), 69-79.

473 Batjes, NH., and Sombroek, WG. 1997 Possibilities for carbon sequestration in tropical and
474 subtropical soils. Global Change Biology (3): 161-173.

475 Bosco S., C. Di Bene, E. Bonari (2012) The effect of crop management on soil organic
476 matter in the carbon footprint of agricultural products. 8th Int Conf on Life Cycle
477 assessment in the agri-food sector. Oct 1-4 2012, Saint-Malo, France.

478 Bosco S., C. Di Bene, M. Galli, D. Remorini, R. Massai and E. Bonari (2013) Soil organic
479 matter accounting in the carbon footprint analysis of the wine chain. International
480 Journal Life Cycle Assessment 18:973–989. DOI 10.1007/s11367-013-0567-3

481 Boukhououd N., Gros, R., Darwish T., Farnet Da Silva, A.M. 2016. Agriculture practice
482 and coastal constraint effects on microbial functional properties of soil in
483 Mediterranean olive orchards. European Journal of Soil Science. DOI:
484 10.1111/ejss.1234. July 2016, 67: 470-477.

485 Boukhdoud N., Farnet Da Silva, A.M., Darwish, T., Gros, R. 2017. Olive mill waste and
486 glyphosate-based herbicide addition to olive grove soils: effects on microbial
487 activities and their responses to drying/rewetting cycles. Soil Use and Management.
488 DOI: 10.1111/sum.12367.

489 Cerdà A., Gonzalez Penalosa F., Santin C. and S.H. Doerr (2012) Land abandonment, fire
490 recurrence and soil carbon content in the Macizo del Caroig, Eastern Spain.
491 Geophysical Research Abstracts 14, EGU2012-14331.

492 Darwish, T., Faour Gh., and M. Khawlie (2004) Assessing Soil Degradation by Landuse-
493 Cover Change in Coastal Lebanon. Lebanese Science Journal 5: 45-59.

494 Darwish, T., Khawlie, M., Jomaa, I., Abou Daher, M., Awad, M., Masri, T., Shaban, A.,
495 Faour, G., Bou Kheir, R., Abdallah, C. and Haddad, T. (2006). Soil Map of Lebanon
496 1/50000. CNRS-Lebanon, Monograph Series 4, pp. 367

497 Darwish, T., Abou Daher, M., Jomaa, I, and Atallah, T. (2009). Soil organic carbon stock
498 estimation in Lebanese territories. 10th International Meeting on Soils with

499 Mediterranean Type of Climate. CNRS-Lebanon, Book of Extended Abstracts 113-
500 118.

501 Darwish, T., Atallah, T., Francis, R., Saab, C., Jomaa, I., Shaaban, A., Sakka, H., and P.
502 Zdruli (2011) Observations on soil and groundwater contamination with nitrate, a
503 case study from Lebanon-East Mediterranean. Agricultural Water Management, DOI
504 10.1016/j.agwat.2011.07.016.

505 Darwish, T.M., Jomaa, I., Atallah, T., Hajj S., Shaban, A., Zougheib, R., and F. Sibai
506 Ouayda (2012) An agropastoral system as a practice to enhance organic matter in
507 Lebanese inland mountainous soils. Lebanese science journal, vol. 13 (1): 1-14.

508 Darwish, T., and A., Fadel, (2017) Mapping of Soil Organic Carbon Stock in the Arab
509 Countries to Mitigate Land Degradation. Arab J. Geosci (2017) 10: 474.
510 <https://doi.org/10.1007/s12517-017-3267-7>.

511 Elhadi M.Y., 2005. Postharvest technology of food crops in the Near East and North
512 Africa (NENA) region. In Ramdane Dris PhD. (ed.), "Crops: Growth, Quality and
513 Biotechnology", pp. 643-664. WFL Publisher, Meri-Rastilan tie 3 C, 00980
514 Helsinki, Finland.

515 FAO, 2007. The digital soil map of the world. Food and Agriculture Organization of the
516 United Nations. Version 3.6, completed January 2003 and updated 2007
517 (<http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116>)

518 FAO, 2012. Country Study on Status of Land Tenure, Planning and Management in
519 Oriental Near East Countries Case of Lebanon. FAO, RNE, SNO. Cairo, Egypt:
520 161p.

521 FAO, 2015. Regional Overview of Food Insecurity - Near East and North Africa:
522 Strengthening Regional Collaboration to Build Resilience for Food Security and
523 Nutrition, Cairo, Egypt, FAO.

524 FAO, 2017. Voluntary Guidelines for Sustainable Soil Management Food and Agriculture
525 Organization of the United Nations Rome, Italy

526 FAO and ITPS, 2015. Status of the World's Soil Resources (WSR) – Main Report. Food
527 and Agriculture Organization of the United Nations and Intergovernmental
528 Technical Panel on Soils, Rome, Italy.

529 Fernandez-Ugalde O., Virto I., Barre P., Apesteguia M., Enrique A., Imaz M.J. and P.
530 Bescansa (2014). Mechanisms of macroaggregate stabilisation by carbonates:
531 implications for organic matter protection in semi-arid calcareous soils. *Soil
532 Research* 52: 180-192.

533 Finke, P., Hartwich, R., Dusal R. Ibanez J. Jamagne M. King D. Montanarella L and N.
534 Yassoglou (2000) Georeferenced Soil Database for Europe. Manual of Procedures,
535 Version 1.1. European Soil Bureau.

536 Guo, LJ., Lin, S., Liu, TQ., Cao, CG., Li, CF. (2016) Effects of conservation tillage on
537 topsoil microbial metabolic characteristics and organic carbon within aggregates
538 under a rice (*Oryza sativa* L.)-wheat (*Triticum aestivum* L.) cropping system in
539 Central China. *PLoS One* 11:e0146145.

540 Hengl, T., de Jesus, JM., MacMillan, RA., Batjes, NH., Heuvelink, GBM., Ribeiro, E. ,
541 Rosa, AS. , Kempen, B., Leenaars, JGB., Walsh, MG., Gonzalez, MR. (2014)
542 SoilGrids1km-Global Soil Information Based on Automated Mapping. *PLoS ONE*
543 9(8): e105992. doi:10.1371/journal.pone.0105992.

544 Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M,
545 Blagotić A, et al. (2017) SoilGrids250m: Global gridded soil information based on
546 machine learning. *PLoS ONE* 12(2): e0169748.
547 <https://doi.org/10.1371/journal.pone.0169748>.

548 Lal, R. (2003) Soil erosion and the global carbon budget. *Environment International*, 29
549 (4): 437-450

550 Masri, Z. and J. Ryan (2006) Soil organic matter and related physical properties in a
551 Mediterranean wheat-based rotation trial. *Soil Tillage Research* 87: 146–154.

552 Mrabet, R., Moussadek, R., Fadlaoui, A., and E. van Ranst (2012) Conservation
553 agriculture in dry areas of Morocco. *Field Crops Research* 132: 84-94.

554 Pescod, M.B. and A. Arar (2013) Treatment and use of sewage effluent for irrigation.
555 Butterworths. <https://books.google.com.lb/books>. Isbn: 1483162257. Pages 211-212

556 Plaza-Bonilla, D., Arrué, JL., Cantero-Martínez, C., Fanlo, R., Iglesias, A., and Álvaro-
557 Fuentes J. (2015) Carbon management in dryland agricultural systems. A review.
558 Agronomy for Sustainable Development 35 (4): 1319-1334.

559 Sharma, P., Abrol, V., Abrol, S., and R. Kumar (2012) Climate change and carbon
560 sequestration in dryland soils. In Tech open access book, chapter 6. 26 pages.
561 <http://dx.doi.org/10.5772/52103>

562 Sommer, R., Piggin, C., Feindel, D., Ansar, M., van Delden, L., Shimonaka, K., Abdalla,
563 J., Douba, O., Estefan, G., Haddad, A., Haj-Abdo, R., Hajdibo, A., Hayek, P.,
564 Khalil, Y., Khoder, A., and J. Ryan (2014) Effects of zero tillage and residue
565 retention on soil quality in the Mediterranean region of northern Syria. Open Journal
566 of Soil Science 4 (3), Article ID: 44383. 17 pages. DOI:10.4236/ojss.2014.43015

567 Stockmann, U., Padarian, J., McBratney, A., Minasny, B., deBrogniez, D., Montanarella ,
568 L., Young Hong, S., Rawlins, BG., Damien, J. (2015) Global soil organic carbon
569 assessment. Global Food Security (6): 9-16.

570 USDA (1999) Land capability classification. NRCS-USDA.

571 von Grebmer, K., Bernstein, J., Hossain, N. , Brown, T., Prasai, N., Yohannes, Y.,
572 Patterson, F., Sonntag, A., Zimmermann, S.M., Towey, O., and C Foley (2017)
573 Global Hunger Index: The Inequalities of Hunger. Washington, DC: International
574 Food Policy Research Institute; Bonn: Welthungerhilfe; and Dublin: Concern
575 Worldwide.

576 Yu, L., Dang, Z-Q., Tian, F-P., Wang, D., and G-L. Wu (2017). Soil organic carbon and
577 inorganic carbon accumulation along a 30-year grassland restoration chronosequence
578 in semi-arid regions (China). Land Degrad. Develop., 28: 189–198.

579