

1
2 217-39-Author's_response-version 5
3
4

5 Response to Reviewers showing the latest modifications:
6
7 The full names were written as requested.
8
9

10 1. Line 27-33. A part of the abstract was modified to:
11
12 The paper also discusses agricultural practices that are favorable to carbon sequestration
13 such as organic amendment, no till or minimum tillage, crop rotation, and mulching and
14 the constraints caused by geomorphological and climatic conditions. The effects of crop
15 rotations on SOC are related to the amounts of above and belowground biomass produced
16 and retained in the system. Some knowledge gaps exist, especially in aspects related to the
17 impact of climate change and effect of irrigation on SOC, and on SIC at the level of soil
18 profile and soil landscape.
19
20

21 2. Line 82-86. The following sentence was added:
22 In order to compare situations and problems, global soil organic carbon maps are a
23 priority. As recently as December 2017, the GSP-FAO, ITPS launched the version 1 of the
24 global soil organic carbon map, showing the SOC stock in topsoil (<http://www.fao.org/3/a-i8195e.pdf>). A preliminary assessment of regional SOC stocks, using unified background
25 information, is needed to analyze the challenges facing C sequestration
26
27

28 3. Line 159-165. The following paragraph was inserted
29 The SOC content can vary depending on soil type, topography, land cover, erosion-
30 sedimentation and soil management. Within the topsoil (0-0.30 m), the SOC contents are
31 between 0.13% and 1.74%, while in the subsoil (0.30-1 m) values range between 0.16 and
32 0.9% (Figure 1). Two out of the three predominant soil classes (Xerosols and Aridisols)
33 have SOC contents below 0.5%. Overall, the NENA soils are poor in SOC, as less than
34 20% of soil resources have SOC contents above 1.0%.
35
36

37 4. Line 167-169. A new figure 1 was inserted showing SOC content (%) in topsoil
38 and subsoil in the major soil groups of NENA region with standard deviation
39 related to soil class.
40
41

42 5. Line 249-258. The following paragraph was inserted
43 The soil productivity concept is based strictly on soil properties. But, with the lack of
44 water in drylands and the prevalence of rainfed agriculture, the soil cannot show its full
45 potential for food production. Similarly, irrigation with brackish water restricts crop
46 productivity due to the development of secondary soil salinity. With properly managed
47 irrigation, the medium productive lands can provide moderately good harvests. For
48 instance, our field observation in Jordan showed that a large area of productive lands was
49 cropped with barley, not because of land suitability, but due to low rainfall (< 200 mm). In
50 drought affected years, the land is converted into grazing area for small ruminants
51 following crop failure to make the minimal profit from the exploitation.
52
53

54 6. Line 607-631. The conclusion was modified
55 NENA area consisting of 14% of the earth surface contributes only 4.1% of total SOC
56 stocks in topsoil. The soil resources of NENA region are developed under dry conditions
57
58

51 with prevailing of rainfed agriculture. The majority of lands in NENA countries are of low
52 productivity. The current mapping of SOC density showed that 69% of soil resources
53 represent a SOC stock below 30 tons ha⁻¹, indicating the soils of NENA region are not
54 enriched with OC. Highest stocks (60 tons ha⁻¹) were found in forests, irrigated crops,
55 mixed orchards and saline flooded vegetation. This means that SOC can be increased in
56 the soils of the NENA region under appropriate and sustainable soil management
57 practices. The moderate density (\approx 30 tons ha⁻¹) in urban areas indicates land take by
58 urban growth and expansion on prime lands. The stocks of SIC were higher than SOC
59 density, due to the calcareous nature of soils. In subsoil, the SIC stock ranged between 25
60 and 450 tons ha⁻¹, against 20 to 45 tons ha⁻¹ for SOC. The OC sequestration in the NENA
61 region is a possible task to mitigate climate change and sustain food security despite the
62 hostile climatic conditions and poor land stewardship and governance. Practices of
63 conservation agriculture (no-tillage, intercropping and agro-pastoral system, winter cover
64 crops, proper rotation) could be effective in reducing evaporation, water and wind erosion
65 and promoting aboveground and belowground biomass production. Land cover and land
66 use affected the amounts of SOC retained in the soil ecosystem. A good result was
67 achieved in Lebanon through winter cover crop consisting of fruit trees-legume-barley
68 intercropping system. Knowledge gaps exist with respect to the effect of irrigation on SOC
69 and SIC. Constraints facing soil conservation measures and carbon sequestration in the
70 NENA region can be faced with awareness raising and capacity building at the level of
71 stakeholders and decision-makers. Sustainable soil management can contribute to alleviate
72 the pressure on soil resources, improve SOC sequestration and maintain soil resistance to
73 degradation.

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Challenges of soil carbon sequestration in NENA Region

Talal Darwish^{1,2*}, Talal¹; Thérèse Atallah², Therese²; and Ali Fadel¹

1. National Council for Scientific Research, Beirut, Lebanon
2. Faculty of Agricultural and Veterinary Sciences, Lebanese University
3. Intergovernmental Technical Panel on Soil (ITPS)

* Corresponding author: tdarwiche@cnrs.edu.lb

Formatted: Font: (Default) Times New Roman, Complex Script Font: Times New Roman

Abstract

Nearend East North Africa (NENA) region spans over 14% of the total surface of the Earth and hosts 10% of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and food security will depend much on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the situation status of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries (17 out of 20), suffer from low productive lands (>80%). Stocks of SOC were mapped (1:5 Million) in topsoils (0-0.30 em) and subsoils (0.30-1.00 em). The maps showed that 69% of soil resources present a stock of SOC below the threshold of 30 tons ha⁻¹. The stocks varied between \approx 10 tons ha⁻¹ in shrublands and 60 tons ha⁻¹ for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of soil inorganic carbon (SIC) were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 tons ha⁻¹, against 20 to 45 tons ha⁻¹ for SOC. This paper also highlights Results highlight the modest contribution of NENA region to global SOC stock in the topsoil not exceeding \leq 4.1%. The paper also discusses agricultural practices that are favorable to carbon sequestration such as: Practices of conservation agriculture, Organic amendment, no till or minimum tillage, crop rotation, and mulching and the constraints caused by geomorphological and climatic conditions. Further, could be effective, as the presence of soil cover reduces the evaporation, water and wind erosions. In semi-arid east Mediterranean Further, the introduction of legumes, as part of a cereal-legume rotation, and the application of nitrogen fertilizers to the cereal, caused a notable increase of SOC after 10 years. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exist, especially in aspects related to the impact of climate change and effect of irrigation on SOC, and on SIC at the level of soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy relevant and socio-economic in nature, rather than scientific.

Keywords: Drylands, soil organic carbon, soil inorganic carbon, land capability, C stock, conservation practices.

1. 1. Introduction

The Near East North Africa (NENA) region spans over 14% of the total surface of the Earth and hosts 10% of its population (Elhadi, 2005). The largest importer of wheat in the

Formatted: Font: (Default) Times New Roman, 14 pt, Complex Script Font: Times New Roman, 14 pt

Formatted: List Paragraph, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" Indent at: 0.5"

Formatted: Indent: Before: 0.25"

142 world, this region is also one of the poorer (FAO, 2015). A recent assessment of global
143 hunger index (GHI), based on four indicators -undernourishment, child wasting, child
144 stunting, and child mortality- showed that most of the NENA countries present low to
145 moderate GHI. Countries suffering from armed conflicts, Syria, Iraq and Yemen, are at a
146 serious risk (von Grebmer et al., 2017). With the scarce natural resources and difficult
147 socio-economic conditions, it is questionable whether food security will be reached by
148 2030, unless a significant change in agricultural practices and governance occurs (FAO,
149 2017).

Formatted: Indent: First line: 0"

152 Most of the land area of the NENA region falls in the hyper-arid, arid and semi-arid
153 climatic zones. Climate change is expected to exacerbate the scarcity of water, and
154 drought-and-drought effect. Weather variability, drought and depleting vegetation are
155 major concerns in the loss of soil productivity and agricultural sustainability. Instabilities
156 Changes in soil organic carbon (SOC) can affect the density-emission of greenhouse gases
157 in-to the atmosphere and negatively affect-influence the global climate ehange (Lal,
158 2003). In fact, destructive land management practices are impacting soil functions. Land
159 use change, mono-cropping and frequent tillage are considered to cause a rapid loss of
160 SOC (Guo et al., 2016). These agricultural practices disrup+disturb the stability of
161 inherited soil characteristics, built under local land cover and climate (Bhogal et al. 2008).
162 Thus, most NENA lands contain ~1 % of SOC, and frequently less than 0.5%.

Formatted: Indent: First line: 0"

Formatted: Indent: First line: 0.5"

Despite the constraints of NENA pedo-climatic conditions present major constraints to carbon sequestration, increasing SOC levels is critical and challenging (Atallah et al., 2015). To maintain soil productivity and land quality, several technical and socio-economic measures need to be adopted. Additional efforts oriented to maintaining and increasing ~~SOC~~ can contribute to poverty reduction and achieve food security (Plaza-Bonilla et al., 2015). Good agricultural practices, based on low tillage or no tillage, may result in the reduction of SOC breakdown and the enhancement of the soil carbon pool (Atallah et al., 2012; Cerdá et al., 2012; Boukhoudoud et al., 2016).

Formatted: Indent: First line: 0"

Formatted: Indent: First line: 0.5"

175 In order to compare situations and problems, global soil organic carbon maps are a priority. As recently as December 2017, the GSP-FAO, ITPS launched the version 1 of the
176 global soil organic carbon map, showing the SOC stock in topsoil (<http://www.fao.org/3/a-18195e.pdf>). A preliminary assessment of regional SOC stocks, using unified background
177 information, is needed to analyze the challenges facing C sequestration. Quantifying SOC
178 content in the NENA countries using available soil data is crucial, even at a small scale, to
179 assess the nature and potential of available soil resources and analyze the associated
180 threats. Mapping the spatial distributions of national and regional OC stocks can be used
181 to monitor and model regional and global C cycles under different scenarios of soil
182 degradation and climate change. Accurately quantifying SOC stocks in soils and
183 monitoring their changes are considered essential to assessing the state of land
184 degradation. At the same time, the predominantly calcareous soils of NENA region are
185 rich in soil inorganic carbon (SIC). The dynamics of SIC and its potential in sequestering
186 soil carbon in soils are largely unknown and as such deserves thorough
187 investigation. This paper analyzes the state of SOC and SIC in NENA countries and
188 outlines challenges and barriers for devising organic carbon sequestration in NENA's
189 impoverished and depleted soils. It also highlights several questions which scientists need
190 to resolve. Finally, it discusses practical agricultural measures to promote SOC
191 sequestration.
192

193 **Formatted:** Indent: First line: 0"

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 2. Materials and Methods

201 Data on SOC and soil inorganic carbon (SIC) contents in soils of the NENA region were
202 retrieved from the soil database of the FAO-UNESCO digital soil map of the world
203 (DSMW) at 1:5 Million. Within The database, contains large number of 1700 geo-
204 referenced soil profiles, collected and harmonized from each all member states of the
205 NENA region, are. These were excavated, sampled by horizon, down to the rock, and
206 analyzed in the laboratory according to the standard world accepted methods included
(FAO, 2007).

Formatted: Font: Bold, Complex Script Font: Bold

Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Complex Script Font: Times New Roman, 12 pt, Bold

Formatted: List Paragraph, Numbered +
Level: 1 + Numbering Style: 1, 2, 3, ... +
at: 1 + Alignment: Left + Aligned at: 0.25"
Indent at: 0.5"

Formatted: Font: Bold, Complex Script Font: Bold

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Complex Script Font: Times New Roman, 12 pt, Bold

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

209 In terms of area, the largest soil units are Yermosols (4670.6 km²), Lithosols (2914.3 km²)
210 and Regosols (1193.2 km²). The great majority of soil classes presents very low to low
211 resistance to erosion and degradation (Table 1). To the contrary, Cambisols, Fluvisols and
212 Regosols are highly resistant to erosion. ~~SFor the SIC~~, soil classes dominated by
213 calcareous rocks (Solonchaks, Rendzinas and Aridisols) —have the highest SIC contents
214 (Table 1), while Lithosols and Xerosols, subject to regular water and wind erosion,
215 show the smallest SIC.

Table 1. Soil inorganic carbon level and the resistance to land degradation in the major soil units of Near East North Africa region (Source: DSMW, FAO, 2007).

Soil Classes	Area, 1000 km ²	Resistance to Land Degradation	Average SIC content (%)	
			topsoil	subsoil
<u>Cambisols</u>	<u>178.9</u>	<u>High</u>	<u>0.25</u>	<u>0.64</u>
<u>Fluvisols</u>	<u>232.7</u>	<u>High</u>	<u>1.12</u>	<u>1.40</u>
<u>Kastanozem</u>	<u>26.0</u>	<u>High</u>	<u>1.69</u>	<u>3.96</u>
<u>Regosols</u>	<u>1193.2</u>	<u>High</u>	<u>1.18</u>	<u>0.23</u>
<u>Luvisols</u>	<u>121.6</u>	<u>Moderate</u>	<u>0.02</u>	<u>0.11</u>
<u>Phaeozems</u>	<u>3.8</u>	<u>Moderate</u>	<u>0.40</u>	<u>0.70</u>
<u>Rendzinas</u>	<u>25.6</u>	<u>Low</u>	<u>2.80</u>	<u>4.80</u>
<u>Lithosols</u>	<u>2914.3</u>	<u>Low</u>	<u>0.01</u>	<u>0.06</u>
<u>Vertisols</u>	<u>45.4</u>	<u>Low</u>	<u>0.45</u>	<u>0.72</u>
<u>Xerosols</u>	<u>498.5</u>	<u>Low</u>	<u>0.25</u>	<u>0.45</u>
<u>Yermasols (Aridisols)</u>	<u>4670.6</u>	<u>Low</u>	<u>2.50</u>	<u>2.30</u>
<u>Solonchaks</u>	<u>230.1</u>	<u>Very low</u>	<u>3.60</u>	<u>3.90</u>
<u>Solonetz</u>	<u>31.2</u>	<u>Very low</u>	<u>0.06</u>	<u>0.36</u>
<u>Arenosols</u>	<u>384.0</u>	<u>Very low</u>	<u>0.00</u>	<u>0.00</u>

The soil map was prepared using the topographic map series of the American Geological Society of New York, as a base, at a nominal scale of 1:5 000 000. Countries were checked and adjusted using the FAO-UNESCO Soil Map of the World, basis of FAO and UN conventions. Soil classification was based on horizon, depth, texture, slope gradient and soil physico chemical and chemical properties. Statistical (weighted) average was calculated for the topsoil (0-30 cm) and for soil (30-100 cm) for the full series of chemical and physical parameters sufficient to main agricultural soil properties. To fill the gap in some attributes and complete for which no data were available, an expert opinion internationally known soil was used.

Formatted: Space After: 10 pt, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

231
232
233
234 ~~Using the DSMW and its updated attribute database, the maps of the SOC and SIC stock~~
235 ~~and distribution in 20 NENA states were produced. The scale used in the DSMW is 1:5~~
236 ~~Million (FAO, 2007). The soil map was prepared using the topographic map series of the~~
237 ~~American Geographical Society of New York, as a base, at a nominal scale of~~
238 ~~1:5.000.000. Country boundaries were checked and adjusted using the FAO UNESCO~~
239 ~~Soil Map of the World, on the basis of FAO and UN conventions. To produce the maps~~
240 ~~representing the spatial distribution of SOC and SIC, ArcMap 10.3 was used to join the~~
241 ~~symbology of the C stocks and density with quantities classified into five 0-14, 14-22, 22-~~
242 ~~31, 31-61 and 61-236 tons/ha for SOC density and 0, 0.1-30, 30-45, 46-74 and 74-200~~
243 ~~tons/ha for SIC density numerical categories with natural breaks. The global LC maps at~~
244 ~~300 m spatial resolution on an annual basis from 1992 to 2015 was produced by ESA. The~~
245 ~~Coordinate Reference System used is a geographic coordinate system based on the World~~
246 ~~Geodetic System 84 (WGS84) reference ellipsoid. The legend assigned to the global LC~~
247 ~~map has been defined using the UN Land Cover Classification System.~~

Formatted: Indent: First line: 0.5"

248
249 ~~The SOC content in studied soils varied between values as low as 0.13% and 0.16% and as~~
250 ~~high as 1.74% and 0.9% in topsoils and subsoils of Yermosols (Aridisols) and Rendzinas~~
251 ~~(Mollisols) respectively (Table 1). Worth noting that less than 20% of soil resources in~~
252 ~~NENA region have sequestered and accumulated SOC to an extend exceeding 1.0%. The~~
253 ~~SOC content can vary depending on soil type, topography, land cover, erosion-~~
254 ~~sedimentation and soil management. -Within the topsoils (0-0.30 m), the SOC contents are~~
255 ~~between 0.13% and 1.74%, while in the subsoils (0.30-1 m) values range between 0.16~~
256 ~~and 0.9% (Figure 1). Two out of the three predominant soil classes (Xerosols and~~
257 ~~Aridisols) have SOC contents below 0.5%. Overall, the NENA soils are poor in SOC, as~~
258 ~~less than 20% of soil resources have SOC contents above 1.0%.~~

Formatted: Indent: First line: 0"

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

260
261 Figure –1. SOC content (%) in topsoil and susbsoil in the major soil groups of NENA
262 region with standard deviation related to soil class.

263
264 The NENA soil map wais prepared using the topographic map series of the American
265 Geographical Society of New York, as a base, at a nominal scale of 1:5.000.000. Country
266 boundaries weare checked and adjusted using the FAO-UNESCO Soil Map of the World.
267 Soil classification wais based on horizon designation, depth, texture, slope, and soil
268 physico-chemical -properties. -Main agricultural soil properties weare assessed using the
269 statistical (weighted) average in the topsoil and subsoil. For the production of the maps of
270 C stocks and distribution (FAO, 2007), ArcMap 10.3 wais used to join the geometric
271 database with the C stocks. -These weare ranked into five categories for SOC density (0-
272 14, 14-22, 22-31, 31-61 and 61-236 tons/ha) and five others for SIC (0, 0.1-30, 30-45, 46-
273 74 and 74-200 tons/ha).

274 The land cover map wais that of ESA, at 300 m spatial resolution. The Reference
275 Coordinate System used wais a geographic coordinate system based on the World

276 Geodetic System 84 (WGS84) reference ellipsoid. The legend assigned to the global LC
277 map has been was defined based on the UN-Land Cover Classification System.

278
279 To assess the potential soil productivity in the NENA region, a land capability model
280 proposed by USDA (1999), which includes the soil geomorphological features (geology
281 and topography), other soil physico-chemical parameters conditioning soil fertility like soil
282 depth, texture, organic matter content, salinity and sodicity hazards was adopted. The soils
283 of the area were classified into four classes of arable soils: class I (highly productive),
284 class II (medium productive), class III (low productivity) and class IV (very low
285 productivity) and one non-arable soil class V, where lands suitable for wild vegetation and
286 recreation and lands with rock outcrops were grouped.

287
288 Arc Map 10.1 was used for the mapping of soil types and OC stock and density of each
289 soil unit based on the geographic or spatial distribution of the soil type. Total SOC and
290 SIC stocks and the stock of SOC were calculated separately for the topsoil (0-0.3m)
291 and subsoil (0.3-1.0 m) using the following equations:

292
293 Total National OC Stock (ton) = [Area (m²) * Depth (m) * Bulk Density (ton m³) * OC content
294 (%)]/1000 equation 1

295
296
297 Stock SOC or SIC density (ton ha⁻¹) = Stock in given soil unit (ton)/Soil Unit Area (ha)
298 (equation 2)

300 Stocks of SOC under different land cover/land use were evaluated, as well.
301 Since 1990, the European Space Agency, (Climate Change Initiative project), started to
302 produce land cover (LC) maps of the NENA region. The version used in the study
303 ([Website 1](#)) corresponds to the second phase of the 2015 global LC
304 (<http://maps.elie.ucl.ac.be/CCI/viewer/index.php>) with a spatial resolution of. These maps
305 have 300 m of spatial resolution, using the Coordinate Reference System (CRS) in a
306 geographic coordinate system (GCS) based on the World Geodetic System 84 (WGS84)
307 reference ellipsoid.

308 The legend assigned to the global LC map has been defined using the UN-LCCS.

309
310 3. Results and Discussion

311
312 3.1. Land capability and SOC in NENA region

Formatted: Indent: First line: 0"

Formatted: Indent: First line: 0"

Formatted: Centered

Formatted: Line spacing: 1.5 lines

Field Code Changed

Formatted: Default Paragraph Font, Font: +Body (Calibri), 11 pt, Complex Script Font: pt

Formatted: Indent: First line: 0"

Formatted: Line spacing: 1.5 lines

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: List Paragraph, Indent: Hanging 0.5", Numbered + Level: 1 + Numbering Style 1, 2, 3, ... + Start at: 3 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: List Paragraph

313 The most abundant soil classes in the NENA region are Arenosols, Xerosols and Aridisols
 314 representing together more than 80% of available soil resources (FAO, 2007). All three
 315 soil classes have low resilience resistance to degradation (Table 1). According to the
 316 model results based on the of land capability model, showing the proportion (%) of
 317 different soil productivity classes in each country of NENA region, the majority of soils
 318 (40 to 100% of soils in the) region belongs to fall within the low, very low and non-arable
 319 classes (Figure 42). Thus, the proportion of highly and medium productive soils varies
 320 between 0% (Bahrain, Qatar, Oman and UAE) and 60% (Jordan). Countries like Iraq,
 321 Lebanon, Morocco, Palestine, Somalia, Syria and Tunisia, present between 9 and 20% of
 322 highly to medium productive soils. The remaining NENA countries have less than 5% of
 323 their lands as high and medium productive. Some of these countries belong to the food
 324 insecure nations.

325 Formatted: Indent: First line: 0"

326

327
 328

329 Figure 42. Distribution of land capability classes (% of total national area) Land capability
 330 classification for the 20 countries of the NENA region, based on the USDA M model
 331 (1999) and Digital Soil Map of the WorldSMW, (FAO, 2007).

332 Formatted: Font: 12 pt, Complex Script For
 12 pt

333

334

335 Thus, the proportion of highly and medium productive soils varies between 0% (Bahrain,
 336 Qatar, Oman and UAE) and 60% (Jordan). Countries like Iraq, Lebanon, Morocco,
 337 Palestine, Somalia, Syria and Tunisia present between 9 and 20% of highly to medium

338 Formatted: Indent: First line: 0"

339 Formatted: Justified, Space After: 0 pt, Line
 340 spacing: 1.5 lines

338 productive soils. The rest of NENA countries have less than 5% of their lands as high and
339 medium productive soils. Some of these countries belong to the seriously endangered and
340 food unsecure nations.

Formatted: Strikethrough

341
342 The potential medium soil productivity concept is based strictly on soil properties. But,
343 with the lack of water in drylands and the prevalence of rainfed agriculture, the soil cannot
344 show its full potential for food production. Similarly, irrigation with brackish and saline
345 water restricts crop productivity due to the development of secondary soil salinity. With
346 hen properly managed irrigation, the medium productive lands can provide moderately
347 good harvests. For instance, our field observation in Jordan showed that d that due to
348 climate change and climate variability, a large area of good productive lands was cropped
349 with barley, not because of land suitability, but due to low rainfall (< 200 mm). In drought
350 affected years, the land is converted into grazing area for small ruminants following crop
351 failure to make the minimal profit from the exploitation. The presence of kaolinite in red
352 soils of Jordan developed from hard limestone under semi-arid climate points to the
353 inheritance of material formed under more aggressive climate (Kusus and Ryan, 1985).
354 The same was confirmed by Lucke et al., 2013 for Red Mediterranean Soils of Jordan,
355 which require new insights in their origin, genesis and role as a source of information on
356 paleoenvironment.

357
358 The low productivity of the soil is reflected in the SOC contents. Two out of the three
359 predominant soil classes (Xerosols and Aridisols) have SOC contents below 0.5% (Table
360 1). Overall, the NENA soils are poor in SOC, as less than 20% of soil resources have SOC
361 contents exceeding 1.0%. The accumulation of SOC in NENA region is refrained by the
362 high mineralization rate (Bosco et al., 2012). Climate change and recurrent drought events
363 affect SOC sequestration in the soil. It is estimated that a rise in temperature of 3 $^{\circ}$ C
364 would increase the emission of carbon dioxide by 8% (Sharma et al., 2012).

Formatted: Indent: First line: 0"

365
366 Among the soil properties affecting SOC, the clay and calcium carbonate contents are
367 most relevant. High Clay-clay fraction content tends to counteract the decomposition of
368 SOC, as found in clay soils of Morocco and in Vertisols of northern Syria (FAO and ITPS,
369 2015). But, the dominant soil classes, Xerosols, Aridisols or Arenosols (Table 1)
370 characterized by sandy and sandy loam textures, are subject to fast decomposition.

Formatted: Indent: First line: 0"

372 Next to the clay texture, the presence of calcium carbonate decreased the decomposition of
373 composted organic material in sub-humid coastal Lebanon (Al Chami et al., 2016). This
374 slower turnover of organic matter was explained by the low porosity and prevalence of
375 micropores in soil macro-aggregates (Fernández-Ugalde et al., 2014). ~~For the SIC, the
376 highest values are found in soil classes dominated by calcareous rocks, that is the
377 Solonchaks, Rendzinas and Aridisols (Table 1). The lowest stocks were detected in
378 Lithosols and Xerosols, subject to water and wind erosions that remove the surface layer
379 of eroded lands.~~

380

381 3.2. Mapping of soil carbon stocks ~~in the soils of NENA region~~

382 ~~In order to compare situations and problems, global soil organic carbon maps are a
383 priority. As recently as A preliminary assessment of regional SOC stocks, using unified
384 background information, needed to analyze the challenges facing C sequestration.~~

385 ~~Thus, the need for more detailed and harmonized soil mapping and coding of
386 available national information arises to downscale to national and local soil assessment
387 and mapping, which is currently on the agenda of the Global Soil Partnership (GSP).~~

388

389 ~~To obtain an idea of the status of the soil carbons, assessed under different mapping, the
390 spatial distributions of SOC and SIC stocks for the NENA region assessed in this study
391 at 1:5 Million was compared with a larger scale mapping (1:50,000) for Lebanon. A
392 moderate discrepancy (11% to 14%) was found between the two scales for carbon stock in
393 topsoil and subsoil respectively.~~

394 ~~Based on the mapping of SOC density (ton ha⁻¹), 69% of the regional soils have a
395 stock density inferior below to 30 tons ha⁻¹ (Figure 34), value considered as a threshold for
396 C deficient soils (Batjes and Sombroek, 1997). This could be linked to the arid conditions
397 prevailing in the region with flat lands and limited humid mountain areas. Consequently,~~

398 ~~Y~~

399 ~~The majority of the countries of NENA region presents moderate to relatively low total
400 stocks of SOC.~~

Formatted: Indent: First line: 0"

Formatted: Not Highlight

Formatted: Indent: First line: 0", Don't
adjust space between Latin and Asian text,
Don't adjust space between Asian text and
numbers

Formatted: Indent: First line: 0"

Figure 3. Spatial distribution of SOC density (ton ha^{-1}) in topsoils (a) and subsoils (b) of the NENA region.

402
403 This is especially relevant to the Gulf countries, Iran, Tunisia and Morocco, with values
404 below 221 Mega tons (Figure 243). Such low OC sequestration potential can be explained
405 by the prevalence of arid climate and rare sparse natural vegetation and the reliance on
406 irrigation to produce food and feed crops. A regional implementation plan for sustainable
407 management of NENA soils appeared in 2017 [Website 2](http://www.fao.org/3/a-bl105e.pdf) <http://www.fao.org/3/a-bl105e.pdf>. In fact, the total stocks, in the topsoils (0-0.3 m) of NENA countries,
408 represent only 4.1% of the world global stock (Website 3)
409 https://drive.google.com/drive/folders/1454FhX_p2_GxjZT-fsi0-RncL2QpSN.
410

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Indent: First line: 0"

Formatted: Indent: First line: 0"

Field Code Changed

Formatted: Hyperlink, Font: (Default) +Body (Calibri), 11 pt, Complex Script Font: +Body (Arial), 11 pt, Not Highlight

Formatted: Indent: First line: 0"

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted Table

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Figure 4. Spatial view of total soil organic carbon stock (Megatons) across the countries of the NENA region. **Mega ton (a-topsoil; b-subsoil).**

412
413 A comparison has been undertaken between the FAO methodology, adopted in the present
414 work (two soil layers: 0-0.3 m; 0.3-1 m), and a previous study where the soil profile was
415 divided into six depths down to 2 m (Hengl et al., 2014). Both approaches agree about the
416 NENA region (SOC content: 1-2% and SOC stock: 20-204 ton ha⁻¹), as confirmed by the
417 Global Soil Organic Carbon Map ([http://www.fao.org/global-soil-partnership/pillars-](http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data/global-soil-organic-carbon-gsoc-map/en/)
418 [action/4-information-and-data/global-soil-organic-carbon-gsoc-map/en/](http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data/global-soil-organic-carbon-gsoc-map/en/)). The global
419 gridded soil information based on machine learning (SoilGrid250m) contains 1.6 billion
420 pixels also predicted SOC density but the arid and semi-arid zones are under measured and
421 thus pseudo observations based on expert knowledge were introduced to predict the SOC
422 content in the soil at seven standard soil depths (Hengl et al., 2017).

423
424 Mapping was done on a small coarse scale, which could be a source of a loss of
425 information. The choice of scale when using or producing soil maps may lead to
426 uncertainty in small countries and fragmented land use (Darwish et al., -2009). The coarse
427 scale adopted in this work (1:5 Million) could be a source of uncertainty. -Practically, this
428 corresponds to a polygon -of -0.5 cm x 0.5 cm (area < 0.25 cm²), -the equivalent of an area
429 of 6.25 km² on the ground. -To test this, the results of the current estimation (1:5 Million)
430 of SOC stocks in Lebanon, were compared with the large scale mapping undertaken
431 recently to produce the unified soil map of Lebanon at 1:50,000 for Lebanon (Darwish et
432 al., 2006) at 1:50,000. The FAO scale gave an overestimation of 11.2% in the topsoil,
433 underestimation of 16.4% in subsoil and a 14.4% underestimation in the whole profile
434 This comparison showed discrepancies between 11% for the topsoil and 14% for the
435 subsoil (Darwish and Fadel, 2017). Therefore, the level of mapping uncertainty falls
436 within the reported admitted diagnostic power of soil maps, with a matching close to map
437 purity of 65-70% -Therefore, the level of uncertainty falls within the admitted diagnostic
438 power of soil mapping, estimated to be close enough to the reported range of map units'
439 purity in reference areas, i.e., a matching between 65% and 70% (Finke et al., 2000). In
440 our study, the matching reached 83.6-88.2%. Any loss of information related to
441 small, non-mappable soil units in small coarse scale mapping (1:5 Million or 1:1 Million)

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Centered, Space After: 0 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Indent: First line: 0"

Formatted: Indent: First line: 0"

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

442 could be ~~corrected~~rectified by national and sub-regional large scale soil mapping
443 (1:50,000 and 1:20,000).

← Formatted: Indent: First line: 0"

445 ~~The SOC content in studied soils varied between values as low as 0.13% and 0.16% and as~~
446 ~~high as 1.74% and 0.9% in topsoils and subsoils of Yermosols (Aridisols) and Rendzinas~~
447 ~~(Mollisols) respectively (Table 1). Another source of uncertainty error can be associated~~
448 ~~with the used average SOC content in soil classes or major groups from the DSMW (FAO,~~
449 ~~2007), containing several soil types. The level of uncertainty in the assessment of the SOC~~
450 ~~density in NENA countries depends on the variability le content of of SOC, as suggested~~
451 ~~by thein a given soil unit or type that can represent large standard deviations of the means~~
452 ~~(Figure 41). Soil classification considers several soil forming factors including soil depth,~~
453 ~~horizon designation and evolution and topographic location. The SOC content can vary~~
454 ~~depending on soil type location on sloping or level lands, land cover, erosion~~
455 ~~sedimentation and soil management. Therefore, the SOC content is the major source of~~
456 ~~variability forfor the SOC density when assessing at the at higher classification levels~~
457 ~~(soil class level.), with Cambisols and Fluvisols showpresenting the largest standard~~
458 ~~deviation, caused by a long land use history and large anthropologicanthropogenic impact.~~
459 ~~Subsoil is less subject to pedo-turbation and direct human influence, thus SOC content has~~
460 ~~lower variability.~~

461 3.3. Land cover mapping and stocks of effect on SOC stock

462 ~~Based on the land cover map of ESA, the bare lands correspond to Land cover map of~~
463 ~~NENA region shows nearly 80% of the whole NENA region area is covered with bare~~
464 ~~lands (Figure 45a, b). Grassland, sparse vegetation cover and rainfed agriculture~~
465 ~~representare close by area varying between 4.39% and 5.27%. The irrigated crops do not~~
466 ~~exceed 0.66% of the total area, distributed in limited ~~useful~~cultivated area (Figure 65). The~~
467 ~~NENA region possesses a land area about 15 million km², with a total population~~
468 ~~exceeding 400 million inhabitants (about 6% of world population) but with only 1% of the~~
469 ~~world's renewable water resources (<https://www.slideshare.net/FAOoftheUN/plenary1-keynote-speech-16dec2013az>).~~ Apparently for this reason, TheIne fact that factthe NENA

← Formatted: Indent: First line: 0"

← Formatted: Superscript

← Formatted: Superscript

*Others: Mixed trees, Negadle-leaved, Evergreen trees and Urban

476
477 Formatted: Indent: First line: 0.5", Space After: 0 pt, Line spacing: single
478
479

480 Figure 5. Proportion of main land cover (% total land area) and land use in NENA
481 region. (Source: <http://maps.elie.ucl.ac.be/CCI/viewer/index.php>, 2015)

482 Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Centered, Space After: 0 pt, Line spacing: single

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Text 1, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: 12 pt, Font color: Text 1, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

483 Figure 6. Land cover map of NENA region (Source: ESA, 2015. <http://maps.elie.ucl.ac.be/CCI/viewer/index.php>)

484 Formatted: Line spacing: single
485

486 Comparing our results with the global SOC map produced by Hengl et al., (2014, based on
487 soilGrids1km layers showing the soil organic carbon content in permille in 0-5 cm and the
488 predicted global distribution of the soil organic carbon stock in tonnes per ha for 0-200 cm
489 to be beyond the followed by FAO methodology of SOC stock estimation and
490 presentation. In this paper the standard methodology of the measured SOC stock and
491 density in topsoil (0-30 cm) and subsoil (30-100 cm) was followed. The first Global SOC
492 Map was launched on December 5, 2017. However, a comparison of values of SOC
493 content (%) and SOC stock revealed comparable trends values for the C content and stock
494 (1.2% and 20-204 ton/ha), with higher upper density in Hengl et al approach. Organic
495 Carbon (<http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data/global-soil-organic-carbon-gsoc-map/en/>).

Formatted: Indent: First line: 0"

496
497 Further In our study, the combination of SOC stock map with the land cover map
498 showed a significant effect of land cover on SOC stocks in NENA region. of SOC
499 were studied in relation to land cover/land use. As can be expected, Shrublands shrublands,
500 sparse vegetation and bare lands gave the smallest values, between 14 and 26 ton ha⁻¹
501 (Figure 76). In a mixture of shrublands and herbaceous vegetation, the SOC increases to
502 40 ton ha⁻¹. The highest density (30 and 60 ton ha⁻¹) is found under forest stands.
503

Formatted: Font: 11 pt, Complex Script Font: 11 pt

504
505 Despite the expected impact of frequent plowing, the soils under mixed trees and irrigated crops
506 have higher SOC density than rainfed crops. This could be linked to the higher
507 biomass produced under irrigated conditions in these water-limited areas. The highest
508 SOC stock was observed under evergreen forests land whose area is very limited (3380
509 km² corresponding to 0.02% offrom the total area). Surprisingly, the stock found under
510 urban soils (\approx 30 tons ha⁻¹) was is moderate. This could be related to the urban
511 encroachment on prime soils. Between 1995 and 2015, rapid urban growth caused the loss
512 of over 53 Million tons of soils, 16% of which correspond to prime soils (Darwish and
513 Fadel, 2017). The assessment of SOC content in NENA region showed a decline of OC
514 time and space in relation to land cover showed a decline of OC content in topsoil by up to
515 1% between 2001 and 2009 (Stockman et al., 2015). Over time, Land cover change
516 was considered as the primary agent of change of that influenced SOC change over time,
517 followed by temperature and precipitation.

Formatted: Left, Indent: Before: 0", First line: 0"

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Superscript

Formatted: Font: (Default) +Body (Calibri), 11 pt, Complex Script Font: +Body CS (Arial)

519
520 Figure 76. SOC stock-density (tons ha⁻¹) in the topsoils (0-0.3 m) and subsoils (0.3-1.0 m),
521 calculated from the FAO DSMW (FAO, 2007). -underon corresponding land cover
522 (<http://maps.elie.ucl.ac.be/CCI/viewer/index.php>) as related.

523
524 In addition to the stocks of SOC in relation to land cover-and land use, the stocks of SOC and
525 SIC were established per country (Figure 875). The stock of SIC was compared to that of
526 SOC (Figure 5). The range of SIC stocks is very wide, from less than 25 tons ha⁻¹ (Gaza
527 subsoil) to 450 tons ha⁻¹ (Bahrain subsoil), while that of SOC varied between \approx 20 tons
528 ha⁻¹ (Bahrain subsoil) and 45 tons ha⁻¹ (Sudan subsoil). Based on the stocks of SIC in the
529 subsoils, the countries were separated into three groups. The first, represented by six
530 countries (Bahrain, Oman, Egypt, Saudi Arabia, UAE and Yemen) was dominated by
531 calcareous parent materials, with values in the subsoil exceeding 200 tons ha⁻¹ (Figure
532 57). The second group, with eight countries (Kuwait, Libya, Iran, Iraq, Algeria, Qatar,
533 Morocco and Tunisia), presents a SIC density between 100 and 200 tons ha⁻¹. Finally, the
534 third group (Gaza, Jordan, Lebanon, Mauritania, Syria and Sudan) has less than 100 tons
535 ha⁻¹.

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Centered

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Centered, Space After: 10 pt, Line spacing: Multiple 1.15 li, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Indent: First line: 0"

538 Figure 87. Stocks of soil organic carbon and soil inorganic carbon density (tons ha⁻¹) in
539 the topsoils (0-0.3 m) and subsoils (0.3-1.0 m) of the 20 countries in the NENA region.
540 The red line represents the threshold for organic carbon, and the yellow lines correspond
541 to the limits of classes for inorganic carbon.

542 3.3. Challenges of carbon sequestration in NENA agro-ecosystems

543 Climatic conditions characterized by wetting/drying cycles, a long dry and hot season (Boukhoudoud et al., 2016) promote the decomposition of SOC. Further, frequent cultivation, irrigation with saline water, and soil salinity rise in coastal areas the prevailing agriculture practices (Boukhoudoud et al., 2017) exert significant effects on soil

Formatted: Indent: First line: 0"

548 microbial functional properties. For instance three months after the application of
549 glyphosate-based herbicide under olive in coastal Lebanon, lipase activities significantly
550 decreased (Boukhoudoud et al., 2017). Soil classification and SOC mapping help
551 identifying hot spots that need to be improved or require special management measures
552 and bright spots with satisfactory C accumulation levels that need to be protected. In this
553 section, there will be a presentation of major practices affecting SOC will be presented
554 followed by a discussion of preventive and remediation measures.

Formatted: Indent: First line: 0"

556 3.3.1. Tillage and SOC

557 Tillage practices contribute to the vulnerability of soils to water erosion. If not properly
558 managed, some 41 million hectares [in NENA region](#) would be affected by water erosion
559 (FAO and ITPS, 2015). The erosion of soil surface layers can affect the soil carbon in two
560 possible ways. The greater exposure of carbonates to climatic elements could increase the
561 loss of SIC to the atmosphere and ground water. [Compared to stable soils, Also](#), the higher
562 decomposition of SOC in eroded soils decreases the productivity of cultivated crops [and](#)
563 [can reduce SOC stock, if not properly managed](#) (Plaza-Bonilla et al., 2015).

Formatted: Indent: First line: 0"

A possible measure to reduce the risk of erosion is the no-tillage practice. No-tillage coupled with mulching, to reduce weed development and omit herbicide as application, as part of conservation agriculture (CA), aims to return more plant residues to the soil, enhance C sequestration, increase soil aggregates, improve water infiltration and provide a protection to soil carbon from decomposers (Palm et al., 2014). Through a modification of common practices, such as the frequency and depth of tillage, changes in the SOC could be promoted in most soils. Experiments conducted by ICARDA, Syria, showed that no-tillage performed well in terms of energy and soil conservation (Plaza-Bonilla et al., 2015). Elsewhere, in Palestine soil conservation was found to pay, with a net profit 3.5 to 6 times higher than without conservation measures (FAO and ITPS, 2015). In dryland regions, agricultural activities based on CA practices are beneficial as crop residues are left on the soil surface (Plaza-Bonilla et al., 2015). The presence of residues would protect the soils from high evaporation, water and wind erosions. This is especially relevant to soils that are sensitive to degradation, such as the very shallow Lithosols, the easily periodically wetted (swelling) and dry (shrinking) Vertisols, Gypsic Yermasols (Aridisols), the poorly-structured Solonchaks and Solonetz, the sandy-textured Arenosols, and the desert soils (Xerosols).

582 |
583 | Major constraints facing soil conservation measures, in East Mediterranean, were due to
584 | knowledge and perception, prevailing practices of complete removal as hay or forage and
585 | some-times burning of residues after harvest, land tenure and type of landscape (FAO,
586 | 2012; FAO and ITPS, 2015). These major-factors are socio-economic in nature, rather
587 | than scientific. They are related to the ability of growers to accept new techniques and
588 | adopt them. In many situations, the transfer from the research stations to the farmers was
589 | not smooth. For instance, CA was successfully tested in experimental stations in Morocco
590 | and Lebanon, but several social and technical barriers prevented it from reaching farmers
591 | (Mrabet et al., 2012; FAO, 2012).
592 |
593 | A debate has been taking place about the effect of no-tillage on SOC. Most-Many authors
594 | agree that under CA, SOC increases near the soil surface, but not necessarily throughout
595 | the profile. A study compared 100 pairs, where no-tillage has been practiced for over 5
596 | years. The absence of tillage lead to higher C stocks (0-0.3 30 em soil depth) in 54% of
597 | pairs, while 39% showed no difference in stocks (Palm et al., 2014). In the absence of
598 | tillage, the slower decomposition of residues would result in higher belowground-C
599 | accumulation on the soil surface. Over a period of 5 years, zero tillage promoted an
600 | increase in SOC equal to 1.38 Mg ha⁻¹ as compared to the conventional tillage in northern
601 | Syria (Sommer et al., 2014).
602 |
603 | 3.3.2. Agricultural practices and SOC
604 | Practices, such as the application of N fertilizers, of-theorganic amendments, the
605 | incorporation of residues and crop rotations, influence the levels of SOC. In soil mining
606 | practices without minimal input of fertilizers, the lack of availaeeessible nutrients and
607 | soil mining makes most crops entirely reliant on the mineralization of accumulated SOC-*causing*
608 | soil mining-(Plaza-Bonilla et al., 2015). In East Africa, 14-years of continuous
609 | cultivation without any inputs, decreased SOC from 2% to 1% (Sharma et al., 2012). The
610 | application of N fertilizers was associated with increased levels of soil C, as compared to
611 | the absence of N fertilizers (Palm et al., 2014). In a 10-year rotation of wheat-graingrain
612 | legume-*vetch* in northern Syria, the application of nitrogen fertilizers to the cereal caused
613 | a notable increase of SOC, in the top 1m of soil, equal to 0.29 Mg ha⁻¹ year⁻¹ (Sommer et
614 | al., 2014). Similarly, in semi-arid Lebanese area (Anti-Lebanon mountains),the growth of
615 | intercropped legumes as winter cover croperop legumes (*Vicia* sp., *Lathyrus* sp.)

← Formatted: Indent: First line: 0"

← Formatted: Indent: First line: 0"

← Formatted: Font: Italic, Complex Script For
Italic

← Formatted: Font: Italic, Complex Script For
Italic

← Formatted: Font: Italic, Complex Script For
Italic

616 intercropped alone or with barley (*Hordeum vulgaris*) significantly, between cherry trees
617 in semi-arid Lebanese area (Joud Aarsal, eastern Lebanese mountains), increased SOC in
618 cherry orchards significantly notably when legumes were mixed with barley (Darwish et
619 al., 2012). Roots of cover crops contributed some Results showed that the sites were
620 supplemented with OM varying between 140 and 250 kg ha⁻¹season⁻¹ of organic matter
621 (OM) against resulting from the decomposition of plant root residues. The above ground
622 plants provided the orchards with 95-665.7 kg ha⁻¹season⁻¹ of OM for the aboveground
623 parts.

Formatted: Font: Italic, Complex Script Font, Italic

624 Plant residues provided additional feedstuff for small ruminants; the soils were
625 enriched with OM and fixed nitrogen with more efficient use of surface soil moisture.

626
627 The effects of crop rotations on SOC are related to the amounts of above and belowground
628 biomass produced and retained in the system. In a study conducted in semi-arid northern
629 Syria, a 12-year rotation gave higher SOC in wheat-medic (12.5 g SOC kg⁻¹ soil) and
630 wheat-vetch (13.8 g SOC kg⁻¹ soil) rotations, as compared to continuous wheat (10.9 g
631 SOC kg⁻¹ soil) or wheat-fallow (Masri and Ryan, 2006). In this rainfed system, the
632 introduction of a forage legume (vetch/medic) with wheat, over a decade, was able to
633 significantly raise the level of SOC. Further, the combination of crop rotations and no-
634 tillage was found to sequester more C than monocultures (Palm et al., 2014). One means
635 of building up biomass is through cover-winter cover crops. Their beneficial impact on C
636 sequestration and water infiltration has been demonstrated. The presence of a cover crop
637 on the soil surface protects the soil against erosion. In the NENA region, their cultivation
638 is restricted to sub-humid to humid areas (> 600 mm of rainfall) Still, more research is
639 needed about the best species to be used, the optimum termination strategies of the cover
640 crop as well as the best date and density of planting and best management practices of
641 consequent crops (Plaza-Bonilla et al., 2015). The choice of cover crops in NENA region
642 is crucial as these can compete with the main crop for the limited water resources.

Formatted: Indent: First line: 0"

643
644
645 In poor dryland regions Poverty, especially in the rainfed agricultural systems, prevents
646 some practices hinder the accumulation of all such as the incorporation of SOC residues.
647 Overall, crop residues serve as fodder or for household cooking or heating, leaving little
648 plant material remains ion the soil surface. Even animal dung is used as cooking fuel in
many regions. The low SOC content could be improved by increasing the crop residues

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt, Not Highlight

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Indent: First line: 0"

Formatted: Indent: First line: 0"

650 produced and incorporated.— Such an approach requires the application of fertilizers in
651 order to avoid the depletion of soil nutrients (Plaza-Bonilla et al., 2015). By removing
652 residues, animal dungs and crops, no residues are left in the soil except roots. In the
653 absence of fertilizers, these practices can mine the soil N and over the years the pool of
654 nutrients in the soil can be imbalanced and depleted.

655
656 Some authors question the validity of remediation measures to build uppromote SOC
657 accumulation in most of the NENA region. —Results from research stations in Egypt and
658 Syria provide proofevidenceevidences to the contrary. In a trial in north-east Cairo,
659 Egypt, the irrigation of a sandy soil with sewage water, for 40 years, changed its texture to
660 loamy sand (Abd el-Naim et al., 1987). This modification of the soil texture leads to a
661 significant improvement of the soil physical properties. Further, within the same long-term
662 trial, the irrigation with sewage water, for 47 years, increased SOC to 2.79%, against
663 0.26% in the control (Pescod and Arar, 2013). This rather slow accumulation could be
664 related to the sandy soil texture and to the input of the organic matter in labile, soluble
665 forms.

666
667 —The addition of more stable composted materials was tested in semi-arid north Syria. The
668 amount of compost, 10 Mg ha⁻¹ every two years, needed to raise the SOC, was too large in
669 these rainfed systems. This amount is larger than the compost available in these
670 conditions. Rather than relying on composts, the authors found that a combination of
671 reduced tillage and a partial retention of crop residues moderately increased SOC
672 (Sommer et al., 2014). The quality of residues seems to affect the SOC on the short-term
673 but on the medium-term it is the quantity that matters (Palm et al., 2014).

674
675
676 3.3.3. Impact of irrigation on agricultural soils
677 The irrigated land ~~might~~represents a minor fraction of agriculture in NENA region, but
678 irrigated crops are essentially found on prime soils (Figure 4). Frequent wetting of
679 irrigated soils make them more likely to lose C as compared to dry soils. But, this partial
680 loss is compensated by higher biomass production and greater OM inputs from roots, even
681 if residues are removed. Lack of moisture limits soil mineralization (Sharma et al., 2012).
682 Irrigated soils promote intense microbial activity and a rapid decomposition of SOC. In
683 the fertile region of Doukkala, Morocco, known for producing wheat and sugar beet, a

Formatted: Indent: First line: 0"

Formatted: Font: (Default) +Headings CS
(Times New Roman), Complex Script Font:
+Headings CS (Times New Roman)

Formatted: Font: (Default) +Headings CS
(Times New Roman), 12 pt, Complex Script
Font: +Headings CS (Times New Roman), 12
pt

684 decade of irrigated farming decreased SOM-soil organic matter by 0.09% per year (FAO
685 and ITPS, 2015). This loss could have been reduced through the incorporation of crop
686 residues. But, in these mixed farming systems, aboveground residues are consumed by
687 farm animals.

688

689 The irrigation of soils in NENA region is expected to affect the SIC. Dryland soils were
690 considered to contain, ~~at least, as much~~equivalent stock of SIC as SOC (Sharma et al.,
691 2012). But~~However, this study showed much~~ higher SIC than SOC were found in this
692 study, notably in the subsoils. Despite this large stock, there is a major knowledge gap
693 regarding the effects of land use and management on the dynamics of SIC. This is
694 especially relevant to the irrigation with calcium or sodium-enriched groundwater (Plaza-
695 Bonilla et al., 2015). In these conditions, the formation of calcium carbonate could be
696 accompanied by some release of carbon dioxide while the development of sodicity can
697 cause irreversible SOC loss.

698

699 4. Conclusions

700 NENA area consisting of 14% of the earth surface contributes only 4.1% of total SOC
701 stocks in topsoil. The soil resources of NENA region are developed under dry conditions
702 with prevailing of rainfed agriculture. The majority of lands in NENA countries are of low
703 productivity. The current mapping of SOC density showed that 69% of soil resources
704 represent a SOC stock below 30 tons ha⁻¹, indicating the soils of NENA region are not
705 enriched with OC. Highest stocks (60 tons ha⁻¹) were found in forests, irrigated crops,
706 mixed orchards and saline flooded vegetation. This means that SOC can be increased in
707 the soils of the NENA region under appropriate and sustainable soil management
708 practices. The moderate density (~30 tons ha⁻¹) in urban areas indicates land take by urban
709 growth and expansion on prime lands. The stocks of SIC were higher than SOC density,
710 due to the calcareous nature of soils. In subsoil, the SIC stock ranged between 25 and 450
711 tons ha⁻¹, against 20 to 45 tons ha⁻¹ for SOC. The OC sequestration in the NENA region is
712 a possible task to mitigate climate change and sustain food security despite the hostile
713 climatic conditions and poor land stewardship and governance. Practices of conservation
714 agriculture (no-tillage, intercropping and agro-pastoral system, winter cover crops, proper
715 rotation) could be effective in reducing evaporation, water and wind erosion and
716 promoting aboveground and belowground biomass production. Land cover and land use
717 affected the amounts of SOC retained in the soil ecosystem. A good result was achieved in

Formatted: Indent: First line: 0"

718 Lebanon through winter cover crop consisting of fruit trees-legume-barley intercropping
719 system. Knowledge gaps exist with respect to the effect of irrigation on SOC and SIC.
720 Constraints facing soil conservation measures and carbon sequestration in the NENA
721 region can be faced with awareness raising and capacity building at the level of
722 stakeholders and decision-makers. Sustainable soil management can contribute to alleviate
723 the pressure on soil resources, improve SOC sequestration and maintain soil resistance to
724 degradation.

725 ~~The total stocks of SOC (0-0.3m) showed a small contribution to global SOC stock in the topsoil (4.1%), against 14% of the earth surface area. Soils of the NENA region are mostly highly vulnerable to degradation, and food security will depend much on sustainable agricultural measures. The land capability model showed that most NENA countries (17 out of 20), suffer from low productive lands (> 80%). To obtain an idea of the status of the soil carbons, the spatial distributions of SOC and SIC stocks for the NENA region were mapped (1:5 Million). This small scale mapping was compared with a larger scale mapping (1:50,000) for Lebanon. A moderate discrepancy (11% to 14%) was found between the two scales. The results of the mapping Mapping of the stocks of SOC and SIC showed that 69% of soil resources present a stock of SOC below the threshold of 30 tons ha⁻¹, considered as limit value for carbon deficient soils. The stocks varied between \approx 10 tons ha⁻¹ in shrublands and 60 tons ha⁻¹ for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The moderate stock (\approx 30 tons ha⁻¹) in urban areas indicates that some urban growth took place on was at the expenses of prime soils. The stocks of SIC were higher than those of SOC due to. In subsoils, the SIC ranged between 25 and 450 tons ha⁻¹, against 20 to 45 tons ha⁻¹ for SOC.~~

Formatted: Indent: First line: 0"

741 ~~Decomposition of SOC is accelerated by climatic conditions, high temperatures, wetting/drying cycles, and by sandy soil textures. OC sequestration in the NENA region is problematic due to specific geomorphological and climatic factors, requiring the protection of the topsoils. Practices of conservation agriculture (no tillage, presence of soil cover...) could be effective in as the presence of residues reduces the evaporation, as well as water and wind erosions. This is especially relevant to soil classes that are susceptible to degradation. Further, the combination of crop rotations and no tillage was found to sequester more C than monocultures. The introduction of legumes, as part of a cereal-legume rotation, and the application of nitrogen fertilizers to the cereal caused a~~

Formatted: Indent: First line: 0.5"

Formatted: Strikethrough

751 notable increase of SOC, after 10 years. The effects of crop rotations on SOC are related
752 to the amounts of above and belowground biomass produced and retained in the system.

753

754 Some knowledge gaps exist, especially in aspects related to the effect of
755 irrigation on SOC, as well as on SIC at the level of soil profile and soil landscape. Still,
756 major constraints facing soil conservation measures and carbon sequestration are socio-
757 economic in nature, rather than scientific. They are related to the ability of growers to
758 accept new techniques and adopt them. Awareness raising and capacity building at the
759 level of stakeholders and decision makers can contribute to alleviate the pressure on
760 vulnerable soil resources, improve SOC sequestration, and maintain soil resilience to
761 degradation and strengthen food security.

762

763 5. Acknowledgements

764 This paper was supported by the FAO, GSP-ITPS, UNESCWA and CNRS Lebanon
765 within a land degradation assessment [and SOC mapping](#) project [related to food security](#).

Formatted: Indent: First line: 0"

766

767 6. References

768 Abd Elnaim E.M., M.S. Omran, M. S. T.M. Waly, T. M. and El Nashar, B.M.B. El
769 Nashar B. M. B.: El Nashar (1987) Effects of prolonged sewage irrigation on some
770 physical properties of sandy soil. *Biological Wastes*, 22, 269-274, 1987.

771 Al Chami Z., S. Bou Zein Eldeen, S. L. Al Bitar L., and T. Atallah T.: (2016)
772 Decomposition of olive-mill waste compost, goat manure and *Medicago sativa* in
773 Lebanese soils as measured using the litterbag technique. *Soil Research* 54, 191-199,
774 2016.

Formatted: Indent: Before: 0", First line:

775 Atallah, T., C. Jamous, C. P. Debs, P. and Darwish, T.: Darwish (2012) Biosolid
776 recycling to enhance carbon sequestration in mountainous Lebanese conditions. *Lebanese
777 Leb. Science Journal* J., 13, (2), 69-79, 2012.

778 Batjes, N. H. and Sombroek, W. G.: WG. 1997 Possibilities for carbon sequestration in
779 tropical and subtropical soils. *Global Change Biology*, 3, 161-173, 1997.

780 Bosco S., C. Di Bene, C., E. Bonari E.: (2012) The effect of crop management on soil
781 organic matter in the carbon footprint of agricultural products. 8th Int. Conf. on Life

782 Cycle assessment in the agri-food sector, [Saint-Malo, France, Oct 1-4 October 2012, Saint-Malo, France, 2012](#).

783

784 Bosco, S., C. Di Bene, C. M. Galli, M. D. Remorini, D. R. Massai, R. and E. Bonari, E. (2013) Soil organic matter accounting in the carbon footprint analysis of the wine chain, [International Int. Journal Life Cycle Assess., essment](#) 18, 973-989. DOI 10.1007/s11367-013-0567-3, 2013.

785

786

787

788 Boukhoudoud, N., Gros, R., Darwish, T., and Farnet Da Silva, A.M.: A.M. 2016. Agriculture practice and coastal constraint effects on microbial functional properties of soil in Mediterranean olive orchards. [European Journal of Soil Science.](#), 67, DOI: 10.1111/ejss.1234, July 2016, 67: 470-477, 2016.

789

790

791

792 Boukhoudoud, N., Farnet Da Silva, A.M., Darwish, T., and Gros, R.: R. 2017. Olive mill waste and glyphosate-based herbicide addition to olive grove soils: effects on microbial activities and their responses to drying/rewetting cycles. [Soil Use and Management.](#), DOI: 10.1111/sum.12367, 2017.

793

794

795

796 Cerdà A., Gonzalez Penaloza F., Santin C., and S.H. Doerr S.H. (2012) Land abandonment, fire recurrence and soil carbon content in the Macizo del Caroig, Eastern Spain. [Geophysical Research Res. Abstracts](#) 14, EGU2012-14331, 2012.

797

798

799 Darwish, T., Faour, Gh., and M. Khawlie, M.: (2004) Assessing Soil Degradation by

800 Landuse-Cover Change in Coastal Lebanon. [Lebanese Science Journal](#) 5, 45-59, 2004.

801

802 [Darwish, T., Khawlie, M., Jomaa, I., Abou Daher, M., Awad, M., Masri, T., Shaban, A., Faour, Gh., Bou Kheir, R., Abdallah, C. and Haddad, T. \(Eds\) 2006. Soil Map of Lebanon 1/50000, Publications CNRS-Lebanon, Monograph Series 4, 1 pp. 367, 2006.](#)

803

804

805 Darwish, T., Abou Daher, M., Jomaa, I., and Atallah, T.: Soil organic carbon stock estimation in Lebanese territories. 10th International Meeting on Soils with Mediterranean Type of Climate. CNRS-Lebanon, Book of Extended Abstracts, 113-118, 2009.

806

807

808 Darwish, T., Atallah, T., Francis, R., Saab, C., Jomaa, I., Shaaban, A., Sakka, H., and P. Zdruli P.: (2011) Observations on soil and groundwater contamination with nitrate, a case study from Lebanon-East Mediterranean, [Agricultural Agr. Water Management](#), DOI 10.1016/j.agwat.2011.07.016, 2011.

809

810

811

Formatted: Indent: Before: 0", First line: Space After: 0 pt

812 Darwish, T.M., Jomaa, I., Atallah, T., Hajj, S., Shaban, A., Zougheib, R., and F. Sibai
813 Ouayda, F.: (2012) An agropastoral system as a practice to enhance organic matter in
814 Lebanese inland mountainous soils. *Lebanese-Leb. Science Journal, vol. 13(1): 1-14.*
815 [2012](#).

816 Darwish, T., and A., Fadel, A.: (2017) Mapping of Soil Organic Carbon Stock in the Arab
817 Countries to Mitigate Land Degradation. *Arab J. Geosci.* (2017) 10, 474.
818 <https://doi.org/10.1007/s12517-017-3267-7>. [2017](#).

819 Elhadi, M.Y.: 2005. Postharvest technology of food crops in the Near East and North
820 Africa (NENA) region. In: Ramdane Dris PhD. (ed.), "Crops: Growth, Quality and
821 Biotechnology", pp. 643-664. WFL Publisher, Meri-Rastilan tie 3 C, 00980 Helsinki,
822 Finland. [2005](#).

823 FAO: 2007. The digital soil map of the world. Food and Agriculture Organization of the
824 United Nations. Version 3.6, completed January 2003 and updated 2007
825 (<http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116>), accessed 20
826 December 2017.

827 FAO: 2012. Country Study on Status of Land Tenure, Planning and Management in
828 Oriental Near East Countries Case of Lebanon. FAO, RNE, SNO, Cairo, Egypt, 161p.,
829 [p2012](#).

830 FAO: 2015. Regional Overview of Food Insecurity - Near East and North Africa:
831 Strengthening Regional Collaboration to Build Resilience for Food Security and Nutrition,
832 Cairo, Egypt, FAO. [2015](#).

833 FAO: 2017. Voluntary Guidelines for Sustainable Soil Management. Food and
834 Agriculture Organization of the United Nations Rome, Italy. <http://www.fao.org/3/a-bl813e.pdf>, accessed November 17, 2017.

835 FAO and ITPS: 2015. Status of the World's Soil Resources (SWSR) – Main Report.
836 Food and Agriculture Organization of the United Nations and Intergovernmental
837 Technical Panel on Soils, Rome, Italy. www.fao.org/3/a-i5199e.pdf accessed 13
838 December, 2017.

839 Fernandez-Ugalde, O., Virto, I., Barre, P., Apesteguia, M., Enrique, A., Imaz, M. J. and P.
840 Bescansa, P.: (2014). Mechanisms of macroaggregate stabilisation by carbonates:
841 [2014](#).

Formatted: French (France)

Formatted: French (France)

842 implications for organic matter protection in semi-arid calcareous soils. *Soil Res.earch*
843 52: 180-192, 2014.

844 Finke, P., Hartwich, R., Dusal, R. Ibanez, J. Jamagne, M. King, D. Montanarella, L. and
845 N. Yassoglou [N.: \(2000\)](#) Georeferenced Soil Database for Europe. *Manual of Procedures*,
846 Version 1.1. European Soil Bureau, [2000](#).

847 Guo, L.J., Lin, S., Liu, T.Q., Cao, C.G., Li, C.F.: [\(2016\)](#) Effects of conservation tillage
848 on topsoil microbial metabolic characteristics and organic carbon within aggregates under
849 a rice (*Oryza sativa L.*)-wheat (*Triticum aestivum L.*) cropping system in Central China. *PLoS One* 11:e0146145, [2016](#).

Formatted: English (U.S.)

851 [Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro,](#)
852 [E., Rosa, A. S., -Kempen, B., Leenaars, J. G. B., Walsh, M. G., Gonzalez, M. R.: \(2014\)](#)
853 [SoilGrids1km-Global Soil Information Based on Automated Mapping. PLoS ONE 9.\(8\):](#)
854 [e105992, DOI:doi:10.1371/journal.pone.0105992, 2014.](#)

855 [Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda,](#)
856 [M., Blagotić, A., et al. : SoilGrids250m: Global gridded soil information based on machine](#)
857 [learning. PLoS ONE 12\(2\): e0169748. https://doi.org/10.1371/journal.pone.0169748,](#)
858 [2017, accessed 20 February 2017.](#)

Formatted: English (U.S.)

859 Lal, R.: [\(2003\)](#) Soil erosion and the global carbon budget. *Environmen_t Internat_ional*,
860 29.29 (4): 437-450, [2003](#).

861 Masri, Z. and [Ryan, J.: Ryan \(2006\)](#) Soil organic matter and related physical properties in
862 a Mediterranean wheat-based rotation trial. *Soil Tillage Res.earch* 87: 146–154, [2006](#).

863 Mrabet, R., Moussadek, R., Fadlaoui, A., and [van Ranst, E.: van Ranst \(2012\)](#)
864 Conservation agriculture in dry areas of Morocco. *Field Crops Res.earch* 132: 84-94,
865 [2012.](#)

866 Pescod, M. B., and [Arar, A.: Arar \(2013\)](#) Treatment and use of sewage effluent for
867 irrigation. *Butterworths.* <https://books.google.com.lb/books>, ISBN: 1483162257, [isbn: 1483162257, 2013.](#)

Formatted: French (France)

Formatted: text, Font: +Body (Calibri), 11
Complex Script Font: 11 pt, French (France)

Formatted: French (France)

Formatted: text, Font: +Body (Calibri), 11
Complex Script Font: 11 pt, French (France)

Formatted: French (France)

869 Plaza-Bonilla, D., Arrúe, J. L., Cantero-Martínez, C., Fanlo, R., Iglesias, A., and Álvaro-
870 Fuentes, J.: (2015) Carbon management in dryland agricultural systems. A review.
871 Agronomy for Sustainable Development 35 (4): 1319-1334, 2015.

Formatted: French (France)

Formatted: French (France)

872 Sharma, P., Abrol, V., Abrol, S., and Kumar, R.: Kumar (2012) Climate change and
873 carbon sequestration in dryland soils, In Tech open access book, chapter 6. 26 pages.
874 <http://dx.doi.org/10.5772/52103>, 2012, accessed last time 31 July 2018.

875 Sommer, R., Piggin, C., Feindel, D., Ansar, M., van Delden, L., Shimonaka, K., Abdalla,
876 J., Douba, O., Estefan, G., Haddad, A., Haj-Abdo, R., Hajdibo, A., Hayek, P., Khalil, Y.,
877 Khoder, A., and Ryan, J.: Ryan (2014) Effects of zero tillage and residue retention on soil
878 quality in the Mediterranean region of northern Syria. Open Journal of Soil Science 4 (3),
879 Article ID: 44383. 17 pages. DOI:10.4236/ojss.2014.43015, 2014.

880 Stockmann, U., Padarian, J., McBratney, A., Minasny, B., deBrogne, D., Montanarella-
881 L., Young Hong, S., Rawlins, B. G., Damien, J.: (2015) Field Global soil organic carbon
882 assessment. Global Food Security, 4(6), 9-16, 2015.

883 USDA: (1999) Land capability classification, NRCS-USDA, 1999.

884 von Grebmer, K., Bernstein, J., Hossain, N., Brown, T., Prasai, N., Yohannes, Y.,
885 Patterson, F., Sonntag, A., Zimmermann, S. M., Towey, O., and Foley, C.: Foley (2017)
886 Global Hunger Index: The Inequalities of Hunger, Washington, DC, International Food
887 Policy Research Institute, Bonn, Welthungerhilfe, and Dublin, Concern Worldwide,
888 2017.

Formatted: French (France)

889 Yu, L., Dang, Z.-Q., Tian, F.-P., Wang, D., and Wu, G.-L.: Wu (2017) Soil organic
890 carbon and inorganic carbon accumulation along a 30-year grassland restoration
891 chronosequence in semi-arid regions (China). Land Degrad. Develop., 28, 189-198,
892 2017.

893 Webography

894 Website 1. <http://maps.elie.ucl.ac.be/CCI/viewer/index.php>

895 Website 2. <http://www.fao.org/3/a-b1105e.pdf>

896 Website 3. https://drive.google.com/drive/folders/1454FhX_p2_GxjZTfsi0RneL2QpsN

Formatted: Indent: Before: 0"

Formatted: Indent: Before: 0", Space After: 10 pt, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers