

Challenges of soil carbon sequestration in NENA Region

Darwish^{1,3*}, Talal; Atallah², Therese; and Ali Fadel¹

1. National Council for Scientific Research, Beirut, Lebanon

2. Faculty of Agricultural and Veterinary Sciences, Lebanese University

3. Intergovernmental Technical Panel on Soil (ITPS)

* Corresponding author: tdarwich@cnrs.edu.lb

Abstract

Nearend East North Africa (NENA) region spans over 14% of the total surface of the Earth and hosts 10% of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and food security will depend much on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the situation status of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries (17 out of 20), suffer from low productive lands (>80%). Stocks of SOC were mapped (1:5 Million) in topsoils (0-30 cm) and subsoils (30-100 cm). The maps showed that 69% of soil resources present a stock of SOC below the threshold of 30 tons ha⁻¹. The stocks varied between \approx 10 tons ha⁻¹ in shrublands and 60 tons ha⁻¹ for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of soil inorganic carbon (SIC) were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 tons ha⁻¹, against 20 to 45 tons ha⁻¹ for SOC. This paper also highlights the modest contribution of NENA region to global SOC stock in the topsoil not exceeding 4.1%. The paper also discusses agricultural practices that are favorable to carbon sequestration. Practices of conservation agricultureOrganic amendment, no till or minimum tillage, crop rotation, mulching could be effective, as the presence of soil cover reduces the evaporation, water and wind erosions. Further, the introduction of legumes, as part of a cereal-legume rotation, and the application of nitrogen fertilizers to the cereal, caused a notable increase of SOC after 10 years. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exists especially in aspects related to the impact of climate change and effect of irrigation on SOC, and on SIC at the level of soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy relevant and socio-economic in nature, rather than scientific.

Keywords: Drylands, soil organic carbon, soil inorganic carbon, land capability, C stock, conservation practices.

1. Introduction

The Near East North Africa (NENA) region spans over 14% of the total surface of the Earth and hosts 10% of its population (Elhadi, 2005). The largest importer of wheat in the world, this region is also one of the poorer (FAO, 2015). A recent assessment of global hunger index (GHI), based on four indicators -undernourishment, child wasting, child stunting, and child mortality- showed that most of the NENA countries present low to moderate GHI. Countries suffering from armed conflicts, Syria, Iraq and Yemen, are at a

48 serious risk (von Grebmer et al., 2017). With the scarce natural resources and difficult
49 socio-economic conditions, it is questionable whether food security will be reached by
50 2030, unless a significant change in agricultural practices and governance occurs (FAO,
51 2017).

52

53 Most of the land area of the NENA region falls in the hyper-arid, arid and semi-
54 arid climatic zones. Climate change is expected to exacerbate the scarcity of water and
55 drought ~~effect~~. Weather variability, drought and depleting vegetation are major concerns
56 in the loss of soil productivity and agricultural sustainability. **Instabilities in SOC** can
57 affect the **density** of greenhouse gases in the atmosphere and **negatively affect the global**
58 **climate change** (Lal, 2003). In fact, destructive land management practices are impacting
59 soil functions. Land use change, mono-cropping and frequent tillage are considered to
60 cause a rapid loss of SOC (Guo et al., 2016). These agricultural practices disrupt the
61 **stability of inherited soil characteristics**, built under local land cover and climate (Bhogal
62 et al. 2008). Thus, most NENA lands contain ~1 % of SOC, and frequently less than
63 0.5%.

64

65 **Despite the constraints of NENA pedo-climatic conditions, increasing SOC levels**
66 **is critical and challenging** (Atallah et al., 2015). To maintain soil productivity and land
67 quality, several technical and socio-economic measures need to be adopted. Additional
68 efforts oriented to maintaining and increasing SOC, can contribute to poverty reduction
69 and achieve food security (Plaza-Bonilla et al., 2015). Good agricultural practices, based
70 on low tillage or no tillage, may result in the reduction of SOC breakdown and the
71 enhancement of the soil carbon pool (Atallah et al., 2012; Cerdá et al., 2012;
72 Boukhoudoud et al., 2016).

73

74 Quantifying SOC content in the NENA countries using available soil data is
75 crucial, **at a small scale**, to assess the nature and potential of available soil resources
76 and analyze the **associated threats**. **Mapping** the spatial distributions of national and
77 regional OC stocks can be **used to monitor and model** regional and global C cycles under
78 different scenarios of soil degradation and climate change. Accurately quantifying SOC
79 stocks in soils and monitoring their changes are considered essential to assessing the state
80 of land degradation. At the same time, the predominantly calcareous soils of NENA region
81 are rich in soil inorganic carbon (SIC). The dynamics of SIC and its potential in

82 sequestrating carbon in soils remain largely unknown and as such deserves thorough
83 investigation. This paper analyzes the state of SOC and SIC in NENA countries and
84 outlines challenges and barriers for devising organic carbon sequestration in NENA's
85 impoverished and depleted soils. It also highlights several questions which scientists need
86 to resolve. Finally, it discusses practical agricultural measures to promote SOC
87 sequestration.

88
89 2. Materials and Methods

90 Data on SOC and soil inorganic carbon (SIC) contents in soils of the NENA region
91 were retrieved from the soil database of the FAO-UNESCO digital soil map of the world
92 (DSMW) at 1:5 Million. The database contains large number of 1700 georeferenced soil
93 profiles collected and harmonized from each member state. These were excavated,
94 sampled by horizon, down to the rock, and analyzed in the laboratory according to the
95 standard world accepted methods (FAO, 2007). The soil map was prepared using the
96 topographic map series of the American Geographical Society of New York, as a base, at a
97 nominal scale of 1:5.000.000. Country boundaries were checked and adjusted using the
98 FAO-UNESCO Soil Map of the World, on the basis of FAO and UN conventions. Soil
99 classification was based on horizon designation, depth, texture, slope gradient and soil
100 physico-chemical and chemical properties. Statistical (weighted) average was calculated
101 for the topsoil (0-30 cm) and for the subsoil (30-100 cm) for the full series of chemical and
102 physical parameters sufficient to assess main agricultural soil properties. To fill the gap in
103 some attributes and complete the fields for which no data were available, an expert
104 opinion internationally known soil scientists was used.

105
106 Using the DSMW and its updated attribute database maps of the SOC and SIC stock and
107 distribution in 20 NENA states were produced. The scale used in the DSMW is 1:5
108 Million (FAO, 2007). The soil map was prepared using the topographic map series of the
109 American Geographical Society of New York, as a base, at a nominal scale of
110 1:5.000.000. Country boundaries were checked and adjusted using the FAO-UNESCO
111 Soil Map of the World, on the basis of FAO and UN conventions. To produce the maps
112 representing the spatial distribution of SOC and SIC, ArcMap 10.3 was used to join the
113 symbology of the C stocks and density with quantities classified into five numerical
114 categories with natural breaks. The global LC maps at 300 m spatial resolution on an
115 annual basis from 1992 to 2015 was produced by ESA. The Coordinate Reference System

116 used is a geographic coordinate system based on the World Geodetic System 84 (WGS84)
117 reference ellipsoid. The legend assigned to the global LC map has been defined using the
118 UN-Land Cover Classification System.

120 The SOC content in studied soils varied between values as low as 0.13% and
121 0.16% and as high as 1.74% and 0.9% in topsoils and subsoils of Yermosols (Aridisols)
122 and Rendzinias (Mollisols) respectively (Table 1). Worth noting that less than 20% of soil
123 resources in NENA region have sequestered and accumulated SOC to an extend exceeding
124 1.0%. The highest SIC was observed in Solonchaks, Rendzinias and Aridisols that can be
125 explained by the effect of the dominant calcareous rocks. The lowest SIC is detected in
126 Lithosols and Xerosols subject to regular water and wind erosion removing the surface
127 layer from eroded lands. The largest soil units are Yermosols (4670.6 Km²), Lithosols
128 (2914.3 Km²) and Regosols (1193.2 Km²). The first two soil classes and Xerosols (498.5
129 Km²) are low resilient resistant to erosion and degradation. The most vulnerable to
130 degradation soils are Solonchaks, Solonetz and Arenosols. Cambiosols, Fluvisols and
131 Regosols possess high resilient resistance to erosion.

132
133
134 Table 1. Soil organic carbon (SOC) and soil inorganic carbon (SIC) level in the major soil units
135 of Near East North Africa region*

Soil Type	Area, 1000 Km ²	Resilience Resistance to Land Degradation	SOC content, %		SIC content, %	
			topsoil	subsoil	topsoil	subsoil
Cambisols	178.9	Highly resilient	0.90	0.48	0.25	0.64
Fluvisols	232.7	Highly resilient	0.65	0.24	1.12	1.40
Kastanozem	26.0	Highly resilient	1.50	1.00	1.69	3.96
Regosols	1193.2	Highly resilient	0.76	0.41	1.18	0.23
Luvisols	121.6	Moderately resilient	0.63	0.35	0.02	0.11
Phaeozems	3.8	Moderately resilient	1.46	0.63	0.40	0.70
Rendzinias	25.6	Low resilience	1.74	0.90	2.80	4.80
Lithosols	2914.3	Low resilience	0.97	0.40	0.01	0.06
Vertisols	45.4	Low resilience	0.69	0.52	0.45	0.72
Xerosols	498.5	Low resilience	0.36	0.25	0.25	0.45
Yermosols (Aridisols)	4670.6	Low resilience	0.13	0.16	2.50	2.30
Solonchaks	230.1	Very Low low resilience	0.49	0.36	3.60	3.90
Solonetz	31.2	Very Low low resilience	0.65	0.48	0.06	0.36
Arenosols	384.0	Very Low low resilience	0.87	0.10	0.00	0.00

136 *Source: DSMW, FAO, 2007
137

138 To assess the potential soil productivity in the NENA region, a land capability
139 model proposed by USDA (1999), which includes the soil geomorphological features
140 (geology and topography), other soil **physic**-chemical parameters **conditioning** soil fertility
141 like soil depth, texture, organic matter content, salinity and sodicity hazards was adopted.
142 The soils of the area were classified into four classes of arable soils: class I (highly
143 productive), class II (medium productive), class III (low productivity) and class IV (very
144 low productivity) and **one non-arable soil class V, where lands suitable for wild vegetation**
145 **and recreation and lands with rock outcrops** were grouped.

146

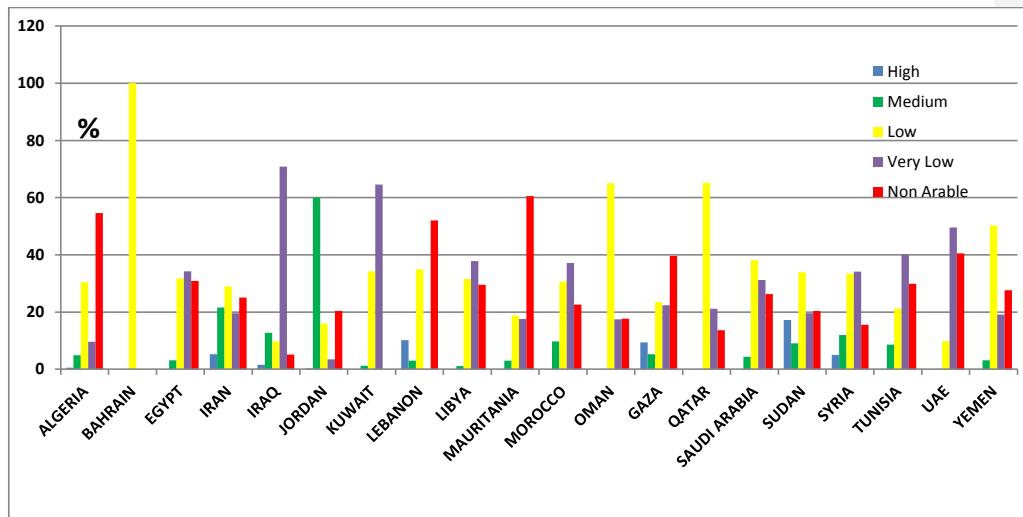
147 Arc Map 10.1 was used for the mapping of soil types and OC stock and density of
148 each soil unit based on the **geographic or spatial** distribution of the soil type. **Total SOC**
149 **stocks and the stock of SOC** were calculated separately for the topsoil (0-0.3m) and
150 subsoil (0.3-1.0m) using the following equations:

151

152 | Total **OC** (ton) = [Area (m²)*Depth (m)*Bulk Density (ton m³)*OC content (%)]/100
153 | equation 1

154 | **Stock SOC** (ton ha⁻¹) = Stock **in** given soil unit (ton)/Soil **Unit** Area (ha) equation 2
155 |

156 |
157 The stocks of SOC under different land cover/land use were evaluated, as well.
158 Since 1990, the European Space Agency, (Climate Change Initiative project), started to
159 produce land cover (LC) maps of the NENA region. The version used in the study
160 (Website 1) corresponds to the second phase of the 2015 global LC. These maps have
161 300m **of** spatial resolution, using the Coordinate Reference System (CRS) in a geographic
162 coordinate system (GCS) based on the World Geodetic System 84 (WGS84) reference
163 ellipsoid. legend assigned to the global LC map has been defined using the UN-
164 LCCS.


165

166 3. Results and Discussion

167 3.1. Land capability and SOC in NENA region

168 The most abundant soil classes in the NENA region are Arenosols, Xerosols and
169 Aridisols representing together more than 80% of available soil resources (FAO, 2007).

170 | All three soil classes have low **resilience resistance** to degradation (Table 1). According to
| the model of land capability, **showing the proportion (%) of different soil -productivity**
172 **classes in each country of NENA region**, the majority of soils (40 to 100%) **belongs** to the
173 low, very low and non-arable classes (Figure 1).

174
175
176 Figure 1. capability classification for the countries of NENA region, based on [USDA Model \(1999\)](#)
177 and DSM AO, 2007.

178
179 Thus, the proportion of highly and medium productive soils varies between 0%
180 (Bahrain, Qatar, Oman and UAE) and 60% (Jordan). Countries like Iraq, Lebanon,
181 Morocco, Palestine, Somalia, Syria and Tunisia present between 9 and 20% of highly to
182 medium productive soils. The rest of NENA countries have less than 5% of their lands as
183 high and medium productive soils. Some of these countries belong to the **seriously**
184 **endangered** and food unsecure nations.

185
186 The potential medium productivity concept is based strictly on soil properties. But,
187 with lack of water in drylands and prevalence of rainfed agriculture, the soil cannot show
188 its full potential for food production. Similarly, irrigation with brackish and saline water
189 restricts crop productivity due to the development of secondary soil salinity. When
190 irrigated, the medium productive lands can provide moderately good harvests.
191 For instance, our field observation in Jordan showed that due to climate change and
192 climate variability, a large area of good lands was cropped with barley not because of land
193 suitability but due to low rainfall (<200mm). In drought affected years, the land is
194 converted into grazing area for small ruminants to make the minimal profit from the
195 exploitation. The presence of kaolinite in red soils of Jordan developed from hard
196 limestone under semi-arid climate points to the inheritance of material formed under more
197 aggressive climate (Kusus and Ryan, 1985). The same was confirmed by Lucke et al.,

Formatted: Justified, Indent: First line: 0.5
Space After: 0 pt, Line spacing: 1.5 lines

198 | [2013 for Red Mediterranean Soils of Jordan, which require new insights in their origin,](#)
199 | [genesis and role as a source of information on paleoenvironment.](#)

200
201 The low productivity of the soil is reflected in the SOC contents. Two out of the
202 three predominant soil classes (Xerosols and Aridisols) have SOC contents below 0.5%
203 (Table 1). Overall, the NENA soils are poor in SOC, as less than 20% of soil resources
204 have SOC contents exceeding 1.0%. The accumulation of SOC in NENA region is
205 refrained by the high mineralization rate (Bosco et al., 2012). Climate change and
206 recurrent drought events affect SOC sequestration in the soil. It is estimated that a rise in
207 temperature of 3 °C would increase the emission of carbon dioxide by 8% (Sharma et al.,
208 2012). Among the soil properties affecting SOC, the clay and calcium carbonate contents
209 are most relevant. [Clay](#) fraction tends to counteract the decomposition of SOC, as found in
210 clay soils of Morocco and in Vertisols of northern Syria (FAO and ITPS, 2015). But the
211 dominant soil classes, Xerosols, Aridisols or Arenosols (Table 1) characterized by sandy
212 and sandy loam textures, are subject to fast decomposition.

213 Next to the clay texture, the presence of calcium carbonate decreased the
214 decomposition of composted organic material in sub-humid coastal Lebanon (Al Chami et
215 al., 2016). This slower turnover of organic matter was explained by the low porosity and
216 prevalence of micropores in soil macro-aggregates (Fernández-Ugalde et al., 2014). For
217 the SIC, the highest values are found in soil classes dominated by calcareous rocks, that is
218 the Solonchaks, Rendzinas and Aridisols (Table 1). The lowest stocks were detected in
219 Lithosols and Xerosols, subject to water and wind erosions that remove the surface layer
220 of eroded lands.

221 .
222 3.2. Mapping of soil carbon stocks in the soils of NENA region

223
224 | [The choice of scale when using or producing soil maps to show the spatial](#)
225 | [distribution and estimate national or regional C stock and density may lead to uncertainty](#)
226 | [in small countries and fragmented landuse \(Darwish et al. 2009\). In the absence of more](#)
227 | [detailed, accessible, regional and national soil databases, the use of !\[\]\(9dfdaff1d86ba3c1f8353b4d1b61b8c5_img.jpg\) scale maps is](#)
228 | [justified. Only in December 2017, the GSP-FAO, ITPS launched the version 0.1.0 of the](#)
229 | [global soil organic carbon map, showing the SOC stock in topsoil \(<http://www.fao.org/3/a-i8195e.pdf>\).](#) An overview, reconnaissance carbon stock and density mapping for NENA
230 | [region in topsoil and subsoil is justified to preliminary assess regional SOC stock both in](#)

232 [topsoil and subsoil and compare and analyze the common problems and challenges in C](#)
 233 [sequestration using unified background information provided by member states and](#)
 234 [harmonized in the FAO-UNESCO DSMW.](#) [recent attempt undertaken in this paper](#)
 235 [was done despite the uncertainty associated with the scale of mapping where small scale](#)
 236 [maps join polygons having area below the smallest mappable unit, considered equivalent](#)
 237 [to or less than 0.5 cm x 0.5 cm area, i.e., <0.25cm², with the neighboring mappable soil](#)
 238 [polygons. Thus, the need for more detailed and harmonized soil mapping and coding of](#)
 239 [available national information arises to downscale to national and local soil assessment](#)
 240 [and mapping, which is currently on the agenda of the Global Soil Partnership \(GSP\).](#)

241 ← Formatted: Indent: First line: 0"

242 The majority of the countries of NENA region presents moderate to relatively low
 243 total stocks of SOC. This is especially relevant to the Gulf countries, Iran, Tunisia and
 244 Morocco, with values below 221 Mega tons (Figure 2). Such low OC sequestration
 245 potential can be explained by the prevalence of arid climate and rare natural vegetation
 246 and the reliance on irrigation to produce food and feed crops. A regional implementation
 247 plan for sustainable management of NENA soils appeared in 2017 [\(Website 2\)](#). In fact, the
 248 total stocks, in the topsoils (0-0.3 m) of NENA countries, represent only 4.1% of the world
 249 global stock [\(Website 3\)](#).

250 Comment [TD1]: The full web address is given in the reference list

251 Comment [TD2]: The full web address is given in the reference list

252 The stock of SOC (ton ha⁻¹) was mapped [as well](#) (Figure 3). A large proportion
 253 (69%) of the soil resources presents a stock [inferior to](#) 30 tons ha⁻¹ (Figure 3), value
 254 considered as a [threshold](#) (Batjes and Sombroek, 1997). [This could be linked to the relief](#)
 255 [of these countries, with rare mountainous landscapes that enjoy a more humid climate and](#)
[a longer duration of soil moisture.](#)

256 ← Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

257 ← Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

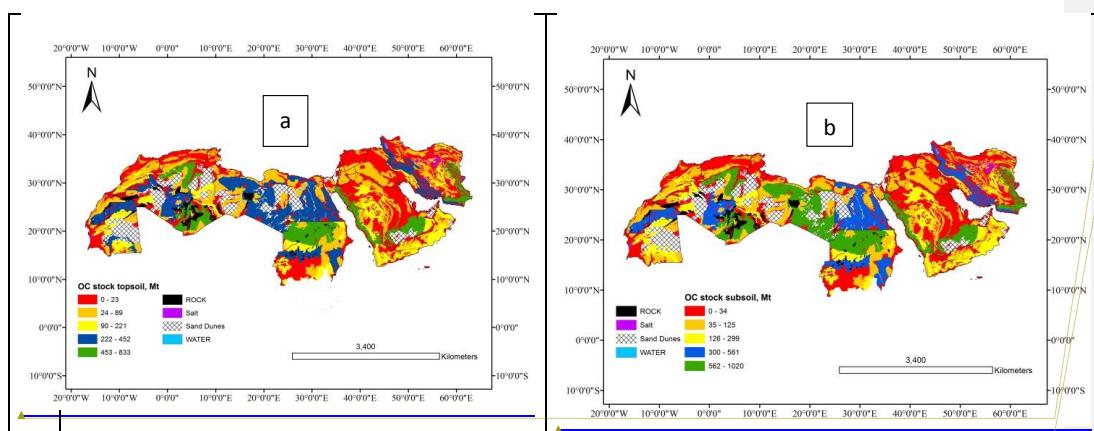
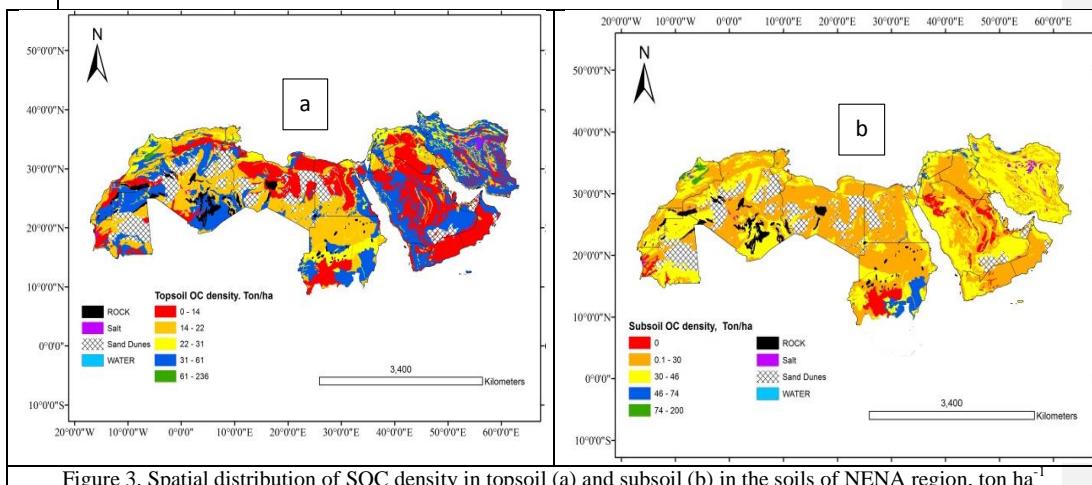
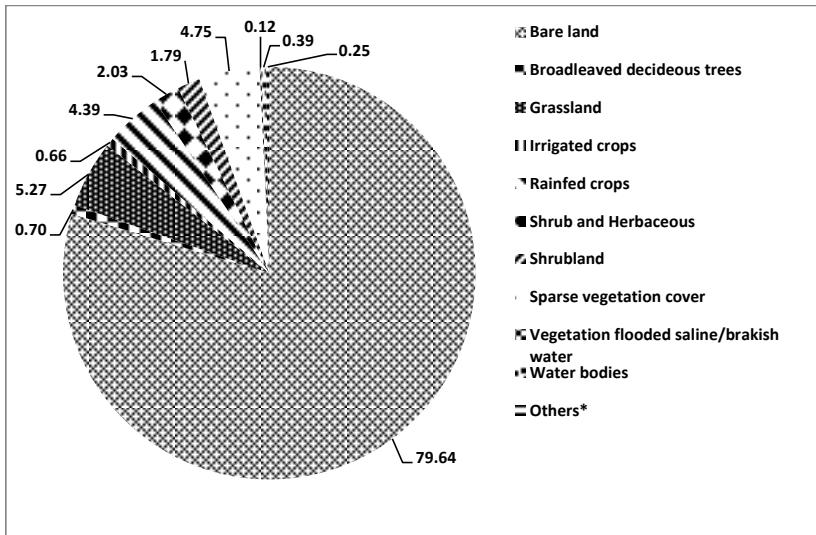


Figure 2. Spatial view of total soil organic carbon stock across the countries of NENA region, Mega ton (a-toposil; b-subsoil).

256

257 Mapping was done on a small scale, which could be a source of a loss of
 258 information. To test this, the results of the current estimation (1:5 Million) of SOC stocks
 259 in Lebanon, were compared with the large scale mapping ~~undertaken~~ ~~intended to produce~~
 260 ~~the unified soil map of Lebanon at 1:50,000 (Darwish et al., 2006)~~ ~~1:50,000~~. This
 261 comparison showed ~~discrepancies~~ between 11% for the topsoil and 14% for the subsoil
 262 (Darwish and Fadel, 2017). Therefore, the level of uncertainty falls within the ~~admitted~~
 263 ~~diagnostic power of soil mapping, estimated to be close enough to the reported range of~~
 264 ~~map units' purity in reference areas, i.e., a matching between 65% and 70%~~ (Finke et al.,
 265 2000). Loss of information related to small, non-mappable soil units in small scale
 266 mapping (1:5 Million or 1:1 Million) could be corrected by national and subregional large
 267 scale soil mapping (1:50,000 and 1:20,000).




Figure 3. Spatial distribution of SOC density in topsoil (a) and subsoil (b) in the soils of NENA region, ton ha⁻¹

268

Formatted: Indent: First line: 0"

269 3.3. Land cover mapping and effect on SOC stock

270 Land cover map of NENA region shows nearly 80% of the area is covered with
 271 bare lands (Figure 4a, b). Grassland, sparse vegetation cover and rainfed agriculture are
 272 close by area varying between 4.39% and 5.27%. The irrigated crops do not exceed 0.66%
 273 of the total area. ~~Apparently~~ for this reason, The region is becoming increasingly
 274 dependent on food imports, because of demographic pressure, rapid urbanization, water
 275 scarcity and climate change (FAO, 2015).

*Others: Mixed trees, Neadleaved evergreen trees and Urban

Figure 4a. Proportion of main land cover and land use in NENA region (Source: ESA, 2015)

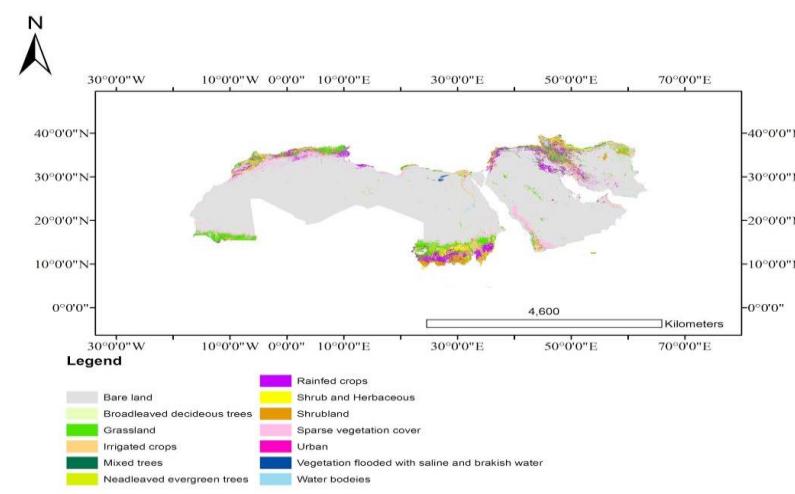


Figure 4b. Land cover map of NENA region (Source: ESA, 2015; <http://maps.elie.ucl.ac.be/CCI/viewer/index.php>)

Comparing our results with the global SOC map produced by Hengl et al., (2014), based on soilGrids1km layers showing the soil organic carbon content in permille in 0-5 cm and the predicted global distribution of the soil organic carbon stock in tonnes per ha for 0-200 cm to be beyond the followed by FAO methodology of SOC stock estimation and presentation. In this paper the standard methodology of the measured SOC stock and density in topsoil (0-30 cm) and subsoil (30-100 cm) was followed. The first Global SOC Map was launched on December 5, 2014. However, a comparison of values of SOC

Formatted: Space After: 0 pt, Line spacing: single

Formatted: Indent: First line: 0.5", Space After: 0 pt, Line spacing: single

Formatted: Space After: 0 pt, Line spacing: single

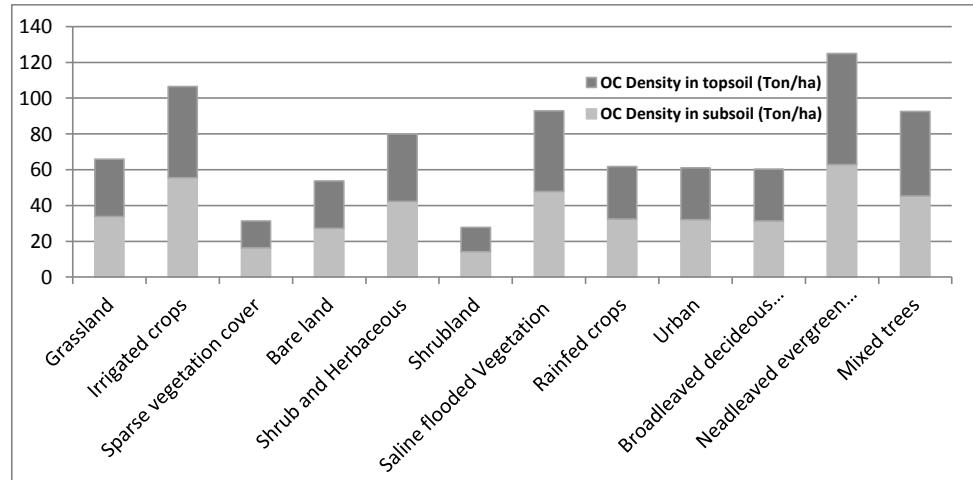
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

Formatted: Line spacing: single

content (%) and SOC stock revealed comparable trends values for the C content and stock (1-2% and 20-204 ton/ha), with higher upper density in Hengel et al approach.

293

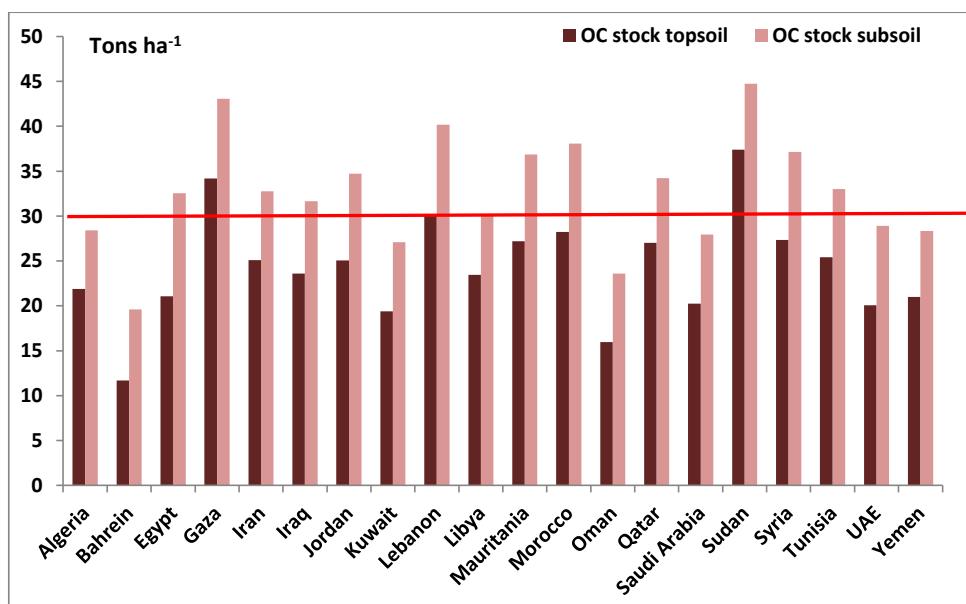
294 Further In our study, the combination of SOC stock map with the land cover map
295 showed, the significant effect of land cover on SOC stocks in NENA region. of SOC were
296 studied in relation to land cover/land use. As can be expected, Shrublands, sparse
297 vegetation and bare lands gave the smallest values, between 14 and 26 ton ha⁻¹ (Figure 45).
298 In a mixture of shrublands and herbaceous vegetation, the SOC increases to 40 ton ha⁻¹.
299 The highest density (30 and 60 ton ha⁻¹) is found under forest stands.

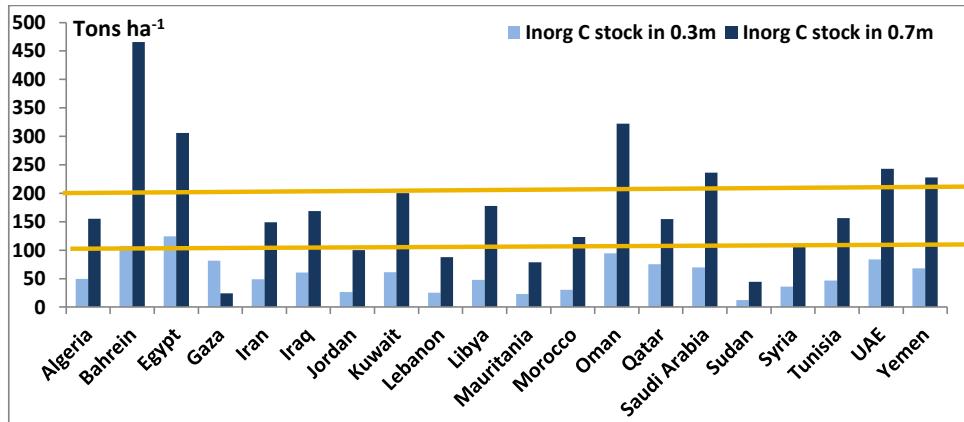

300

301 Despite the expected impact of frequent plowing, the soils under mixed trees and irrigated crops have higher density than rainfed crops. The highest SOC stock was observed under evergreen forest land whose area is very limited (3380 km² corresponding to 0.02% from the total area). Surprisingly, the stock found under urban soils (\approx 30 tons ha⁻¹) was moderate. This could be related to the urban encroachment on prime soils. Between 1995 and 2015, rapid urban growth caused the loss of over 53 Million tons of soils, 16% of which correspond to prime soils (Darwish and Fadel, 2017). The assessment of SOC content in time and space in relation to land cover showed a decline of OC content in topsoil by up to 1% between 2001 and 2009 (Stockmann et al., 2015). Land cover change was considered as the primary agent that influences SOC change overtime, followed by temperature and precipitation.

312

Formatted: Indent: Before: 0", First line:


Formatted: Superscript


313

314 | **Figure 45.** SOC stock density (tons ha^{-1}) in the topsoils (0-0.3m) and subsoils (0.3-1.0m),
315 | calculated from the FAO DSMW (FAO, 2007) on corresponding land cover
316 | (<http://maps.elie.ucl.ac.be/CCI/viewer/index.php>) as related

317 |
318 | In addition to the stocks of SOC in relation to land cover/land use, the stocks of
319 | SOC and SIC were established per country (Figure 65). The stock of SIC was compared to
320 | that of SOC (Figure 5). The range of SIC stocks is very wide, from less than 25 tons ha^{-1}
321 | (Gaza subsoil) to 450 tons ha^{-1} (Bahrain subsoil), while that of SOC varied between ≈ 20
322 | tons ha^{-1} (Bahrain subsoil) and 45 tons ha^{-1} (Sudan subsoil). Based on the stocks of SIC in
323 | the subsoils, the countries were separated into three groups. The first, represented by six
324 | countries (Bahrain, Oman, Egypt, Saudi Arabia, UAE and Yemen) was dominated by
325 | calcareous parent materials, with values in the subsoil exceeding 200 tons ha^{-1} (Figure 5).
326 | The second group, with eight countries (Kuwait, Libya, Iran, Iraq, Algeria, Qatar,
327 | Morocco and Tunisia), presents a SIC density between 100 and 200 tons ha^{-1} . Finally, the
328 | third group (Gaza, Jordan, Lebanon, Mauritania, Syria and Sudan) has less than 100 tons
329 | ha^{-1} .

330

331

332 | Figure 65. Stocks of soil organic carbon and soil inorganic carbon (tons ha⁻¹) in the
 333 | topsoils (0-0.3 m) and subsoils (0.3-1.0 m) of the 20 countries in the NENA region. The
 334 | red line represents the threshold for organic carbon, and the yellow lines correspond to the
 335 | limits of classes.

336

337 3.3. Challenges of carbon sequestration in NENA agroecosystems

338 | Climatic conditions characterized by wetting/drying cycles, a long dry and hot
 339 | season (Boukhoudoud et al., 2016) promote the decomposition of SOC. Further, frequent
 340 | cultivation, irrigation with saline water, and soil salinity rise in coastal areas the
 341 | prevailing agriculture practices (Boukhoudoud et al., 2017) exert significant effects on soil
 342 | microbial functional properties (Boukhoudoud et al., 2017). In this section, there will be a
 343 | presentation of major practices affecting SOC followed by a discussion of preventive and
 344 | remediation measures.

345

346 3.3.1. Tillage and SOC

347 | Tillage practices contribute to the vulnerability of soils to water erosion. If not
 348 | properly managed, some 41 million hectares would be affected by water erosion (FAO and
 349 | ITPS, 2015). The erosion of soil surface layers can affect the soil carbon in two possible
 350 | ways. The greater exposure of carbonates to climatic elements could increase the loss of
 351 | SIC to the atmosphere and ground water. Compared to stable soils, Also, the higher
 352 | decomposition of SOC in eroded soils decreases the productivity of cultivated crops and
 353 | can reduce SOC stock if not properly managed (Plaza-Bonilla et al., 2015).

354

355 | A possible measure to reduce the risk of erosion is the no-tillage. No-tillage
 356 | coupled with mulching, to reduce weed development and omit herbicide as application, as
 357 | part of conservation agriculture (CA), aims to keep more plant residues on soil surface,

358 | enhance C sequestration, increase soil aggregates, improve water infiltration and to
359 | provide a protection to soil carbon from decomposers (Palm et al., 2014).— Through a
360 | modification of common practices, such as the frequency and depth of tillage, changes in
361 | the SOC could be promoted in most soils. Experiments conducted by ICARDA, Syria,
362 | showed that no-tillage performed well in terms of energy and soil conservation (Plaza-
363 | Bonilla et al., 2015). Elsewhere, in Palestine soil conservation was found to pay, with a net
364 | profit 3.5 to 6 times higher than without conservation measures (FAO and ITPS, 2015). In
365 | dryland regions, agricultural activities based on CA practices are beneficial as crop
366 | residues are left on the soil surface (Plaza-Bonilla et al., 2015). The presence of residues
367 | would protect the soils from high evaporation, water and wind **erosions**. This is especially
368 | relevant to soils that are sensitive to degradation, such as the very shallow Lithosols, the
369 | **easily periodically wetted (swelling) and dry (shrinking)** Vertisols, Gypsic Yermasols
370 | (Aridisols), the poorly-structured Solonchaks and Solonetz, the sandy-textured Arenosols,
371 | and the desert soils (Xerosols).

372

373 | Major constraints facing soil conservation measures, in East Mediterranean, were
374 | **due to** knowledge and perception, prevailing practice of complete removal and some times
375 | burning of residues after harvest, land tenure and type of landscape (FAO, 2012; FAO and
376 | ITPS, 2015). These major factors are socio-economic in nature, rather than scientific.
377 | They are related to the ability of growers to accept new techniques and adopt them. In
378 | many situations, the transfer from the research stations to the farmers was not smooth. For
379 | instance, CA was successfully tested in experimental stations in Morocco and Lebanon,
380 | but several social and technical barriers prevented it from reaching farmers (Mrabet et al.,
381 | 2012; FAO, 2012).

382

383 | A debate has been taking place about the effect of no-tillage on SOC. **Most** Many
384 | authors agree that under CA, SOC increases near the soil surface, but not necessarily
385 | throughout the profile. A study compared 100 pairs, where no-tillage has been practiced
386 | for over 5 years. The absence of tillage lead to higher C stocks (0-30 cm soil depth) in
387 | 54% of pairs, while 39% showed no difference in stocks (Palm et al., 2014). In the
388 | absence of tillage, the slower decomposition of residues would result in higher
389 | belowground-C accumulation on the soil surface. Over a period of 5 years, zero tillage
390 | promoted an increase in SOC equal to 1.38 Mg ha^{-1} as compared to the conventional
391 | tillage in northern Syria (Sommer et al., 2014).

392

393 3.3.2 Agricultural practices and SOC

394 Practices, such as the application of N fertilizers, of the organic amendments, the
395 incorporation of residues and crop rotations, influence the levels of SOC. The lack of
396 accessible nutrients and soil mining make most crops entirely reliant on accumulated SOC
397 (Plaza-Bonilla et al., 2015). In East Africa, 14-years of continuous cultivation without any
398 inputs, decreased SOC from 2% to 1% (Sharma et al., 2012). The application of N
399 fertilizers was associated with increased levels of soil C, as compared to the absence of N
400 fertilizers (Palm et al., 2014). In a 10-year rotation of wheat-grain legume (*vetch*) in
401 northern Syria, the application of nitrogen fertilizers to the cereal caused a notable
402 increase of SOC, in the top 1m of soil, equal to $0.29 \text{ Mg ha}^{-1} \text{ year}^{-1}$ (Sommer et al., 2014).
403 Similarly, the growth of intercropped legumes as winter cover crop legumes (*Vicia*
404 *sp.*, *Lathyrus sp.*) alone or with barley (*Hordeum vulgare*), between cherry trees in semi-
405 arid Lebanese area (*Joud Aarsal, eastern Lebanese mountains*), increased SOC
406 significantly notably when legumes were mixed with barley (Darwish et al., 2012). Results
407 showed that the sites were supplemented with OM varying between 140 and 250 kg ha
408 $^{-1} \text{ season}^{-1}$ resulting from the decomposition of plant root residues. The above ground plants
409 provided the orchards with $95-665.7 \text{ kg ha}^{-1} \text{ season}^{-1}$ of OM. Plant residues provided
410 additional feedstuff for small ruminants; the soils were enriched with OM and fixed
411 nitrogen with more efficient use of surface soil moisture.

Formatted: Font: Italic, Complex Script For
Italic

412

413 The effects of crop rotations on SOC are related to the amounts of above and
414 belowground biomass produced and retained in the system. In a study conducted in semi-
415 arid northern Syria, a 12-year rotation gave higher SOC in wheat-medic ($12.5 \text{ g SOC kg}^{-1}$
416 soil) and wheat-vetch ($13.8 \text{ g SOC kg}^{-1}$ soil) rotations, as compared to continuous wheat
417 ($10.9 \text{ g SOC kg}^{-1}$ soil) or wheat-fallow (Masri and Ryan, 2006). In this rainfed system, the
418 introduction of a forage legume (*vetch/medic*) with wheat, over a decade, was able to
419 significantly raise the level of SOC. Further, the combination of crop rotations and no-
420 tillage was found to sequester more C than monocultures (Palm et al., 2014). One means
421 of building up biomass is through cover winter crops. Their beneficial impact on C
422 sequestration and water infiltration has been demonstrated. The presence of a cover on the
423 soil surface protects the soil against erosion. In the NENA region, their cultivation is
424 restricted to sub-humid to humid areas ($> 600 \text{ mm}$ of rainfall). Still, more research is

425 needed about the best species to be used, the optimum termination strategies of the cover
426 crop as well as the best date (Plaza-Bonilla et al., 2015).

427

428 In poor dryland regions **Poverty**, especially in the rainfed agricultural systems,
429 **prevents** some practices leads to the removal of all such as the incorporation of residues.
430 Overall, crop residues serve as fodder or for household cooking or heating, leaving little
431 **remains on the soil surface**. Even animal dung is used as cooking fuel in many regions.
432 The low SOC content could be improved by increasing the crop residues produced and
433 incorporated. Such an approach requires the application of fertilizers in order to avoid the
434 depletion of soil nutrients (Plaza-Bonilla et al., 2015).

435

436 Some authors question the validity of remediation measures **to build-up SOC** in
437 most of the NENA region. **Results** from research stations in Egypt and Syria provide
438 **evidences** to the contrary. In a trial in north-east Cairo, Egypt, the irrigation of a sandy soil
439 with sewage water, for 40 years, changed its texture to loamy sand (Abd el-Naim et al.,
440 1987). This modification of the soil texture leads to a significant improvement of the soil
441 physical properties. Further, within the same long-term trial, the irrigation with sewage
442 water, for 47 years, increased SOC to 2.79%, against 0.26% in the control (Pescod and
443 Arar, 2013). This rather slow accumulation could be related to the sandy soil texture and
444 to the input of the organic matter in labile, soluble forms. **The addition** of more stable
445 composted materials was tested in semi-arid north Syria. The amount of compost, 10 Mg
446 ha^{-1} every two years, needed to raise the SOC, was too large in these rainfed systems.
447 Rather than relying on composts, the authors found that a combination of reduced tillage
448 and a partial retention of crop residues moderately increased SOC (Sommer et al., 2014).
449 The quality of residues seems to affect the SOC on the short-term but on the medium-term
450 it is the quantity that matters (Palm et al., 2014).

451

452

453 3.3.3. Impact of irrigation on agricultural soils

454 The irrigated land **might** represent a minor fraction of agriculture in NENA region,
455 but irrigated crops are essentially found on prime soils (Figure 4). **Frequent wetting of**
456 **irrigated soils make them more likely to lose C as compared to dry soils.** Lack of moisture
457 limits soil mineralization (Sharma et al., 2012). Irrigated soils promote intense microbial
458 activity and a rapid decomposition of SOC. In the fertile region of Doukkala, Morocco,

459 known for producing wheat and sugar beet, a decade of irrigated farming decreased SOM
460 by 0.09% per year (FAO and ITPS, 2015). This loss could have been reduced through the
461 incorporation of crop residues. But, in these mixed farming systems, residues are
462 consumed by farm animals.

463

464 The irrigation of soils in NENA region is expected to affect the SIC. Dryland soils
465 were considered to contain, **at least**, as much SIC as SOC (Sharma et al., 2012). **However**,
466 this study showed much higher SIC than SOC, notably in the subsoils. Despite this large
467 stock, there is a major knowledge gap regarding the effects of land use and management
468 on the dynamics of SIC. This is especially relevant to the irrigation with calcium or
469 sodium-enriched groundwater (Plaza-Bonilla et al., 2015). In these conditions, the
470 formation of calcium carbonate could be accompanied by some release of carbon dioxide
471 while the development of sodicity can cause irreversible SOC loss.

472

473 4. Conclusions

474 **The NENA area consisting of 14% of the earth surface area contributes only 4.1% of total SOC stocks of in SOC (0-0.3m) topsoil showed a small contribution to global SOC stock in the topsoil (4.1%), against 14% of the earth surface area. The soil resources of s of the NENA region are developed under dry conditions with prevailing of rainfed agriculture. mostly highly vulnerable to Achieving land degradation neutrality degradation, and food security will depends much on land stewardship and sustainable agricultural measuresmanagement of soil resources.** The land capability model showed that most NENA countries (17 out of 20), suffer from low productive lands (>80%). **To obtain an idea of the status of the soil carbons, the spatial distributions of SOC and SIC stocks for the NENA region were mapped (1:5 Million). This small scale mapping was compared with a larger scale mapping (1:50,000) for Lebanon. A moderate discrepancy (11% to 14%) was found between the two scales. The results of the mapping Mapping current mapping of the stocks of SOC and SIC density showed that 69% of soil resources present a SOC stock of SOC below **the** threshold of 30 tons ha⁻¹. The stocks density varied between ≈ 10 tons ha⁻¹ in shrublands and 60 tons ha⁻¹ for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The moderate stock density (≈30 tons ha⁻¹) in urban areas indicates that some urban growth was at the **expenses** of prime soils. The stocks of SIC were higher than **those of** SOC**

492 | density, indicating the calcareous nature of soils. In subsoils, the SIC ranged between 25
493 and 450 tons ha⁻¹, against 20 to 45 tons ha⁻¹ for SOC.

494

495 | ~~Decomposition of SOC is accelerated by climatic conditions, high temperatures, wetting/drying cycles, and by sandy soil textures. Although OC sequestration in the NENA region is problematic, this task is still possible~~, requiring the protection of the topsoils ~~and sustainable land management~~. Practices of conservation agriculture (no-tillage, ~~intercropping and agro-pastoral system, presence of winter~~ soil cover, ~~proper rotation...~~) could be effective as the presence of residues reduces the evaporation, as well as water and wind erosions ~~and promote the aboveground biomass production~~. This is especially relevant to soil classes that are susceptible to degradation. ~~Further, the combination of crop rotations and no tillage was found to sequester more C than monocultures.~~ In semi-arid regions, the introduction of legumes, as part of a cereal-legume rotation, and the application of nitrogen fertilizers to the cereal caused a notable increase of SOC, after 10 years. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. A faster result was achieved through winter cover crop consisting of fruit trees-legume-barley intercropping system.

505

506 | ~~Some knowledge gaps exist, especially in aspects related to the effect of irrigation on SOC, as well as on SIC at the level of soil profile and soil landscape.~~ Still, major constraints facing soil conservation measures and carbon sequestration are socio-economic in nature, rather than scientific. They are related to the ability of growers to accept new techniques and adopt them. Awareness raising and capacity building at the level of stakeholders and decision-makers in the NENA region can contribute to alleviate the pressure on vulnerable soil resources, improve SOC sequestration, ~~and~~ maintain soil resilience resistance to degradation ~~and strengthen food security~~.

519

520 | 5. Acknowledgements

521 | This paper was supported by the FAO, GSP-ITPS, UNESCWA and CNRS Lebanon within a land degradation assessment project.

523

524 | 6. References

💡 Formatted: Strikethrough

525 Abd Elnaim E.M., M.S. Omran, T.M. Waly and B.M.B. El Nashar (1987) Effects of
526 prolonged sewage irrigation on some physical properties of sandy soil. *Biological*
527 *Wastes* 22: 269:274.

528 Al Chami Z., S. Bou Zein Eldeen, L. Al Bitar, and T. Atallah (2016) Decomposition of
529 olive-mill waste compost, goat manure and *Medicago sativa* in Lebanese soils as
530 measured using the litterbag technique. *Soil Research* 54, 191-199.

531 Atallah T., C. Jamous, P. Debs and T. Darwish (2012) Biosolid recycling to enhance
532 carbon sequestration in mountainous Lebanese conditions. *Lebanese Science Journal*
533 13 (2), 69-79.

534 Batjes, NH., and Sombroek, WG. 1997 Possibilities for carbon sequestration in tropical and
535 subtropical soils. *Global Change Biology* (3): 161-173.

536 Bosco S., C. Di Bene, E. Bonari (2012) The effect of crop management on soil organic
537 matter in the carbon footprint of agricultural products. 8th Int Conf on Life Cycle
538 assessment in the agri-food sector. Oct 1-4 2012, Saint-Malo, France.

539 Bosco S., C. Di Bene, M. Galli, D. Remorini, R. Massai and E. Bonari (2013) Soil organic
540 matter accounting in the carbon footprint analysis of the wine chain. *International*
541 *Journal Life Cycle Assessment* 18:973–989. DOI 10.1007/s11367-013-0567-3

542 Boukhoudoud N., Gros, R., Darwish T., Farnet Da Silva, A.M. 2016. Agriculture practice
543 and coastal constraint effects on microbial functional properties of soil in
544 Mediterranean olive orchards. *European Journal of Soil Science*. DOI:
545 10.1111/ejss.1234. July 2016, 67: 470-477.

546 Boukhoudoud N., Farnet Da Silva, A.M., Darwish, T., Gros, R. 2017. Olive mill waste and
547 glyphosate-based herbicide addition to olive grove soils: effects on microbial
548 activities and their responses to drying/rewetting cycles. *Soil Use and Management*.
549 DOI: 10.1111/sum.12367.

550 Cerdà A., Gonzalez Penaloza F., Santin C. and S.H. Doerr (2012) Land abandonment, fire
551 recurrence and soil carbon content in the Macizo del Caroig, Eastern Spain.
552 *Geophysical Research Abstracts* 14, EGU2012-14331.

553 Darwish, T., Faour Gh., and M. Khawlie (2004) Assessing Soil Degradation by Landuse-
554 Cover Change in Coastal Lebanon. Lebanese Science Journal 5: 45-59.

555 [Darwish, T., Khawlie, M., Jomaa, I., Abou Daher, M., Awad, M., Masri, T., Shaban, A.,](#)
556 [Faour, G., Bou Kheir, R., Abdallah, C. and Haddad, T. \(2006\). Soil Map of Lebanon](#)
557 [1/50000. CNRS-Lebanon, Monograph Series 4, pp. 367](#)

558 [Darwish, T., Abou Daher, M., Jomaa, I., and Atallah, T. \(2009\). Soil organic carbon stock](#)
559 [estimation in Lebanese territories. 10th International Meeting on Soils with](#)
560 [Mediterranean Type of Climate. CNRS-Lebanon, Book of Extended Abstracts 113-](#)
561 [118.](#)

562 Darwish, T., Atallah, T., Francis, R., Saab, C., Jomaa, I., Shaaban, A., Sakka, H., and P.
563 Zdruli (2011) Observations on soil and groundwater contamination with nitrate, a
564 case study from Lebanon-East Mediterranean. Agricultural Water Management, DOI
565 10.1016/j.agwat.2011.07.016.

566 Darwish, T.M., Jomaa, I., Atallah, T., Hajj S., Shaban, A., Zougheib, R., and F. Sibai
567 Ouayda (2012) An agropastoral system as a practice to enhance organic matter in
568 Lebanese inland mountainous soils. Lebanese science journal, vol. 13 (1): 1-14.

569 Darwish, T., and A., Fadel, (2017) Mapping of Soil Organic Carbon Stock in the Arab
570 Countries to Mitigate Land Degradation. Arab J. Geosci (2017) 10: 474.
571 <https://doi.org/10.1007/s12517-017-3267-7>.

572 Elhadi M.Y., 2005. Postharvest technology of food crops in the Near East and North
573 Africa (NENA) region. In Ramdane Dris PhD. (ed.), "Crops: Growth, Quality and
574 Biotechnology", pp. 643-664. WFL Publisher, Meri-Rastilan tie 3 C, 00980
575 Helsinki, Finland.

576 FAO, 2007. The digital soil map of the world. Food and Agriculture Organization of the
577 United Nations. Version 3.6, completed January 2003 and updated 2007
578 (<http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116>)

579 FAO, 2012. Country Study on Status of Land Tenure, Planning and Management in
580 Oriental Near East Countries Case of Lebanon. FAO, RNE, SNO. Cairo, Egypt:
581 161p.

582 FAO, 2015. Regional Overview of Food Insecurity - Near East and North Africa:
583 Strengthening Regional Collaboration to Build Resilience for Food Security and
584 Nutrition, Cairo, Egypt, FAO.

585 FAO, 2017. Voluntary Guidelines for Sustainable Soil Management Food and Agriculture
586 Organization of the United Nations Rome, Italy

587 FAO and ITPS, 2015. Status of the World's Soil Resources (SSWR) – Main Report. Food
588 and Agriculture Organization of the United Nations and Intergovernmental
589 Technical Panel on Soils, Rome, Italy.

590 Fernandez-Ugalde O., Virtó I., Barre P., Apesteguia M., Enrique A., Imaz M.J. and P.
591 Bescansa (2014). Mechanisms of macroaggregate stabilisation by carbonates:
592 implications for organic matter protection in semi-arid calcareous soils. *Soil
593 Research* 52: 180-192.

594 Finke, P., Hartwich, R., Dusal R. Ibanez J. Jamagne M. King D. Montanarella L and N.
595 Yassoglou (2000) Georeferenced Soil Database for Europe. Manual of Procedures,
596 Version 1.1. European Soil Bureau.

597 Guo, LJ., Lin, S., Liu, TQ., Cao, CG., Li, CF. (2016) Effects of conservation tillage on
598 topsoil microbial metabolic characteristics and organic carbon within aggregates
599 under a rice (*Oryza sativa* L.)-wheat (*Triticum aestivum* L.) cropping system in
600 Central China. *PLoS One* 11:e0146145. Formatted: Indent: Before: 0", Hanging: 0.38"

601 [Hengl, T., de Jesus, JM., MacMillan, RA., Batjes, NH., Heuvelink, GBM., Ribeiro, E.,](#)
602 [Rosa, AS., Kempen, B., Leenaars, JGB., Walsh, MG., Gonzalez, MR. \(2014\)](#)
603 [SoilGrids1km-Global Soil Information Based on Automated Mapping. PLoS ONE](#)
604 [9\(8\): e105992. doi:10.1371/journal.pone.0105992.](#) Formatted: English (U.S.)

605 Lal, R. (2003) Soil erosion and the global carbon budget. *Environment International*, 29
606 (4): 437-450

607 Masri, Z. and J. Ryan (2006) Soil organic matter and related physical properties in a
608 Mediterranean wheat-based rotation trial. *Soil Tillage Research* 87: 146–154.

609 Mrabet, R., Moussadek, R., Fadlaoui, A., and E. van Ranst (2012) Conservation
610 agriculture in dry areas of Morocco. *Field Crops Research* 132: 84-94.

611 Pescod, M.B. and A. Arar (2013) Treatment and use of sewage effluent for irrigation.
 612 Butterworths. <https://books.google.com.lb/books>. ISBN: 1483162257. Pages 211-212

613 Plaza-Bonilla, D., Arrúe, JL., Cantero-Martínez, C., Fanlo, R., Iglesias, A., and Álvaro-
 614 Fuentes J. (2015) Carbon management in dryland agricultural systems. A review.
 615 *Agronomy for Sustainable Development* 35 (4): 1319-1334.

616 Sharma, P., Abrol, V., Abrol, S., and R. Kumar (2012) Climate change and carbon
 617 sequestration in dryland soils. In Tech open access book, chapter 6. 26 pages.
 618 <http://dx.doi.org/10.5772/52103>

619 Sommer, R., Piggin, C., Feindel, D., Ansar, M., van Delden, L., Shimonaka, K., Abdalla,
 620 J., Douba, O., Estefan, G., Haddad, A., Haj-Abdo, R., Hajdibo, A., Hayek, P.,
 621 Khalil, Y., Khoder, A., and J. Ryan (2014) Effects of zero tillage and residue
 622 retention on soil quality in the Mediterranean region of northern Syria. *Open Journal*
 623 of Soil Science

624 [4 \(3\)](#), Article ID: 44383. 17 pages. DOI:10.4236/ojss.2014.43015

625 [Stockmann, U., Padarian, J., McBratney, A., Minasny, B., deBrongniez, D., Montanarella, L., Young Hong, S., Rawlins, BG., Damien, J. \(2015\) Field Global soil organic carbon assessment. Global Food Security \(6\): 9-16.](#)

626 [USDA \(1999\) Land capability classification. NRCS-USDA.](#)

627 [von Grebmer, K., Bernstein, J., Hossain, N., Brown, T., Prasai, N., Yohannes, Y., Patterson, F., Sonntag, A., Zimmermann, S.M., Towey, O., and C Foley \(2017\) Global Hunger Index: The Inequalities of Hunger. Washington, DC: International Food Policy Research Institute; Bonn: Welthungerhilfe; and Dublin: Concern Worldwide.](#)

628 [Yu, L., Dang, Z-Q., Tian, F-P., Wang, D., and G-L. Wu \(2017\). Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid regions \(China\). *Land Degrad. Develop.*, 28: 189–198.](#)

629 [630 !\[\]\(906fcfdd9eb5c03ebb47c43ae11c8201_img.jpg\) **Webgraphy**](#)

631 [632 Website 1. <http://maps.elie.ucl.ac.be/CCI/viewer/index.php>](#)

633 [634 Website 2. <http://www.fao.org/3/a-bl105e.pdf>](#)

635 [636 Website 3. \[https://drive.google.com/drive/folders/1454FhX_p2_GxjZT-fsi0-RncL2QpSN\]\(https://drive.google.com/drive/folders/1454FhX_p2_GxjZT-fsi0-RncL2QpSN\)](#)