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1) Comments from referees/public and author’s response 1 

A) Short comment 1 2 

Dear Lauric Cécillon and colleagues, 3 

Thank you very much for your comment on our discussion paper. We appreciate that you discussed 4 

the paper draft thoroughly and found some points that need more clarification to be 5 

understandable. Please find our answers to your comments below. 6 

We have a concern regarding the use of the cross-validated regression model based on near-infrared 7 

spectroscopy to predict the size of SOC labile and stable pools in “new” samples of the German 8 

Agricultural Soil Inventory. We regret the use a regression model that has not been published yet, 9 

impeding us from a clear understanding of the actual predictive performance of the model on “new” 10 

topsoil samples. Here, the details provided by the authors regarding the predictive performance of the 11 

multivariate regression model (see Material & methods section 2.4 at lines 189–194 and 12 

Supplementary Figure S1) do not demonstrate its ability to accurately predict the absolute content 13 

(g/kg) and proportion (%) of SOC in the POM and in the MOM fractions of the 2755 “new” samples.  14 

Answer: The paper describing the regression model (Jaconi et al.) has been submitted to the 15 

European Journal of Soil Science. We also regret that it has not been published yet. In this paper, 16 

the model is described in detail, testing the algorithm on different datasets. In the paper the model 17 

is also validated using an independent validation dataset (consisting of one third of the total 18 

samples), which has not been part of the model calibration (two thirds of total samples). We see 19 

that it would be helpful to provide the validation results with the paper discussed here, as they are 20 

not published yet with the other paper. In the revised version we will append the following table 21 

with the supplement materials: 22 

Table S3: Indicators of model performance for soil C fractions particulate organic carbon (POM) and 23 

mineral associated organic carbon (MOM) with calibration and independent validation dataset (mean 24 

values of 100 iterations with random selection). Table a) is for values in g C kg soil
-1

 and table b) is 25 

for the proportion (relative values). 26 

a) 27 
 Calibration dataset Validation dataset 

 
Q2 

RMSECV, 

  g C kg soil-1 
ρcc

* 
Bias, 

g C kg soil-1 
RPD RPIQ R2 

RMSEP, 

g C kg soil-1 
ρcv 

Bias, 

g C kg soil-1 
RPD RPIQ 

             

POM 0.83 4.92 0.91 0.34 2.5 1.8 0.82 5.38 0.89 0.44   2.5 2.0 

MOM 0.87 4.92 0.93 -0.34 2.9 2.9 0.85 5.38 0.91 -0.44 2.7 2.6 

 28 
ρc* - Lin’s concordance correlation coefficient 29 
 30 
b) 31 
 32 

 Calibration dataset Validation dataset 

 
Q2 

RMSECV, 

  % 
ρcc

* 
Bias, 

% 
RPD RPIQ R2 

RMSEP, 

% 
ρcv 

Bias, 

% 
RPD RPIQ 

             
POM 0.78 13.15 0.88 1.07 2.09 2.56 0.73 15.04 0.84 1.6   1.9 2.4 

MOM 0.78 13.15 0.88 -1.07 2.00 2.48 0.72 15.04 0.83 -1.6 2.0 2.3 

 33 
ρc* - Lin’s concordance correlation coefficient  34 

 35 
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Specifically, the authors have only assessed the predictive performance of their model using a leave-36 

one-out cross-validation. Leave-one-out cross-validation is not the optimal method to validate a 37 

partial least-squares (PLS) regression model when 145 samples with reference measurements are 38 

available. It may be recommended for smaller datasets when a proper validation procedure (see 39 

below) cannot be done.  40 

An acceptable procedure for validating this PLS regression model would be adding an independent 41 

validation step to the current validation scheme: i/ first run a leave-one-out or k-fold cross-validation 42 

on a subset of ca. 110 samples with reference measurements, that would provide a Q2 (= coefficient 43 

of determination of the model in cross-validation, not a R2), and a first assessment of the mean error 44 

of prediction of the PLS regression model in cross-validation (RMSECV). ii/ use this cross-validated PLS 45 

model to predict the values of the absolute content (g/kg) and proportion (%) of SOC in the POM and 46 

in the MOM fractions of the ca. 35 independent samples with reference measurements not used for 47 

cross-validation (and independent from the ca. 110 samples used for cross-validation). The coefficient 48 

of determination (actual coefficient of determination of the model in validation,R2 )and mean error of 49 

prediction of the PLS regression model in validation (RMSEP) would provide acceptable criteria for the 50 

reliable (independent) assessment of the actual predictive performance of the model for prediction on 51 

“new” topsoil samples.  52 

iii/ if the R2 and RMSEP (or RPD) of the PLS regression model obtained on the 35 independent 53 

validation samples were judged acceptable, then the model may be used to predict the values of the 54 

absolute content (g/kg) and proportion (%) of SOC in the POM and in the MOM fractions of the 2755 55 

remaining topsoils of the German Agricultural Soil Inventory. 56 

Answer: We agree that, if possible, the best method is always to have an independent validation 57 

dataset. We think, however, that this is not advisable in our case, as the calibration dataset was for 58 

the whole area of Germany, containing very different soils. In this case 145 samples are not a large 59 

calibration dataset. This calibration dataset was selected out of all 2900 available soil samples 60 

using the Kennard Stone algorithm, so that it contains the maximum possible spectral variability. 61 

There were also additional selection criteria for these sites, as explained in ll.125-131. This is why 62 

we do not want to split the reference dataset into calibration and validation dataset, as with every 63 

split of this dataset a large part of the variation present in German soils would be lost for the 64 

calibration.  65 

We therefore argue that the PLS regression model based on near-infrared spectroscopy presented by 66 

the authors cannot be used in its current form to predict labile and stable SOC fractions on “new” 67 

topsoil samples of the German Agricultural Soil Inventory. At this stage (i.e. unreliable assessment of 68 

the predictive performance of the PLS regression model), the authors can only use the reference data 69 

(n = 145) of the absolute content (g/kg) and proportion (%) of SOC in the POM and in the MOM 70 

fractions to investigate the potential drivers of the distribution of SOC kinetic pools on this limited 71 

dataset. This would already be a significant piece of work.  72 

Answer: As we conducted an independent validation, which showed that the predicted values are 73 

in good accordance with the measured ones, we are sure that the model is robust enough and can 74 

be used to predict the 2755 “new” samples. Therefore, we argue that the drivers can be assessed 75 

not only using the reference data, but also the predicted ones. 76 
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Furthermore, Vos and colleagues used the particulate organic matter (POM) fraction to represent the 77 

labile SOC kinetic pool. However, the POM fraction could contain substantial (and variable) amounts 78 

of pyrogenic carbon with residence time in soils higher than the mean residence time of total SOC. 79 

This limitation of the SOC density fractionation scheme should be mentioned and discussed in the 80 

text, as it is not possible to guaranty that the POM fraction truly represents the actual labile SOC pool 81 

for all investigated samples. 82 

Answer: We agree that this is a limitation of density fractionation, which we will address in the 83 

revised version of our paper. Pyrogenic carbon does, however, play a minor role in German soils. 84 

There is also a large section on the so-called “black sands” in Germany (ll.300-356), where we 85 

discuss explicitly why the POM fraction is not always a labile fraction. 86 

 87 

B) Referee comment 1 88 

Dear anonymous referee, 89 

We thank you for reviewing our manuscript and for giving instructive feedback on how to improve it. 90 

We very much appreciate your work as reviewer. Please find our answers to your comments below: 91 

 92 

L62: There is ample evidence that no-till does not lead to net increase of SOC com- 93 

pared to conventional tillage as indicated here, but only to a change of the depth distri- 94 

bution of SOC 95 

 96 

Answer: We agree with the reviewer that this should be mentioned more clearly and, thus, we will 97 

include references to studies that report this depth distribution of SOC as a result of no-till (Baker 98 

et al. 2007, AGEE, review from Luo et al. 2010, AGEE).  99 

 100 

Section 2.3: The fractionation approach is not really clear: to separate the fPOM, 101 

normally SPT is used as done in this study, but without any dispersion (as indicated 102 

by “free”). Here, ultrasonic dispersion at 65 J/mL was applied that probably de- 103 

stroyed macroaggregates, so the extracted POM is rather fPOM+oPOM (derived from 104 

macroaggregates). Of course you can do that, but this fraction should not be called 105 

fPOM. Furthermore, 450 J/mL was used to destroy “aggregates” (I guess microag- 106 

gregates), please explain why this energy level was used (reference). I further miss 107 

information on recovery rates of the fractionation and further basic data such as frac- 108 



4 
 

tion mass and C content in order to evaluate the approach. Particularly the measured 109 

C content of the POM is important to evaluate the fractionation approach. 110 

 111 

Answer: We see now that more details are needed in the manuscript concerning the fractionation 112 

procedure. We used a very low dispersion energy of 65 J/mL to obtain the FPOM fraction. We did 113 

this as in Don et al. 2009, JPNSS and other publications. Such a light ultrasonic treatments helps to 114 

standardize the shaking of the samples that has been proposed in the original method by Golchin. 115 

The energy level of 450 J/mL to obtain the OPOM fraction was chosen as Schmidt, Rumpel and 116 

Kögel-Knabner (1999, European Journal of Soil Science, 50, 87-94) found that 450-500 J/mL is 117 

enough to disperse all aggregates (including microaggregates) in a wide range of soil types. We will 118 

include this reference to the revised version of the paper, as well as information on recovery rates, 119 

mean fraction masses and C-contents of the fractions, which are indeed valuable criteria to 120 

evaluate the fractionation approach.  121 

We know that there is ample discussion on fractionation methods and how to obtain which 122 

fractions, but we do not want to go into detail in this paper, as it is not the main focus and the 123 

FPOM and OPOM fraction are merged for the NIRS prediction anyway. 124 

 125 

L182+L194: More information is needed in this regard, Jaconi et al. is not accessible 126 

(see also the comment of Lauric Cécillon). Please include relevant information also in 127 

this paper, even if Jaconi et al. is published during revision. 128 

 129 

Answer: As already stated in the reply to the comment of Lauric Cécillon we will include more 130 

details on the NIRS calibration and validation approach into the supplement of the revised version. 131 

 132 

L188-198: I would rather see that as results 133 

 134 

Answer:  135 

We propose not to put this paragraph in the results section, as it is the justification for using the 136 

methodology and not the result and topic of this paper. But we changed this paragraph in the 137 

revised version as follows:  138 

“We used the methodology as stated above, as Jaconi et al (submitted) found out that NIRS is a 139 

fast, low-cost and accurate method to predict the carbon fractions. The authors found the 140 

following calibration results: For prediction of carbon content in the fractions (g kg-1), the 141 

coefficient of determination (R²) between predicted and measured carbon content in the fractions 142 

was found to be 0.87-0.90 and RMSECV was 4.37 g kg-1. The RPD was 2.9 for the prediction of 143 
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carbon content in the light fraction and 3.2 for the prediction in the heavy fraction. For prediction 144 

of carbon proportions in the fractions (%), R² was 0.83, RMSECV 11.45% and RPD 2.4 (Fig. S1 and 145 

S2; for more details see Jaconi et al., submitted). The accuracy of prediction of both SOC content 146 

and proportions of the light and heavy SOC fractions was very good and was comparable with that 147 

in other studies that have used NIRS to predict SOC fractions (Cozzolino and Moro, 2006; Reeves et 148 

al., 2006).” 149 

 150 

L197-198: NIRS is certainly a promising way to predict fractions, but of course this 151 

approach is specific to the fractionation. As there are numerous other fractionation ap- 152 

proaches (probably even better ones to derive “active” and “passive” SOC), this study 153 

should avoid giving the impression that the presented approach is the only way to esti- 154 

mate active and passive SOC at the regional scale. 155 

 156 

Answer: In l. 197-198 we merely aim to say that NIRS is a good way to predict the fractions, not 157 

that it is the only way to do so. We will change the sentence accordingly.  158 

 159 

L203-205: More information is needed on the calculation of C and N inputs as well as 160 

on the regional yield estimates. 161 

 162 

Answer: We will include more information on the calculation of C and N inputs in a revised 163 

manuscript. 164 

 165 

L229: In order to avoid interaction effects between the variables, one could perform 166 

PCAs prior to the analysis and reduce the number of predictors to independent ones 167 

(e.g. dependent climate variables MAT, MAP and elevation can be reduced to one 168 

factor climate). For example, CaCO3 was identified as important, but this is probably 169 

only due to a correlation with texture (clay is the most important factor). 170 

 171 

Answer: The reviewer is right suggesting that using PCAs prior to the cforest analysis would reduce 172 

the number of predictors to independent ones. We refrained from doing so however, as the cforest 173 

algorithm did not find very many variables of a high importance in our case. With our approach we 174 

receive a nonbiased assessment which is not influenced by a preselection of certain variables. We 175 
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therefore do not see the need to conduct the PCAs beforehand and decided to discuss all the single 176 

variables, keeping in mind, of course, that a high variable importance can also be due to 177 

interactions with other predictors. 178 

We did however eliminate predictor variables with correlations above 0.8 from the dataset as to 179 

avoid multicollinearity. We will therefore add the following sentence to the revised version of the 180 

manuscript: „As multicollinearity between the predictors may result in a biased variable 181 

importance measure in cforest algorithms, (Nicodemus et al., 2010) the correlations between the 182 

predictor variables were controlled. When the correlation between two possible predictors was 183 

>0.8, only the one with the broader range of variation was kept in the dataset.“ 184 

 185 

L316: remove “and” 186 

 187 

Answer: the „and” will be removed in the revised version. Thank you for noticing. 188 

 189 

Section 4.4: In principal, I agree that the fractionation approach based on a separation 190 

of POM from MOM is suitable to derive “labile” and “stable” carbon, as POM is the major 191 

constituent of “active” carbon (assuming that the contribution of pyrogenic carbon is 192 

negligible, which is the case in most regions of Germany). However, the authors could 193 

mention that there are other ways to derive labile and stable SOC. 194 

 195 

Answer:  We agree that there are very different methods/fractionation schemes to separate labile 196 

from stable SOC. Therefore, we will add the following sentence: “The applied fractionation method 197 

is only one out of several methods and options to separate labile from stabilised SOC.” 198 

 199 

C) Referee comment 2/Short comment 2 200 

Dear Dr. Smith, 201 

Thank you for reviewing our manuscript so thoroughly and taking the time to write helpful and 202 

detailed comments to improve our paper. We are very grateful for this. 203 

Please find our answers to the comments below: 204 

Introduction 205 

 Overall, I think that the introduction needs some restructuring and needs more “meat”  to it. Many 206 

statements are vague, blanket statement and don’t provide much insight or examples (e.g. “The 207 
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effects of land use and management are not the same for all soil organic matter compounds...” How? 208 

Why? Give me more details). I think that the manuscript would benefit from a closer look at the flow 209 

and organization of the introduction. I suggest taking a close look at each paragraph; map out the 210 

main point, make sure this main point is reflected in the topic sentence, and verify that the preceding 211 

and following paragraphs fit/flow. There are a few paragraphs that just don’t fit (seem out of place) 212 

and it detracts from the main points of the introduction (which is essentially to build up to, i.e. 213 

provide background and rationale, the objectives and hypotheses of the study). As such, please align 214 

the introduction specific to the goals and objectives of the study.  215 

Answer: We agree with the reviewer that in some cases more details need to be given in the 216 

introduction. We also see now that a stricter alignment of the introduction with our research goals 217 

would be helpful. We will follow this advice and restructure the introduction section in the revised 218 

version of the manuscript. 219 

I strongly encourage the authors to reframe the objectives of the study as hypotheses in lieu of the 220 

somewhat vague research questions that are currently reported in the introduction. What do the 221 

authors expect the distribution of POM vs. MOM to be across Germany (and why)? Which factors 222 

(land-use, climate, soil type, clay content, etc.) do the authors expect to be more important in driving 223 

these distributional patterns? And the final question “can regions of high vulnerability...” needs to be 224 

clarified. First, I don’t know how you define “vulnerable” and second, I am unaware how you plan on 225 

verifying that your predictive approach (i.e. machine learning)  226 

Answer: We agree that the third objective needs to be clarified and we will introduce the term 227 

“vulnerable” before and be more explicit regarding the methodology. However, we refrain to 228 

rephrase our objectives as hypotheses as the study design is not like in traditional studies that test 229 

different treatments for which a hypothesis is formulated. 230 

Many of the statements or research addressed here are specific to European agroecosystems and yet 231 

the authors often make broad statements about land use and management effects on SOC as fact. 232 

However, land use and management effects on SOC differ greatly depending on cropping system, 233 

location (climate, topography, parent material, etc.) and there is often an equal amount of work that 234 

supports different results than what you present in this paper. As such, please be more specific and 235 

make sure to constrain postulations with “in temperate cropping systems...” or something to that 236 

example. I would be satisfied with a sentence early on stating that you are limiting the state of art (or 237 

body of knowledge) to your specific system (i.e. western European cropping systems).  238 

Answer: The reviewer is right in that some statements in the introduction mainly refer to Western 239 

Europe and we will follow her advice and state this early on in the introduction. 240 

As mentioned earlier, many sentences are vague. Please try to be more specific and detailed when 241 

building up the background and rationale in the introduction. There is more “telling” than “showing”. 242 

Please see the attached line-by-line review. 243 

Answer: Thank you for uploading the commented version of the manuscript. We agree that the 244 

revised version of the introduction must be more specific and detailed and will change it 245 

accordingly. 246 

 Methods 247 
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 Overall, I suggest reorganizing the methods section to be more aligned with your objectives. This is 248 

especially true when it comes to the use of calibration versus all samples. Sections often jump from 249 

calibration to all and it makes it a bit confusing. There also needs to be more technical details into 250 

how soils were collected and processed (e.g. collected with a corer, composite samples, one sample 251 

per depth, homogenized, dried, etc. ?). Replication need to be explicitly stated (how many samples 252 

did you use for each classification combination – i.e. land use, or depth, etc.). Including a 253 

supplemental table that lists all the samples/sites or something may help clear this up. There are also 254 

several areas where the methods need to be more explicitly stated and many instances were 255 

citations are needed. Please see attachment for line by line comments.  256 

Answer: We can see that the methods section can be confusing for the reader in the present stage 257 

and we will revise and improve it in the revised version. More details on the soil sampling and 258 

handling will be included and methods will be described in more detail. 259 

Calibration samples versus all: The experimental design (use of calibration sites versus all sites) needs 260 

to be clearer. It was confusing with the way the methods section was organized for the reader to 261 

understand why/what/how calibration samples were used as compared to all sites. Perhaps have a 262 

separate calibration section in the methods where all of this is addressed would be clearer.  263 

Answer: We agree that a separate calibration section is a good idea to clarify the methodology. We 264 

will restructure the methods accordingly. 265 

A major issue I have with the methods is combining the oPOM and fPOM fractions together as a 266 

“light fraction.” As much as I hate to ask authors to redo their analyses, I think that the best way to 267 

deal with the oPOM is to either ignore it or analyze it separately.   268 

Answer: We agree with the reviewer in the point that fPOM and oPOM are not the same. We have, 269 

however, good reasons to combine them into a light fraction for the purpose of prediction: 270 

- The oPOM fraction generally constitutes only a very small part of total SOC (Mean: 4%). 271 

Thus, it is very hard to predict this fraction separately via NIRS. We tried it as a first step 272 

but calibration results were very poor. This is why we do not treat oPOM separately from 273 

fPOM. 274 

- We do, however, not want to ignore the oPOM fraction completely for the following 275 

reason: The novelty in the prediction of C-fractions via NIRS consists of using the log-ratio 276 

transformation to ensure that the carbon content of both fractions adds up to 100% of the 277 

total carbon content of the sample. Therefore, we cannot omit the oPOM fraction since it 278 

would be unclear to which value the fPOM and MOM fraction should add up.  279 

Results 280 

 Please review my comments in the attachment and address them. Most importantly, I do not agree 281 

with using total SOC to explain fraction SOC. Of course, C would explain C. Total SOC is NOT a driver – 282 

it is a response variable for this study.  283 

Answer: We will address the helpful comments in the results section in the revised version of the 284 

paper. We do, however, not agree that the SOC content is merely a response variable in our 285 

dataset. The question needs to be answered whether the light and the stabilised fractions are 286 

regionally so variable that they require a separate analysis and cannot be predicted from the total 287 
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SOC content. If total SOC content is a strong predictor for the fractions we could easily build a 288 

model to predict fractions from total SOC and do not need fractionation work. It is important to 289 

check whether and which of the fractions are closely related to total SOC, as this implies a higher 290 

relevance of this fraction for the total SOC content of the soil.  For example, our results show that 291 

total SOC is much closer related to the light fraction in the black sands than in the other soils 292 

where texture is a more important driver for the distribution of the fractions.  293 

You are also missing any reference to Fig. 6 and Fig. 8 in the results! If you don’t use them – don’t put 294 

them in the manuscript (or put them in supplemental).  295 

Answer: Thank you for noticing this. We will include these references in the revised version of the 296 

manuscript. 297 

Discussion 298 

 I would almost reorganize the discussion to be more explicitly aligned with the study objectives – 299 

first discuss the how SOC is distributed among fractions at a national scale, then discuss which drivers 300 

are relevant and finally end with whether or not you can predict “vulnerable” (but please define) 301 

areas using your approach. Section 4.1 is entirely too brief, especially since it supposedly addresses 302 

your first objective. Again – don’t just tell me what other results support or do not support your 303 

results, show me!  304 

Answer: We agree that section 4.1 should be more detailed and should show more results of other 305 

studies. We refrain, however, from restructuring the discussion as proposed by the reviewer for 306 

the following reason: In our first draft version, the discussion was structured exactly as proposed 307 

by the reviewer. There we encountered the problem, however, that there were alternating parts 308 

about black sands and “normal” soils which forced us to repeat the same information over and 309 

over. We therefore decided to structure the discussion into a “black sands” and a “normal soils” 310 

part. 311 

You have a great discussion on the “black sands” section. I would love to see that reflected in the 312 

entire discussion section. Some of the details I was looking for in section 4.1 are included in 4.2. I 313 

think it would be good to combine section 4.1 and 4.2 (and address your first objective) and discuss 314 

black sands in the context of objective 1.  315 

Answer: We agree that it would indeed be a good idea to combine these sections in the revised 316 

version. 317 

In section 4.4, it would be great to discuss why/why not you think your approach worked to identify 318 

vulnerable areas. It is one of your objectives and you do not directly discuss it in the discussion. It 319 

needs to be addressed. I think concluding section 4.4 with a paragraph answering “Can regions of 320 

high vulnerability to carbon losses be identified by this predictive approach?” is warranted.  321 

Answer: We also agree with this proposal and will enhance the discussion of our third objective 322 

accordingly. 323 

Conclusion  324 



10 
 

See notes regarding final sentence. I believe that with a few revisions (as per my and other reviewers’ 325 

suggestions) this manuscript is publishable and I look forward to the revisions!  326 

Answer: We will reformulate the last sentence to make it more specific in the revised version. 327 

 328 

D) Short comment 3 329 

Dear Dr. Viscarra Rossel, 330 

Thank you for your short comment regarding our manuscript. We very much appreciate your input 331 

that helps to improve our paper and to make it more clear and easy to read. Please find our answers 332 

to your suggestions below: 333 

I thank the authors for their paper and I hope that my discussion helps. My comments here relate 334 

primarily to the lack of clarity in the description of the methods used for the spectroscopic modelling, 335 

and to missing quantification of robustness and uncertainty in the spectroscopic model predictions of 336 

the carbon fractions. I believe these to be crucially important because their further analyses and 337 

interpretation of the variability and driving factors relies heavily on the spectroscopic model 338 

predictions.  339 

First, the description of the spectroscopic modelling is inadequate and I encourage the authors to 340 

improve it. I think that the specifics of the spectroscopic modelling, apparently described in Jaconi et 341 

al., need to be included in this manuscript, particularly because the Jaconi et al. manuscript isn’t yet 342 

published. But, even if the Jaconi et al paper were published, I think that at the very least, readers 343 

will need a clear summary of their methods and findings–not simply a report of their assessment 344 

statistics.  345 

Answer: We agree that the reader needs more information on the spectroscopic modelling and as 346 

we are not sure when the review process for the paper of Jaconi et al. will be finished, we will 347 

include a more detailed description in the methods section of the revised version.  348 

Second, the authors do not convincingly show that the spectroscopic models were sufficiently robust 349 

for predicting the ‘unknowns’, which I presume were the ‘...>2500 sites with mineral soil all over 350 

Germany’ (mentioned only in the Introduction, line 106). Additional validation of the models with an 351 

independent test set will help, however, I would also encourage the authors to implement either a 352 

repeated cross validation, or to bootstrap the models to quantify their robustness and the 353 

uncertainty of their predictions (see for instance Viscarra Rossel, 2007). To this end, the authors 354 

might find it useful to read Viscarra Rossel & Hicks (2015). There, we proposed an approach for 355 

modelling the carbon fractions of a large continental scale dataset, reporting the robustness of the 356 

models, the (propagated) uncertainties of the predictions, and relating the spectroscopy to the 357 

chemistry of soil organic C.  358 

Answer: As described in our answer to the comment of L. Cécillon, the models have been validated 359 

using an independent test set and the results will be included in the revised version of the 360 

manuscript. Both datasets, the calibration and the validation data set cover the area of interest 361 

(Germany). We will check the recommended papers for the options to further quantify the model 362 
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uncertainty. However, with an independent validation dataset we already quantified the model 363 

uncertainty.  364 

Quantifying uncertainty is particularly important when predicting ‘unknown’ samples. Without 365 

quantified uncertainty, the predictions will definitely be less valuable. This is particularly relevant for 366 

this study because the predictions are being used in subsequent analysis to potentially gain new 367 

understanding.  368 

Answer: We agree that the quantification of uncertainty is crucial for gaining trust in the predicted 369 

values. Therefore, we propose to include a summary of the calibration and validation results in the 370 

supplement material of the revised version. 371 

Finally, I would like to suggest some minor corrections:  372 

- In lines 182–183, the Jaconi et al reference is cited as ‘in prep’ while in line 194 it is cited as 373 

‘submitted’  374 

Answer: Thank you for noticing this mistake. We will change this in the revised version of the 375 

manuscript. However, we hope to get this paper to be published soon. 376 

-The mention of the‘...>2500 sites with mineral soil all over Germany.’, in the Introduction, line 106, 377 

is inadequate. This should be described and made clear in the Methods section–possibly in section 378 

2.4 after a (better) description of the spectroscopic modelling.  379 

Answer: We agree that the methods need to be clear. However, there is a section on the soil 380 

inventory (2.1) and we will add more in the spectroscopic method section. In this case we do not 381 

agree with the comment, as it is good practice to give a very short overview in the introduction on 382 

how the research questions shall be answered. Of course the number of sites should also be stated 383 

in the methods section, which is the case. 384 

- In lines 185–187: ‘... In addition, residual prediction deviation (RPD) was calculated, using the 385 

classification system devised by Viscarra Rossel et al. (2006)....’  386 

– I am quite sure that Viscarra Rossel et al. (2006) did not devise a classification for the RPD. Williams 387 

(1987) originally devised the RPD for assessing spectroscopic calibrations of agricultural and food 388 

products. Later, Chang et al. (2001) suggested an arbitrary classification specifically for soil. It is very 389 

likely that Viscarra Rossel et al. (2006) simply used that classification, but I could not confirm one way 390 

or the other because the Viscarra Rossel et al. (2006) reference is not listed in the references.  391 

Answer: Thank you for this clarification. We will revise this and change it to Chang et al. 392 

mentioning that the classification is arbitrary but can serve as indicator for the model quality. 393 

- In terms of the RPD, Bellon-Maurel et al. (2010) suggested that the RPD should only be used if the 394 

data is normally distributed, otherwise, they propose the use of the RPIQ (Bellon-Maurel et al., 395 

2010).  396 

Answer: We will also include the RPIQ in the revised version. 397 

- Following from that, in our spectroscopic modelling of soil carbon and fractions (Viscarra Rossel & 398 

Hicks, 2015), we found that their statistical distributions were often not normal and required 399 
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logarithmic transformations. For this reason, it would be useful for the authors to report the 400 

distributions of the carbon and fractions data–but also because the PLSR algorithm assumes normally 401 

distributed data.  402 

Answer: We agree with this and we log-transformed the data for model development. We will add 403 

information on this in a revised manuscript version. 404 

 405 

E) Editors comment 406 

When submitting a revised manuscript please ensure that you address the following points: 407 
 408 
- SC1 and RC1 raise an important point about the Jaconi et al not being available at this point. The 409 
authors should update on the status of the paper. 410 
 411 
Answer: In the revised version we attached additional information on the NIRS calibration and 412 
validation in the methods section, and the calibration and validation results obtained for the 413 
present dataset by Jaconi et al. in an additional supplement. The status of the paper of Jaconi et al. 414 
was updated to “in review”. 415 
 416 
- Response to RC1: Page 2, the reviewer raises important point about not calling a pool of OM 417 
extracted after ultrasonication as fPOM. I appreciate the author's response and additional info that 418 
they are providing in the revised manuscript. But, it is still important not to refer to the OM extracted 419 
using ultrasonication as fPOM. Please revise the text. 420 
 421 
Answer: We see now that for some readers the term fPOM for the obtained fraction can be 422 
confusing. We changed this to the term iPOM (intra-aggregate POM). The text in the revised 423 
version was changed accordingly. 424 
 425 
- I agree with RC3 that putting both fPOM and oPOM pools together is problematic. These two pools 426 
(even though they can be very small fraction of soil C) differ in their availability for decomposition, 427 
and hence persistence in soil. Even if it is difficult to predict oPOM alone, and if the authors have a 428 
hard time achieving good results when they treat the two pools (as stated in C4) it is important to 429 
make sure that adding these two pools is not leading to confounding and potentially misleading 430 
results. 431 
 432 
Answer: We agree that the fPOM and oPOM pools differ in their availability for decomposition, but 433 
we still think that combining both fractions for the purpose of prediction at a national scale is the 434 
way to go in our special case: As we wanted to obtain the best prediction, treating fPOM and 435 
oPOM separately was not an option, as oPOM was not reliably predictable due to its small 436 
proportions in German agricultural soils. Leaving out the oPOM fraction was also not possible as all 437 
fractions should up to 100% when using the log ratio. 438 
We do not think that the results obtained in this way are confounding or potentially misleading, as 439 
it is clearly stated that the light fraction contains both fPOM and oPOM. On top of this, one main 440 
focus of the whole paper is that the light fraction is not necessarily a labile fraction, due to the 441 
occurrence of black sands in Germany. This finding makes it clear again that the fractions are only 442 
defined operationally and do not always imply a good measure of the carbon residence times in 443 
the soil. Soil organic matter pools and fractions are arbitrary defined (or operationally defined) 444 
except for the difference between POM and SOM that is bound to the mineral phase. Difference in 445 
stability between these two SOC pools has been confirmed in hundreds of studies. Our 446 
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fractionation scheme aimed at separating these two pools and additionally separated POM in two 447 
fractions. However, the main difference is between the POM fractions and the MOM. 448 
 449 

2) Author’s changes in manuscript 450 

 451 
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Abstract 463 

Atmospheric carbon dioxide levels can be mitigated by sequestering carbon in the soil. Sequestration 464 

can be facilitated by agricultural management, but its influence is not the same on all soil carbon 465 

pools, as labile pools with high turnover may be accumulated much faster, but are also more 466 

vulnerable to losses. The aims of this study were to 1) assess how soil organic carbon (SOC) is 467 

distributed among SOC fractions on national scale in Germany, 2) identify factors influencing this 468 

distribution and 3) identify regions with high vulnerability to SOC losses. The SOC content and 469 

proportion of two different SOC fractions were estimated for more than 2500 mineral topsoils (<87 g 470 

kg-1 SOC) covering Germany, using near-infrared reflectance spectroscopy. Drivers of the spatial 471 

variability in SOC fractions were determined using the machine learning algorithm cforest. The SOC 472 

content and proportions of fractions were predicted with good accuracy (SOC content: R²=0.87-0.90, 473 

SOC proportions R²=0.83, ratio of performance to deviation (RPD) 2.4-3.2). Main explanatory 474 

variables for distribution of SOC among the fractions were soil texture, bulk soil C/N ratio, total SOC 475 

content and pH. For some regions, the drivers were linked to the land-use history of the sites.  476 

Arable topsoils in central and southern Germany were found to contain the highest proportions and 477 

contents of stable SOC fractions, and therefore have the lowest vulnerability to SOC losses. North-478 

westernWestern Germany contains an area of sandy soils with unusually high SOC contents and high 479 

proportions of light SOC fractions, which are commonly regarded as representing a labile carbon 480 

pool. This is true for the former peat soils in this area, which have already lost and are at high risk of 481 

losing high proportions of their SOC stocks. Those “black sands” can, however, also contain high 482 

amounts of stable SOC due to former heathland vegetation, and need to be treated and discussed 483 

separately from ‘normal’ agricultural soils. Overall, it was estimated that, in large areas all over 484 

Germany, over 30% of is stored in easily mineralisable forms. Thus, SOC-conserving management of 485 

arable soils in these regions is of great importance. 486 

  487 
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1 Introduction 488 

There is increasing interest in soil organic carbon (SOC) in agricultural soils, as it contributes to soil 489 

fertility and also to mitigation of climate change when organic carbon (OC) sequestration is enhanced 490 

(Post and Kwon, 2000). In agricultural systems tThe pathway of atmospheric carbon to SOC is 491 

controlled by land useland-use and agronomic management. However, SOC comprises a large range 492 

of compounds, ranging from recently added organic matter, such as root litter and exudates, to 493 

highly condensed and transformed organic matter that may even be derived from the geogenic 494 

parent material. These different compound classes are stabilised in different ways and therefore 495 

have different turnover times (Lehmann and Kleber, 2015). Although SOC is now considered as 496 

having a continuum of turnover times, it is mostly described and modelled as consisting of different 497 

pools that vary in their turnover time (e.g. labile pool, intermediate pool and stabilised pool). The 498 

effects of land useland-use and management are not the same for all soil organic matter compounds, 499 

however, but they differ between SOC pools (Cardinael et al., 2015; Chimento et al., 2016). 500 

(Chimento et al., (2016) for example, found that plantingcultivation of perennial woody bioenergy 501 

crops increased SOC stocks, when compared to other bioenergy crops, but the new SOC accumulated 502 

only in the light and presumably labile particulate organic matter (POM) fraction. (Poeplau and Don, 503 

(2013a), on the other hand, found that cropland sites that where changed to grassland management 504 

also sequestered new SOC, but mainly in the more stable fractions. This is whyTherefore, the 505 

different SOC pools need to be assessed separately from the bulk SOC when discussing the influence 506 

of land useland-use and management on stabilisation and storage of SOC. 507 

One method for experimental quantification of the distribution of SOC among different SOC pools is 508 

fractionation. Various fractionation procedures for quantifying SOC fractions have been developed, 509 

mostly aiming at isolating fractions with differing turnover times (Poeplau et al., submittedin review, 510 

(Lee et al., 2009; Zimmermann et al., 2007a)). Determining the distribution of SOC among fractions 511 

with assumedly different carbon  OC-turnover times is one step towards understanding the factors 512 

influencing SOC stabilisation.  All methods for carbon carbon fractionation are quite laborious, time-513 
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consuming and therefore expensive, and not feasible for large datasets. Therefore, few studies exist 514 

on SOC fractions at regional scale, indicating a need for development of more efficient methods to 515 

predict carbon fractions in assessment of large datasets. Near-infrared reflectance spectroscopy 516 

(NIRS) and mid-infrared spectroscopy (MIRS), in combination with chemometric methods, have been 517 

applied successfully to predict carbon fractions (Zimmermann et al., 2007b; Baldock et al., 2013; 518 

Cozzolino & Moro, 2006; Reeves et al., 2006). Thus, since prediction of SOC fractions has been 519 

demonstrated to be possible using spectroscopic methods, it should also be possible to go beyond 520 

small datasets at field scale in order to examine how SOC fractions are distributed regionally and the 521 

factors that drive this distribution. 522 

Some impact factors are consistently reported as being important at site scale for the distribution of 523 

SOC among different fractions or pools, one of which is land useland-use. For Western European in 524 

croplands and grasslands, cropping systems it has beenwas shown that iIn croplands and grasslands, 525 

a similarly large high share of bulk SOC is attributed to fractions regarded as stable, while in forest 526 

soils, a larger higher proportion of SOC is attributed to more labile SOC fractions (John et al., 2005; 527 

Helfrich et al., 2006; Wiesmeier et al., 2014). Tillage can also have an impact on SOC pools, as several 528 

some studies report higher levels of bulk SOC under no-till conditions compared with conventional 529 

tillage, with the majority of this increase occurring in the more labile carbon pools (Chan et al., 2002; 530 

Devine et al., 2014; Liu et al., 2014). This may, however, be just an effect of carbonOCcarbon 531 

redistribution in the soil and not lead to a net increase of SOC (Baker et al., 2007; Luo et al., 2010). 532 

Fewer studies have examined the SOC distribution into fractions at regional scale and even fewer 533 

have examined factors affecting the proportions of SOC distributed among different fractions or 534 

pools. Wiesmeier et al. (2014) determined the distribution of SOC fractions among 99 Bavarian soils 535 

under different land useland-uses using the method fractionation scheme devised byof Zimmermann 536 

et al. (2007a), which is a combination of particle size and density fractionation. They found that 537 

approximately 90% of the bulk SOC in cropland and grassland soils was distributed in intermediate or 538 

stabilised SOC pools, while this was only true for 60% of the SOC found in forest soils. Therefore, 539 
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those authors suggested that Bavarian soils under cropland and grassland are more suitable for long-540 

term sequestration of additional SOC than soils under forest. They also examined controlling factors 541 

for the SOC distribution among fractions in the different land useland-uses (Wiesmeier et al., 2014). 542 

Correlation analyses suggested that the intermediate SOC pools in croplands and grasslands were 543 

significantly correlated to soil moisture, but none of the functional SOC pools was were influenced by 544 

temperature or precipitation. The particulate organic matter (POM) fraction of soils under grasslands 545 

and croplands was not significantly related to any environmental factor in that study (Wiesmeier et 546 

al., 2014). Poeplau & Don (2013a) conducted a study on 24 sites in Europe and found that SOC 547 

fractions differed in their degree of sensitivity to land-use change (LUC), with the sensitivity declining 548 

with increasing stability in the SOC fractions. Their results indicated that afforestation of cropland 549 

shifts SOC from the more stable to the more labile fractions, while on the conversion from cropland 550 

to grassland the newly sequestered SOC is stored in the intermediate to stable pools. Rabbi et al. 551 

(2014) examined the relationships between land useland-use, management, climate and soil 552 

properties and the stock of three SOC fractions for soils in south-eastern Australia, and observed a 553 

high impact of climate and site-specific factors (rainfall, silicon content, soil pH, latitude) and only a 554 

minor influence of land useland-use. The dominance of site and climate variables as impact factors in 555 

that region may primarily be due to the wide range of site conditions in the area studied. 556 

If the regional distribution of SOC fractions can be predicted using a combination of fractionation 557 

methods and NIRS and if relevant drivers for this distribution can be found, it should be possible to 558 

identify regions in Germany in which soils are most vulnerable to carbon losses. Some carbon 559 

fractions are commonly assumed to be more labile than others because they apparently have lower 560 

turnover times in the soil. The question is if it can simply be assumed that soils that contain a high 561 

percentage of those “labile” fractions are more vulnerable to carbon losses than those containing 562 

lower percentages of labile carbon fractionsothers. On the one hand, it should be noted that for the 563 

assessment of vulnerability to carbon losses, not only the distribution of the fractions should play a 564 

role, but also the absolute amounts of carbon within the fractions. This is important as some soils 565 
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may have stored a high percentage of SOC in a labile form, but the absolute amount of this SOC may 566 

be very low and thus less relevant in terms of climate change mitigation than a small percentage of 567 

light fraction that is lost from a soil rich in SOC.  On the other hand, tThere are several regions in 568 

north-westernWestern Europe and also in northern Germany where the soils exhibit unusually high 569 

SOC content while having a high sand and low clay content (Sleutel et al., 2011). These so called 570 

‘black sands’ have a poor capacity to stabilise SOC by binding onto mineral surfaces, and therefore 571 

most SOC is present in the form of POM. A great part of this land surface in northern Germany was 572 

covered by heathland and peatland until the end of the 18th century and those soils may behave 573 

different than other soils in terms of SOC storage and the vulnerability to carbon losses may not 574 

generally be definedable via  in terms of the distribution of dividing SOC into fractions by density 575 

fractionation. 576 

There are several regions in north-western Europe and also in northern Germany where the soils 577 

exhibit unusually high SOC content while having a high sand and low clay content (Sleutel et al., 578 

2011). These so called ‘black sands’ have a poor capacity to stabilise SOC by binding onto mineral 579 

surfaces, and therefore most SOC is present in the form of POM. A great part of this land surface in 580 

northern Germany was covered by heathland and peatland until the end of the 18th century and 581 

those soils may behave different than other soils in terms of SOC storage  582 

The present study is part of the German Agricultural Soil Inventory. A set of 145 topsoil samples, 583 

representative of German agricultural soils, was fractionated and used to calibrate NIRS predictions 584 

of the constituent fractions for > 2500 sites with mineral soils all over Germany. Additional climate, 585 

management and geographical data were gathered for all sites and a machine learning algorithm was 586 

employed to clarify which factors influence the distribution of the carbon fractions. In this paper we 587 

therefore aim to answer the following research questions: 588 

1)  How is SOC distributed among the fractions at national scale? 589 

2)  Which driving factorsers are relevant for this distribution? 590 
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3)  Can  regions of high vulnerability to carbon losses be identified by this predictive approach? 591 

 592 

2 Material & Methods 593 

2.1 Study area, sampling and sample selection 594 

Germany has a total surface area of 357 000 km² and its climate is temperate, marine and 595 

continental. Mean annual precipitation (MAP) ranges between 490 and 2090 mm and mean annual 596 

temperature (MAT) between 5.7 and 11.2 °C. Around half the country’s surface area is used for 597 

agriculture, with cropland accounting for 71% of this area, grassland for 28% and other crops (e.g. 598 

vines) for 1%.  599 

Soil samples were taken in the course of the ongoing German Agricultural Soil Inventory. By May 600 

2017, 2900 agricultural sites (croplands and grasslands) had beenwere sampled based on an 8 km x 8 601 

km sampling grid. At each site, a soil profile was characterised by a soil scientist and soil samples 602 

were taken from five fixed depth increments, using 2-10 sampling rings per depth increment 603 

(depending on the stone content) that were representatively distributed. All soils were classified in 604 

the field according to the German Soil Classification System (Sponagel et al., 2005). 605 

For this study, a representative set of calibration sites was needed to be able to predict the carbon 606 

fractions using NIRS. Therefore, The topsoils (0-10 cm) of 145 calibration sites, representative for the 607 

whole dataset,  were chosen according to the following criteria: 1) Maximum difference in NIR 608 

spectra, according to the Kennard-Stone algorithm (Daszykowski et al., 2002), 2) consistent spatial 609 

distribution within Germany, 3) exclusion of sites with SOC content > 87 g kg-1 in any horizon, as such 610 

soils may be organic (> 30% organic substance) or in transition between organic and mineral soils and 611 

it was assumed that the processes governing the variability of SOC in organic soils differ from those 612 

in mineral soils, and 4) representative mapping of land useland-use, soil type and carbon stocks. The 613 

topsoils (0-10 cm) of these 145 sites were fractionated to provide the calibration set for the 614 

prediction of the carbon fractions in the remaining sites using NIRS. After obtaining the predicted 615 
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carbon fractions for all 2900 sites, the machine learning algorithm cforest was employed to find out 616 

whichidentify driving factors were important for the distribution of SOC into fractions. The employed 617 

fractionation scheme is described in section 2.3, while details on the NIRS spectroscopy and 618 

chemometrics are given in section 2.4. The use of the cforest algorithm is explained in section 2.5. 619 

2.2 Laboratory analyses 620 

All 2900 topsoil samples were dried and analysed for gravimetric water content, electrical 621 

conductivity (EC), pH, SOC content (g kg-1, by dry combustion), soil inorganic carbon content (g kg-1) 622 

after removing organic carbon in a muffle kiln, texture (by the pipette method), rock content, root 623 

content and bulk density (with repeated soil rings). The SOC stocks were calculated as suggested by 624 

Poeplau et al. (2017), taking into account the stone and root content of the soil. 625 

2.33  Fractionation of calibration samples 626 

The topsoil samples (0-10 cm depth) of the selected calibration sites were dried at 40°C to constant 627 

weight and sieved to a size <2 mm. Three different fractions were prepared, using an adaptation of 628 

the fractionation scheme proposed by (Golchin et al., (1994): 629 

 1) To obtain the fraction that contains free intra-aggregate particulate organic matter (ifPOM), 20 g 630 

of soil sample were placed in a falcon tube, which was then filled to 40 mL with sodium polytungstate 631 

(SPT) solution (density=1.8 g mL-1). The sample was dispersed ultrasonically at 65 J mL-1 to 632 

standardize the treatment of the iPOM fraction, which is often isolated by shaking in other studies., 633 

with Tthe probe energy supply was calibrated using the procedure explained in Puget et al. (2000). 634 

The tube was centrifuged at 4000 rpm until there was a clear distinction between the fPOM iPOM 635 

fraction and the remaining soil pellet. The supernatant was then filtered through a 45 µm filter paper 636 

and a ceramic filter using vacuum filtration. The ifPOM fraction remained on the filter and was rinsed 637 

with distilled water until the electrical conductivity of the filtered water was below 10 µS m-1. The 638 

ifPOM fraction was then dried at 40°C, weighed and milled. 639 
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2) To obtain the particulate organic matter occluded in aggregates (oPOM) fraction, the falcon tube 640 

containing the pellet was again filled to 40 mL with SPT solution. The pellet was mixed with the 641 

solution using a vortex shaker and then ultrasonic dispersion was applied, again, at 450 J mL-1., in 642 

order to destroy soil aggregates. This energy level was chosen as (Schmidt et al., (1999) found that 643 

450 to 500 J mL-1 is enough to disperse all soil aggregates (including microaggregates) in a wide range 644 

of soil types. The sample was centrifuged and the oPOM fraction was processed as described above 645 

for the fPOM iPOM fraction.  646 

3) The remaining soil pellet was assumed to contain the mineral-associated organic matter (MOM or 647 

heavy) fraction.  The pellet was washed three times with 40 mL of distilled water, dried, weighed and 648 

milled in the same way as the fPOM iPOM and oPOM fractions. The organic carbon (C) and total 649 

nitrogen (N) content of the three fractions were determined through thermal oxidation by dry 650 

combustion using an elemental analyser (LECO Corp.). One possible limitation of the applied 651 

fractionation scheme is that pyrogenic carbon ends up in the light iPOM and oPOM fractions 652 

although it generally has higher turnover times than one would assumed for this fraction. For 653 

Germany, however, we are confident that this is not influencing the results, as pyrogenic carbon only 654 

plays a minor role in German soils. The applied fractionation method applied is only one out of 655 

several possible methods and options to separate labile from stabilised SOC. 656 

The carbon recovery rate of the fractionation approach was between 80 and 110%. Recovery rates of 657 

more than 100% can be reached as the sample that is measured for total SOC and the sample that is 658 

fractionated are not exactly the same. Even through careful subsampling the samples cannot be 659 

completelely homogenized concerning their carbon content. The mean carbon contents of the 660 

fractions were 34.7% for the iPOM fraction, 27.4% for the oPOM fraction and 1.8% for the MOM 661 

fraction. 662 

Basic descriptive statistics were calculated for the data on the fractionated calibration sites, including 663 

mean absolute and relative proportions of the SOC fractions divided between different land useland-664 

uses and soil texture classes. An ANOVA was conducted to determine whether the differences 665 
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between cropland and grassland land useland-uses were significant and to test for significant 666 

differences between soil texture classes. The Games Howell post-hoc test was used for this purpose.  667 

 668 

2.4 Near-infrared spectroscopy and chemometrics 669 

As the oPOM fraction generally contained a small proportion of total SOC (on average 4%), it was not 670 

reliably predictable on its own. Therefore, it was combined with the fPOM iPOM fraction to give a 671 

‘light fraction’ for the purpose of prediction. This was done even though it is clear that iPOM and 672 

oPOM may differ in their availability for decomposition and in their turnover times. In this case an 673 

accurate prediction of the combined light fraction was thought to be more important and better than 674 

an inaccurate prediction of the oPOM fraction, as this can be misleading for the readers when 675 

displayed on a map. Soil samples were dried at 40°C, sieved through a 2 mm sieve and finely milled in 676 

a rotary mill. Before analysis, the samples were dried again at 40°C and equilibrated to room 677 

temperature for a few minutes in a desiccator. The soil samples were scanned with spot size 4 cm 678 

diameter in a Fourier-Transform near-infrared spectrophotometer (FT-NIRS, MPA - Bruker Optik 679 

GmbH, Germany). Spectral data were measured as absorbance spectra (A) according to A = log (1/R), 680 

where R is the reflectance expressed in wave number from 11000 to 3000 cm-1 (NIR region) with 8 681 

cm-1 resolution and 72 scans. The final spectrum was obtained by averaging two replicates. 682 

To improve the model accuracy a spectral pre-treatment was applied, using Savitzky-Golay first 683 

derivative smoothing (3 points) and wavelength selection from 1330 to 3300 nm, since these regions 684 

contain the main absorbance information. The calibration set consisted of the 145 calibration site 685 

samples, and the remaining samples were used for prediction. Partial least squares regression (PLSR) 686 

was performed in the pls package (Mevik et al., 2015), based on near-infrared (NIR) spectra and 687 

reference laboratory data. A cross-validation was applied using leave-one-out to avoid over- and 688 

under-fitting. To obtain the carbon fractions and ensure that the sum of light and heavy fractions was 689 

equal to total SOC content, the log ratio of the light and heavy fraction was predicted (Jaconi et al., in 690 

prep in review.). A validation using an independent validation set was not deemed advisable in this 691 

Feldfunktion geändert
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study as the calibration dataset was representative for the whole area of Germany, containing  692 

including a diverse set of soil types and geographical circumstancesvery different soils. In this 693 

caseMoreover, 145 samples are not a large calibration dataset for a calibration and with every split 694 

of this dataset a large part of the variation present in German soils would be lost for the calibration. 695 

An independent validation using the same dataset was carried out, however, by Jaconi et al. (in 696 

review) and the calibration and validation results can be found in table S3. Model performance was 697 

evaluated using the root mean square error of cross-validation (RMSECV), Lin’s concordance 698 

correlation coefficient (ρc) and the coefficient of determination (R²) between predicted and 699 

measured carbon content in the fractions. In addition, the ratio of performance to inter-quartile 700 

range (RPIQ) and the residual prediction deviation (RPD) was were calculated, the latter using the 701 

classification system devised by (Chang et al., 2001). This classification is arbitrary, but nonetheless, 702 

can be used to assess the model quality and to compare with other models. . 703 

We used the methodology as stated above described, as Jaconi et al (in review) found out that NIRS 704 

is one promising method to predict carbon fractions, which is fast, low-cost and accurate. The 705 

authors foundhad the following calibration results:NIRS in combination with chemometric methods 706 

was found to give accurate prediction of the carbon content in light and heavy fractions of the soil. 707 

For prediction of carbon content in the fractions (g kg-1), the coefficient of determination (R²) 708 

between predicted and measured carbon content in the fractions was found to be 0.87-0.90 and 709 

RMSECV was 4.37 g kg-1. The RPD was 2.9 for the prediction of carbon content in the light fraction 710 

and 3.2 for the prediction in the heavy fraction. For prediction of carbon proportions in the fractions 711 

(%), R² was 0.83, RMSECV 11.45% and RPD 2.4 (Fig. S1; for more details see Jaconi et al., submittedin 712 

review). The accuracy of prediction of both SOC content and proportions of the light and heavy SOC 713 

fractions was very good and was comparable with that in other studies that have used NIRS to 714 

predict SOC fractions (Cozzolino and Moro, 2006; Reeves et al., 2006). It can thus be concluded that 715 

prediction of SOC fractions with NIRS is a fast, inexpensive and accurate method. 716 

2.5 Drivers of soil organic carbon distribution in fractions 717 
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A total of 75 potential drivers of differences in carbon proportions in different fractions was compiled 718 

from the soil analysis data, complemented with data from a farm survey and geographical data (for a 719 

complete list of predictors, see Table S2). The farm survey related torecorded management practices 720 

implemented,  over the 10 years, if known by the farmer, prior to sampling. Using this information, 721 

yearly mean carbon and nitrogen inputs through plant material and organic and mineral fertilizers 722 

and outputs were calculated for the each sites, based on the yield of the main product and on 723 

different different carbon allocation functions for different crops as described in (Bolinder et al., 724 

1997)as described in Bolinder et al. (1997). When data were missing in the survey responses, yields 725 

were calculated using regional yield estimates provided by the regional governments. Carbon and 726 

nitrogen inputs through mineral or organic fertiliser were also calculated based upon the survey 727 

data, using the amounts of mineral or organic fertilizers that were used by the farmers in the past ten 728 

years. Climate and site data acquired from GIS data layers completed the set of predictor variables 729 

(climate data from Deutscher Wetterdienst, normalised difference vegetation index (NDVI) data from 730 

ESA, elevation data from Bundesamt für Kartographie und Geodäsie). For the sites in the federal 731 

states of Lower-Saxony, North-Rhine Westphalia,  (north-western Germany) and Mecklenburg-732 

WesternWestern Pomerania, Rhineland-Palatinate, Saxony Anhalt  (north-eastern Germany)and 733 

Schleswig Holstein (Northern Germany), the land-use history was researched using historical maps 734 

(dating back to 1873-1909), as many regions in these states are known to have a heathland or 735 

peatland legacy.  736 

The conditional inference forest algorithm (cforest; Hothorn et al., 2006), was used to identify the 737 

most influential drivers of SOC distribution among the different fractions. Cforest is an ensemble 738 

model and uses tree models as base learners that can handle many predictor variables of different 739 

types and can also deal with missing values in the dataset (Elith et al., 2008). The cforest algorithm is 740 

similar to the better known random forest algorithm, a non-parametric data mining algorithm that 741 

uses recursive partitioning of the dataset to find the relationships between predictor and response 742 

variables (Breiman, 2001). 743 
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Bootstrap sampling without replacement was carried out in order to prevent biased variable 744 

importance (Strobl et al., 2007). As multicollinearity between the predictors may result in a biased 745 

variable importance measure in cforest algorithms (Nicodemus et al., 2010), the correlations 746 

between the predictor variables were controlled. When the correlation between two possible 747 

predictors was > 0.8, only the one with the broader range of variation was kept in the dataset. Ten 748 

cforest models were created, each containing 1000 trees and using different random subset 749 

generators. From these models, the variable importance of predictors was extracted and the relative 750 

variable importance was calculated and averaged over all 10 models. Variables were considered 751 

important when their relative variable importance was higher than 100/n, where n is the number of 752 

predictors in the model. This is the variable importance that each variable would have in a model 753 

where all variables are equally important (Hobley et al., 2015). It should be noted that the relative 754 

variable importance value obtained from the cforest algorithm does not necessarily imply direct 755 

relationships between the proportion of SOC in the light fraction and the main drivers, as the 756 

algorithm also takes into account interaction effects between the variables. Model performance was 757 

assessed by the coefficient of determination (𝑅2), as defined by the explained variance of out-of-bag 758 

estimates, which represent a validation dataset: 759 

 
𝑅2 = 1 −

𝑀𝑆𝐸𝑂𝑂𝐵

𝑉𝑎𝑟𝑧
 

 

(1) 

where 𝑀𝑆𝐸𝑂𝑂𝐵  is the mean squared error  of out-of-bag estimates and Varz is the total variance in 760 

the response variable. 761 

A range of soils in northern Germany, called ‘black sands’, behaved quite differently from other soils 762 

in the country in terms of the driving factors for SOC distribution among the fractions. Therefore the 763 

dataset was split into two parts for the cforest analysis and the cforest algorithm was used on: 1) the 764 

dataset containing only the black sands from northern Germany (n=264). Those were extracted using 765 

the NIR spectra, which were classified into black sands and normal soils using the simca function in 766 
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the “mdatools” package (Kucheryavskiy, 2017); and 2) on all other soils considered not to be black 767 

sands (n=2406). All statistical analyses were conducted using the software R . Maps were generated 768 

with the software QGIS.  769 
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3 Results 770 

3.1 Carbon distribution among measured fractions (145 calibration sites) 771 

The fPOMiPOM fraction contributed an average of 23% to bulk SOC (23% ±2.36 (mean ± standard 772 

error (SE)) in croplands and 25% ±3.79 8 in grasslands (Fig. 1). The oPOM fraction accounted for an 773 

average of 4% of SOC (3% ± 0.49 5 in croplands, 8% ±1.26 3 in grasslands) across all calibration sites 774 

(Fig. 1). The heavy fraction contributed the largest highest proportion to bulk SOC (73% in all soils, 775 

73% ± 2.46 5 in croplands and 68% ± 4.43 in grasslands). The differences between land useland-uses 776 

were not significant. There was great variation in the carbon distribution between the fractions, with 777 

the fPOM iPOM fraction contributing between 3 and 99% to bulk SOC. The absolute carbon content 778 

(g kg-1) of the fractions was significantly different for the heavy fraction, with grasslands having 779 

significantly higher heavy fraction carbon content than croplands (31 g kg-1 ± 3 compared with 13 g 780 

kg-1 ± 0.7).  781 

There were significant differences in the contribution of the different fractions to bulk SOC 782 

depending on the main soil texture class (Fig. 2). In sandy soils, the fPOM iPOM fraction contributed 783 

significantly more and the heavy fraction contributed significantly less to bulk SOC than in other soils. 784 

For the oPOM fraction, the difference between sandy soils and clayey, silty and loamy soils was not 785 

significant. The absolute SOC content (g kg-1 soil) was significantly higher in the heavy fraction of 786 

clayey soils than in the heavy fraction of all other soil textures and it was significantly higher in the 787 

oPOM fraction of sandy soils than in the fPOMi fraction of all other soils. 788 

3.2 Influences on soil organic carbon distribution among fractions (calibration and prediction 789 

sitesall 2900 sites) 790 

With the machine-learning algorithm cforest, 75 variables that may act as drivers for the regional 791 

distribution of SOC fractions were evaluated (Fig. 3a). For the ‘normal’ soils (non-black sands) 792 

dataset, soil texture had the highest explanatory power in predicting the contribution of the light 793 
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fraction to bulk SOC (Fig. 4), with clay content being negatively and sand content positively 794 

correlated with percentage of SOC in the light fractions. The SOC content, bulk soil C/N ratio, land 795 

useland-use, soil type, pH and CaCO3 content were also identified as important explanatory variables 796 

when predicting the light fraction proportion. The SOC content showed a positive relationship with 797 

light-fraction SOC proportion and with bulk soil C/N ratio. The grassland soils showed a higher 798 

proportion of bulk SOC in the light fraction than the cropland soils and pH was negatively related to 799 

the light-fraction SOC proportion. Comparing the fractions distribution in the different soil types, it is 800 

obvious that the podzols store a substantially higher proportion of their total SOC in the light fraction 801 

than all other soil types (Fig. 6). 802 

The analysis of historical land useland-use data of northern Germany confirmed that the former 803 

peatland, heathland and grassland sites had significantly higher ((p < 0.01) proportions of bulk SOC in 804 

the light fraction than sites used as cropland in the same period (Fig. 5a). These historical peatland, 805 

heathland and forest sites also had significantly higher (p<0.05) C/N ratio than the historical cropland 806 

and grassland sites (Fig. 5b). Regarding the total SOC content, historical peatland and grassland sites 807 

had significantly higher (p<0.001) values than historical croplands (Fig. 5c). 808 

For the black sands dataset, bulk soil SOC content was the most important driver of SOC distribution 809 

in the fractions (Fig. 3b), followed by C/N ratio, soil temperature in summer and soil bulk density. The 810 

SOC content had a positive relationship with percentage of SOC in the light fraction, and with C/N 811 

ratio (Fig. 4). For soil temperature there was no clear relationship. There was a negative relationship 812 

between SOC proportion in the light fraction and soil bulk density. 813 

3.3 Distribution of soil organic carbon into fractions across Germany 814 

Regions featuring high proportions of SOC in the light fraction (over 4060% of total SOC) nearly all lie 815 

in northern Germany (Fig. 7). Medium proportions of SOC in the light fraction (40-60% of total SOC) 816 

were found in Mecklenburg-WesternWestern Pomerania and in parts of Brandenburg (north-east 817 

Germany). Low proportions (< 40 %) of SOC in the light fraction were found in central and southern 818 
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Germany. When looking at the soils’Considering the absolute contents of SOC in the light fraction 819 

(Fig. 8), it is was obvious that in most regions the absolute (in g/kg) and relative (in %) carbon 820 

contents in the light fraction are in close alignment in most regions in Germany, implying that those 821 

sites with a higher total SOC content also have a higher proportion of this content stored in the light 822 

fraction.  823 
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4 Discussion 824 

4.1 Contribution of soil organic carbon fractions to bulk soil organic carbon 825 

The relative distribution of carbon among different fractions did not differ significantly between 826 

croplands and grasslands (Fig. 2a) in the calibration dataset (n=145), which is in agreement with 827 

previous findings for south-east Germany (Wiesmeier et al., 2014). There was a trend, however, for 828 

slightly higher iPOM content in grasslands than in croplands. When taking the full dataset, including 829 

the fractions predicted with NIRS, the difference was significant (p < 0.05), with higher proportions of 830 

POM in grassland topsoils when compared to cropland (not shown)ame . Other studies, however, 831 

found considerably higher differences between POM proportions in grassland and cropland soils. 832 

when  soils(Christensen, (2001) estimated that, in grassland soils, 15-40% of SOC is stored in the light 833 

fraction and (Poeplau and Don, (2013b) found the light fraction proportion to be twice as high in 834 

grassland topsoils (0-10 cm) when compared to cropland soils in a study using paired land-use 835 

change sites. One possible reason for a larger light fraction in grassland soils is the permanent 836 

vegetation cover and the high amount of roots, which provide a higher input aboveground and 837 

belowground input of SOC (Christensen, 2001). This The smallerlimited differences between in light 838 

fraction between in cropland and grassland soils shown in our study may partlycan possibly be due to 839 

interfering factors, asdue to  historical land useland-use changes which would need deeper 840 

investigations to unravel.conversion of cropland to grassland still affecting carbon distribution in the 841 

fractions.   M o r e o v e r ,  Ggrasslands and croplands are often generally located on different soil types 842 

which, again, interferes with other factors as soil moisture or texture. , however; and thus  843 

tTherefore, it is not always possible to draw direct conclusions on land-use change effects on carbon 844 

fractions from such regional inventories.  In a previous study using paired land-use change sites, the 845 

POM proportion was found to be twice as high in grasslands as in croplands (Poeplau and Don, 846 

2013b). Even though the fraction distribution did not differ significantly between croplands and 847 
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grasslands in the present study, there was a trend for slightly higher fPOM content in grasslands than 848 

in croplands.  849 

The significant differences observed in the absolute SOC content of fractions between different land 850 

useland-uses were to be expected, as grassland soils in Germany contain on average more than twice 851 

as much SOC in the upper 10 cm as cropland soils (42±16 g kg-1 compared with 17±9 g kg-1, Fig. 2b).  852 

This higher carbon content of grassland soils is often found and can mainly be attributed to the 853 

higher SOC inputs and the lack of tillage induced SOC mineralization in the topsoil (Post and Kwon, 854 

2000; Wiesmeier et al., 2014). 855 

4.2 Black sands in Germany 856 

All samples with medium or high proportions of SOC in the light fraction were found to originate 857 

from northern Germany. This is the area in which the black sands are present, which store large parts 858 

of their SOC in the light fraction. Springob & Kirchmann (2002a) examined the presence of black 859 

sands in Lower Saxony in Germany and linked it to the land-use history. In Ap-horizons of soils 860 

formerly used as heathland or plaggen, they found a high fraction of SOC resistant to oxidation with 861 

HCl. This HCl-resistant fraction was positively correlated with the total SOC content, but soil microbial 862 

biomass carbon content showed a negative relationship with total SOC and, when incubated, the 863 

specific respiration rates were lowest for the soils with the highest SOC content (Springob & 864 

Kirchmann, 2002a). Those authors concluded that a large high proportion of the organic matter in 865 

the former heathland soils is resistant to decomposition and suggested that low solubility of the SOC 866 

could be responsible for its high stability. A recent study (Alcántara et al., 2016) reported similar 867 

results for sandy soils under former heathland, which had lower respiration rates per unit SOC and a 868 

wider range of C/N ratios than control soils without a heathland history. Certini et al. (2015) showed 869 

that SOC under heathlands is rich in alkyl C and contains high contents of lipids, waxes, resins and 870 

suberin, all of which hinder microbial degradation. This confirms the claim that sandy soils under 871 

former heathland and contain high contents of stable SOC even though they also contain a large high 872 
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amount of POM. In such soils, the POM fractions may not be directly linked to higher turnover rates 873 

and lower stability.  874 

“Historical” peatlands may have lost much of their former carbon stocks due to a number of reasons: 875 

Drained peatlands emit huge amounts of CO2 (German grasslands on average 27.7 to CO2 ha-1 yr-1, 876 

(Tiemeyer et al., 2016)) until the peat has virtually vanished. There might have also been peat 877 

extraction, and the remaining peat layer might have been mixed with underlying sand. Finally, former 878 

peatland soils were often mixed with large amounts of sand in order to make them usable for arable 879 

cultivation, but still often contain substantial proportions of (degraded) peat and therefore have 880 

relatively high SOC content, with a large part of the SOC in the light fraction. It has been found 881 

elsewhere (Bambalov, 1999; Ross and Malcolm, 1988; Zaidelman and Shvarov, 2000) that the SOC 882 

content in sand-mix cultures declines rapidly after mixing with sand and that the decline increases 883 

with increasing intensity of mixing. In a 15-year long-term trial, Bambalov (1999) found that the SOC 884 

content of a sand-mix culture could only be stabilised (at much lower SOC content than the original 885 

peat) by adding organic and mineral fertilisers to the soil. In contrast, Leiber-Sauheitl et al. (2014) 886 

found that a peat-sand mixture with a SOC content of 93 g kg-1 emitted as much CO2 as an adjacent 887 

shallow “true” peat. Similarly, Frank et al. (2017) determined a higher contribution of soil-derived 888 

dissolved organic carbon at a peat-sand mixture compared to the peat, which points to a low stability 889 

of the SOC in this kind of soils. This means that, for the light fraction of the former peatlands in 890 

northern Germany, enhanced stability of the POM cannot be assumed. Thus, for more accurate 891 

interpretation of results, the black sands had to be divided into a former heathland group, containing 892 

a relatively stable light fraction, and a former peatland group, containing a relatively labile light 893 

fraction, although there are transitional vegetation types with heath on peatlands. 894 

Land-use history clearly continues to influence soil SOC dynamics, since the light-fraction SOC 895 

proportion and the bulk soil C/N ratio were higher in soils with a heathland or peatland history in the 896 

present study. This  supports findings by Sleutel et al. (2008) that the chemical composition of pairs 897 

of relict heathland and cultivated former heathland soils is very similar. Unfortunately former 898 
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peatlands and heathlands are not necessarily distinguishable due to their SOC content and C/N ratio, 899 

so that knowledge on the land useland-use history is necessary.  In some cases, however, even the 900 

distinction on site can be difficult, e.g. on dry peatlands with heath vegetation (Calluna, Erica). In 901 

future studies it would therefore be interesting to incubate pairs of former heathland and peatland 902 

in order to be able to make accurate claims on the vulnerability of the light fraction SOC in these 903 

soils. 904 

The presence of black sands poses a problem for interpretation of the SOC fractions. In most cases, 905 

the SOC in the light fraction (fPOM iPOM + oPOM fractions) is seen as representing a labile carbon 906 

pool with short turnover times. Therefore sites with high proportions of bulk SOC in the light fraction 907 

would be seen as being at risk of losing this substantial part of their SOC stock quite rapidly and 908 

easily. For the black sands, however, their former heathland land useland-use history has led to quite 909 

stable and not easily degradable POM (Overesch, 2007; Sleutel et al., 2008; Springob and Kirchmann, 910 

2002), while for former peatland that was drained and possibly mixed with sand the classification of 911 

the light fraction into a labile SOC pool may well be justified (Leiber-Sauheitl et al., 2014). This implies 912 

that the results need to be interpreted in a different way for black sands than for other soils. 913 

4.3 2 Driving factors for carbon distribution into fractions 914 

4.32.1 ‘Normal’ agricultural soils (non-black sands) 915 

The most important driver for the SOC distribution among the fractions in ‘normal’ soils was the soil 916 

texture (Fig. 3a). This is well in line with the frequently reported relationship between clay content 917 

and mineral-associated (heavy fraction) SOC, whereby clayey soils can stabilise SOC through 918 

mechanisms that protect it against microbial decay by absorption or occlusion (v. Lützow et al., 2006; 919 

Six et al., 2002).  (v. Lützow et al., 2006). The SOC that is bound to the mineral phase is mostly 920 

assigned to a conceptual stable SOC pool. The negative relationship between SOC content and 921 

percentage of SOC in the heavy fraction (Fig. 4) may indicate SOC saturation of the mineral fraction 922 

at rising SOC content, so that excess SOC can only be stored as particulate organic carbon. 923 
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The positive correlation between soil C/N ratio and C proportion in the light fraction (Fig. 4) is related 924 

to the inherent higher C/N ratio of the light fraction compared with the heavy fraction. Thus, , so that 925 

a higher share of light-fraction C leads to a higher C/N ratio of the total bulk soil. Thus, in ‘normal’ 926 

agricultural soils the C/N ratio may be useful as an indicator of SOC stability: A high C/N ratio 927 

indicates a high proportion of labile SOC in the soil. in ‘normal’ agricultural soils in Germany.The light 928 

fraction generally has a higher C/N ratio than the other fractions as its material is less decomposed 929 

and therefore closer to the high C/N ratios of the originating materials than materials of the heavy 930 

fraction which have undergone a higher degree of decomposition. 931 

The fact that land useland-use is an important driver for the distribution of SOC among the fractions 932 

is mainly due to the fact that in the dataset containing all non-black sand sites topsoils under 933 

grassland store a significantly higher share of SOC in the light fraction than topsoils under cropland. 934 

This is in line with higher inputs of roots, which make up part of the light fraction, into grassland 935 

topsoils. The higher proportion of SOC in the light fraction was also noted in the calibration dataset 936 

(n=145), but the difference was not significant in that case.  937 

Apart from texture, C/N ratio and land-use, another important driving factor for the distribution of 938 

SOC intoaccrossamong fractions was the soils carbonate content. Most arable topsoils in Germany do 939 

not contain carbonate. The 9% of arable soils that contained over 5% carbonate in this study 940 

consistently had a high proportion of heavy-fraction carbon and were therefore classified as 941 

containing mainly stabilised SOC (Fig. 4). Calcium bridges may foster absorption of SOC onto mineral 942 

surfaces and, via an active soil fauna, high pH enhances the turnover and transformation of SOC from 943 

recently added biomass to mineral-associated SOC that can be stabilised via absorption (Oades, 944 

1984). In general, there was a trend for a higher proportion of SOC in the light fraction with lower pH 945 

(Fig. 4), which is well in line with the finding by Rousk et al. (2009) that SOC mineralisation is slower 946 

in soils with lower pH due to a higher ratio of fungal to bacterial biomass. 947 



35 
 

The influence of soil type is mainly due to the Podzol soils storing a much higher proportion of bulk 948 

SOC in the light fraction than all other soil type classes (Fig. 6). Podzols often develop on sandy soils 949 

and therefore do not have a high capacity for SOC stabilisation in the heavy fraction (Sauer et al., 950 

2007). 951 

4.32.2 Black sands 952 

In the dataset containing only the black sands, soil total SOC content was the most important driver 953 

for the SOC distribution among the fractions, with increasing light fraction with increasing SOC 954 

content (Fig. 4). On the one hand, this could indicate saturation of the heavy fraction at high SOC 955 

contents, which would lead to further storage in the light fraction only, as already mentioned above 956 

for ‘normal’ soils. Another possible explanation is that those soils with the highest SOC content in the 957 

dataset are degraded peatlands, in which a high percentage of the SOC ends up in the light fraction. 958 

On former heathlands, the soil total SOC content is also quite high compared with that in other sandy 959 

soils and the light fraction is mainly built up from Calluna vulgaris litter, since Calluna vegetation 960 

dominates on many heathlands. Calluna litter contains very stable SOC due to high contents of lipids, 961 

long-chain aliphatics and sterols, and may persist in the light fraction of soil for decades or even 962 

centuries (Sleutel et al., 2008).  963 

There is a close link between land-use history as peatland and heathland and soil C/N ratio, with high 964 

C/N ratio in former heathland soils (Alcántara et al., 2016; Certini et al., 2015; Rowe et al., 2006) and 965 

also often in former peatlands (Aitkenhead and Mcdowell, 2000). Therefore it is evident that land-966 

use history is a main driver for the high proportions of bulk SOC found in the light fraction in these 967 

soils. This is well in line with the significantly higher C/N ratios reported for soils in Lower-Saxony and 968 

Mecklenburg-WesternWestern Pomerania, which were under heathland or peatland more than 100 969 

years ago (Fig. 5). The influence of land-use history reinforces the relationship between C/N ratio and 970 

the light fraction. 971 
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In black sands, there was a significant negative relationship between soil temperature and the light-972 

fraction SOC proportion, but this was not found for the other soils (Fig. 4). A negative relationship 973 

was observed between soil bulk density and proportion of SOC in the light fraction, which was 974 

evidently due to the low density of the light fraction affecting overall soil bulk density (Fig. 4).  975 

Even though the land useland-use history was part of the dataset and we could link several of the 976 

important driving factors to a history as peatland or heathland, the cforest algorithm did not identify 977 

the land useland-use history as important driver for the SOC distribution into fractions. This was the 978 

case because we did not have the detailed land-use history data for all sites. But even when running 979 

the cforest algorithm only for those sites with known land-use history, it was not selected as 980 

important driver. This is probably due to the fact that at the time of the land survey in 1873-1909 981 

some of the former heathland and peatland sites had already been cultivated. Therefore the land-982 

use history would not prove as a reliable indicator. We could did confirm this by referring to an older 983 

land survey, dating back to 1764-1785. For sites that exhibited typical black sand features (e.g. high 984 

SOC proportions in light fractions, high sand content, and high C/N ratio) but were not a heathland 985 

and peatland in the 19th century, we often found a heathland or peatland signature on the maps 986 

from the 18th century. Unfortunately this land survey from the 18th century is incomplete and we 987 

could therefore not rely on it for all sites. 988 

4.4 3 Hot regions of labile and stable carbon in Germany 989 

Taking together all the important explanatory variables discussed above, regions in which the SOC 990 

can be classified as mostly labile were identified. These were soils with a high proportion of bulk SOC 991 

in the light fraction and without a heathland history. Such soils are mainly located in northern 992 

Germany and some have a peatland history (Fig. 7). These soils can be seen as vulnerable to losses of 993 

a large proportion of their SOC in the topsoil easily and rapidly. Loss of SOC could occur e.g. through 994 

a change in management that reduces carbon inputs to the soil and therefore fails to maintain the 995 

light fraction, for example a land useland-use change from grassland to cropland (Poeplau et al., 996 
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2011) or reduced input of organic fertilisers or crop residues (Dalal et al., 2011; Srinivasarao et al., 997 

2014). Losses of SOC could also occur due to higher temperatures, which could lead to enhanced 998 

microbial activity and therefore enhanced mineralisation of SOC in the light fraction (e.g. Knorr et al., 999 

2005). In the case of former peatlands many soils may already be losing significant parts of their SOC 1000 

(Leiber-Sauheitl et al., 2014; Tiemeyer et al., 2016). 1001 

For a soil to be definitively identified as being vulnerable to SOC losses, it not only needs to have a 1002 

high proportion of bulk SOC in the light fraction, but also a high absolute SOC content in this fraction.  1003 

The map in Fig. 8 shows the absolute SOC content of the light fraction at sites of the German 1004 

Agricultural Soil Inventory. Comparing Fig. 7 and Fig. 8, it is evident that sites which store a high 1005 

proportion of their SOC in the light fraction generally also have high absolute SOC content in the light 1006 

fraction. This implies that those sites are really the most vulnerable to SOC losses, as they not only 1007 

have high proportions of SOC in the light fraction, but also the highest absolute SOC content in the 1008 

light fractions to lose. As the SOC in former peatland soils has been shown to be easily mineralised 1009 

(Bambalov, 1999), management of such sites should be aimed at stabilising the SOC stocks and 1010 

preventing further degradation of the peat. When there is a heathland history, it can be assumed 1011 

that the SOC in the light fraction is quite stable, but that does not imply that freshly added litter will 1012 

also be stable. In fact, it is quite likely that it will not be stable if no heathland vegetation is planted. 1013 

This implies that the SOC stocks on these sites will decline when the resistant litter is not 1014 

replenished.  1015 

Taking together all the important explanatory variables discussed above, regions in which the SOC 1016 

can be classified as mostly labile were identified. These were soils with a high proportion of bulk SOC 1017 

in the light fraction and without a heathland history. Such soils are mainly located in northern 1018 

Germany and many of those have a peatland history (Fig. 7). These soils can be seen as vulnerable to 1019 

losses of a high proportion of their SOC in the topsoil easily and rapidly. Loss of SOC could occur e.g. 1020 

through a change in management that reduces carbon inputs to the soil and therefore fails to 1021 

maintain the light fraction, for example a land-use change from grassland to cropland (Poeplau et al., 1022 
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2011) or reduced input of organic fertilisers or crop residues (Dalal et al., 2011; Srinivasarao et al., 1023 

2014). Losses of SOC could also occur due to higher temperatures, which could lead to enhanced 1024 

microbial activity and therefore enhanced mineralisation of SOC in the light fraction (e.g. Knorr et al., 1025 

2005). In the case of fFormer peatlands many soils may already be losinglose significant parts of their 1026 

SOC (Leiber-Sauheitl et al., 2014; Tiemeyer et al., 2016). 1027 

Regions with soils with a high proportion of stable SOC are located mainly in central and southern 1028 

Germany (Fig. 7). In these regions, soils consistently store over 60% of their SOC in the heavy 1029 

fraction, in which the SOC is bound mostly to the mineral surfaces of clay minerals. Thus, these soils 1030 

have the lowest vulnerability to losing their SOC, as losses mostly occur from the light fraction. 1031 

However, even in these regions up to 40% of bulk SOC is stored in the light fraction and this may be 1032 

lost. Therefore apparent lower vulnerability does not mean that SOC-conserving soil management is 1033 

not needed in these regions. It should be noted that the quality of the SOC in the light fraction is 1034 

probably not the same in all soils, land-use (history) and climate regions. Therefore, the vulnerability 1035 

and turnover time of the light fraction may also vary considerably within different regions.  This can 1036 

be seen in the light fraction C/N ratio for example, which ranged between 11 and 43 for the 143 1037 

calibration sites studied here.  1038 

Using the combination of SOC fractionation and prediction with NIRS, it is generally possible to 1039 

identify regions that are more or less vulnerable to SOC losses. The results must be assessed with 1040 

care, however, as phenomena like non-labile light fraction in the black sands can hamper the 1041 

interpretation. It is therefore advisable to look at different driving factors when classifying sites as 1042 

more vulnerable than others., because the light fraction, for example, is not always a labile fraction, 1043 

as shown above for the black sands. We advise to treat this kind of Moreover, special soil 1044 

phenomena are to be assessed separately from the 'normal' soils, as the driving factors for the 1045 

fractions distribution may vary considerably. for regions in which phenomena like the black sands 1046 

persist. 1047 
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5 Conclusions 1048 

Identification of the distribution of SOC fractions in German soils allowed clear identification of 1049 

regions where the SOC in agricultural soils is most vulnerable to being lost. The cforest analysis 1050 

provided indications of the factors driving the distribution of SOC into the different fractions. It was 1051 

found that soil texture, bulk soil SOC content, bulk soil C/N ratio, land-use history and pH were the 1052 

main drivers for this distribution in ‘normal’ soils. In ‘black sand’ soils in northern Germany, the SOC 1053 

distribution into the fractions mainly depended on total SOC content and soil C/N ratio and  was 1054 

directly linked to the land-use history. Former peatland or heathland still has a great influence on the 1055 

composition of soil SOC decades or even centuries after cultivation of the soil. In some regions of 1056 

Germany the majority of bulk SOC is stored in the light fraction, but this does not always imply that 1057 

this SOC is labile. Use of SOC fractionation techniques coupled with NIR spectroscopy to extrapolate 1058 

to a national soil inventory dataset was successful in predicting POM factions. However, additional 1059 

knowledge on land-use history was required to determine whether this POM is vulnerable to losses 1060 

or not.  This study focused on the topsoil only, as it has comparatively high SOC stocks and is most 1061 

vulnerable to changes in management. Future studies should also examine the SOC distribution in 1062 

the subsoil, as this would enable exploitation of all possibilities for sequestering additional SOC in the 1063 

soil, in order to mitigate the CO2 content in the atmosphere. Regarding soil management measures, 1064 

this study provided indications on where the most prudent and SOC-conserving management 1065 

techniques are advisable for different regions of Germany., w: ith the former peatland soils in 1066 

Northern Germany beingare most vulnerable and the former heathland soils in the same region 1067 

beingare less vulnerable at the moment, but being at risk of losing large parts of their SOC when the 1068 

relatively stable heathland litter is not replaced in the future. . The vulnerability of those heathland 1069 

soils can change, however, when changes in soil management occur. This study showed that through 1070 

the regionalspatial upscaling of SOC fraction distribution through the NIRS prediction of SOC 1071 

fractions, it is possible to elucidate the SOC vulnerability and driving factors for SOC stability aton a 1072 

national scale. 1073 
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Figures 

 

Fig. 1: a) Proportion (%) and b) absolute content (g kg
-1

) of soil organic carbon (SOC) in the intra-
aggregatefree particulate organic matter (fPOMiPOM), occluded particulate organic matter (oPOM) 
and mineral-associated organic matter (MOM) fraction in soils under cropland and grassland for the 
145 calibration sites that were fractionated. Error bars denote standard error of the mean.  
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Fig. 2: a) Proportion (%) and b) absolute content (g kg
-1

) of soil organic carbon (SOC) in the free intra-
aggregate particulate organic matter (fPOMiPOM), occluded particulate organic matter (oPOM) and 
mineral-associated organic matter (MOM) fraction in different soil texture classes for the 145 
calibration sites that were fractionated. Error bars denote the standard error of the mean.
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Fig. 3: Mean relative variable importance according to conditional inference forest (cforest) algorithm for predicted proportion of soil organic carbon (SOC) in the 
light fraction. The vertical line indicates the threshold value of relative variable importance above which a variable was regarded as important. a) Variable 
importance for all soils that are not black sands and b) variable importance for only black sands. 
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Fig. 4: Relationship between soil organic carbon (SOC) proportion in the light fraction and influential variables. Calibration sites are shown as red dots, normal 
soils as black dots and black sands as orange triangles.
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Fig. 5: Relationship between land-use history and a) proportion of light fraction soil organic 

carbon (SOC), b) carbon/nitrogen (C/N) ratio and c) total SOC content for all sites in the 

federal states of Lower-Saxony ,Mecklenburg-Western Pomerania , North-Rhine Westphalia, 

Saxony-Anhalt, Rhineland-Palatinate and Schleswig-Holstein. 
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Fig. 6: a) Proportion (%) and b) absolute content (g kg
-1

) of soil organic carbon (SOC) in the light and heavy fractions in different soil types in the ‘normal’ soils 
(non-black sands) dataset. Error bars denote standard error of the mean.
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Fig. 7: Predicted soil organic carbon (SOC) proportion range (%) in the light fraction of soil at 

sites in the German Agricultural Soil Inventory. 
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Fig. 8: Predicted absolute soil organic carbon (SOC) content range (g kg-1) in the light 

fraction at sites in the German Agricultural Soil Inventory. 
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Supplementary Material 

 

Figure S1: Measured (lab) versus predicted (pred) values for absolute content (g/kg) and proportion (%) of soil organic carbon (SOC) in fractions. M denotes the 
MOM fraction, whereas FO denotes the light fraction (fPOM iPOM and oPOM) 
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S2: Table of all predictors used for the cforest prediction 

Driver 

Variable type 
(no. of 
categories) Explanation 

Preuss_Nutzung1 categorical (6) Historical land useland-use (1870-1900) 

K1950_Nutzung1 categorical (6) Historical land useland-use (1950) 

K1970_Nutzung1 categorical (6) Historical land useland-use (1970) 

K1990_Nutzung1 categorical (6) Historical land useland-use (19950) 

BT_Bewirtet integer Length of time that the present farmer has farmed this field  

BT_OekoWirt categorical (2) Conventional or organic farming 

BP_Kalkung categorical (2) Does the soil receive lime? 

BP_Stickstoff categorical (2) Does the soil receive mineral N fertiliser? 
Landnutzung_aktue
ll categorical (2) Current land useland-use 

EC_H2O numeric Soil electrical conductivity 

pH_CaCl2 numeric Soil pH measured in CaCl2 

TOC numeric Soil SOC content  

C_N_Verhaeltnis numeric Soil C/N ratio 

CaCO3 numeric Soil carbonate content 

TRD_FB numeric Soil bulk density 

Wassergehalt numeric Soil water content 

Neigung integer Slope of sample point 

Exposition categorical (8) Exposition of sample point 

Woelbung categorical (9) Curvature of sample point 

Microrelief categorical (7) Microrelief of sample point 

LageImRelief categorical (9) Relief position of sample point 

BodenAbtrag categorical (3) Has there been soil removal? 

AnthropoVeraen categorical (5) Have anthropogenic disturbances taken place? 

Bodenfeuchte categorical (5) Soil moisture at sampling 

Gefuegeform1 
categorical 
(11) Soil aggregation1: Spatial distribution of aggregates 

Gefuegeform2 
categorical 
(13) Soil aggregation2: Type of aggregates 

Risse categorical (8) Width of cracks in soil horizon 

RoehrenArt categorical (5) Type of tubes in soil horizon 

RoehrenBelebt categorical (7) Are tubes in soil horizon occupied? 

RoehrenFlaeche categorical (7) Surface proportion of tubes in soil horizon 

Feinwurzel numeric Mass proportion of fine roots 

GrobWurzel numeric Mass proportion of thick roots 

SumSkelett numeric Estimated stone content in soil horizon 

Substanziell1 categorical (2) Substantial soil inhomogeneities 

Strukturell1 categorical (4) Structural soil inhomogeneities 

Stratigraphie 
categorical 
(18) Stratigraphy 

GrundwaStufe categroical (8) Groundwater class 
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GrundwaStand numeric Groundwater table 

Moormaechtig numeric Peat thickness 

BodentypKlasse 
categorical 
(14) Class of soil type 

chep numeric C inputs export through main crop products 

cnep numeric C inputs through byproduct 

cewr numeric C inputs through roots 

cod numeric C inputs through organic fertiliser 

nhep numeric N inputs export through main crop products 

nnep numeric N inputs through byproducts 

newr numeric N inputs through roots 

nod numeric N inputs through organic fertilisers 

nmin numeric N inputs through mineral fertilisers 

EvapotransPot numeric Potential evapotranspiration 

EvapotransReal numeric Real evapotranspiration 

DroughtIndexMean numeric Drought index 

PrecYearMean numeric Mean annual precipitation (30 y mean) 

TempYearMean numeric Mean annual temperature (30 y mean) 

SoilMoistSummer numeric Soil moisture in 5 cm soil depth in summer 

SoilTempSummer numeric Soil temperature in 5 cm depth in summer 

NDVI_July numeric Mean NDVI in July 

slope_100 numeric Slope from digital elevation model with resolution 100m 

topoidx_100 numeric 
Topographical wetness index from digital elevation model 
with resolution 100 m 

BodenAusMatKlass
e 

categorical 
(14) Class of parent material 

LN categorical (7) Reported land-use changes 

MR categroical (5) Meliorative management measures 

Jahre_wendend integer 
Number of years with full inversion tillage over the past 10 
years 

Jahrenichtwendend integer Number of years with reduced tillage over the past 10 years 

Jahre_Getreide integer 
Number of years with grains in the rotation over the past 10 
years 

Jahre_FeldgrasKlee integer 
Number of years with clover in the rotation in the last 10 
years 

gleicheKultur5Jahre integer 
Where there five or more consecutive years with the same 
crop grown? 

Anz_Kulturgruppen integer Number of different crops grown in last 10 years 

Schluff numeric Soil silt content 

Ton numeric Soil clay content 

Sand numeric Soil sand content 
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Table S3:  

Indicators of model performance for soil C fractions particulate organic carbon (POM) and mineral 

associated organic carbon (MOM) with calibration and independent validation dataset (mean values of 

100 iterations with random selection). Table a) is for values in g C kg soil-1 and table b) is for the 

proportion (relative values). 

 

a) 

 Calibration dataset Validation dataset 

 
Q2 

RMSECV, 
  g C kg soil-1 

ρcc
* 

Bias, 
g C kg soil-1 

RPD RPIQ R2 
RMSEP, 

g C kg soil-1 
ρcv 

Bias, 
g C kg soil-1 

RPD RPIQ 

             

POM 0.83 4.92 0.91 0.34 2.5 1.8 0.82 5.38 0.89 0.44   2.5 2.0 

MOM 0.87 4.92 0.93 -0.34 2.9 2.9 0.85 5.38 0.91 -0.44 2.7 2.6 

 

ρc* - Lin’s concordance correlation coefficient 

 

b) 

 

 Calibration dataset Validation dataset 

 
Q2 

RMSECV, 

  % 
ρcc

* 
Bias, 

% 
RPD RPIQ R2 

RMSEP, 

% 
ρcv 

Bias, 

% 
RPD RPIQ 

             
POM 0.78 13.15 0.88 1.07 2.09 2.56 0.73 15.04 0.84 1.6   1.9 2.4 

MOM 0.78 13.15 0.88 -1.07 2.00 2.48 0.72 15.04 0.83 -1.6 2.0 2.3 

 

ρc* - Lin’s concordance correlation coefficient  

 


