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Abstract.
High-resolution maps of soil properties are a prerequisite for assessing soil threats and soil functions and to

foster sustainable use of soil resources. For many regions in the world precise maps of soil properties are missing,
but often sparsely sampled and discontinuous (legacy) soil data are available. Soil property data (response) can
then be related by digital soil mapping (DSM) to spatially exhaustive environmental data that describe soil
forming factors (covariates) to create spatially continuous maps. With air- and spaceborne remote sensing data
and multi-scale terrain analysis large sets of covariates have become common. Building parsimonious models,
amenable to pedological interpretation, is then a challenging task.

We propose a new boosted geoadditive modelling framework (geoGAM) for DSM. A geoGAM models
smooth nonlinear relations between responses and single covariates and combines these model terms additively.
Residual spatial autocorrelation is captured by a smooth function of spatial coordinates and nonstationary effects
are included by interactions between covariates and smooth spatial functions. The core of fully automated model
building for geoGAM is componentwise gradient boosting.

We illustrate the application of the geoGAM framework by using soil data from the Canton of Zurich, Switzer-
land. We modelled effective cation exchange capacity (ECEC) in forest topsoils as continuous response. For
agricultural land we predicted the presence of waterlogged horizons in given soil depth layers as binary and
drainage classes as ordinal responses. For the latter we used proportional odds geoGAM taking the ordering
of the response properly into account. Fitted geoGAM contained only few covariates (7 to 17) selected from
large sets (333 covariates for forests, 498 for agricultural land). Model sparsity allowed covariate interpretation
by partial effects plots. Prediction intervals were computed by model-based bootstrapping for ECEC. Predictive
performance of the fitted geoGAM, tested with independent validation data and specific skill scores (SS) for
continuous, binary and ordinal responses, compared well with other studies that modelled similar soil proper-
ties. SS of 0.23 up to 0.53 (with SS = 1 for perfect predictions and SS = 0 for zero explained variance) were
achieved depending on response and type of score. geoGAM combines efficient model building from large sets
of covariates with ease of effect interpretation and therefore likely raises the acceptance of DSM products by
end-users.
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1 Introduction

Soils fulfil many functions important for agriculture, forestry
and the management of soil resources and natural hazards.
The functionality of soils depends on their properties, hence,
accurate and spatially highly resolved maps of basic soil5

properties such as texture, organic carbon content and pH
for defined soil depth are needed for sustainable manage-
ment of soils (FAO and ITPS, 2015). Unfortunately, such soil
property maps are often missing and availability of soil in-
formation is very different between nations and continents10

(Omuto and Nachtergaele, 2013). For areas where spatially
referenced, but discontinuous and sparse (legacy) soil data is
available, e.g. soil datasets consisting of soil profile data and
laboratory measurements, these point data can be linked us-
ing digital soil mapping (DSM) techniques (e.g. McBratney15

et al., 2003; Scull et al., 2003) to spatial information on soil
formation factors to generate spatially continuous maps.

In the past, many DSM approaches have been proposed
to exploit the correlation between soil properties (response
Y (s)) and soil forming factors (covariates x(s)). Linear re-20

gression modelling (LM, see McBratney et al., 2003, for
DSM applications) and kriging with external drift (EDK), its
extension for autocorrelated errors (Bourennane et al., 1996;
Nussbaum et al., 2014), have been often used. Strengths of
LM and EDK are the ease of interpretation of the fitted mod-25

els (e.g. by partial residual plots, Faraway, 2005, p. 73). This
is important for checking whether modelled relations be-
tween the target soil property and soil forming factors accord
with pedological expertise and for conveying results of DSM
analyses to users of such products. LM and EDK capture30

only linear relations between the covariates and a response.
By using interactions between covariates, one can sometimes
account for nonlinear relationships, but this quickly becomes
unwieldy for a large number of covariates (e.g. above 30).
Fitting models to (very) large sets of covariates has become35

common with the advent of remotely sensed data (Ben-Dor
et al., 2009; Mulder et al., 2011) and novel approaches for
terrain analysis (Behrens et al., 2010). Model building, i.e.
covariate selection, is then a formidable task. Although spe-
cialized methods like L2-boosting (Bühlmann and Hothorn,40

2007) and lasso (Hastie et al., 2009, chap. 3) are available,
they have not often been used for DSM (Nussbaum et al.,
2014; Liddicoat et al., 2015; Fitzpatrick et al., 2016). Gener-
alized linear models (GLM, e.g. Dobson, 2002) extend lin-
ear modelling to binary, nominal (e.g. soil taxonomic units)45

or ordinal responses (e.g. soil drainage classes). Although
GLM are nonlinear models, the nonlinearly transformed con-
ditional expectation g(E[Y (s)|x(s)]) – g(·) is some known
link function – still depends linearly on covariates.

Lately, tree-based machine learning methods have become50

popular for DSM: Classification and regression trees (CART,
see references in McBratney et al., 2003), Cubist, (e.g. Hen-
derson et al., 2005; Adhikari et al., 2013; Lacoste et al.,
2016) and ensemble tree methods like random forest (RF,

e.g. Grimm et al., 2008; Wiesmeier et al., 2011) and boosted 55

trees, (BRT, e.g. Moran and Bui, 2002; Martin et al., 2011)
were used. All tree-based methods easily account for com-
plex nonlinear relations between responses and covariates.
They model continuous and categorical responses (albeit
without making a difference between nominal and ordinal re- 60

sponses), inherently deal with incomplete covariate data and
allow to model spatially changing (nonstationary) relation-
ships. BRT and RF fit models to large sets of covariates. The
structure of the fitted models can be explored by variable im-
portance and partial dependence plots (Hastie et al., 2009, 65

Sect. 10.9, and Martin et al., 2011, for an application). Nev-
ertheless, tree-based ensemble methods remain complex, and
results are not as easy to interpret regarding the relevant soil
forming factors of a case study as results from (G)LM.

Generalized additive models (GAM, e.g. Hastie and Tib- 70

shirani, 1990, Chapt. 6) offer a compromise between ease of
interpretation and flexibility in modelling nonlinear relation-
ships. GAM expand the (possibly transformed) conditional
expectation of a response given covariates as an additive se-
ries 75

g

(
E[Y (s) |x(s)]

)
= ν+ f(x(s)) = ν+

∑
j

fj(xj(s)), (1)

where ν is a constant and fj(xj(s)) are linear terms or un-
specified “smooth” nonlinear functions of single covariates
xj(s) (e.g. smoothing spline, kernel or any other scatterplot
smoother) and g(·) is again a link function. GAM extend 80

GLM to account for truly nonlinear relations between Y and
x (and not just for nonlinearities imposed by g), but they limit
the complexity of the fitted functions to additive combina-
tions of simple nonlinear terms and thereby avoid the curse
of dimensionality (Hastie et al., 2009, Sect. 2.5). For contin- 85

uous, ordinal and nominal responses, GAM can be readily
fitted to large sets of covariates by boosting (Hofner et al.,
2014; Hothorn et al., 2015). Boosting handles covariate se-
lection and avoids over-fitting if stopped early (Bühlmann
and Hothorn, 2007). Hence, the structure of boosted GAM 90

can be more easily checked and interpreted than RF and
BRT models. GAM have occasionally been used for DSM
but were never very popular (see references in McBratney
et al., 2003). Recently, Poggio et al. (2013) and Poggio and
Gimona (2014) used GAM to model continuous and binary 95

responses.
Besides precise predictions, sometimes also accurate mod-

elling of prediction uncertainty matters for DSM studies (e.g.
for mapping temporal changes of soil carbon and nutrients
stocks). Quantile regression forest (Meinshausen, 2006), an 100

extension of RF, estimates the quantiles of the distributions
Y (s)|x(s) and provides prediction intervals directly. Predic-
tion intervals can also easily be constructed for predictions
by (G)LM and GAM, as long as the uncertainty arising from
model building is ignored. To take the effect of model build- 105

ing properly into account one resorts best to bootstrapping
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(Davison and Hinkley, 1997, Sect. 6.3.3). Bootstrapping is
also useful to model prediction uncertainty for boosted mod-
els, which per se do not qualify the precision of predictions,
and to account for all sources of prediction uncertainty of
regression kriging approaches (Viscarra Rossel et al., 2014).5

In summary, a versatile DSM procedure should

1. model nonlinear relations between Y (s) and x(s),
where responses and covariates may be continous, bi-
nary, nominal or ordinal variables,

2. efficiently build models with good predictive perfor-10

mance for large sets of covariates (p >> 30),

3. preferably result in parsimonious models with a simple
structure that can be easily interpreted and checked for
plausibility, and

4. accurately quantify the precision of predictions com-15

puted from the fitted models.

The objective of our work was to develop a DSM frame-
work that optimizes requirements 1–4 based on boosted geoad-
ditive models (geoGAM), an extension of GAM for spatial
data. First, we introduce the modelling framework and de-20

scribe in detail the model building procedure. Second, we
apply the method to three DSM case studies from the Can-
ton of Zurich, Switzerland, aiming at different types of re-
sponses: Effective cation exchange capacity (ECEC) of for-
est topsoils (continuous response), presence/absence of mor-25

phological features for waterlogging in agricultural soils (bi-
nary response), and drainage classes, characterizing preva-
lence of anoxic conditions, again in agricultural soils (ordinal
response). To assess the validity of the modelling results with
independent data (obtained by splitting the original dataset30

into calibration and validations subsets), we used specific
criteria that take the nature of the various responses prop-
erly into account. These criteria are in common use for fore-
cast verification in atmospheric sciences (e.g. Wilks, 2011),
but, to our knowledge, have not been much used for (cross-35

)validating DSM predictions.

2 geoGAM modelling framework

2.1 Model representation

A generalized additive model (GAM) is based on the follow-
ing components (Hastie and Tibshirani, 1990, Chapt. 6 and40

Eq. (1)): i) Response distribution: Given x(s) = x1(s),x2(s),
...,xp(s), the Y (s) are conditionally independent observa-
tions from simple exponential family distributions. ii) Link
function: g(·) relates the expectation µ(x(s)) = E[Y (s)|x(s)]
of the response distribution to iii) the additive predictor45 ∑
j fj(xj(s)).
geoGAM extend GAM by allowing a more complex form

of the additive predictor (Kneib et al., 2009; Hothorn et al.,

2011): First, one can add a smooth function fs(s) of the spa-
tial coordinates (smooth spatial surface) to the additive pre- 50

dictor to account for residual autocorrelation. More complex
relationships between Y and x can be modelled by adding
terms like fj(xj(s)) · fk(xk(s)) – capturing the effect of in-
teractions between covariates – and fs(s) · fj(xk(s)) – ac-
counting for spatially changing dependence between Y and 55

x. Hence, in its full generality, a generalized additive model
for spatial data is represented by

g(µ(x(s))) = ν+ f(x(s)) =

ν+
∑
u

fju(xju(s))+
∑
v

fjv (xjv (s)) · fkv (xkv (s))︸ ︷︷ ︸
global marginal and interaction effects

+
∑
w

fsw(s) · fjw(xjw(s))︸ ︷︷ ︸
nonstationary effects

+ fs(s)︸ ︷︷ ︸
autocorrelation

. (2) 60

Kneib et al. (2009) called Eq. (2) a geoadditive model, a
name coined before by Kammann and Wand (2003) for a
combination of Eq. (1) with a geostatistical error model.

It remains to specify what response distributions and link
functions should be used for the various response types: For 65

(possibly transformed) continuous responses one uses often a
normal response distribution combined with the identity link
g (µ(x(s))) = µ(x(s)). For binary data (coded as 0 and 1),
one assumes a Bernoulli distribution and uses often a logit
link 70

g (µ(x(s))) = log

(
µ(x(s))

1−µ(x(s))

)
, (3)

where

µ(x(s)) = Prob[Y (s) = 1 |x(s)] = exp(ν+ f(x(s)))

1+ exp(ν+ f(x(s)))
.

(4)

For ordinal data, with ordered response levels, 1,2, . . . ,k, we
used the cumulative logit or proportional odds model (Tutz, 75

2012, Sect. 9.1). For any given level r ∈ (1,2, . . . ,k), the log-
arithm of the odds of the event Y (s)≤ r |x(s) is then mod-
elled by

log

(
Prob[Y (s)≤ r |x(s))]
Prob[Y (s)> r |x(s))]

)
= νr + f(x(s)), (5)

with νr a sequence of level-specific constants satisfying ν1 ≤ 80

ν2 ≤ . . .≤ νr. Conversely,

Prob[Y (s)≤ r |x(s)] = exp(νr + f(x(s)))

1+ exp(νr + f(x(s)))
. (6)

Note that Prob[Y (s)≤ r |x(s)] depends on r only through
the constant νr. Hence, the ratio of the odds of two events
Y (s)≤ r |x(s) and Y (s)≤ r | x̃(s) is the same for all r (Tutz, 85

2012, p. 245).
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2.2 Model building (selection of covariates)

To build parsimonious models that can readily be checked
for agreement with pedological understanding, we applied a
number of fully automated steps 1–6. In several of these steps
we optimized tuning parameters by 10-fold cross-validation5

with fixed subsets using either root mean squared error (RMSE,
Eq. (12), continuous responses), Brier score (BS, Eq. (16),
binary responses) or ranked probability score (RPS, Eq. (18),
ordinal responses) as optimization criteria. To improve the
stability of the algorithm continuous covariates were first scaled10

(by difference of maximum and minimum value) and cen-
tred.

1. Boosting (see step 2 below) is more stable and con-
verges more quickly when the effects of categorical co-
variates (factors) are accounted for as model offset. We15

therefore used the group lasso (least absolute shrinkage
and selection operator, Breheny and Huang, 2015) – an
algorithm that likely excludes non-relevant covariates
and treats factors as groups – to select important fac-
tors for the offset. For ordinal responses (Eq. (6)) we20

used stepwise proportional odds logistic regression in
both directions with BIC (e.g. Faraway, 2005, p. 126)
to select the offset covariates because lasso cannot be
used for such responses.

2. Next, we selected a subset of relevant factors, contin-25

uous covariates and spatial effects by componentwise
gradient boosting. Boosting is a slow stagewise additive
learning algorithm. It expands f(x(s)) in a set of base
procedures (baselearners) and approximates the additive
predictor by a finite sum of them as follows (Bühlmann30

and Hothorn, 2007):

(a) Initialize f̂(x(s))[m] with offset of step 1 above and
set m= 0.

(b) Increase m by 1. Compute the negative gradient
vector U[m] (e.g. residuals) for a loss function l(·).35

(c) Fit all baselearners g(x(s))1..p to U[m] and select
the baselearner, say g(x(s))[m]

j that minimizes l(·).

(d) Update f̂(x(s))[m] = f̂(x(s))[m−1]+v ·g(x(s))[m]
j

with step size v ≤ 1.

(e) Iterate steps (b) to (d) until m=mstop (main tuning40

parameter).

We used the following settings in above algorithm: As
loss functions l(·) we used L2 for continuous, negative
binomial likelihood for binary (Bühlmann and Hothorn,
2007) and proportional odds likelihood for ordinal re-45

sponses (Schmid et al., 2011). Early stopping of the
boosting algorithm was achieved by determining op-
timal mstop by cross-validation. We used default step
length (υ = 0.1). This is not a sensitive parameter as

long as it is clearly below 1 (Hofner et al., 2014). For 50

continuous covariates we used penalized smoothing spline
baselearners (Kneib et al., 2009). Factors were treated
as linear baselearners. To capture residual autocorrela-
tion we added a bivariate tensor-product P-spline of spa-
tial coordinates (Wood, 2006, pp. 162) to the additive 55

predictor. Spatially varying effects were modelled by
baselearners formed by multiplication of continuous co-
variates with tensor-product P-splines of spatial coordi-
nates (Wood, 2006, pp. 168). Uneven degree of freedom
of baselearners biases baselearner selection (Hofner et al., 60

2011). We therefore penalized each baselearner to 5 de-
grees of freedom (df ). Factors with less than 6 levels
(df < 5) were aggregated to grouped baselearners. By
using an offset, effects of important factors with more
than 6 levels were implicitly accounted for without pe- 65

nalization.

3. At mstop (see step 2 above), many included baselearners
had very small effects only. To remove these we com-
puted the effect size ej of each baselearner fj(xj(s)).
For factors the effect size ej was the largest difference 70

between effects of two levels and for continuous co-
variates it was equal to the maximum contrast of esti-
mated partial effects (after removal of extreme values
as in boxplots, Frigge et al., 1989). We fitted general-
ized additive models (GAM, Wood, 2011) by includ- 75

ing smooth and factor effects depending on the effect
size ej of the corresponding baselearner j. We iterated
through ej and excluded covariates with ej smaller than
a threshold effect size et. Optimal et was determined
by 10-fold cross-validation of GAM. In these GAM fits 80

smooth effects were penalized to 5 degrees of freedom
as imposed by componentwise gradient boosting (step
2 above). The factors selected as offset in step 1 were
now included in the main GAM, that was fitted without
offset. 85

4. We further reduced the GAM by stepwise removal of
covariates by cross-validation. The candidate covariate
to drop was chosen by largest p value of F tests for
linear factors and approximate F test (Wood, 2011) for
smooth terms. 90

5. Factor levels with similar estimated effects were merged
stepwise again by cross-validation based on largest p
values from two sample t-tests of partial residuals.

6. The final model (used to compute spatial predictions)
was a parsimonious GAM. Because of step 5, factors 95

had possibly a reduced number of coefficients. Effects
of continuous covariates were modelled by smooth func-
tions and – if at all present – spatially structured residual
variation (autocorrelation) was represented by a smooth
spatial surface. To avoid over-fitting both types of smooth 100

effects were penalized to 5 degrees of freedom (as im-
posed by step 2).
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Model building steps 1 to 6 were implemented in the R
package geoGAM (Nussbaum, 2017).

2.3 Predictions and predictive distribution

Soil properties were predicted for new locations s+ from
the final geoGAM fit by Ỹ (s+) = f̂(x(s+)). To model the5

predictive distributions for continuous responses we used a
non-parametric, model-based bootstrapping approach (Davi-
son and Hinkley, 1997, pp. 262, 285) as follows:

A. New values of the response were simulated according to
Y (s)∗ = f̂(x(s))+ ε, where f̂(x(s)) are the fitted val-10

ues of the final model and ε are errors randomly sam-
pled with replacement from the centred, homoscedastic
residuals of the final model (Wood, 2006, p. 129).

B. The geoGAM was fitted to Y (s)∗ according to steps 1–6
of Sect. 2.2.15

C. Prediction errors were computed according to δ∗+ =

f̂(x(s+))
∗−( f̂(x(s+))+ε) , where f̂(x(s+))∗ are pre-

dicted values at new locations s+ of the model built with
the simulated response Y (s)∗ in step B above, and the
errors ε are again randomly sampled from the centred,20

homoscedastic residuals of the final model (see step A).

Prediction intervals were computed according to

[f̂(x(s+))− δ∗+(1−α) ; f̂(x(s+))− δ
∗
+(α)]. (7)

where δ∗+(α) and δ∗+(1−α) are the α- and (1−α)-quantiles of
δ∗+, pooled over all 1000 bootstrap repetitions.25

Predictive distributions for binary and ordinal responses
were directly obtained from a final geoGAM fit by predicting
probabilities of occurrence P̃rob(Y (s) = r |x(s)) (Davison
and Hinkley, 1997, p. 358).

3 Case studies - Materials and Methods30

3.1 Study regions

We applied the modelling framework to 3 datasets on prop-
erties of forest and agricultural soils in the Canton of Zurich
in Switzerland (Fig. 1). Forests (ZH forest), as defined by the
Swiss topographic landscape model (swissTLM3D, Swisstopo,35

2013a), cover an area of 506.5 km2, or roughly 30 % of the
total area of the Canton of Zurich. The spatial extent of the
agricultural region was chosen near the Lake Greifensee by
the availability of imaging spectroscopy data collected by the
APEX spectrometer (Schaepman et al., 2015). Agricultural40

land was defined as the area not covered by any areal features
such as settlements or forests extracted from the Swiss topo-
graphic landscape model (swissTLM3D, Swisstopo, 2013a).
Wetlands, forests, parks or city gardens were excluded, re-
sulting in a study region of 170 km2.45

0 50 100 km

Data sources: Biogeographical regions © 2001 BAFU  /  Swiss Boundary, Lakes ©
2012 BFS GEOSTAT  /  Boundries Europe: NUTS © 2010 EuroGeographics

Jur
a

Alps

 Greifensee

Pla
teau

       ZH forest

Figure 1. Location of the study regions Greifensee and ZH forest
on the Swiss Plateau.

In the Canton of Zurich, forests extend across altitudes
ranging from 340 to 1170 m above sea level (a.s.l), and the
Greifensee area elevation ranges from 390 to 840 m a.s.l.
(Swisstopo, 2016). The climatic conditions (period 1961–
1990, Zimmermann and Kienast, 1999) vary accordingly, 50

with mean annual rainfall between 880–1780 mm for the
forested and 1040–1590 mm for the agricultural study re-
gion. Mean annual temperatures range between 6.1–9.1 ◦C
and 7.5–9.1 ◦C, respectively. Two thirds of the forested area
is dominated by coniferous trees (FSO, 2000b). Half of the 55

Greifensee study region is covered by crop land and one third
by permanent grassland. The remainder are orchards, horti-
cultural areas or mountain pastures (Hotz et al., 2005). In
the Canton of Zurich, soils formed mostly from Molasse for-
mations and quaternary sediments dominantly from the last 60

glaciation (Würm). In the north-eastern part, the Jura foothills
with limestone rocks reach into the ZH forest study region
(Hantke, 1967).

3.2 Data

3.2.1 Soil data base 65

We used legacy soil data collected between 1985 and 2014.
Data originates from long-term soil monitoring of the Canton
of Zurich (KaBo), a soil pollutant survey (Wegelin, 1989),
field surveys for creating soil maps of the agricultural land
(Jäggli et al., 1998) or soil investigations in the course of 70

different projects by the Swiss Federal Institute for Forest,
Snow and Landscape Research (WSL, Walthert et al., 2004).
Sites for pollutant surveying were chosen on a regular grid,
those for creating soil maps were determined purposively by
field surveyors to best represent soils typical for the given 75

landform. The sites of WSL were chosen purposively accord-
ing to the aims of the project. Collating these soil data from
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different sources implicated that soil data were not directly
comparable, and tailored harmonisation procedures were re-
quired to provide consistent soil datasets. The heterogene-
ity of soil legacy data resulted among others from several
standards of soil description and soil classification, differ-5

ent data keys, different analytical methods and in particu-
lar, often missing metadata for a proper interpretation of the
datasets. Therefore, we elaborated a general harmonisation
scheme that covers performance steps required to merge dif-
ferent soil legacy data into one common consistent database10

(Walthert et al., 2016). Sampling sites were recorded in the
field on topographic maps (scale 1:25 000), hence accuracy
of coordinates is about ± 25 m.

3.2.2 Effective cation exchange capacity (ECEC, forest
soils)15

After the removal of sites with missing covariate values, we
used 1844 topsoil samples from 1348 sites with data on effec-
tive cation exchange capacity (ECEC). Most measurements
refer to composite samples where aliquots were measured in
20 by 20 m squares from 0–20 cm soil depth. At about 10020

sites soil profiles were sampled at genetic horizons. ECEC
[mmolc kg

−1] for 0–20 cm was computed from horizon data
by

ECEC0−20 =

h∑
i=1

wi ECECi, (8)

where ECECi is the value for horizon i, wi is a weight given25

by soil density ρi and the fraction of the thickness of horizon
iwithin 0–20 cm and h is the number of horizons intersecting
the 0–20 cm layer. The wi were normalized to sum to 1. ρi
was estimated from soil organic matter (SOM) and/or sam-
pling depth by a pedotransfer function (PTF see Supplement30

of Nussbaum et al., in prep.). Due to a lack of respective data,
the volumetric stone content was assumed to be constant.

For most soil samples, ECEC was measured after extrac-
tion in an ammonium chloride solution (FAC, 1989; Walthert
et al., 2004, 2013). Roughly 5 % of the samples had only35

measurements of Ca, Mg, K and Al (extracted by ammo-
nium acetate EDTA solution, Lakanen and Erviö, 1971; ELF,
1996; Gasser et al., 2011). For these samples, we estimated
ECEC by using a PTF (Nussbaum and Papritz, 2015).

We assigned 293 of 1348 sites (528 samples) to the valida-40

tion set, which was used to check the predictive performance
of the fitted statistical model, and the remaining 1055 sites
(1316 samples) were used to calibrate the model. The legacy
samples were spatially clustered. To ensure that the valida-
tion sites were evenly spread over the study region, the vali-45

dation sites were selected by weighted random sampling. The
weight attributed to a site was proportional to the forested
area within its Dirichlet polygon (Dirichlet, 1850).

We found a considerable variation in ECEC values ranging
from 17.4 to 780 mmolc kg

−1 (median 141.1 mmolc kg
−1,50

Table S1 in Supplement). On average, ECEC was slightly
larger in the calibration than in the validation set.

3.2.3 Presence of waterlogged soil horizons
(agricultural soils)

Waterlogging characteristics were recorded in the field at 962 55

sites within the Greifensee study region by visual evaluation
(Jäggli et al., 1998). Swiss soil classification distinguishes
horizon qualifiers gg (strongly gleyic, predominantly oxi-
dized) and r (anoxic, predominantly reduced) and both are
believed to limit plant growth (Jäggli et al., 1998; Müller 60

et al., 2007; Litz, 1998; Danner et al., 2003; Kreuzwieser and
Rennberg, 2014).

We constructed binary responses for three soil depth layers
0–30 cm, 0–50 cm and 0–100 cm. If one of the horizon qual-
ifiers gg or r was recorded within the interval, we assigned 65

1 = presence of waterlogged horizons and 0 = absence of
waterlogged soil horizons otherwise.

We chose 198 of 962 sites to form a validation set, again by
using weighted random sampling. The remaining 764 sites
were used to build and fit the models. In the topsoil (0–30 cm) 70

gg or r horizon qualifiers were only observed at 13.4 % of the
962 sites. Down to 50 cm about twice as many sites (25.9 %)
showed signs of anoxic conditions and down to 1 m already
38.6 % of sites featured an anoxic or gleyic horizon (Table
S2 in Supplement). 75

3.2.4 Drainage classes (agricultural soils)

Swiss soil classification differentiates hydromorphic features
of soils in more detail describing the degree, depth and source
of waterlogging by 3 supplementary qualifiers for stagnic,
gleyic or anoxic profiles (I, G, R; categorical attributes, Brun- 80

ner et al., 1997). To reduce complexity of classification, we
aggregated these qualifiers to three ordered levels well drained
(qualifiers I1–I2, G1–G3, R1 or no hydromorphic qualifier),
moderately well drained (I3–I4, G4) and poorly drained (G5–
G6, R2–R5). 85

For validation we used the same 198 sites as for presence
of waterlogged soil horizons, but only 732 sites were used
for model building due to missing data in the covariates.
The majority (66.6 %) of the 930 sites were well drained,
only 12.7 % were classified as moderately well drained and 90

20.7 % as poorly drained (Table S3 in Supplement).

3.2.5 Covariates for statistical modelling

To represent local soil formation conditions, we used data
from 23 sources (Table 1). For ECEC a total of 333 covari-
ates were used describing climatic (71 covariates) and topo- 95

graphic conditions (196 covariates). For the agricultural land,
we used in addition 180 spectral bands of the APEX spec-
trometer, spatial information on historic wetlands and agri-
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cultural drainage networks resulting in 498 covariates in to-
tal.

3.3 Statistical analysis

We built models for the five responses according to Sect. 2.2
and computed predictions for new locations at nodes of a5

20 m-grid. Predictions were post-processed in the following
way:

3.3.1 Response transformation

ECEC data in 0-20 cm soil depth was positively skewed (Ta-
ble S1 in Supplement), hence we fitted the model to the log-10

transformed data. In full analogy to lognormal kriging (Cressie,
2006, Eq. (20)), the predictions were backtransformed by

E[Y (s) |x] = exp

(
f̂(x(s))+

1

2
σ̂2− 1

2
Var[f̂(x(s)]

)
(9)

with f̂(x(s)) being the prediction of the log-transformed re-
sponse, σ̂2 the estimated residual variance of the final ge-15

oGAM fit and Var[f̂(x(s)] the variance of f̂(x(s)) as pro-
vided again by the final geoGAM. Limits of prediction inter-
vals were backtransformed by exp(·) as they are quantiles of
the predictive distributions.

3.3.2 Conversion of probabilistic to categorical20

predictions

For binary and ordinal responses, Eq. (4) and (6) predict
probabilities of the respective response levels. To predict the
“most likely” outcome one has to apply a threshold to these
probabilities. For binary data we predicted presence of wa-25

terlogged horizons if the probability exceeded the optimal
value of the Gilbert skill score (GSS, Sect. 3.3.3) that dis-
criminated presence and absence of waterlogged horizons
best in cross-validation of the final geoGAM. GSS was se-
lected because absence of waterlogged horizons was more30

common than presence, especially in topsoil. To ensure con-
sistency of maps for sequential soil depth layers we assigned
presence of waterlogged horizons to the lower depth layer if
it was predicted for the layer above.

For ordinal responses we predicted the level to which the35

median of the probability distribution P̃rob(Y (s)≤ r|x(s))
was assigned (Tutz, 2012, p. 475).

3.3.3 Evaluating the predictive performance of the
statistical models

The predictive performance of the geoGAM, fitted for the40

continuous response ECEC, was tested by comparing pre-
dictions Ỹ (si) (Eq. (9)) with measurements Y (si). Marginal

bias and overall precision were assessed by

BIAS =− 1

n

n∑
i=1

(Y (si)− Ỹ (si)), (10)

robBIAS =−median1≤i≤n
(
Y (si)− Ỹ (si)

)
, (11) 45

RMSE =

(
1

n

n∑
i=1

(
Y (si)− Ỹ (si)

)2)1/2

, (12)

robRMSE = MAD1≤i≤n

(
Y (si)− Ỹ (si)

)
, (13)

SSmse = 1−

∑n
i=1

(
Y (si)− Ỹ (si)

)2
∑n
i=1

(
Y (si)− 1

n

∑n
i=1Y (si)

)2 , (14)

where MAD is the median absolute deviation. SSmse was de-
fined as mean squared error skill score (Wilks, 2011, p. 359) 50

with the sample mean of the measurements as reference pre-
diction method. Interpretation is similar to R2 with SSmse =
1 for perfect predictions and SSmse = 0 for zero explained
variance. SSmse becomes negative if the root mean squared
error (RMSE) exceeds the standard deviation of the data. To 55

validate the accuracy of the bootstrapped predictive distri-
butions we plotted the empirical distribution function of the
probability integral transform (Wilks, 2011, p. 375), which is
equivalent to a plot of the coverage of one-sided prediction
intervals (0, q̃α(s)) against the nominal probabilities α used 60

to construct the quantiles q̃α(s).
For binary responses the predictive performance of fitted

geoGAM was evaluated by the Brier skill score (BSS, Wilks,
2011, Eq. (8.37))

BSS = 1− BS
BSref

(15) 65

where the Brier score (BS) is computed by

BS =
1

n

n∑
i=1

(yi− oi)2. (16)

where n is the number of sites, yi = P̃rob[Y (sj) = 1 |x(sj)]
are the predicted probabilities and oj = I(Y (sj) = 1) the ob-
servation. BSref is the BS of a reference prediction where al- 70

ways the more abundant level (absence of waterlogged hori-
zons) is predicted. After transforming the predicted probabil-
ities to the binary levels presence or absence of waterlogged
horizons (Sect. 3.3.2) we further evaluated the bias ratio,
Peirce skill score (PSS) and GSS. Bias ratio is the ratio of the 75

number of presence predictions to the number of presence
observations (Wilks, 2011, Eq. (8.10)). PSS is a skill score
based on the proportion of correct presence and absence pre-
dictions where the reference predictions are purely random
predictions that are constrained to be unbiased (Wilks, 2011, 80

Eq. (8.16)). GSS is a skill score that uses the threat score as
precision measure (Wilks, 2011, Eq. (8.18)) and again ran-
dom predictions as reference. Perfect predictions have PSS
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8 Nussbaum et al. : Soil mapping using boosted geoadditive models

Table 1. Overview of geodata and derived covariates, for more information see Supplement of Nussbaum et al. (in prep.) (r: pixel resolution
for raster datasets or scale for vector datasets, a: only available for study region Greifensee (Gr) or ZH forest (Zf), NDVI: normalized
differenced vegetation index, TPI: topographic position index, TWI: topographic wetness index, MRVBF: multi-resolution valley bottom
flatness).

geodata set r a covariate examples

Soil physiographical units, historic wetland
presence, presence of drainage
networks or soil ameliorations

Soil overview map (FSO, 2000a) 1:200 000
Wetlands Wild maps (ALN, 2002) 1:50 000 Gr
Wetlands Siegfried maps (Wüst-Galley et al., 2015) 1:25 000 Gr
Anthropogenic soil interventions (AWEL, 2012) 1:5 000 Gr
Drainage networks (ALN, 2014b) 1:5 000 Gr

Parent material (aggregated) geological units, ice level
during last glaciation, presence of
aquifer

Last Glacial Maximum (Swisstopo, 2009) 1:500 000
Geotechnical map (BFS, 2001) 1:200 000
Geological map (ALN, 2014a) 1:50 000
Groundwater occurrence (AWEL, 2014) 1:25 000 Gr

Climate mean annual/monthly temperature,
precipitation, radiation, degree days,
NH3 concentration in air

MeteoSwiss 1961–1990 (Zimmermann and Kienast, 1999) 25/100 m
MeteoTest 1975–2010 (Remund et al., 2011) 250 m
Air pollutants (BAFU, 2011) 500 m Zf
NO2 immissions (AWEL, 2015) 100 m Gr

Vegetation band ratios, NDVI, 180 hyperspectral
bands, aggregated vegetation units,
canopy height

Landsat7 scene (USGS EROS, 2013) 30 m
DMC mosaic (DMC, 2015) 22 m
SPOT5 mosaic (Mathys and Kellenberger, 2009) 10 m Zf
APEX spectrometer mosaics (Schaepman et al., 2015) 2 m Gr
Share of coniferous trees (FSO, 2000b) 25 m Zf
Vegetation map (Schmider et al., 1993) 1:5 000 Zf
Species composition data (Brassel and Lischke, 2001) 25 m Zf
Digital surface model (Swisstopo, 2011) 2 m Zf

Topography slope, curvature, northness, TPI, TWI,
MRVBF (various radii/resolutions)Digital elevation model (Swisstopo, 2011) 25 m

Digital terrain model (Swisstopo, 2013b) 2 m

and GSS equal to 1, for random predictions the scores are
equal to 0 and predictions worse than the reference receive
negative scores. PSS is truly and GSS asymptotically equi-
table, meaning that purely random and constant predictions
get the same scores (see Wilks, 2011, p. 316 and 321 for de-5

tails).
For the ordinal response drainage classes we tested the fit-

ted geoGAM by evaluating the ranked probability skill score
(RPSS), computed analogously to BSS by

RPSS = 1− RPS
RPSref

(17)10

where RPS is the ranked probability score (RPS, Wilks, 2011,
Eq. (8.52)) given by

RPS =

n∑
i=1

J∑
j=1

(Yi,j −Oi,j)2 (18)

with Yi,j = P̃rob[Y (si)≤ j |x(si)] being the predicted cu-
mulative probabilities up to class j andOi,j =

∑j
r=1 I(Y (si) =15

r) indicating observed absence (0) or presence (1) up to class
j. RPSref is the RPS for a reference that predicts always the
most abundant class (well drained ). For predictions of the or-
dinal outcomes (Sect. 3.3.2) we also computed the mean bias
ratio and two skill scores: We calculated the mean bias ratio 20

from three bias ratios created analogously to the binary case.
These two-class settings were achieved by stepwise aggre-
gation of two out of three classes (well vs. moderately well
or poorly drained, then well or moderately well vs. poorly
drained etc., Wilks, 2011, p. 319). PSS was computed in its 25

general form (Wilks, 2011, p. 319) together with the Gerrity
score (GS), which applies weights to the joint distribution of
predicted and observed classes to consider their ordering and
frequency (Wilks, 2011, p. 322).
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Figure 2. Change of cross-validation root mean squared error
(RMSE) in steps 1–5 of model building procedure (Sect. 2.2).

3.3.4 Software

Terrain attributes were computed by ArcGIS (version 10.2,
ESRI, 2010) and SAGA 2.1.4 (version 2.1.4, Conrad et al.,
2015). All statistical computations were done in R (version
3.2.2, R Core Team, 2016) using several add-on packages, in5

particular grpreg for group lasso (version 2.8-1, Breheny
and Huang, 2015), MASS for proportional odds logit regres-
sion (version 7.3-43, Venables and Ripley, 2002), mboost
for componentwise gradient boosting (version 2.5-0, Hothorn
et al., 2015), mgcv for geoadditive model fits (version 1.8-10

6, Wood, 2011), raster for spatial data processing (ver-
sion 2.4-15, Hijmans et al., 2015) and geoGAM for the model
building routine (version 0.1-2, Nussbaum, 2017).

4 Results

4.1 ECEC – case study 115

4.1.1 Models for ECEC in 0-20 cm depth

Figure 2 shows the change of RMSE during model build-
ing (10-fold cross-validation). The small root mean squared
error (RMSE) of 0.428 log mmolc kg

−1 after the gradient
boosting step – with coefficients shrunken by the algorithm20

– could further be reduced (RMSE 0.422 log mmolc kg
−1)

by removing covariates and by factor aggregation. Aggregat-
ing factor levels resembles shrinking of coefficients of such
covariates.

Starting with 333 covariates model building successfully25

reduced the number of covariates in the model to 17. The
remaining ones characterized geology, vegetation and topog-
raphy (Table 2). Effective cation exchange capacity (ECEC)
depended nonlinearly on nearly all continuous covariates, but
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Figure 3. Scatter plot of measured against predicted ECEC in 0-
20 cm mineral soil depth, computed with geoGAM (Sect. 4.1.1) for
the sites of the validation set (solid line: loess scatter plot smoother,
n: number of measurements).

nonlinearities were in general rather weak. (Fig. S1 in Sup- 30

plement). No fs(s) term was included in the model, because
residual autocorrelation was very weak (Fig. S2 in Supple-
ment). Including nonstationary effects in the model would
have improved the model only slightly (RMSE 0.406 log
mmolc kg

−1), but would have added considerable complex- 35

ity to the final model (21 covariates including 8 interactions
with fs(s) terms).

4.1.2 Validation of predicted ECEC with independent
data

Predictive performance, as evaluated at 293 independent val- 40

idation sites, was satisfactory. Figure 3 shows for the vali-
dation set measured ECEC in 0–20 cm plotted against the
predictions. The solid line of the loess scatterplot smoother
(Cleveland, 1979) is close to the 1:1 line indicating absence
of conditional bias. This was confirmed by small marginal 45

BIAS measures (Table 3). BIAS2-to-MSE ratio was small
for both log-transformed and original data (1.2 and 0.7 %,
respectively). robRMSE (0.411 log mmolc kg

−1) was some-
what smaller than RMSE (0.471 log mmolc kg

−1) indicat-
ing that a few outlying ECEC observations were not partic- 50

ularly well predicted. RMSE of backtransformed data (74.9
mmolc kg

−1) was also larger than its robust counterpart ro-
bRMSE (55.3 mmolc kg

−1). The model explained about 40 %
of the variance of the log-transformed and 37 % of the vari-
ance of the original data. 55

Figure 4 shows somewhat too large coverage for quantiles
in the lower tails of the predictive distributions, hence the
extent of lower tails of bootstrapped predictive distributions
was underestimated. Upper tails of the predictive distribu-
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10 Nussbaum et al. : Soil mapping using boosted geoadditive models

Table 2. Covariates contained in final geoGAM for responses ECEC, presence of waterlogged horizons and drainage classes. More details
can be found in Fig. S1 and S4 to S6 in Supplement . (p: number of covariates, SD: standard deviation in local neighbourhood, TPI:
topographic position index, TWI: topographic wetness index, MRVBF: multiresolution valley bottom flatness).

ECEC 0-20 cm presence of waterlogged horizons down to drainage
30 cm 50 cm 100 cm class

p 17 7 12 14 11

Legacy soil
data

correction factor

Geology,
land use

distance to
moraines, aquifer
map, overview soil
map, geological
map, geotechnical
map

historic wetlands historic wetlands,
drainage systems
map

historic wet-
lands, drainage
systems map,
anthropogenic soil
disturbance, extent
last glaciation,
geological map

historic wetlands,
drainage systems
map, aquifer map

Climate — global radiation,
precipitation

global radiation,
precipitation

dew point temper-
ature

precipitation

Vegetation SPOT5 vegetation
index, vegetation
map

— UK-DMC green
band

— UK-DMC green
band

Topography SD slope, north-
ness, ruggedness,
surface convexity,
negative openness,
vertical distance to
rivers

curvature, east-
ness, roughness,
negative openness

SD elevation, SD
slope, curvature,
negative open-
ness, TPI, TWI,
MRVBF

SD elevation,
curvature, east-
ness, convergence
index, terrain
texture, horizontal
distance to rivers,
TWI, MRVBF

SD elevation, ter-
rain texture, TPI,
TWI, MRVBF

Table 3. Validation statistics for (a) log-transformed and (b) back-
transformed ECEC 0–20 cm [mmolc kg

−1] calculated for 528 sam-
ples (293 sites) of the validation set (definition of statistics see
Sect. 3.3.3).

BIAS robBIAS RMSE robRMSE SSmse

(a) 0.052 0.006 0.471 0.411 0.407
(b) 6.3 8.9 74.9 55.3 0.365

tions were modelled accurately as the coverage was close to
the nominal probabilities there. The coverage of symmetric
90 %-prediction intervals was again too small (84.1 %) be-
cause the lower tails were too short. The median width of
90 %-prediction intervals was equal to 201.8 mmolc kg

−1,5

demonstrating that prediction uncertainty remained substan-
tial, in spite of SSmse of nearly 40 %.

4.1.3 Mapping ECEC for ZH forest topsoils

Predictions of ECEC were computed by the final geoGAM
for the nodes of a 20 m-grid (Fig. 5). 44 % of the mapped10

topsoil has large to very large ECEC values. In contrast, 13 %

(∼66 km2) of the forest topsoils in the study region are acidic
with ECEC below 100 mmolc kg

−1. These soils are mostly
found in the northern part of the Canton of Zurich. The spa-
tial pattern of the width of 90 %-prediction intervals (Fig. S3 15

in Supplement) and of the mean predictions (Fig. 5) was very
similar (Pearson correlation = 0.981), which follows from the
lognormal model that we adopted for this response.

4.2 Presence of waterlogged soil horizons – case study
2 20

4.2.1 Models for presence of waterlogged horizons

Not surprisingly, the models for presence of waterlogged hori-
zons in the three soil depths contained similar covariates,
characterizing mostly wet soil conditions such as historic wet-
land maps, a map of agricultural drainage systems or sev- 25

eral climatic covariates (Table 2). The same terrain attributes
were repeatedly chosen for the three depths (Figs. S4 to S6
in Supplement). For all three depths model selection resulted
in parsimonious sets of only 7 to 14 covariates chosen from
a total of 498 covariates. The Brier skill score (BSS), com- 30

puted using 10-fold cross-validation, increased from 0.350
for the 0–30 cm layer to 0.704 for the 0-100 cm layer sug-
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Figure 4. Coverage of one-sided bootstrapped prediction intervals
(0,qα(si)) for 528 ECEC validation samples, plotted against nom-
inal probability α used to construct the upper limit qα of the pre-
diction intervals (Vertical lines mark the 5 and 95 % probabilities).

gesting that presence of waterlogged horizons can be better
modelled when they occur more frequently. Degree of resid-
ual spatial autocorrelation on logit-scale was stronger in the
0–30 cm than in 0-100 cm layer (Fig. S2 in Supplement) con-
firming that the model performed better for the 0–100 cm5

layer. Adding a fs(s) term did not improve cross-validated
BSS (30 cm: 0.332, 100 cm: 0.688), meaning that a penal-
ized tensor product of spatial coordinates was too smooth to
capture short range autocorrelation.

4.2.2 Validation of predicted presence of waterlogged10

horizons with independent data

Table 4 reports contingency tables for predicted outcomes
for presence of waterlogged horizons at 198 sites of the val-
idation set. BSS and bias ratio improved again from the 0–
30 cm to the 0-100 cm layer. In 0–30 cm depth presence of15

waterlogged horizons were clearly over-predicted and down
to 50 cm slightly over-predicted while down to 100 cm there
was no bias. Performance evaluated by percentage correct
with the Peirce skill score (PSS) was similar for all three
depths (correct predictions being 44 to 50 % more frequent20

compared to random predictions). Ignoring correct absence
predictions in Gilbert skill score (GSS), the model predicted
the correct level 20–30 % more often than a random pre-
diction scheme. Again, GSS increased with depth and larger
chance of waterlogging occurring.25

4.2.3 Mapping of presence of waterlogged horizons

Presence of waterlogged horizons in 0–30 cm was predicted
for 13.8 % of the area of study region Greifensee (Fig. 6).
For 0–50 cm this share increased to 27.3 % and in nearly
40 % of the soils waterlogged horizons were present in 0– 30

100 cm. Waterlogged horizons were mapped in upper soil
layers mainly on the larger plains to the north and south of
Lake Greifensee. Deeper horizons had waterlogging present
mostly in local depressions and comparably smaller valley
bottoms in the hilly uplands to the south of the study region. 35

4.3 Drainge classes - case study 3

4.3.1 Model for drainage classes

The models for the ordinal drainage class data contained about
the same covariates as the models for presence of water-
logged horizons (Table 2). Most covariates had only very 40

weak nonlinear effects (Fig. S7 in Supplement). Residual
spatial autocorrelation was very weak with a short range (Fig.
S2 in Supplement) suggesting that the variation was well cap-
tured by the geoGAM. 10-fold cross-validation resulted in a
ranked probability skill score (RPSS) of 0.588. 45

4.3.2 Validation of predicted drainage classes with
independent data

Table 5 reports the number of correctly classified and mis-
classified drainage class predictions for the validation set.
False predictions were equally distributed above and below 50

the diagonal, hence predictions were unbiased with a mean
bias ratio close to 1. Distinguishing moderately well drained
soils from the other two classes remained difficult as this
class had been seldom observed. Overall, the model accu-
racy was satisfactory, with RPSS of 0.458 being only slightly 55

smaller than cross-validation RPSS. Hence, the geoGAM was
clearly better than predicting always the most abundant class
well drained. Measured by PSS and Gerrity score (GS), the
geoGAM was better than random predictions at every second
site, for which predictions were computed. 60

4.3.3 Mapping of drainage classes

Drainage classes were again predicted using a 20 m-grid (Fig.
7). 73.2 % of the area of the Greifensee region had well
drained soils. Poorly drained soils were predicted for only
15.6 % of the area. The location of poorly drained soils co- 65

incides with presence of waterlogged horizons in the topsoil
(0–30 cm, panel [a] in Fig. 6). The largest contiguous area of
poorly drained soils was predicted on accumulation plains
at the lake inflow to the south of Lake Greifensee. The sites
misclassified had TPI values indicating local depressions and 70

had larger erosion accumulation potential (MRVBF) com-
pared to correctly classified sites, thus predicting correct drainage
classes in valley bottoms seems more difficult. Misclassified
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Figure 5. geoGAM predictions of effective cation exchange capacity (ECEC) in 0-20 cm depth of the mineral soil of forests in the Canton
of Zurich, Switzerland (computed on a 20 m-grid with final geoGAM with covariates according to Table 2. Black dots are locations used for
geoGAM calibration, locations with red triangles were used for model validation, ECEC legend classes according to Walthert et al., 2004).

Table 4. Observed occurrence of waterlogged horizons at three soil depths against predictions by geoGAM for the 198 sites of the validation
set. Waterlogged soil horizons were predicted to be present if prediction probabilities were larger than an optimal threshold (30 cm: 0.22, 50
cm: 0.35, 100 cm: 0.51) found by cross-validation with GSS as criteria (#: number of sites per response level, BSS: Brier skill score, bias:
bias ratio, PSS: Peirce skill score, GSS: Gilbert Skill score).

waterlogged # observed BSS bias PSS GSS
down to # predicted present absent

30 cm present 16 27 0.312 1.720 0.484 0.227
absent 9 146

50 cm present 28 25 0.448 1.152 0.444 0.267
absent 18 127

100 cm present 43 22 0.526 1.000 0.496 0.330
absent 22 111

sites of the validation set had on average slightly larger clay
and soil organic carbon contents in topsoil.

5 Discussion

5.1 Model building and covariate selection

The model building procedure efficiently selected for all re- 5

sponses parsimonious models with p ≤17 covariates for all
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Table 5. Frequency of drainage class levels and predictions of respective outcomes by geoGAM for the 198 sites of the validation set (#:
number of sites per response level, RPSS: ranked probability skill score, bias: mean bias ratio, PSS: Peirce skill score, GS: Gerrity score for
ordered responses).

# observed RPSS bias PSS GS
well moderately poorly

# predicted drained well drained drained

well drained 129 9 9 0.458 0.985 0.477 0.523
moderately well drained 9 9 3
poorly drained 8 5 17

responses. This corresponds to only 5.8 % of the covari-
ates considered for the effective cation exchange capacity
(ECEC) modelling and to 1.4–2.8 % for modelling the bi-
nary and ordinal responses describing waterlogging.

The procedure was able to select meaningful covariates,5

which reveal the influence of soil forming factors for the re-
sponse variable, without any prior knowledge about the im-
portance of a particular covariate. No pre-processing of co-
variates, such as dealing with with multi-collinearity by re-
ducing the dimensionality of the covariate set, was neces-10

sary. Especially for terrain covariates this is important. A va-
riety of algorithms are available to calculate e.g. curvature
or topographic wetness indices (TWI) which each likely pro-
duce slightly different results. In addition, radii for comput-
ing e.g. topographic position indices (TPI) have to be spec-15

ified and it is often not a priori clear how these should be
chosen (Behrens et al., 2010; Miller et al., 2015). There-
fore, different algorithm and a range of parameter values are
used to create terrain covariates and the model building pro-
cess selects the most suitable input to model a particular soil20

property. Meanwhile, none of the 180 APEX bands available
for the Greifensee region was chosen for the final models.
Most likely, meaningful preprocessing – e.g. based on bare
soil areas – could improve the usefulness of such covariates
(Diek et al., 2016). Since we used continuous reflectance sig-25

nals, including vegetated and sparsely vegetated areas, the
remotely sensed signal might not have expressed too well di-
rect relationships to actual soil properties.

5.2 Model structure

Parsimonious models lend themselves to a verification of fit-30

ted effects from a pedological perspective. Yet, due to multi-
collinearities in the covariate set, effects of selected covari-
ates could be substituted by effects of other covariates (Behrens
et al., 2014).

Although Johnson et al. (2000) did not find strong rela-35

tionships between terrain and ECEC, six terrain attributes
were selected. Covariates representing geology were impor-
tant, too, with e.g. changing ECEC as a function of the dis-
tance to two types of moraines. Also, vegetation provided in-
formation on ECEC in the topsoil as a vegetation index (dif-40

ference of near infrared to red reflectance) and a vegetation

map were included. Larger values of ECEC were modelled
for plant communities that are characteristic for nutrient-rich
soils. The factor distinguishing the origin of soil data ei-
ther from direct measurement or pedotransfer function (PTF, 45

legacy data correction, Sect. 3.2.2, Fig. S1 in Supplement)
was further relevant in the ECEC model.

For modelling drainage classes and presence of waterlogged
horizons plausible covariates were selected (Figs. S4 to S7
in Supplement). Most covariates were terrain attributes de- 50

rived from the digital elevation model (DEM). This is in ac-
cordance with Campling et al. (2002) who found topography
important in general and Lemercier et al. (2012) who showed
that a topographic wetness index was among the most im-
portant covariates. Local depression at various scales (con- 55

cave curvature, basins in TPI, sites with accumulation by ero-
sion, increased terrain wetness) increased the probability for
poorly drained soils and presence of waterlogged horizons.
More variable terrain (standard deviation of elevation) also
increased waterlogging probability. Climate covariates also 60

seemed to be important. Rainfall pattern in summer (June,
July), spring dew point temperature and global radiation (March,
April) correlated most strongly with presence of waterlogged
horizons. Information on human activities related to water-
logged soil amelioration were included in all four models. 65

Maps of historic wetlands and areas with drainage systems
were most often chosen in combination. Geology was also
partly relevant (presence of waterlogged horizons in 0–100 cm
soil depth and drainage classes).

Overall, nonlinearities in effects were small for drainage 70

classes and presence of waterlogged horizons. Estimated de-
grees of freedom (EDF, Wood, 2006, pp. 170) were gener-
ally smaller than 1.5, with some continuous effects even be-
ing close to 1 EDF. In contrast, most nonlinear effects of
the model for ECEC had EDF around 1.7–1.8 with north- 75

ness consuming even 2.0 EDF. The large area of the study
region and the response being a chemical property that de-
pends on various combinations of soil forming factors evi-
dently required the use of a more complex model.
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Figure 6. geoGAM predictions of presence of waterlogged hori-
zons between surface and 3 soil depths (a: 0–30, b: 0–50, c: 0–
100 cm) for the agricultural land in the Greifensee study region
(computed on a 20 m-grid with final geoGAM with covariates ac-
cording to Table 2, smoothed for better display with focal mean with
radius of 3 pixels = 60 m). Black dots in panel (a) are locations used
for geoGAM calibration, locations with red triangles were used for
model validation.
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Figure 7. geoGAM predictions of drainage classes for the agricul-
tural land in the Greifensee study region (computed on a 20 m-grid
with final geoGAM with covariates according to Table 2, smoothed
for better display with focal mean with radius of 3 pixels = 60 m).
Black dots are locations used for geoGAM calibration, locations
with red triangles were used for model validation.
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5.3 Predictive performance of fitted models

In general, no over-fitting of the calibration data was ob-
served. Cross-validation statistics of the final models were
similar to results obtained by independent validation. Inde-
pendently validated model accuracy was satisfactory for ECEC5

in the present study with (SSmse 0.37). Building a separate
model for forest soil ECEC for a dataset with about 2.1 sites
per km2 seem to produce much better results than the study
reported by Vaysse and Lagacherie (2015) who found very
poor model performance for ECEC (R2 = 0, equivalently10

computed as SSmse) for a dataset with 0.04 sites per km2 and
a study region with multiple land uses.

Presented models reached similar accuracy as reported in
other studies. Zhao et al. (2013, Table 1) reported that 64 to
87 % of the sites were correctly classified (percentage cor-15

rect, PC) in four studies that modelled three drainage class
levels. Three studies with up to seven drainage levels achieved
PC of 52 to 78% and Zhao et al. (2013) themselves had 36 %
of correctly classified sites. Kidd et al. (2014) found PC of
53 % and 55 % for two study regions, and Lemercier et al.20

(2012) reported PC of 52 % for a four-level drainage re-
sponse. The presented models (Table 4 and 5) are about as
good with PC of 78 % to 82 % for predicting presence of wa-
terlogged horizons and PC of 78 % for predicting the three
drainage class levels.25

Nevertheless, PC is trivial to hedge (Jolliffe and Stephen-
son, 2012, pp. 46), and comparisons should be made only
with care. Better performance measures are PSS and Co-
hen’s kappa (κ), also called Heidke skill score (Wilks, 2011,
pp. 347). Campling et al. (2002) reported a κ of 0.705, Kidd30

et al. (2014) κ’s of 0.27 and 0.31 for the two study regions,
Lemercier et al. (2012) a κ of 0.27 and Peng et al. (2003)
found κ of 0.59 for predictions of three drainage levels. κ’s
computed for the models of this study ranged between 0.37
and 0.5 for modelling the presence of waterlogged horizons35

and was 0.48 for predicting the three levels of drainage class.
Unequal distribution of the three drainage classes in the study
region (majority of soils were well drained ) were reflected in
the smaller value of κ compared to PC.

5.4 Spatial structure of predicted maps40

The spatial distribution of ECEC as shown by Fig. 5 aligns
well with pedological knowledge about soils in the Canton of
Zurich. The smallest ECEC (< 50 mmolc kg

−1) was mapped
in the northeast of the study region. The last glaciation (Swis-
stopo, 2009) did not reach as far north and, as a consequence,45

strongly weathered soils on old fluvioglacial gravel-rich sed-
iments developed in this part of the study region. Soils not
covered by ice during the last glaciation have comparably
larger ECEC if they formed on Molasse.

As expected the spatial patterns for the presence of water-50

logged soil horizons and the drainage classes were very sim-
ilar (Fig. 6 and 7). Especially soils on plains to the north and

south of Lake Greifensee are often poorly drained, although
at many locations agricultural drainage networks were in-
stalled in the past. 55

6 Summary and conclusion

Effectively building predictive models for digital soil map-
ping (DSM) becomes crucial if many soil properties are to
be mapped. Selecting only a small set of relevant covariates
renders interpretation of the fitted models easier and allows 60

to check whether modelled relations accord with pedologi-
cal understanding. Parsimonious, interpretable DSM models
are likely more readily accepted by end-users than complex
black-box models. Moreover, model selection out of a large
number of covariates describing soil forming factors helps 65

to improve knowledge about relationships at larger scales. In
this sense, it is also important, that the model approach pro-
vides information about covariates which are not relevant for
a certain response, e.g. the large number of APEX bands for
persence of waterlogged horizons and drainage classes. 70

We developed a model building framework for general-
ized additive models for spatial data (geoGAM) and applied
the framework to legacy soil data from the Canton of Zurich
(Switzerland). We found that geoGAM

– consistently modelled continuous, binary and ordinal re- 75

sponses, hence, allow DSM of measured soil properties
and soil classification data using one common approach,

– selected, given the large numbers of covariates, ade-
quately small sets of pedogenetically meaningful co-
variates without any prior knowledge about their impor- 80

tance and without prior reduction of the covariate sets,

– required minimal user interaction for model building,
which facilitates future map updates as new soil data or
new covariates become available,

– allowed easy interpretation of effects of the included co- 85

variates by partial residual plots,

– modelled predictive distributions for continuous responses
by a bootstrapping approach, thereby taking uncertainty
of model building into account,

– did not over-fit the calibration data in our applications, 90

and

– predicted soil properties with similar precision than other
approaches did in other digital soil mapping studies,
when tested with an independent validation set.

To further assess usefulness of geoGAM for DSM future 95

work should focus on comparisons of predictive precision
with commonly used statistical methods (e.g. geostatistics
or tree-based machine learning techniques) on the same soil
datasets.
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