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Abstract. The classical approach to use 137Cs as soil erosion tracer is based on the comparison between stable reference sites 

and sites affected by soil redistribution processes, and enables to derive soil erosion and deposition rates. The method is 

associated with potentially large sources of uncertainty with major parts of this uncertainty being associated with the 

selection of the reference sites. We propose a decision support tool to Check the Suitability of reference Sites (CheSS). 15 

Commonly the variation among 137Cs inventories of spatial replicate reference samples are taken as sole criteria to decide on 

the suitability of a reference inventory. Here we propose an extension of this procedure using a repeated sampling approach, 

where the reference sites are resampled after a certain time period. Suitable reference sites are expected to present no 

significant temporal variation in their decay-corrected 137Cs depth profiles. Possible causes of variation are assessed by a 

decision tree. More specifically, the decision tree tests for (i) uncertainty connected to small scale variability of 137Cs due to 20 

its heterogeneous initial fallout (such as in areas affected by the Chernobyl fallout), (ii) signs of erosion/deposition 

processes, (iii) artefacts due to the collection, preparation and measurement of the samples and (iv) finally, if none of the 

above can be assigned, this variation might be attributed to “turbation” processes (e.g. bioturbation, cryoturbation and 

mechanical turbation such as avalanches or rock falls).CheSS was applied in a case study site in a Swiss alpine valley, where 

the apparent temporal variability was  questioning the suitability of selected reference sites. In general we suggest the 25 

application of CheSS to implement first steps towards a comprehensible approach to test for the suitability of reference sites. 

 

Keywords: FRN, fallout radionuclides, soil degradation, 210Pbex, 
239+240Pu, comparability of gamma spectrometers, Cesium-
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1 Introduction 30 

Soil erosion is a global threat (Lal, 2003). Recent estimated erosion rates range from low rates of 0.001–2 t ha-1 yr-1 on flat 

relatively undisturbed lands (Patric, 2002) to high rates under intensive agricultural use of > 50 t ha-1 yr-1. In mountainous 
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investigation is lower than at the reference site, the site has experienced erosion processes (E), while if the FRN content is greater 
than at the reference site, the site has experienced deposition processes (D). 

The efficacy of the method relies on an accurate selection of representative reference sites (Mabit et al., 2008; Owens and 

Walling, 1996, Sutherland,1996). The measured total 137Cs inventory at the reference sites represents the baseline fallout (i.e. 55 

reference inventory), a fundamental parameter for the qualitative and quantitative assessment of soil redistribution rates 

(Loughran et al., 2002). It is used for the comparison with the total 137Cs inventories of the sampling sites, and it therefore 

determines if and how strongly a site is eroding or accumulating sediments. Moreover, the depth profile of the 137Cs 

distribution in the soil at the reference site plays a very important role, as the shape of this profile is used in the conversion 

models to convert changes in 137Cs inventory changes into quantitative estimates of soil erosion rates (Walling et al., 2002). 60 

Recent studies demonstrated the sensitivity of conversion models to uncertainties or even biases in the reference inventory 

(e.g. Arata et al., 2016; Iurian et al., 2014; Kirchner, 2013). 

A close proximity of a reference site to the area under investigation is required to meet the assumption that both experienced 

similar initial fallout. The latter is particularly important if the study area was strongly affected by Chernobyl fallout, which 

is, besides global fallout from nuclear weapons testing, the major input of 137Cs in many regions of Europe. Because of 65 

different geographical situations and meteorological conditions at the time of passage of the radioactive cloud, the 

contamination associated with Chernobyl fallout was very heterogeneous(Chawla et al., 2010, Alewell et al., 2014). 

Therefore, in some areas a significant small scale variability of 137Cs distribution may be expected and, as already pointed 

out by Lettner et al. (1999) and Owens and Walling (1996), might impede the comparison between reference and sampling 

sites. To consider adequately the spatial variability of the FRN fallout, multiple reference sites should be selected and the 70 

variability within the sites properly tackled (Kirchner, 2013, Mabit et al., 2013, Pennock and Appleby, 2002). In addition, the 

reference site should not have experienced any soil erosion or deposition processes since the main 137Cs fallout (which 

generally requires that it was under continuous vegetation cover such as perennial grass). Different forms of turbation, 

including animal-, anthropogenic- and cryoturbation or snow processes may also affect the 137Cs soil depth distribution at the 

reference site. Finally, the collection of the samples, the preparation process and the gamma analysis might introduce a 75 

certain level of uncertainty, which should be carefully considered. For instance, Lettner et al. (1999) estimated that the 

preparation and measuring processes contribute 12.2% to the overall variability of the reference inventory. Guidance in form 

of independent indicators (e.g. stable isotopes as suggested by Meusburger et al., 2013) for the suitability of reference sites 

might help to assist with the selection of these sites. 

All in all the suitability or unsuitability of references site is crucial, maybe even the most crucial step, in all FRN based 80 

erosion assessments. The general suitability of 137Cs based erosion assessment has been recently discussed very 

controversially (Parsons and Forster 2011, 2013; Mabit et al., 2013). We would like to propose that the FRN community 

needs to agree on general concepts and sampling strategies to test the suitability of reference sites in order to improve the 

method as well as increase the confidence in this useful erosion assessment method. Until now, the variability among spatial 

replicate samples at reference sites are commonly the sole criteria to decide on the suitability of a reference value. We 85 
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propose an extended method to Check the Suitability of reference Sites (CheSS) using a repeated sampling strategy and, as 

such, an assessment of the temporal variability of reference sites. The suitability of reference sites for an accurate application 

of 137Cs as soil erosion tracer is tested at Urseren Valley (Canton Uri, Swiss Central Alps). 

2 CheSS (Check the Suitability of reference Sites): a concept to assess the suitability of reference sites for application 
of 137Cs as soil erosion tracer 90 

2.1 Repeated sampling strategy and calculation of inventories 

The time period for the repeated sampling of reference sites needed for the application of 137Cs as soil erosion tracer will be 

site- and case-specific and depends on the initial small scale spatial variability and the depth distribution of the reference 

inventory. The time span should be of sufficient length to cause an inventory change that it larger than the uncertainty related 

to the inventory assessment (e.g. > 35%). In our study site being effected by anthropogenic disturbance and snow erosion of 95 

several mm per winter already 2 years can be considered sufficient (Meusburger et al., 2014). Several spatial repetitions 

following the suggestion of Sutherland et al. (1996) are necessary and should be analysed separately to investigate the small 

scale variability of 137Cs in the area. As we detected measurement differences between different detectors (see section 3.4), 

all samples should ideally be measured for 137Cs activity using the same analytical facilities. Finally, 137Cs activity needs to 

be decay-corrected to the same date (either the period of the first sampling campaign or the second one), considering the 100 

half-life of 137Cs (30.17 years). 

The decay-corrected 137Cs activities (act, Bq kg-1), of each soil layer of the depth profile are converted into inventories (inv, 

Bq m-2) with the following equation: 

ݒ݊ܫ ൌ 	ݐܿܽ ൈ  (1)                                        ݉ݔ

where xm is the measured mass depth of fine soil material (<2 mm fraction) (kg m-2) of each soil sample. The depth profile 105 

of each reference site is then displayed as inventory (Bq m-2) against the depth of each layer (cm). The repeated-sampling 

inventory change (Invchange) can then be defined as: 

௖௛௔௡௚௘ݒ݊ܫ ൌ
ூ௡௩೟బିூ௡௩೟భ

ூ௡௩೟బ
ൈ 100                (2) 

where t0 and t1 are the dates of the first and the second sampling campaigns respectively, Invt1 is the 137Cs inventory (Bq m-2) 

at t1, and Invt0 is the 137Cs inventory at t0. Positive values of Invchange indicate erosion, whereas negative values correspond to 110 

deposition. 

2.2 A decision tree to assess the suitability of reference sites 

We evaluated the suitability of the reference sites by analyzing both the spatial and the temporal variability of the 137Cs 

inventory. Given the assumption that no additional deposition of 137Cs occurred at the sites during the investigated time 
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window (which is valid worldwide except for the areas affected by the Fukushima-Daiichi fallout, Winiarek et al., 2014, Oh 115 

et al., 2014), any temporal variation of the 137Cs content should be attributable to different forms of soil disturbance or to 

artefacts in the preparation/measurement of the samples. The potential causes of the spatial and temporal variation in the 
137Cs total inventories and depth profiles are examined through a decision tree which includes three main nodes (Figure 2).  

Node 1: Spatial variation of FRN total inventory 

First, the spatial variation of the 137Cs total inventory at each reference site is tested. Ideally, several replicates have been 120 

collected. If the coefficient of variation (CV) exceeds 35% as suggested by Sutherland (1996), this could be a sign of 

unsuitability of the reference site, although it leaves the possibility of i) increasing sampling numbers, ii) analysing the 

causes for the spatial variation (see CheSS A to D) and iii) moving to node 2 and 3 in CheSS.  

Node 2: Variation of the 137Cs depth profile 

Second, it is tested whether there is a significant variation between the 137Cs depth profiles measured as spatial or temporal 125 

(in t0 and t1) replicates. In theory, at a stable site, the shape of the depth profile should not change between replicates. 

Consequently, a regression between the FRN activity depth profiles collected as spatial or temporal replicates should follow 

a 1:1 line and the variability should lie within the range of the observed spatial uncertainty (node 1).  A deviation of the 

linear regression coefficient from the 1:1 line in combination with high residues and low R2 values (<0.5 R2) indicates an 

immediate and significant change of the profile, which is typically caused by anthropogenic disturbance. For the FRN 130 

application at ploughed sites, the reference site might still be considered appropriate if the total inventory is not affected, 

because conversion models used for ploughed sites are less sensitive to the shape of the FRN depth distribution. For 

unploughed soils, again the analysis of other causes (see the causes labelled A to D in Figure 2) might help to identify the 

sources of this variability. Alternative options would be to take temporal replicates to evaluate the stability and thus 

suitability of the reference site (node 3). 135 

Node 3: Temporal variation of FRN total inventory 

If the CV of all replicates taken in t0 and t1 is <35%, the reference site might be used for the FRN method. Further a suitable 

test for significant differences should confirm or reject the hypothesis of 137Cs total inventory stability over time. If the 

potential causes for variation (A to D) do not apply, the site is not suitable for the traditional FRN approach. Still a repeated 

sampling approach could be used to assess soil redistribution rates based on FRN methods (Porto et al., 2014; Kachanoski & 140 

de Jong, 1984). 
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other tracing approaches, such as the δ13C depth distribution (Meusburger et al., 2013; Schaub and Alewell, 2009). In case of 

turbation the shape of the depth profile will be highly variable and should not be considered in the estimation of soil 

redistribution rates for unploughed soils. Nonetheless, the total inventory of 137Cs at a ploughed site could still be used in 

combination with simple and basic mathematical conversion models, such as the proportional model (Ritchie and McHenry, 

1990, IAEA, 2014), which require information only about the total reference inventory of 137Cs, and do not need detailed 190 

information about the 137Cs depth distribution. 

D: Signs of a heterogeneous initial fallout of 137Cs over the area 

Finally, a significant difference between reference replicates may be caused by a high small scale spatial variability of 137Cs 

distribution at the site, due to heterogeneous initial fallout over the study area (Figure 2, D). In Europe, significant small 

scale variability of 137Cs distribution is known to be due to the Chernobyl fallout, which was characterized by a high 137Cs 195 

deposition associated with few rain events. Compared to the nuclear bomb tests fallout, the Chernobyl fallout was 

significantly more heterogeneous (e.g. Alewell et al., 2014). Therefore, in the areas affected by the Chernobyl fallout, sites 

sampled close to each other may present very different 137Cs contents. It is therefore necessary to investigate the small scale 

spatial variability (e.g. the same scale as distance between reference site replicates) measured at both or at least one sampling 

campaign, looking at the CV again, as presented in the previous sections, or through a statistical test (for example the 200 

Analysis of the Variance, ANOVA). If the spatial variability is highly significant, the site should not be envisaged as a 

reference site for the application of the 137Cs method unless the number of samples collected for the determination of the 

reference baseline is large enough (at least 10) to counterweight the small scale variability within the site (Mabit et al., 2012; 

Sutherland, 1996, Kirchner,2013). A possible validation of this cause of heterogeneity might be a comparison with the 

spatial distribution of another FRN such as 239+240Pu or 210Pbex (Porto et al., 2013). (Figure 2, D). As the fallout deposition of 205 
239+240Pu after the Chernobyl accident was confined to a restricted area in the vicinity of the Nuclear Power Plant (Ketterer et 

al., 2004), the origin of Plutonium fallout in the rest of Europe is linked to the past nuclear bomb tests only. Consequently, 

Pu fallout distribution was more homogeneous (Alewell et al., 2014; Ketterer et al., 2004; Zollinger et al., 2015). If the 
239+240Pu depth profiles do not vary significantly between the two sampling years, there should be no disturbance (e.g. 

turbation, erosion) or measurement artefacts. As such, it might be concluded that the heterogeneous deposition of 137Cs at the 210 

time of the fallout may prevent the use of Cs at this site. 

3 The application of the CheSS decision tree  

3.1 Study area 

To test the methodology described above, we used a dataset from an alpine study area, the Urseren Valley (30 km2) in 

Central Switzerland (Canton Uri), which has an elevation ranging from 1440 to 3200 m a.s.l. At the valley bottom (1442 m 215 

a.s.l.), average annual air temperature for the period 1980–2012 is around 4.1 ± 0.7 °C and the mean annual precipitation is 
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1457 ± 290 mm, with 30% falling as snow (MeteoSwiss, 2013). The U-formed valley is snow-covered from November to 

April. On the slopes, pasture is the dominant land use, whereas hayfields are dominant near the valley bottom. 

3.2 Sampling design  

Supportive information was provided by the local landowners to select the reference sites in both valleys. Sites used for 220 

ploughing and grazing activities were excluded. A first sampling campaign was undertaken in autumn 2010 for 239+240Pu and 

2013 for 137Cs measurements. Six reference sites (REF1 to REF6) were identified in flat and undisturbed areas along the 

valley. At each site 3 cores (40 cm depth), collected 1 m apart from each other, were sampled. The cores were cut into 3 cm 

increments, to derive the 137Cs depth profile. The three cores from each site were bulked to provide one composite sample 

per site. During the second sampling campaign in spring 2015, all six reference sites were resampled. Considering the typical 225 

and high soil redistribution dynamics of the valley of >1cm per year caused by snow-induced soil removal (Meusburger et 

al., 2014), the period considered is sufficiently long to ensure the possibility to observe changes in the depth profiles if soil 

erosion and deposition processes affected the area. At each site, we collected three replicates, which were analyzed 

separately, to investigate the small scale variability of the FRN content. All cores were air-dried (40°C for 72h), sieved (<2 

mm) to remove coarse particles and to determine the skeleton content. The bulk density (BD) was also determined.  230 

3.3 Measurement of anthropogenic FRN activities and inventories 

The 137Cs activity measurements (Bq kg-1) were performed with high resolution HPGe detectors. The 137Cs activity (Bq kg-1) 

from the samples collected in 2013 were analysed at the Institute of Physics of the University of Basel using a coaxial, high 

resolution germanium lithium detector (Princeton Gammatech) with a relative efficiency of 19% (at 1.33 MeV, 60Co). 

Counting time was set to 24 hours per sample. Samples collected in 2015 were analysed at the state laboratory Basel-City 235 

using coaxial high resolution germanium detectors having 25% to 50% relative efficiencies (at 1.33 MeV, 60Co). Counting 

times were set to provide a precision of less than ±10% for 137Cs at the 95% level of confidence.  

All soil samples were counted in sealed discs (65 mm diameter, 12 mm height, 32 cm3) and the measurements were 

corrected for sample density and potential radioactivity background. The detectors located at the state laboratory Basel-City 

were calibrated with a reference solution of the same geometry. The reference contained 152Eu and 241Am (2.6 kBq rsp. 7.7 240 

kBq) to calibrate the detectors from 60 to 1765 keV. It was obtained from the Czech Metrology Institute, Prague. This 

solution was bound in a silicon resin with a density of 1.0. The efficiency functions were corrected for coincidence summing 

of the 152Eu lines using a Monte Carlo simulation program (Gespecor). The 137Cs was counted at 662 keV with an emission 

probability of 0.85 and a (detector) resolution of 1.3 to 1.6 keV (FWHM). All measurements and calculations were 

performed with the gamma software Interwinner 7. The 137Cs activity measurements were all decay-corrected to the year 245 

2015. 

To compare the 137Cs results with those obtained with another artificial FRN, all samples were also analyzed for 239+240Pu 

activity. The determination of Plutonium isotopes from both valleys and for both sampling years were performed using a 
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Figure 6: Temporal variation between the total 137Cs inventories measured at the reference sites in the Urseren Valley, where Time 

0 = 2013 and Time 1 = 2015. The errors bars indicate the standard deviations of the inventories among the replicates collected at 270 

each reference site in 2015. 

When following the CheSS decision tree, we investigated the variation in the 137Cs total inventories at each reference site 

(node 1). The replicate samples were analyzed separately only during the second sampling campaign (t1), while during the 

first sampling campaign (t0) only composite samples were analysed. Reference sites 3, 5 and 6 presented signs of high small 

scale variability, as expressed by a CV of 48 % (Table 1). Such variability excluded them from any further use as reference 275 

sites without subsequent additional sampling. For reference sites 1, 2 and 4, the CV was between 19 – 31%.  

Passing to node 2 of the CheSS decision tree, the analysis focused on the variation of the shape of the 137Cs depth profile 

(Figure 7). Here, we examined the regression between the reference depth profiles in t0 and t1. For the three sites with 

acceptable spatial variability (i.e. reference site 1, 2 and 4) the site REF4 showed sign of deposition with a regression 

coefficient between t0 and t1 = 1.34. The deposition was confirmed by field observation of construction works that were 280 

conducted between the two sampling campaigns. Thus, after this disturbance, the site is not a suitable reference site 

anymore. Among the sites with high spatial variability REF6 showed signs of erosion with a regression coefficient between 

t0 and t1 = 0.79.  

In node 3, the temporal differences in total inventories between t0 and t1 were assessed. Here, only REF4 showed a 

significant difference of the total 137Cs inventories between t0 and t1. This confirmed the unsuitability of the site to provide a 285 

reference value after the construction works. 
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 295 

 

Figure 8: Temporal variation between the total 239+240Pu inventories measured at the reference sites in the Urseren Valley, where 

Time 0 = 2010 and Time 1 = 2015. The errors bars indicate the standard deviations of the inventories among the replicates 

collected at each reference site in 2015. 

 300 

Further, the depth profiles of the three replicates at reference site 1 presented also significant differences. We then looked at 

the differences in the skeleton content of the three replicates (Figure 2, B). An ANOVA test showed a significant difference 

(p-value of 0.025), which indicates that a difference in the presence of stones in the three soil cores might have affected the 

FRN depth distribution. In particular, a Tukey's HSD (Honest Significant Difference) Post-hoc pairwise comparison 

identified the replicate number 3 at REF1 as a potential outlier. To validate the suitability of REF1 as a reference site, more 305 

replicates should be collected and measured, in order to compare their 137Cs depth profiles to those results obtained during 

the first sampling campaign. In summary, REF2, REF4 (before the construction works) appeared to be most suitable for 
137Cs-based studies. As for sites REF3 and REF5, a visual inspection of their soil profiles excluded that any soil disturbance 
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affected the sites (Figure 2, C). Consequently, at those sites, the variation in their depth profiles is due to a heterogeneous 

fallout with high spatial variability (Figure 2, D).. These sites may be suitable for studies based on other FRNs or even on 310 
137Cs if more samples are collected to constrain the spatial heterogeneity that was introduced by the 137Cs Chernobyl fallout. 

 

4 Conclusions 

With the decision tree CheSS, a support tool was proposed to verify the suitability of reference sites for a 137Cs based soil 

erosion assessment. Great attention has to be given to the analysis of the small scale variability of 137Cs distribution in the 315 

reference areas, especially in those regions affected by heterogeneous post-accidental nuclear fallout. To cope with a small 

scale variability, sampling numbers might be increased, or the temporal variation of 137Cs or another radionuclide, such as 
239+240Pu, might be analysed. The CheSS test in the Urseren Valley indicated that the heterogeneity and disturbance of 137Cs 

distribution prejudiced the suitability of some reference sites. In addition, the presence of stones affected the shapes of the 

depth profile in at least one replicate sample. Including unsuitable reference sites, the application of the traditional 137Cs 320 

approach, based on a spatial comparison between reference and sampling sites, is compromised. To derive soil redistribution 

rates, a 137Cs repeated sampling approach should be preferred. This approach is based on a temporal comparison of the FRN 

inventories measured at the same site in different times (Kachanoski & de Jong, 1984). It doesn’t require the selection of 

reference sites, because the inventory documented by the initial sampling campaign is used as the reference inventory for 

that point (Porto et al., 2014).  325 

Accurate soil erosion assessments are crucially needed to validate soil erosion modelling, which can help prevent and 

mitigate soil losses on larger spatial scales. In this context, FRN could play a decisive role, if we are able to overcome its 

potential pitfalls, especially those related to the selection of suitable reference sites. The decision tree CheSS provides a new 

concept for an objective and comparable reference site testing, which enables to exclude those sites which present signs of 

uncertainty and should therefore not be used as reference sites With this approach we are convinced to contribute improving 330 

the reliability of the FRN-based soil erosion assessments. 
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