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Abstract. Presently, the lack of data on soil organic carbon (SOC) stocks in relation to land-use types and 

biophysical characteristics prevents reliable estimates of ecosystem carbon stocks in montane landscapes of 

mainland SE Asia. Our study, conducted in a 10,000-ha landscape in Xishuangbanna, SW China, aimed at 

assessing the spatial variability in SOC concentrations and stocks, and the relationships of SOC with land-use 

types, soil properties, vegetation characteristics and topographical attributes at three spatial scales: (1) land-use 25 

types within a landscape (10,000 ha) (2) sampling plots (one ha) nested within land-use types (plot distances 

ranging between 0.5 - 12 km) and (3) subplots (10-m radius) nested within sampling plots. We sampled 27 one-

ha plots including 10 plots in mature forests, 11 plots in regenerating or highly disturbed forests, and six plots in 

open land including tea plantations and grasslands. We used a sampling design with a hierarchical structure. The 

landscape was first classified according to land-use types. Within each land-use type, sampling plots were 30 

randomly selected, and within each plot we sampled within nine subplots. SOC concentrations and stocks did 

not differ significantly across the four land-use types. However, within the open-land category, SOC 

concentrations and stocks in grasslands were higher than in tea plantations (P<0.01 for 0-0.15-m, P=0.05 for 

0.15-0.30-m, P=0.06 for 0-0.9-m depth). The SOC stocks to a depth of 0.9 m were 177.6 ± 19.6 (SE) Mg C ha-1 

in tea plantations, 199.5 ± 14.8 Mg C ha-1 in regenerating or highly disturbed forests, 228.6 ± 19.7 Mg C ha-1 in 35 

mature forests, and 236.2 ± 13.7 Mg C ha-1 in grasslands. In this montane landscape, variability within plots 

accounted for more than 50% of the overall variance in SOC stocks to a depth of 0.9 m, and the topsoil SOC 

concentrations. The relationships of SOC concentrations and stocks with land-use types, soil properties, 

vegetation characteristics and topographical attributes varied across spatial scales. Variability in SOC within 

plots was determined by litter layer carbon stocks (P<0.01 for 0-0.15-m and P=0.03 for 0.15-0.30-m and 0-0.9-40 

m depth) and slope (P≤0.01 for 0-0.15-m, 0.15-0.30-m and 0-0.9-m depth) in open land, and by litter layer 

carbon stocks (P<0.001 for 0-0.15-m, 0.15-0.30-m and 0-0.9-m depth) and tree basal area (P<0.001 for 0-0.15-

m and P=0.01 for 0-0.9-m depth) in forests. Variability in SOC among plots in open land was related to the 

differences in SOC concentrations and stocks between grasslands and tea plantations. In forests, the variability 

in SOC among plots was associated with elevation (P<0.01 for 0-0.15-m and P=0.09 for 0-0.9-m depth). The 45 

scale-dependent relationships between SOC and its controlling factors demonstrate that studies that aim to 

investigate the land-use effects on SOC need an appropriate sampling design reflecting the controlling factors of 

SOC so that land-use effects will not be masked by the variability between and within sampling plots. 

 

  50 



 

3 

 

 

 

1. Introduction 

Soils are the largest pool of terrestrial organic carbon, storing more carbon than the combined total of carbon 

stocks in the atmosphere and vegetation (Schlesinger, 1997). The carbon pools in soil and atmosphere are tightly 

linked to the photosynthetic activity of plants and decomposition of soil organic matter by soil fauna. The flux 

from the soil organic carbon (SOC) pool to atmospheric CO2 is one of the largest in the global carbon cycle and 55 

is sensitive to changes in land use (e.g., Powers et al., 2011) and climate (Amundson, 2001). Apart from the 

important role of the SOC pool in the global carbon cycle, SOC is a dominant controlling factor of important 

soil functions such as soil fertility, soil structure, and soil water-holding capacity. SOC stocks typically display 

considerable spatial variability across landscapes. Understanding the drivers of this variability is essential for the 

development of management strategies that aim at enhancing soil functions, and for SOC accounting purposes 60 

with a relevance for policy makers. Examples of such SOC accounting purposes are the Clean Development 

Mechanism (CDM) and Reducing Emissions from Deforestation and Degradation (REDD+) initiatives that aim 

to generate financial compensation for local communities if they protect and enhance ecosystem carbon stocks 

(UNFCCC, 2009).  

Spatial variability in SOC is the result of soil-forming factors acting and interacting across various 65 

spatio-temporal scales (Trangmar et al., 1986). Soil-forming factors affecting SOC are soil parent material, 

topographical attributes, biota, human activity (which includes land-use type and land management), time, and 

climate (Jenny, 1941). The importance of these controlling factors differs with spatial scale and environmental 

setting (Chaplot et al., 2010; Liu et al., 2013; Powers and Schlesinger, 2002). At the landscape scale, parent 

material (which often affects soil group, and clay minerology and content) is an important driver of SOC (e.g. de 70 

Koning et al., 2003; Schimel et al., 1994; Six et al., 2002). Within the same soil group, SOC is mainly 

influenced by land-use type and management (e.g. de Blécourt et al., 2013; de Koning et al., 2003; Mekuria et 

al., 2009; Post and Kwon, 2000), and geomorphological characteristics such as slope and slope position 

(Chaplot et al., 2005; Corre et al., 2015; Pennock and Corre, 2001). Spatial patterns of SOC are also greatly 

influenced by small-scale variability in biophysical factors that influence plant productivity and decomposition 75 

of soil organic matter (Hook et al., 1991; Stoyan et al., 2000). A comprehensive understanding of the sources of 

spatial variability of SOC and its key drivers at multiple scales is an important prerequisite for upscaling SOC 

data to larger areas. 

In this study, we used a hierarchical sampling design to examine spatial variability in SOC 

concentrations (SOCc) and stocks (SOCs) and its relationships with land-use types, soil properties, vegetation 80 

characteristics, and topographical attributes at multiple spatial scales in a tropical montane landscape in 

Xishuangbanna, SW China. For centuries the area’s land use has been characterized by swidden agriculture 

(also called slash-and-burn agriculture, or shifting cultivation) (Xu, 2006). The long history of swidden 

agriculture has resulted in a mosaic of secondary forests, agricultural fields, paddy rice, tea plantations, and 

rough grasslands (i.e. grasslands invaded with shrubs). Similar multi-use landscapes extend throughout SW 85 

China and the northern areas of Laos, Myanmar, Thailand and Vietnam (Garrity, 1993). In recent decades, large 

areas, formerly under swidden agriculture, have been transformed into landscapes with a more uniform land-use 

cover dominated by commercial crops and monoculture tree plantations (Rerkasem et al., 2009). The impact of 

the demise of swidden agriculture on ecosystem carbon stocks remains hard to predict, which is caused, among 

other factors, by limited SOC data (Fox et al., 2014). There were only three studies so far that evaluated the 90 
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impact of land use and various biophysical factors on the spatial variation in SOCc and SOCs at a landscape or 

larger scale in montane mainland southeast Asia; these were conducted in northern Thailand (Aumtong et al., 

2009; Pibumrung et al., 2008) and Laos (Phachomphon et al., 2010).  

 Our specific objectives were (i) to quantify the SOCs of the four dominant land-use types: tea 

plantation, rough grasslands, regenerating or highly disturbed forests, and mature forests, (ii) to determine the 95 

proportions of the overall variance of SOCc and SOCs as well as soil, vegetation and topographical properties 

that were accounted for by land-use types within the landscape (10,000 ha), by sampling plots (one ha) nested 

within land-use types (plot distances ranging between 0.5 - 12 km), and by subplots (10-m radius) nested within 

sampling plots, and (iii) to assess the relationships between SOCc and SOCs with land-use types, soil properties, 

vegetation characteristics and topographical attributes. Our data provide important information on SOCs for an 100 

understudied region, give insights into factors that drive SOCs at multiple spatial scales, and will help to design 

better sampling strategies for SOCs. 

2. Material and Methods 

2.1 Study area 

The studied landscape covered an area of about 10,000 ha and was located in Mengsong township, 105 

Xishuangbanna prefecture, Yunnan province, China (21˚29’25.62”N, 100˚30’19.85”E) (Figure 1a), bordering 

with Myanmar. The topography is mountainous with elevations of 1100-1900 m above sea level (asl). The 

climate is tropical monsoon and has a mean annual temperature (MAT) of 18 °C (at 1600 m asl). Mean annual 

precipitation (MAP) ranges from 1600-1800 mm, of which 80 % falls in the wet season lasting from May to 

October (Xu et al., 2009).  110 

Land-use types in the area cover a disturbance gradient ranging from intensively managed tea 

plantation, rough grasslands, regenerating or highly disturbed forests, to mature forests, with minimal human 

influence. Forests in the area are classified as seasonal tropical montane rainforest in valleys, with transitions to 

seasonal evergreen broadleaf forest on hill slopes and ridges (Zhu et al., 2005). Our sampling plots ranged in 

elevation from 1147 to 1867 m asl, with slopes up to 49% (Table 1). The soils at the sampling plots varied from 115 

Haplic and Ferralic Cambisols in narrow valleys, to Cambic and Ferralic Umbrisols and Umbric and Haplic 

Acrisols and Ferralsols at both midslope and upslope positions (IUSS Working Group WRB., 2006). Soil 

texture ranged from sandy clay loam to clay, soil pH (H2O) from 3.2-6.2, and the effective cation exchange 

capacity (ECEC) in the subsurface soil ranged from 4.8-45.8 cmolc kg-1 clay (Table 2).  

 120 

2.2 Sampling design 

We selected 27 one-ha sampling plots of which 10 plots were in mature forests, 11 plots in regenerating or 

highly disturbed forests, and six plots were categorized as open land used as tea plantations or rough grasslands 

(Figure 1b). In each sampling plot, we established nine circular subplots with a 10-m radius on a square grid 

with 50-m spacing (Figure 1c). Plots were selected using double sampling for stratification, also known as two-125 

phase sampling (Fleischer, 1990). In phase 1, we classified the land-use types of the 10,000-ha landscape based 

on grid points (400 points with 500-m spacing) that were placed on satellite images (SPOT5 acquired in 2009 
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and RapidEye acquired in 2010) of the study area. Each point was identified as mature forest, regenerating or 

highly disturbed forest, open land, or other. In phase 2, the study area was divided in 16 equal-area units. From 

these 16 units, 12 were randomly selected, and within these 12 units we randomly selected the sampling plots 130 

from the classified grid points. Minimum distance between the sampling plots was 500 m. The land-use 

classification of the selected sampling plots was verified through field validations and interviews with local 

informants. Of the selected sampling plots, three sampling plots included a maximum of four out of the nine 

subplots, which did not belong to the original land-use classifications. To reduce noise in the dataset we 

removed these subplots from the dataset. The fieldwork, which included soil, litter and vegetation sampling, was 135 

done in 2010 and 2011.  

We defined mature forests as forest sites dominated by trees with stem diameters more than 30 cm that 

did not show signs of recent disturbances due to timber extraction or fire. Regenerating or highly disturbed 

forests included both younger forest sites dominated by smaller trees, and older forest sites that had been 

strongly disturbed due to timber extraction or recent burning. Dominant tree families in the forest are Lauraceae, 140 

Fagaceae, Pentaphylaceae, Euphorbiaceae, and Rubiacea (Paudel et al., 2015). The selected open land plots 

included three plots in tea plantations and three plots in rough grasslands. Sampled tea plantations consisted of 

tea bushes planted in rows parallel to the slopes with few or no trees. One of the sampled tea plantations was 

terraced. Management practices applied in the tea plantations involved weeding and the use of chemical 

fertilizers and pesticides. Weeded plants were typically left between or under the tea bushes. Rough grasslands 145 

were dominated by Imperata cylindrica (L.) Raeusch grass, some small shrubs and a few trees. These grasslands 

are typically used for extensive cattle grazing and are maintained by regular burning. We observed that some of 

our grassland plots burnt at least two times between 2010 and 2013. According to local informants, sampling 

plots in each land-use type had been burnt in the past, as is inherent to the areas with a long history of swidden 

agriculture. Evidence of fire in the past was also observed by pieces of charcoal in the collected soil samples 150 

down to the deepest sampling depth of 0.9-1.2 m.  

 

2.3 Soil and litter sampling  

Soils were sampled down to 1.2 m at five depth intervals: 0-0.15 m, 0.15-0.3 m, 0.3-0.6 m, 0.6-0.9 m and 0.9-

1.2 m. At each of the nine subplots per plot, we collected samples for the top three depths from four 155 

systematically (2 m east, 2 m north, 2 m west and 2 m south of the subplot center) positioned points using a 

Edelman auger (4-cm diameter). Soil samples collected from each subplot were mixed thoroughly in the field to 

form one composite sample per sampling depth per subplot. Soil samples at 0.6-0.9-m and 0.9-1.2-m depth were 

taken in soil pits at four subplots and one subplot per sampling plot, respectively. These pits were also used to 

measure soil bulk density for each sampling depth using the core method (Blake and Hartge, 1986). The bulk 160 

density measurements were corrected for gravel content (pebbles > 2 mm). The litter layer (including leaves, 

seeds, and twigs with a length < 0.2 m) was collected at each subplot with a 0.04-m2 quadrant sampling frame. 

Samples of the litter layer were collected between May-August 2010. This one-time sampling of the litter layer 

coincided with the start of the rainy season and does not reflect seasonal or annual fluctuations in litterfall 

(Paudel et al., 2015). The litter layer mainly consisted of fresh and partly decomposed plant material. 165 
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2.4 Tree inventory and topographical attributes 

At all nine subplots (10-m radius) per plot we measured the diameter at breast height (DBH), at 1.3 m above the 

soil surface, of all trees with a DBH ≥ 10 cm. Within a 5-m radius of the subplot center we also measured the 

DBH of all trees with a DBH ≥ 2 cm. Tree basal area at each subplot was calculated as the sum of the basal area 

of all measured trees. Topographical data obtained for each subplot included slope, elevation, and compound 170 

topographic index (CTI). We measured the slope from the center of each subplot to a target point situated 5-m 

downslope of the subplot center using a clinometer. Elevation was derived from a SRTM digital elevation model 

with a 90-m resolution resampled to 30-m resolution. The CTI, also known as steady state wetness index, 

quantifies landscape positions based on slope and upstream contributing area orthogonal to flow direction 

(Gessler et al., 1995; Moore et al., 1993). High CTI values refer to valleys with large catchments and low CTI 175 

values denotes to ridges or steep slopes. We calculated the CTI from the 30-m SRTM digital elevation model 

using ArcGIS. 

 

2.5 Laboratory analyses and calculations 

We analyzed the soil samples for total organic carbon and nitrogen concentrations, soil pH, soil texture and 180 

ECEC. Litter layer samples were analyzed for total organic carbon and nitrogen concentrations. Prior to 

analyses, the soil samples were air dried (5 days) and sieved (< 2 mm). Litter layer samples were oven dried at 

60 °C for 48 hours and weighed. Total organic carbon and nitrogen concentrations were analyzed by dry 

combustion for ground subsamples of each soil and litter sample using a CNS Elemental analyzer (Elementar 

Vario EL, Hanau, Germany). Since soil pH (H2O) was below 6.2, we did not expect carbonates in these soils 185 

and carbonate removal was not necessary. Soil pH (H2O), pH (KCl) and soil texture were measured on each 

sample from the 0-0.15-m, 0.15-0.3-m, and 0.9-1.2-m depth intervals, and on a pooled sample per sampling plot 

for the 0.6-0.9 m depth interval. Soil pH (H2O) and pH (KCl) were measured in a 1:2.5 soil-to-solution ratio. 

Soil texture was determined using the pipette method distinguishing the fractions clay (<0.002 mm), silt (0.002-

0.063 mm), and sand (0.063-2 mm). ECEC was measured on soil samples of the 0-0.15 m depth interval and on 190 

a pooled sample from each sampling plot for the 0.6-0.9 m depth interval. The soil samples were percolated with 

unbuffered 1 M NH4Cl and the percolates were analyzed for exchangeable cations using ICP-EAS 

(Spectroflame, Spectro Analytical Instruments, Kleve, Germany).  

We calculated the litter layer organic carbon stocks using the carbon concentration, the mass of the 

litter layer and the sample frame area. SOCs of each sampling depth was calculated using: 195 

𝑆𝑂𝐶s(Mg C ha−1) =
%𝐶

100
× 𝐵𝐷 (𝑀𝑔 𝑚−3) × ∆ D (𝑚) × 10,000 𝑚2ℎ𝑎−1, 

where BD is the soil bulk density (corrected for gravel content, pebbles > 2mm) and ∆D is the thickness of the 

sampling depth. Since the soil depth of some sampling plots did not reach down to 1.2 m, we reported both the 

total SOCs down to 0.9 m and the total SOCs down to 1.2 m. The total SOCs of each subplot was calculated as 

sum of SOCs of the constituent soil depths per subplot, the mean SOCs of the 0.6-0.9-m depth of the respective 200 

sampling plot, and the SOCs of the 0.9-1.2-m depth obtained at the plot level. 
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2.6 Statistical analyses 

Statistical analyses were carried out using the statistical software R version 3.2.3 (R Core Team, 2015). 

Statistical tests were conducted for each sampling depth separately. Prior to analyses, we tested the data for 205 

normality (Shapiro-Wilk test) and equality of variances (Levene’s test). Significant differences were accepted at 

P ≤ 0.05, and differences at P ≤ 0.1 were considered as marginally significant. 

Data at the subplot level (SOCc and SOCs, soil C:N ratio, other soil characteristics (sand, silt plus clay, 

bulk density, pH (H2O), pH (KCl), ECEC, Al saturation and base saturation) down to 0.3 m, tree basal area, 

litter layer characteristics and topographical attributes) were analyzed using linear mixed effects models (LME) 210 

with sampling plot included as random intercept, using the package nlme (Pinheiro et al., 2012). We tested if 

land-use types (fixed effect term) differed in SOCc and SOCs, tree basal area, soil, litter and topographical 

attributes (response variables). Multiple comparisons of the means of each land-use type were done using 

Tukey’s test in the package multcomp (Hothorn et al., 2008). We conducted multiple regression analyses, using 

LMEs with sampling plot as random intercept, to test the relationships between SOCc or SOCs (response 215 

variables) with the following potential explanatory variables (fixed effect terms): land-use type, silt-plus-clay 

percentage, ECEC of the subsurface soil (0.6-0.9-m depth), litter layer carbon stock, litter layer C:N ratio, tree 

basal area, slope, relative elevation (change in elevation relative to the lowest situated sampling plot), and CTI. 

We conducted regression analyses separately for forests (mature forest and regenerating or highly disturbed 

forest combined) and open land (tea plantation and grassland combined). Correlation tests showed that the 220 

explanatory variables included in the LMEs were not strongly correlated with each other (Spearmans Rho < 

0.44). Minimum adequate LMEs were selected using a stepwise model selection based on the Akaikes 

Information Criterion with the function stepAIC in the package MASS (Venables and Ripley, 2002). Residuals 

of the selected LMEs were examined for normality and equality of variances. In cases where we detected 

unequal variances, we included variance functions and if the assumption of normality was violated we used a 225 

logarithmic transformation of the response variable. The proportion of the variance explained by the fixed effect 

terms (marginal R2) of each LME was calculated according to Nakagawa and Schielzeth (2013). We used a 

variance component analysis to partition the overall variance of each response variable into the variability 

among land-use types, among sampling plots within land-use types, and among subplots within plots. For the 

variance partitioning, we refitted the LME with sampling plot nested within land-use type as random intercept. 230 

Subsequently, we tested if both random factors were required in the LMEs by leaving out the random effect for 

land-use type, and comparing the two LMEs using a likelihood ratio test (Crawley, 2007). 

For data that were only available at plot level (soil characteristics below 0.3-m depth other than SOCc 

and SOCs, and SOCc of the 0.9-1.2-m depth), we tested the effect of land-use type using either one-way 

analysis of variance (ANOVA) (parametric test) followed by Tukey’s HSD test, or Kruskal-Wallis ANOVA 235 

(non-parametric test) followed by a pairwise Wilcoxon test with Holm’s correction for multiple comparisons. 
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3. Results 

3.1 Soil properties, vegetation characteristics and topographical attributes 

Comparison of soil characteristics across land-use types revealed significant differences in soil pH and ECEC 240 

(Table 2). The soil pH (H2O) down to 0.3 m was lowest in mature forest (data 0.15-0.3 m not shown), and the 

pH (KCl) down to 0.15 m was lower in mature forests than in the tea plantations. Compared to grasslands, the 

ECEC of the top 0.15 m was lower in tea plantations. Tree basal area and litter layer carbon stocks were higher 

in regenerating or highly disturbed forests and mature forests than in tea plantations and grasslands (Table 1). 

Litter layer C:N ratios were narrower in mature forest compared to grassland. Comparison of topographical 245 

attributes showed that the land-use types were located on similar altitudes and topographical positions (reflected 

by CTI). However, the tea plantations had more gentle slopes compared to the other land-use types (Table 1). 

3.2 Soil organic carbon concentrations and stocks  

We did not detect differences in SOCc and SOCs across the four land-use types for any of the sampling depths 

nor for the total SOCs down to 0.9 m and 1.2 m (Figure 2, Table 3). In forests, SOCc and total SOCs were 250 

positively associated with litter layer carbon stock, tree basal area, and elevation (marginal R2 = 0.51 for 0-0.15-

m, marginal R2 = 0.25 for 0.15-0.3-m, marginal R2 = 0.18 for 0-0.9-m depth, marginal R2 refers to the variance 

explained by the fixed effect terms of each LME) (Table 4). However, the effect of elevation on total SOCs was 

only marginally significant, and for the 0.15-0.3-m depth litter layer carbon stock was the only controlling factor 

of SOCc that was statistically significant. The effect of silt-plus-clay percentage on SOCc was included in the 255 

regression LME for the 0.15-0.3-m depth but was not statistically significant (Table 4). 

In open land, the most important controls of SOCc and total SOCs were land-use type, vegetation 

characteristics (litter layer carbon stocks, litter layer C:N ratio and tree basal area) and slope (marginal R2 = 0.57 

for 0-0.15-m, marginal R2 = 0.54 for 0.15-0.3-m and marginal R2 = 0.60 for 0-0.9-m depth) (Table 4). SOCc and 

total SOCs increased with increasing litter layer carbon stocks and decreased with increasing slope. 260 

Furthermore, SOCc and total SOCs in grasslands were higher than tea plantations when controlling for the 

variability related to other explanatory variables (Table 4). Litter C:N ratio was included as explanatory variable 

for SOCc at 0.15-0.3-m depth; however, this effect was marginally significant (Table 4). Tree basal area was 

included as explanatory factor for SOCc in open land at 0.15-0.3 m and for total SOCs, but its effects on SOCc 

was marginally significant at 0.15-0.3 m and not significant on total SOCs (Table 4).  265 

3.3 Variance partitioning of soil properties, vegetation characteristics and topographical attributes  

Variance partitioning showed that in the top 0.3 m of the soil, with the exception of soil pH H2O, land-use type 

did not contribute significantly to any of the variation in soil properties (Figure 3a; for 0.15-0.3 m, data not 

shown). Instead, the variability among plots (nested within land-use type) and among subplots (nested within 

plots) contributed relatively equally to the variances in SOCc, total SOCs down to 0.9 m and all other soil 270 

properties (except for soil texture) (Figure 3a). For soil texture, the variability among plots was the most 

important component of the overall variance. Most of the overall variance in the litter layer carbon stocks and 

litter layer C:N ratio was accounted for by the variability among subplots within plots (Figure 3b). For tree basal 

area, the variability among land-use types was the most important component of the overall variance followed 
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by the variability within plots. The main proportion of the overall variance in slopes was covered by the 275 

variability among subplots within plots, and the overall variance in elevation was almost completely due to the 

variability among plots (Figure 3c). 

4. Discussion 

4.1 Effects of land-use type on soil organic carbon concentrations and stocks 

Our values of SOCs in mature forest, regenerating or highly disturbed forests, tea plantations and grasslands 280 

(Table 3) were at the high end of the range of SOCs reported for these land-use types in other studies from 

montane areas of mainland SE Asia (Table 5, our comparisons are based on equivalent sampling depths). SOCs 

to a depth of 0.3 m in mature forest and regenerating or highly disturbed forest were comparable to national 

estimates of SOCs in forests in Laos (Chaplot et al., 2010). However, our total SOCs within 0-0.9-m and 0-1.2-

m depth were higher than the regional estimates of SOCs within 1-m depth in subtropical forests in China (Yu et 285 

al., 2011), and than the SOCs within the same depths in other tropical forests in Xishuangbanna, SW China, (de 

Blécourt et al., 2013; Lü et al., 2010) and northern Thailand (Aumtong et al., 2009; Pibumrung et al., 2008). 

Data on SOCs in tea plantations and grasslands in the montane regions of SE Asia are scarce. Our observed 

SOCs in tea plantations within 0-0.6 m were in the range of the regional estimates of SOCs in tea plantations 

reported for SW China (Li et al., 2011). However, our values of SOCs within 0-1.2-m depth in grasslands were 290 

higher than the amounts reported for fallow fields with a vegetation consisting of grasses and shrubs in northern 

Thailand (Aumtong et al., 2009). Compared to the cited studies, our study site was located at a higher elevation 

(1100-1900 m asl), had a relatively low MAT (18 °C) and a relatively high MAP (1600-1800 mm) (Table 5). 

Elevation and MAP have commonly been observed to positively affect SOCs (Amundson, 2001; Chaplot et al., 

2010; Dieleman et al., 2013) while MAT is known for being negatively associated with SOCs (Amundson, 295 

2001; Powers et al., 2011). These factors may have contributed to the large total SOCs we observed.  

Although land-use type is often considered an important controlling factor of SOC, we did not observe 

differences in SOCc and SOCs among land-use types (Table 3, Figure 2). Possible explanations for the high 

total SOCs in grasslands, which were similar to SOCs in mature forest, are higher belowground net primary 

production and charcoal inputs compared to forests (van der Kamp et al., 2009; Yonekura et al., 2010). Higher 300 

belowground NPP in Imperata grasslands compared to forests may result in greater inputs of organic matter to 

the soil. To our knowledge, no comparable data (i.e. from sites with similar biophysical characteristics) exists on 

belowground NPP in these land-use types. Belowground NPP of regularly burnt Imperata grasslands in 

northeast India ranges from 973.8 to 1326.7 g m-2 y-1 (Astapati and Das, 2010) and is far greater than the 

reported 111 and 379 g m-2 y-1 for tropical forests on Ultisols and Oxisols, respectively (Vogt et al., 1996). 305 

Charcoal input in grasslands is probably relatively high due to the high fire frequencies. However, results from 

field measurements on impacts of fire and charcoal additions on SOC quantities are contradicting, ranging from 

SOC losses (Bird et al., 2000; Fynn et al., 2003) to no change or increases in the SOC pool (Eckmeier et al., 

2007; Ojima et al., 1994). Studies conducted in Kalimantan, Indonesia (van der Kamp et al., 2009; Yonekura et 

al., 2010) reported even higher SOCs in Imperata grasslands compared to primary forests. Similarly, a meta-310 

study of tropical land-use conversions (Powers et al., 2011) reported an increase in SOCs of 26% following 

forest-to-grassland conversions on soils with low activity clays and annual precipitation of 1501-2500 mm, 
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which are similar to the biophysical conditions in our study area. However, this meta-study also included 

managed grasslands as opposed to the semi-managed (mainly by regular burning) grasslands in our study.  

The large proportion of variability within and among plots from the overall variance in SOCc and 315 

SOCs (Figure 3a) reflects our probability sampling technique (double sampling for stratification) for selecting 

plot locations. Studies with sampling designs based on prior knowledge of factors controlling SOC at a specific 

spatial scale of investigation (e.g. using space-for-time substitution, chronosequences, or stratification based on 

soil groups) generally result in smaller variability among plots nested within land-use types, as opposed to 

probability sampling designs. Results of the variance component analysis showed that large variability in SOCc 320 

and SOCs, other soil properties, vegetation characteristics, and topographical attributes within and among 

sampling plots (Figure 3) masked possible land-use effects on SOC in our study area. 

4.2 Effects of soil properties, vegetation characteristics and topographical attributes on soil organic 

carbon concentrations and stocks   

Our findings that the majority of the overall variance in SOCc and total SOCs down to 0.9 m was 325 

accounted by the variability within sampling plots and a smaller proportion was accounted by the variability 

among plots (Figure 3a), is similar to the findings of a study in subtropical northern New South Wales, Australia 

with plots of 30 m x 30 m (Paul et al., 2013). A large small-scale variability was also observed on a hill slope in 

Laos, where 85% of the variance in SOCc and SOCs occurred at a 20-m scale (Chaplot et al., 2009). In contrast, 

in lowland landscapes of Sumatra, Indonesia, where plots of 50 m x 50 m had slopes ranging from 3-16 %, only 330 

a small proportion of the overall variance in SOCs was accounted by the variability within plots (Allen et al., 

2016). Paul et al. (2013) related the high within plot variability in SOCc to the heterogeneous nature of 

vegetation and microclimate in their plots. Chaplot et al. (2009) attributed the large small-scale variability in 

SOCs and SOCc to land use, clay content and hill-slope surface morphology. The study of Allen et al. (2016) 

was on well-drained areas of the landscape with gentle slopes and stratified by soil group, which may have 335 

resulted in the small within-plot variability they observed. Our study was in a montane landscape, wherein large 

within-plot variability in SOCc and SOCs may have been due to a large heterogeneity in slope and vegetation 

characteristics especially tree basal area and litter layer carbon stocks, within the one-ha plots (and therein the 

possible microclimate variability) (Table 4 and Figure 3). We base this on the associations of SOC with tree 

basal area and litter layer carbon stocks in forest, and with litter layer carbon stocks and slope in open land 340 

(Table 4), in combination with the high proportion of within-plot variability of these parameters from the overall 

variances (Figure 3). We attributed the variability in SOCc and SOCs among plots in open land to land-use 

effects (tea plantations versus grasslands) whereas in forests, elevation was the most important factor controlling 

the variability in SOCc and SOCs among plots (Table 4, Figure 3). The low marginal R2 of our SOC-models in 

forests, for 0.15-0.3-m and 0-0.9-m depths, indicated a large amount of unexplained variance and suggests that 345 

other controlling factors may have contributed which we did not include in our measurements. These factors 

could include vegetation composition and land-use history, which we tried to document but which proved 

difficult to categorize meaningfully. 

The observed increase in SOCc and SOCs in forests and open land with increasing tree basal area and 

litter layer carbon stocks (Table 4) was in accordance with findings from previous studies (de Blécourt et al., 350 

2013; Powers and Schlesinger, 2002; Woollen et al., 2012) and is attributed to biomass productivity. Enhanced 

biomass productivity may increase SOC input through increases in litterfall and root residues. The use of tree 
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basal area and litter layer carbon stocks as a proxy for biomass productivity is supported by positive associations 

between yearly litterfall and increases in tree basal area and litter layer carbon stocks, observed in a subset of 

our forest plots (Table A1, Paudel et al., 2015). The decrease in SOCc and SOCs in open land with increasing 355 

slope (Table 4) was most likely related to surface erosion, which is common in montane landscapes (e.g., 

Arrouays et al., 1995; Corre et al., 2015). The importance of erosion and sedimentation processes on the 

redistribution of SOC was shown in studies conducted in Laos (Chaplot et al., 2005) and Ecuador (Corre et al., 

2015); soil erosion was highest at the upper slopes and most of the eroded soil and SOC was deposited within a 

short distance at the lower slopes. The observed increase in SOCc and SOCs in forests with increase in elevation 360 

is consistent with other studies (Chaplot et al., 2010; Dieleman et al., 2013; Powers and Schlesinger, 2002). 

Elevation effects on SOC are often related to changes in precipitation, temperature, soil characteristics, and 

biomass productivity. However, despite the large elevation gradient of the forest plots in our study (1147-1867 

m asl) we did not observe any elevation effects on silt-plus-clay percentage, ECEC of the subsurface soil 

(reflecting clay mineralogy), soil pH H2O, soil C:N ratio or tree basal area (data not shown). Although 365 

microclimatic data for our plots were not available, the commonly occurring reduction in temperatures with 

increase in elevation may influence SOC decomposition rates, which could possibly explain the positive trend 

between elevation and SOC in our forest plots. Soil texture within a similar soil group is regarded as an 

important control for plant productivity, decomposition of soil organic matter, and SOC stability (Silver et al., 

2000). In our study area, silt-plus-clay percentage did not influence SOCc and SOCs (Table 4). Possibly the 370 

influence of soil texture on SOC was masked by the large variability in soil groups (and thus clay mineralogy) in 

our study area. 

4.3 Implications for sampling soil organic carbon stocks 

Probability sampling techniques as applied in our study are appropriate for assessing spatial variability of SOC 

and its driving factors across scales (subplot to plot and landscape scale) but fall short in detecting land-use 375 

effects on SOC. In montane landscapes, large variability in SOC due to variability in vegetation characteristics, 

slope and elevation within and among plots (Figure 3) may conceal the land-use effects on SOC, unless sample 

sizes are very large. An often used approach that has proven to be effective in detecting land-use effects on SOC 

is space-for-time substitution (e.g., de Blécourt et al., 2013; de Koning et al., 2003; van Straaten et al., 2015; 

Veldkamp, 1994). This approach aims to select plots that mainly differ in land-use type, with soil group and thus 380 

clay minerology and content, and topographical and climatic characteristics being comparable. However, in 

contrast to our probability sampling technique, plot selection using the space-for-time substitution approach is 

non random in order to meet the criteria for comparison, and thus SOC levels measured in those studies can only 

be extrapolated to larger scales under similar soil type and biophysical characteristics. 

5. Conclusions 385 

In this tropical montane landscape in SW China, the spatial variability in SOCc and SOCs was largest at the plot 

scale. This high within-plot variability in SOC reflected the variability in litter layer carbon stocks and slope in 

open land, and the variability in litter layer carbon stocks and tree basal area in forests. Therefore, to achieve a 

reliable estimate of SOC stocks within plots, it is important to have a plot size that encompasses the inherent 
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slope and vegetation variability. Furthermore, since the variability in SOCc and SOCs among plots was related 390 

to elevation in forests, and to land-use type in open land, stratification of similarly montane landscapes, should 

be based on elevation and land-use types as the principal drivers of SOC at the landscape scale. These scale-

dependent relationships between SOCc and SOCs with controlling factors demonstrate that sampling designs 

must consider the controlling factors at the scale of interest in order to elucidate their effects on SOC against the 

variability within and between plots. 395 
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Table 1: Means (± SE)a of vegetation characteristics and topographical attributes of four different land-use types in a 560 
tropical montane landscape in SW China. 

Characteristics Mature 

forest 

(n=10) 

Regenerating 

or highly 

disturbed 

forest (n=11) 

Grassland 

(n=3) 

Tea 

plantation 

(n=3) 

P 

value 

Litter layer C concentration (%) 40.0 (1.1) 40.1 (1.1) 42.8 (0.2) 39.7 (2.3) 0.38 

Litter layer C:N ratio 29.7 (1.5) b 36.4 (2.1) ab 43.2 (6) a 35 (3.4) ab 0.02 

Litter layer carbon stock (Mg C ha-1) 5.6 (0.6) a 4.2 (0.5) a  1.7 (0.2) b 1.5 (0.2) b <0.01 

Tree basal area (m2 ha-1) 29 (2.5) a 18.2 (1.9) b 3 (0.7) c 0.8 (0.2) c <0.01 

Slope (%) 29.7 (1.6) a 26.7 (1.1) ab 31 (3.8) a 12.9 (1.3) b 0.05 

Elevation (m) 1664 (66) 1559 (67) 1719 (59) 1573 (119) 0.54 

Compound topographic indexb 9.9 (0.4) 8.9 (0.2) 8.4 (0.2) 9.8 (0.8) 0.29 

aWithin a row, means followed by different letters indicate significant differences among land-use types, and 

means without letters indicate no significant difference among land-use types (linear mixed effects model, one-

way ANOVA or Kruskal-Wallis ANOVA at P ≤ 0.05). 

bCompound topographic index (Gessler et al., 1995; Moore et al., 1993) quantifies landscape positions based on 565 

slope and upstream contributing area orthogonal to flow direction. High CTI values refer to valleys with large 

catchments and low CTI values denotes to ridges or steep slopes.  
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Table 2: Means (± SE)a of soil properties of four different land-use types in a tropical montane landscape in SW 

China. 

Characteristic Depth 

(m) 

Mature 

forest 

(n=10) 

Regenerating 

or highly 

disturbed 

forest (n=11) 

Grassland 

(n=3) 

Tea 

plantation 

(n=3) 

P value 

Sand (%) 0-0.15 39.8 (3.9) 36.3 (3.1) 47.4 (3.7) 37.6 (10.6) 0.55 

 0.6-0.9 40.9 (4.4) 31.5 (4.3) 47.5 (3.9) 33.6 (9.3) 0.24 

Silt plus clay (%) 0-0.15 60.2 (3.9) 63.7 (3.1) 52.6 (3.7) 62.4 (10.7) 0.54 

 0.6-0.9 59.1 (4.4) 68.5 (4.3) 52.5 (3.9) 66.4 (9.3) 0.24 

Bulk density (g cm-3) 0-0.15 0.8 (0.05) 0.8 (0.02) 0.8 (0.03) 0.7 (0.1) 0.59 

 0.6-0.9 1.1 (0.05) 1.1 (0.03) 1.0 (0.03) 1.1 (0.0) 0.5 

Soil C:N ratio 0-0.15 15.1 (0.6) 14.3 (0.4) 16.3 (1.1) 14.2 (0.8) 0.21 

 0.6-0.9 10.7 (0.5) 10.4 (0.3) 12.5 (0.9) 10.4 (0.7) 0.18 

pH (H2O) 0-0.15 4.5 (0.1) b 4.8 (0.1) a 5.0 (0.2) a 5.0 (0.1) a <0.01 

 0.6-0.9 5.0 (0.1) 5.0 (0.1) 5.0 (0.2) 4.9 (0.3) 0.82 

pH (KCl) 0-0.15 3.6 (0.1) b 3.8 (0.1) ab 3.9 (0.1) ab 4.1 (0.1) a 0.02 

 0.6-0.9 3.8 (0.1) 3.9 (0.1) 3.9 (0.2) 4.1 (0.1) 0.30 

ECECb (cmolc kg-1 

clay) 

0-0.15 47.3 (7.6) ab 32.5 (3.6) ab 53.6 (4.4) a 24.1 (3.3) b 0.04 

 0.6-0.9 23.6 (4.3) 16.2 (3.2) 17.5 (1.6) 7.7 (1.5) 0.10 

Al saturation (%) 0-0.15 72.4 (3.1) 64.2 (6.1) 60.5 (12.2) 49.3 (12.4) 0.27 

 0.6-0.9 86.3 (1.4) 80.5 (6.1) 87.8 (1.4) 62.8 (14.8) 0.22 

Base saturation (%)  0-0.15 20.5 (3.1) 29.3 (6.0) 35.6 (11.8) 43.5 (11.3) 0.12 

 0.6-0.9 8.5 (1.5) 12.0 (5.3) 7.9 (1.5) 29.1 (13.3) 0.11 

aWithin a row, means followed by different letters indicate significant differences among land-use types, and 570 

means without letters indicate no significant difference among land-use types (linear mixed effects model, one-

way ANOVA or Kruskal-Wallis ANOVA at P ≤0.05).  

bECEC, effective cation exchange capacity.  
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Table 3: Means (± SE)a of soil organic carbon stocks (Mg C ha-1) of four different land-use types in a tropical 

montane landscape in SW China.  575 

Depth (m) Mature forest (n = 10) Regenerating or 

highly disturbed 

forest (n = 11) 

Tea plantation 

(n = 3) 

Grassland  

(n = 3) 

P value 

0-0.15 65.5 (6.8) 58.4 (4) 44.3 (7) 66 (2.6) 0.15 

0.15-0.3 51.7 (4.5) 47.5 (3.7) 40.3 (3.6) 55.1 (5) 0.32 

0.3-0.6 73.4 (8) 58.9 (4.8) 59.1 (7.6) 67.7 (2.6) 0.37 

0.6-0.9 38 (3.2) 34.6 (3.5) 34 (5.3) 47.4 (4) 0.40 

0.9-1.2b 18 (3.1) 23.2 (6) 20.8 (7.7) 38.5 (14.9) 0.35 

Sum 0-0.9 228.6 (19.7) 199.5 (14.8) 177.6 (19.6) 236.2 (13.7) 0.34 

Sum 0-1.2b 252.1 (25.4) 230.5 (24.6) 216.2 (32.1) 274.6 (28.2) 0.71 

aWithin a row, means followed by different letters indicate significant differences among land-use types, and 

means without letters indicate no significant difference among land-use types (linear mixed effects model and 

one-way ANOVA at P ≤ 0.05).  

bThe number of replicates per land-use type deviates from the original number of replicate plots because the soil 

depth of some sampling plots did not reach down to 1.2 m. For the 0.9-1.2-m depth and total SOC stocks to 1.2 580 

m, the number of replication is as follows: mature forest (n = 8), regenerating or highly disturbed forest (n=8), 

tea plantation (n=3), grassland (n=3).  



 

20 

 

 

 

Table 4: Coefficient estimatesa (± SE) of effects of soil texture, effective cation exchange capacity (ECEC), vegetation 

characteristics and topographical attributes on soil organic carbon (SOC) concentrations and total SOC stocks in 

forests (regenerating or highly disturbed forest and mature forest combined) and open land (tea plantation and 585 
grassland combined) in a tropical montane landscape in SW China. 

Response Effect Forest (n = 21) Open land (n = 6) 

Estimate P value Estimate P value 

S
O

C
 c

o
n

ce
n

tr
at

io
n

 (
%

) 

at
 0

-0
.1

5
 m

 

Intercept 2.22 (0.66) <0.001 6.47 (0.48) <0.001 

Land-use typeb  ns -2.01 (0.30) <0.01 

Silt-plus-clay percentage (%)  ns  ns 

ECECc at 0.6-0.9 m (cmolc kg-1 clay)  ns  ns 

Litter layer carbon stock (Mg C ha-1) 0.16 (0.04) <0.001 0.29 (0.1) <0.01 

Litter layer C:N ratio  ns  ns 

Tree basal area (m2 ha-1) 0.03 (0.01) <0.001  ns 

Slope (%)  ns -0.04 (0.01) <0.01 

Relative elevationd (m) 0.01 (0.001) <0.01  ns 

Compound Topographic Index  ns  ns 

S
O

C
 c

o
n

ce
n

tr
at

io
n

 (
%

) 

at
 0

.1
5

-0
.3

0
 m

 

Intercept 0.94 (0.86) 0.28 4.79 (0.54) <0.001 

Land-use typeb  ns -1.64 0.05 

Silt-plus-clay percentage (%) 0.02 (0.01) 0.16  ns 

ECECc at 0.6-0.9 m (cmolc kg-1 clay)  ns  ns 

Litter layer carbon stock (Mg C ha-1) 0.17 (0.03) <0.001 0.34 (0.14) 0.03 

Litter layer C:N ratio  ns -0.02 (0.01) 0.10 

Tree basal area (m2 ha-1) 0.01 (0.006) 0.13 -0.17 (0.08) 0.06 

Slope (%)  ns  ns 

Relative elevationd (m) 0.01 (0.001) 0.13  ns 

Compound Topographic Index  ns  ns 

T
o

ta
l 

S
O

C
 s

to
ck

 (
M

g
 C

 h
a-1

) 

at
 0

-0
.9

 m
 

Intercept 109.8 (24.1) <0.001 247.4 (27.1) <0.001 

Land-use typeb  ns -63.22 (16.3) 0.06 

Silt-plus-clay percentage  

at 0.15-0.3 m (%) 

 ns  ns 

ECECc at 0.6-0.9 m (cmolc kg-1 clay)  ns  ns 

Litter layer carbon stock (Mg C ha-1) 5.3 ( 1.53) <0.001 14.27 (6.05) 0.03 

Litter layer C:N ratio  ns  ns 

Tree basal area (m2 ha-1) 0.89 (0.35) 0.01 -3.53 (3.71) 0.36 

Slope (%)  ns -2.54 (0.87) 0.01 

Relative elevationd (m) 0.08 (0.05) 0.09  ns 

Compound Topographic Index  ns  ns 

aLinear mixed effects models with sampling plot as random intercept. All effects were included in the full 

model, and model simplification resulted in the minimum adequate model. ns - not significant (i.e., the effects 

excluded by model simplifications) 
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bThe land-use effect in open land is calculated as SOC in tea plantation minus SOC in grassland. 590 

cECEC, Effective Cation Exchange Capacity. 

dRelative elevation is the change in elevation compared to the lowest situated sampling plot.  
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Table 5: Overview of published soil organic carbon (SOC) stocks in four different land-use types from montane areas 

of mainland SE Asia. 

Land 

use 

Country, site Soil type Elevation 

(m) 

Climate Depth 

(m) 

SOC 

stock 

(Mg C 

ha-1) 

 Reference 

MAP 

(mm) 

MAT 

(˚C) 

 

F
o

re
st

 

Laos, total 

country 

- - - - 0-0.3 112  Chaplot et 

al. (2010) 

China, 

Xishuangbanna 

Haplic 

Acrisol 

600 1539 21.7 0-1 84-102  Lü et al. 

(2010) 

China, 

Menglong, 

Xishuangbanna 

Ferralsols and 

(hyper) 

ferralic 

Cambisols 

700-830 1377 22.7 0-0.9 170  de Blécourt 

et al. (2013) 

Thailand, Nam 

Hean watershed 

Red Yellow 

Podzolic soils 

and Reddish 

Brown 

Lateritic soils 

215-1674 1405 16.9 

(DSa)- 

32.5 

(WSa) 

0-1 196.24  Pibumrung 

et al. (2008) 

Thailand, Khun 

Samun 

Watershed 

Hyperalic 

Alisols 

(Humic) and 

Endogleyic 

Luvisol 

(Chromic) 

300-800 1400 22-29 0-1.2 ~170  Aumtong et 

al. (2009) 

China, 

Subtropical zone 

- - - - 0-1 104.4-

111.2 

 Yu et al. 

(2011) 

T
ea

 China, 

Southwest 

Haplic 

Acrisol 
- 

1000-

1700 
15-19 0-0.6 

132.3- 

158.7 

 Li et al. 

(2011) 

F
al

lo
w

 

Thailand, Khun 

Samun 

Watershed 

Hyperalic 

Alisols 

(Humic) and 

Endogleyic 

Luvisol 

(Chromic) 

300-800 1400 22-29 0-1.2 ~210  Aumtong et 

al.(2009) 

~ an approximate value, deciphered from a figure. 595 

a DS - dry season, WS - wet season. 
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600 
Figure 1: Sampling design: (a) The location of the study area in Xishuangbanna prefecture, Yunnan province, China, 

is depicted by the black star. (b) Location of the 27 sampling plots in the study area (10,000 ha), black circles were 

classified as mature forests (n=10), grey squares as regenerating or highly disturbed forests (n=11), black stars as 

rough grasslands (n=3), and black crosses as tea plantations (n=3). (c) Sampling plots of 100 m x 100 m with nine 10-

m radius subplots (grey cycles) arranged on a square grid with 50-m spacing.  605 
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Figure 2: Soil organic carbon (SOC) concentrations in relation to sampling depth for four different land-use types in 

a tropical montane landscape in SW China. Alternating white and grey bands show the sampling depths. For each 

depth, means (SE bars) did not differ among land-use types (linear mixed effects model with P = 0.22-0.49 at 

sampling depths < 0.9 m, and one-way ANOVA with P = 0.37 at 0.9-1.2 m). 610 
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Figure 3: Partitioning of the overall variance in (a) total soil organic carbon (SOC) stocks to 0.9-m depth, and SOC 

concentrations and soil properties at 0-0.15-m depth, in (b) vegetation characteristics, and in (c) topographical 

attributes, which can be attributed to the variability among land-use types, sampling plots nested within land-use 615 

types, and subplots nested within sampling plots (Linear mixed effects model with likelihood ratio test at P ≤ 0.05, the 

variability in litter C:N ratio among land-use types is marginally significant with P = 0.06). 
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Table A1. Direction of effectsa of soil properties, vegetation characteristics and topographical attributes on litter layer 

carbon stock and yearly litterfallb in forest in a tropical montane landscape in SW China. 

Response Effect 

Direction of 

effect 

P value R2  

Litter layer carbon stock Elevation  + 0.05 0.19 

Soil pH H2O (0-0.15-m depth) - 0.07  

Yearly litterfall  + 0.03  

Yearly litterfall Tree basal area + <0.01 0.19 

ECEC subsoil + 0.14  

aLinear mixed effects model with sampling plot as random intercept. Fixed effects included in the full models were 620 

elevation, slope gradient, compound topographic index, silt-plus-clay percentage, soil pH H2O, tree basal area, litter 

C:N ratio, yearly litterfall. 

b
Litterfall was collected every month from 9 of the 21 forest plots. Details on the materials and methods are 

described by Paudel et al. (2015).  

 625 


