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Abstract 31 

Soils form as the result of a complex suite of biogeochemical and physical processes; 32 

however, effective modeling of soil property change and variability is still limited, and does not 33 

yield widely applicable results. We suggest that predicting a distribution of probable values 34 

based upon the soil-forming state factors is more effective and applicable than predicting discrete 35 

values. Here we present a probabilistic approach for quantifying soil property variability through 36 

integrating energy and mass inputs over time. We analyzed changes in the distributions of soil 37 

texture and solum thickness as a function of increasing time and pedogenic energy (effective 38 

energy and mass transfer, EEMT) using soil chronosequence data compiled from literature. 39 

Bivariate normal probability distributions of soil properties were parameterized using the 40 

chronosequence data; from the bivariate distributions, conditional univariate distributions based 41 

on the age and flux of matter and energy into the soil were calculated, and probable ranges of 42 

each soil property determined. We tested the ability of this approach to predict the soil properties 43 

of the original soil chronosequence database, and soil properties in complex terrain at several 44 

Critical Zone Observatories in the U.S. The presented probabilistic framework has the potential 45 

to greatly inform our understanding of soil evolution over geologic time-scales. Considering 46 

soils probabilistically captures soil variability across multiple scales and explicitly quantifies 47 

uncertainty in soil property change with time. 48 

 49 

 50 

 51 

 52 

 53 
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1. Introduction 54 

The need for pedogenic models that can be widely applied and easily utilized is 55 

paramount for understanding soil-landscape evolution, soil property change with time, and 56 

predicting future soil conditions. A mathematically simple, easily parameterized approach has 57 

yet to be developed that is capable of predicting current soil properties or recreating potential soil 58 

evolution with time. Here we address this knowledge gap through development of a probabilistic 59 

model of soil property change capable of predicting soil properties across a wide range of 60 

terrains, climates, and ecosystems.  61 

The state factor approach has been one of the primary pedogenic models since it’s 62 

development in the late 1800’s and early 1900’s (Dokuchaev, 1883; Jenny, 1941). The soil state 63 

factor approach (Jenny, 1941) assumes the state of the soil system or specific soil properties (S) 64 

may be described as a function of the external environment, represented by climate (cl), biology 65 

(o), relief (r), parent material (p), and time (t): S = f(cl, o, r, p, t). This approach increased our 66 

understanding of soil variation across each factor, but more complex, multivariate approaches are 67 

generally not possible or difficult to derive from this formulation (Yaalon, 1975). From the 68 

original state factor model have evolved pedogenic models that include functional approaches 69 

(Jenny, 1961), energetic approaches (Rasmussen and Tabor, 2007; Rasmussen et al., 2005, 2011; 70 

Runge, 1973; Smeck et al., 1983; Volobuyev, 1964), and mechanistic approaches (Finke, 2012; 71 

Minasny and McBratney, 1999; Salvador-Blanes et al., 2007; Vanwalleghem et al., 2013). 72 

However, many of these approaches are either limited to a site-specific basis, require a high 73 

degree of parameterization, or lack wide-scale applicability.  74 

Here we develop a simple probabilistic approach to predict soil physical properties using 75 

a large dataset of chronosequences studies. The model compresses state factor variability into 2 76 
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key components (parent material and total pedogenic energy, defined in Section 1.1) that were 77 

parameterized and calibrated using the chronosequence database. Additionally, we modified the 78 

model to include soil depth to capture the influence of redistributive hillslope processes to 79 

predict soil properties. We hypothesized that by including soil depth, the model would 80 

effectively predict the clay content in an independent dataset synthesizing soil and landscape 81 

variability in complex, hilly terrain from a wide range of environments. 82 

 83 

1.1 Probabilistic model of soil property change 84 

The model presented here is based on a reformulated state-factor model, where a location 85 

has a probability of displaying a range of differing soil morphologies and properties based upon 86 

the state factors, with some range of values more probable than others, meaning the state-factor 87 

model (Jenny, 1941) may be restated as:  88 

ℙ s! ≤ S ≤ s! = f(cl, o, r,p, t)          (1) 89 

where, the left hand side of the equation, ℙ s! ≤ S ≤ s! , represents the probability that a given 90 

soil will have a value located between a lower limit (s1) and an upper limit (s2) (Phillips, 1993b). 91 

Eq. 1 can be restated more simply as: 92 

ℙ s! ≤ S ≤ s! = f(L!,P!, t)          (2) 93 

where, the original soil forming state factors have been simplified to represent the fluxes of 94 

matter and energy into the soil system (Px), incorporating the influence of climate and biology, 95 

and the initial state of the soil forming conditions (Lo), incorporating the influence of the initial 96 

topography and original soil parent material, and time or age of the soil system (t) (Jenny, 1961).  97 

Equation 2 was further simplified to make the approach operational. A quantitative 98 

measure of climate and biology was needed to represent the influence of Px on soil formation. 99 
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We used a quantification of Px calculated from effective precipitation and biological 100 

productivity, termed effective energy and mass transfer (EEMT, J m-2 yr-1)(Rasmussen and 101 

Tabor, 2007; Rasmussen et al., 2005, 2011). EEMT provides a measure of the energy transferred 102 

to the subsurface, in the form of reduced carbon from primary productivity and heat transfer 103 

from effective precipitation, which has the potential to perform pedogenic work, e.g., chemical 104 

weathering and carbon cycling. Using EEMT as a simplification of Px, Eq. 2 was restated as 105 

(Rasmussen et al., 2011): 106 

ℙ s! ≤ S ≤ s! = f(L!,EEMT, t)          (3) 107 

We further simplified Eq. 3 by combining the flux term EEMT and the age of the soil system (t).  108 

EEMT multiplied by the age of the soil system, i.e. EEMT*t, provides an estimate of the total 109 

energy transferred to the soil system over the course of its evolution, referred to here as “total 110 

pedogenic energy” (TPE, J m-2). The TPE provides an estimate of Px that incorporates soil age, 111 

thus Eq. 3 may be restated as: 112 

ℙ s! ≤ S ≤ s! = f(L!,TPE)          (4) 113 

where at a certain point in time the probability of a soil property existing between s1 and s2 is a 114 

function of Lo and TPE. Explicitly including time in Eq. 4 through TPE partially captures 115 

variation in soil property change attributable to topography and parent material. Soil residence 116 

time may be directly related to landscape position through topographic control on soil production 117 

and sediment transport/deposition (Heimsath et al., 1997, 2002; Yoo et al., 2007). Additionally, 118 

parent material modulates soil residence time through control on soil depth (Heckman and 119 

Rasmussen, 2011; Rasmussen et al., 2005), soil production, and sediment transport rates (Andre 120 

and Anderson, 1961; Portenga and Bierman, 2011). The initial conditions of the soil forming 121 

system (Lo) are never fully known; however, representing the state of the soil system as a 122 
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probable distribution of values, implicitly accounting for soil age, and not constraining the initial 123 

soil forming conditions, Eq. 4 can be stated simply as: 124 

ℙ s! ≤ S ≤ s! = f(TPE)         (5) 125 

where the probability state of the soil, ℙ s! ≤ S ≤ s! , bounded by a lower and upper limit, is a 126 

function of one quantifiable variable. 127 

Quantitatively realizing Eq. 5 required the use of predetermined joint probability density 128 

functions parameterized with TPE and a selected soil physical property. Bivariate normal density 129 

functions were calculated to determine the probability of a soil property range given a TPE 130 

value. The bivariate normal density distribution (Ugarte et al., 2008) was calculated as: 131 

f x, y = !
!"!!!! !!!! exp − !

! !!!!
!!!! !

!!!
+ !!!!

!

!!!
− !" !!!! !!!!

!!!!
           (6) 132 

where, ρ represents the correlation coefficient, µx is the mean of TPE, µy is the mean of the 133 

selected soil physical property, σx is the standard deviation of TPE, σy is the standard deviation 134 

of the selected soil physical property. Using the bivariate normal density functions, conditional 135 

mean and variance values were calculated given a value of TPE; the conditional means and 136 

variances parameterized conditional univariate normal distributions for the selected soil physical 137 

properties. The conditional mean (Ugarte et al., 2008) was calculated as: 138 

!!|!!! = !! + ρ
!!
!!
(x− !!)           (7) 139 

where, µY|X=x is the conditional mean soil property value given a value for TPE. The conditional 140 

variance (Ugarte et al., 2008) was calculated as:  141 

σ!|!!!! = σ!! 1− ρ!            (8) 142 

where, σ!|!!!!  is the conditional variance of the soil property given a value of TPE. 143 
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Applying this approach required certain assumptions and simplifications. The model 144 

assumes that climate was constant over the entire duration of pedogenesis. The model makes no 145 

assumptions about the progressive and regressive processes that drive pedogenesis; by weighing 146 

all profiles equally, both progressive (e.g., horizonation, clay accumulation, reddening, etc.) and 147 

regressive (e.g., haplodization, erosion, pedoturbation, etc.) pedogenic processes (Johnson and 148 

Watson-Stegner, 1987; Phillips, 1993a), are implicitly captured in the model structure. The 149 

model makes no assumptions about the initial soil forming system; the model simply describes 150 

the probability of a location exhibiting a range of soil properties based on TPE. The model 151 

assumes all changes in soil physical properties are due to pedogenic processes. We used a 152 

bivariate normal distribution; consequently the model assumes the data conforms to a normal 153 

distribution. 154 

 155 

2. Methods 156 

2.1 Data collection and preparation 157 

The probability distributions were parameterized using an extensive literature review of 158 

chronosequence studies. Over 140 chronosequence publications were identified using Google 159 

Scholar (scholar.google.com) and ThomsonReuters Web of Science (webofknowledge.com), 160 

forty-five of which contained the data required for inclusion within the present study. Inclusion 161 

within the present study required: profile descriptions with horizon-level clay, sand, and silt 162 

content, soil depth; well-defined ages of the soil-geomorphic surfaces; and geographic 163 

coordinates or maps showing locations of the described profiles. The chronosequences spanned a 164 

wide range of geographic locations, ecosystems, climates, rock types, and geomorphic landforms 165 

(Fig 1, Table S1). 166 
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 167 

2.2 Total Pedogenic Energy   168 

The influence of both climate and vegetation at the locations of each soil profile was 169 

determined using effective energy and mass transfer (EEMT) (Rasmussen and Tabor, 2007; 170 

Rasmussen et al., 2005). The EEMT values for each soil profile were extracted from a global 171 

map of EEMT derived from the monthly global climate dataset of New et al. (1999) at 0.5°x0.5° 172 

resolution using ArcMap 10.1 (ESRI, Redlands, CA) (Rasmussen et al., 2011). Total pedogenic 173 

energy (TPE, J m-2) was derived simply by multiplying EEMT (J m-2 yr-1) for each soil profile by 174 

its reported age (yr). TPE was used because it was a better predictor of soil physical properties 175 

relative to mean annual temperature, mean annual precipitation, or net primary productivity 176 

(Table 3). 177 

 178 

2.3 Application to chronosequence data 179 

The chronosequence database included 45 distinct chronosequences representing 416 180 

different soil profiles. We focused here on changes in sand, silt, and clay content and solum 181 

thickness as proxies for soil change with time. We tested the approach on depth weighted (DWT) 182 

sand, silt and clay content (reported as weight %), as well as the maximum measured value of 183 

sand, silt, and clay content within each soil profile. Buried horizons were removed from the soil 184 

profiles before either the maximum or DWT content values were calculated. For soils reported in 185 

McFadden et al. (1986), surficial modern-aged eolian horizons were removed; the reported ages 186 

of the soil-geomorphic surface more closely matched the buried horizons under the eolian 187 

horizons. Solum thickness was extracted for each profile, defined as the thickness of the horizons 188 

influenced by pedogenic processes or the depth to C horizons (Schaetzl and Anderson, 2005). 189 
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The site RW-14 from McFadden and Weldon (1987) was not included in the solum thickness 190 

model calculations, the measured solum thickness of RW-14 was 1460 cm, an order of 191 

magnitude greater than all other soil profiles included in the study. Four hundred and sixteen 192 

profiles reported clay content data, only 398 profiles reported sand and silt content, and 410 soil 193 

profiles contained a developed solum. We classified the soil profiles by parent material in terms 194 

of igneous, metamorphic, or sedimentary and by geomorphic landform (e.g., alluvial surface, 195 

marine terrace, or moraine, etc.) (Shoeneberger et al., 2012); for example, if a soil was formed on 196 

an alluvial fan from granitic parent material, it would be defined as alluvial and igneous.  197 

Using the soils data, we calculated bivariate normal probability distributions using TPE 198 

and the soil physical properties (Eq. 6). The soil data were transformed using logarithmic and 199 

square root transformations when appropriate to meet the normality assumption of the bivariate 200 

normal probability distribution. Conditional univariate normal distributions (Eqs. 7, 8) were 201 

calculated to approximate probable ranges of soil properties using leave one out cross validation 202 

(LOOCV). Each of the soil chronosequences was removed from the model dataset, with the 203 

remaining chronosequence data used to calculate the parameters of the bivariate and conditional 204 

univariate normal distributions.  The conditional univariate normal distributions were calculated 205 

using the TPE values for the profiles within the left-out chronosequence.  206 

 207 

2.4 Application to complex terrain 208 

 By design, soil chronosequences are generally sited on gentle, low sloping terrain to 209 

minimize the influence of topography and erosion/deposition on soil formation (Harden, 1982). 210 

However, much of the Earth’s surface is characterized by complex topography with high relief, 211 

steep slopes, and differences in slope aspect. Any predictive soil model or approach must be 212 
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effective in both simple terrain and complex terrain. To test the ability of the model to predict 213 

soil properties in complex terrain, we compiled data from upland catchments with variable parent 214 

material and topography from the literature, as well as data available from the US NSF Critical 215 

Zone Observatory Network (CZO, wwww.criticalzone.org) (Table 1) (Bacon et al., 2012; 216 

Dethier et al., 2012; Foster et al., 2015; Holleran et al., 2015; Lybrand and Rasmussen, 2015; 217 

Rasmussen, 2008; West et al., 2013). Data from several additional studies from complex terrain 218 

were also included to test the model (Table 1) (Dixon et al., 2009; Yoo et al., 2007). These data 219 

were accessed from: www.criticalzone.org, or Google Scholar (scholar.google.com). These 220 

studies were included because they all contained horizon-level soil texture data, soil depth, 221 

percent volume rock fragment data, and 10Be or U-series measures of soil erosion rates or 222 

residence time, where mean residence time (MRT) was calculated as: MRT=h/E, where h is soil 223 

depth (m) and E is erosion rate (m/yr) (Pelletier and Rasmussen, 2009b). We used published 224 

coordinates to extract EEMT values, calculated from New et al. (1999), for each soil profile 225 

using ArcGIS 10.1, and used EEMT and MRT to calculate TPE. It should be noted the coarse 226 

resolution of New et al. (1999) EEMT values do not account for local scale variation in water 227 

redistribution and primary productivity that can lead to significant topographic variation in 228 

EEMT (Rasmussen et al., 2015). Using Eq. 6 and the parameters generated from the 229 

chronosequence database, conditional mean depth weighted clay content was calculated for each 230 

profile.  231 

 Due to the influence of redistributive hillslope processes on soil development (Yoo et al., 232 

2007), soil depth varies systematically across hillslopes (Heimsath et al., 1997); thus, soil depth 233 

can be used to incorporate information about these processes within the model calculations. We 234 
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calculated the mass per area clay content of these profiles using soil depth to correct for these 235 

processes, as:  236 

Mass!per!area!clay! kg!m!! = ! (ρ!)(h)
!!|!!!,!"#!!"#$

!"" 1− !"%
!""           (9) 237 

where, ρb is the soil bulk density assumed to be 1500 kg m-3
 for all soil profiles, µY|X=x, DWT CLAY 238 

is the predicted conditional mean for depth weighted clay content (DWT CLAY) using Eq. 7, 239 

RF% is the measured depth weighted percent volume rock fragments within the soil, when no 240 

RF% data were available we assumed a value of 41.7%, which was the average RF% for profiles 241 

with reported values, and h is the soil depth in meters. Using Eq. 9, mass per area clay was 242 

calculated for each soil profile. Further, we examined the impact of depth, rock fragment 243 

percentage, and predicted conditional mean DWT clay on the predicted mass per area clay 244 

predictions using multiple linear regression. 245 

 246 

2.4.1 Coupling geomorphic model with probabilistic model 247 

Additionally, we applied the model independent of measured soil data, across a small 248 

complex catchment in the Santa Catalina Mountains (Catalina-Jemez CZO, Fig 2a-b, Table 1) 249 

(Holleran et al., 2015; Lybrand and Rasmussen, 2015). The ~6 ha catchment is located at an 250 

elevation between 2300-2500 m with mixed conifer vegetation, approximately 30 km northeast 251 

of Tucson, AZ (Fig 2, Table 1). The approach utilized soil depth and residence time output from 252 

a process-based numerical soil depth model. The model used high resolution LiDAR derived 253 

topographic data to estimate 2 m pixel resolution soil depth and erosion rates (Fig 2c) (Pelletier 254 

and Rasmussen, 2009a). These data were coupled with topographically resolved EEMT values 255 

that accounted for local hillslope scale variation in water redistribution and primary productivity 256 

at a 10 m pixel resolution (Rasmussen et al., 2015) (Fig 2d). We used TPE based on modeled 257 
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EEMT and soil residence time to predict DWT clay, and coupled with modeled depth in Eq. 9 to 258 

predict mass per area clay at 2 m pixel resolution. We assumed a constant 50% rock fragment 259 

value for each location. The coupled geomorphic-TPE model outputs were compared with point 260 

measures of mass per area clay from Holleran et al. (2015) and Lybrand and Rasmussen (2015). 261 

Model data were completely independent from Holleran et al. and Lybrand and Rasmussen and 262 

these datasets served as a validation for the modeled output. 263 

 264 

3. Results 265 

3.1 Application and parameterization to chronosequences 266 

The relationships between TPE and soil texture and solum thickness were used to 267 

calculate the bivariate probability distributions. The bivariate probability distributions (Eq. 6) 268 

were parameterized using the chronosequence database (Table 2). Furthermore, the relationship 269 

between TPE and the soil properties was stronger than just using age, NPP, MAP, or MAT alone 270 

(Table 3). Age was expected to strongly correlate to the soil properties due to the design of 271 

chronosequence studies; however, comparing age and TPE separately, the percent increase in 272 

Spearman rank correlations (r) ranged from 1.9% (DWT Silt) to 22.4% (Max Sand). Maximum 273 

and depth weighted silt content were weakly correlated to both age and TPE and exhibited only a 274 

minimal change in Spearman’s rank correlation with TPE relative to age. 275 

The correlation between TPE and maximum clay content (Fig 3, ρ=0.78, r2=0.61, 276 

Max!Clay = −7.35+ 1.36 ∗ log(TPE) , df=414) was highly significant, and presented the 277 

strongest probabilistic relationship determined between TPE and the soil properties. The 278 

bivariate probability surface displayed the greatest probability around the joint means between 279 

TPE and maximum clay content (Fig 3). Solum thickness and TPE were also strongly related, 280 
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but weaker relative to the maximum clay-TPE relationship (Fig S1, ρ=0.65, r2=0.42, 281 

log!(solum!thickness) = −0.57+ 0.27 ∗ log(TPE), df=408). The relationships between TPE 282 

and max sand (Fig S2) and silt (Fig S3) contents were generally weaker, relative to clay and 283 

solum thickness, with little to no relationship between TPE and silt content.   284 

The conditional univariate normal distribution parameters were determined for the soil 285 

physical properties from the bivariate distribution and using Eqs. 7 and 8. The bivariate normal 286 

distribution effectively predicted maximum clay content (Fig 4) with an r2 = 0.54 287 

(RMSE=14.7%) between the measured maximum clay content and predicted conditional mean 288 

maximum clay content (Eq. 7) across all sites based on LOOCV (Fig 4d). The model effectively 289 

predicted maximum clay content for each parent material with r2 of 0.60 (RMSE=14.1%), 0.56 290 

(RMSE=11.9%), and 0.59 (RMSE=16.7%), for igneous, metamorphic, and sedimentary parent 291 

materials, respectively. The r2 between the measured values and predicted values for solum 292 

thickness, max sand, and max silt were 0.28 (RMSE=99.8 cm, Fig S4), 0.17 (RMSE=23.2%, Fig 293 

S5), and 0.04 (RMSE=18.0%, Fig S6), respectively. 294 

The relationship of predicted to actual maximum clay content varied significantly across 295 

individual studies. The predicted values represent the predicted conditional means (Eq. 7) 296 

bounded by the conditional standard deviation (Eq. 8), which approximates a 50% probability 297 

that the measured maximum clay content will be within 1 standard deviation of the conditional 298 

mean (Fig 5). The individual studies presented in Fig 5 were selected to represent a broad range 299 

of climates and landforms, and demonstrate both the strengths and weaknesses of the model. For 300 

Harden (1987) (Fig 5a, r2=0.88, p<0.0001, df=20, RMSE=9.3%) and Howard et al. (1993) (Fig 301 

5b, r2=0.86, p<0.001, df=6, RMSE=9.8%), the model was generally successful at predicting the 302 

maximum clay content values; both the Harden (1987) and Howard et al. (1993) sequences were 303 
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located in alluvial deposits but in vastly different climates, xeric (winter-dominated annual 304 

rainfall regime) vs. udic (evenly distributed annual rainfall regime), respectively. The model was 305 

capable of predicting maximum clay content values for glacial moraine deposits, in a frigid 306 

climate (Fig 5c, r2=0.87, p<0.0001, df=12, RMSE=6.1% Birkeland, 1984) and on marine terraces 307 

in Northern California with a xeric climate (Fig 5f, r2=0.98, p<0.001, df=4, RMSE=8.7%, 308 

Merritts et al., 1991). The model was incapable of predicting clay accumulation on marine 309 

terraces in hot, wet climates in Barbados (Fig 5d, r2=0.31, p=0.08, df=9, RMSE=45.1% Muhs, 310 

2001) or Taiwan (Fig 5e, r2=0.67, p<0.001, df=11, RMSE=23.2%, Huang et al., 2010). 311 

 312 

3.2 Application in complex terrain 313 

The model was much less effective in complex terrain and highly overpredicted DWT 314 

clay contents in soils located in complex landscapes (Fig 6a, r2=0.26, y=0.39x+7.27, p<0.0001, 315 

RMSE=5.3%). The model highly over predicted the clay content of the South Carolina site and 316 

the Gordon Gulch soils, and under predicted the clay content of the Rincon, Santa Catalina, 317 

Jemez sites.  318 

When correcting for the influence of hillslope processes by explicitly including soil depth 319 

and calculating mass per area clay, the approach effectively predicted clay content, with an 320 

r2=0.81 (Fig 6b, y=1.56x-15.2, p<0.0001, RMSE=84.4 kg clay m-2), only slightly overpredicting 321 

clay content, with a slope of 1.56. Soil depth was the strongest contributing factor to the mass per 322 

area clay prediction with the greatest sums of squares in a simple multiple linear regression 323 

including depth, RF%, and DWT clay% (Table 4); predicted conditional mean clay content 324 

percentage was the second strongest contributing factor to the mass per area clay prediction. 325 

Rock fragment percentage did not influence the mass per area clay content prediction.  326 

SOIL Discuss., doi:10.5194/soil-2016-63, 2016
Manuscript under review for journal SOIL
Published: 18 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



 15 

 327 

3.3 Coupled geomorphic-TPE model 328 

The coupled geomorphic-TPE model effectively predicted mass per area clay for the 329 

majority of soils located within the Marshall Gulch subcatchment with an r2=0.74 (Fig 7a, 330 

y=0.85x-5.00, p<0.0001, RMSE=17.7 kg clay m-2). For a subset of soils, the model did not 331 

effectively predict mass per area clay, and were excluded from the regression in Fig 7a; four of 332 

these soils were located on the east-facing ridge of the catchment, and an additional two soils 333 

were formed on amphibolite rather than the granite or quartzite materials that all of the other 334 

soils in the catchment were derived from. All of these locations also exhibited a poor fit between 335 

modeled and measured soil depth (Fig 2e). The spatial distribution of mass per area clay was also 336 

predicted across the catchment (Fig 7b), independently of measured data, and generally 337 

conformed to previously predicted spatial distribution of clay stocks in the Marshall Gulch 338 

catchment (Holleran et al., 2015). 339 

 340 

4. Discussion 341 

4.1 Model effectiveness 342 

4.1.1 Model results for chronosequences 343 

The model predicted maximum clay content across a diverse range of lithologies, 344 

climates, and landforms. Weathering and clay production are primary pedogenic processes 345 

(Birkeland, 1999; Schaetzl and Anderson, 2005), and because the model assumed all changes in 346 

the soil profile are due to these processes, the model was the most effective at predicting clay 347 

content. For initial soil states that begin pedogenesis with a potentially significant amount of 348 

clay-sized particles the model was much less effective. The soils of the Taiwanese 349 
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chronosequence formed from conglomerates (Huang et al., 2010); conglomerates are typically 350 

poorly sorted, such that these soils initially formed with high clay contents slowing clay 351 

accumulation, limiting the effectiveness of the model to predict clay contents in these soils. 352 

Additionally, the model highly underestimated the clay content of soils located on coral reef 353 

terraces in tropical environments (Maejima et al., 2005; Muhs, 2001). Coral reef terraces 354 

represent a relatively unique landform that weathers rapidly to fine sized particles, especially 355 

under tropical climates, and generally have complicated parent material compositions (Muhs et 356 

al., 1987). The combination of these factors limited the ability of the model to predict the soil 357 

properties on these surfaces.   358 

Sand and silt displayed weaker relationships with increasing total pedogenic energy. The 359 

lack of correlation of sand and silt to TPE may result in part from the definitions of the particle 360 

size classes. Sand sized particles span several orders of magnitude difference in particle size, 361 

ranging from particles of 2 mm to 0.05 mm (Soil Survery Staff, 2010), whereas clays are 362 

constrained to particles less than 0.002 mm. The sequential weathering of rock fragments and 363 

coarse sand to fine and very fine sands therefore is not reflected in total sand content and likely 364 

diminishes the relationship between sand content and total pedogenic energy and time (Pye and 365 

Sperling, 1983; Pye, 1983; Sharmeen and Willgoose, 2006). The relationship between silt 366 

content and pedogenic energy was the weakest of the three broad particles size classes (Tables 2, 367 

3). Similar to sand, the silt size fractions span an order of magnitude in particle size ranging from 368 

0.05 to 0.002 mm in diameter. Additionally, the silt fraction may also be heavily influenced by 369 

deposition of eolian material and thereby introduce an additional mass of silt that was not 370 

derived from the direct weathering of the initial soil forming system (McFadden et al., 1987) 371 

effectively uncoupling silt content from total pedogenic energy. 372 
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Solum thickness displayed a relatively strong relationship with increasing pedogenic 373 

energy, with TPE explaining up to 42% of the variance in solum thickness (Tables 2, 3). Soil 374 

production is related to climatic variation (Amundson et al., 2015), with this variation partly 375 

captured by EEMT and TPE, leading to the slightly stronger predictive power of the model. 376 

However, soil production is also highly influenced by redistributive hillslope process, chemical 377 

and physical weathering, and tectonic uplift (Heimsath et al., 1997; Riebe et al., 2004; Yoo and 378 

Mudd, 2008b), and can be a highly non-linear process (Pelletier and Rasmussen, 2009a). These 379 

factors were not directly accounted for in this study in that topography was not a quantified 380 

factor, which likely represents a large proportion of the remaining unexplained variance in solum 381 

thickness. 382 

 383 

4.1.2 Model results in complex terrain 384 

Due to using soil chronosequence data to parameterize the approach, the influence of 385 

redistributive hillslope processes was not captured. Additionally, in the amount of time required 386 

to transport soil across a hillslope, chemical and physical alterations of the soil particles are 387 

possible and may not be reflected in mean residence time calculations (Yoo and Mudd, 2008a; 388 

Yoo et al., 2007). Soil thickness is highly dependent upon hillslope position and landscape 389 

morphology (Dietrich et al., 2003; Heimsath et al., 1997; Pelletier and Rasmussen, 2009a). By 390 

using soil thickness as a proxy for the strength of these redistributive hillslope processes, and 391 

converting the predicted conditional mean clay content value to a mass per area basis, the model 392 

was able to capture differences in clay content across complex terrain for a variety of lithologies 393 

and climates. The differing lithologies, climates, or vegetation types did not appear to impact the 394 

ability of the model to predict clay contents, likely because soil depth accounts for many of these 395 
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controls. Parent material and climate influence the weathering process and production of clay in 396 

soils (Harden and Taylor, 1983; Muhs et al., 2001); however, these factors are collinear with soil 397 

depth (Heckman and Rasmussen, 2011; Lybrand and Rasmussen, 2015; Pelletier and Rasmussen, 398 

2009a), such that by including soil depth, differences due to lithology or climate were partly 399 

incorporated in the model prediction. 400 

 401 

4.1.3 Results from coupled geomorphic-TPE model 402 

For the majority of sites in the Marshall Gulch sub-catchment, the coupled geomorphic-403 

TPE model was highly effective at predicting clay content, and the spatial distribution of clay 404 

stocks. Large differences were found for four soils located on the east-facing ridge of the 405 

catchment underlain by granite with the model generally over-predicting soil depth and clay 406 

content. Discrepancies between the modeled and measured depths were likely the primary 407 

sources of error within the mass per area clay predictions for the 4 east-facing ridge soils (Fig 408 

2e). The geomorphic model predicted deeper soil depths due to the presence of an apparent 409 

convergent zone on the east-facing ridge of the sub-catchment; however, this convergent zone is 410 

only a small feeder tributary to the larger catchment drainage. The inability of the model to 411 

effectively predict clay contents and the mismatch between modeled and actual soil depths in the 412 

4 soils located on the east-facing ridge is likely due to this local, fine-scale topographic variation 413 

Error in predicted soil depths due to fine-scale differences in lithology within the 414 

Marshall Gulch sub-catchment partly explains the discrepancies between measured and predicted 415 

mass per area clay contents. For two amphibolite-derived soils, the model greatly underestimated 416 

mass per area clay. The geomorphic soil depth model assumed a uniform weathering rate based 417 

on the granitic soils (Pelletier and Rasmussen, 2009a); due to differences in primary mineral 418 
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assemblage, the amphibolite materials are likely weather at a faster rate compared to the granite 419 

derived soils (White et al., 2001; Wilson, 2004), resulting in greater clay production and likely 420 

explaining the underestimated clay contents. Inclusion of differential weathering rates for 421 

varying lithologies within the geomorphic model would likely lead to better prediction of clay 422 

contents. With these adjustments, the coupled geomorphic-TPE model represents an effective, 423 

independent prediction of clay stocks. 424 

 425 

4.2 Advantages of probabilistic approach 426 

Simplifying and representing the soil-forming factors as multivariate distributions and 427 

probabilities has the potential to quantitatively represent the general state-factor model, making 428 

the approach universally applicable. The initial state of the soil can likely never be fully known, 429 

leading to variability in soil properties over time that cannot necessarily, or ever, be attributed to 430 

any external factor (Phillips, 1989, 1993b). A probabilistic approach utilizes that variability to 431 

drive predictions and understanding of these systems. Similar to the approach taken here, 432 

building distributions of the soil-forming state factors that are associated with distributions of 433 

particular soil properties could yield probabilistic predictions of soil formation and change. We 434 

selected to use a representation of climate and biology (EEMT), however, depending on the soil 435 

property of interest the variables needed to parameterize the distributions would likely change; 436 

for example, if interested in organic matter content, aboveground net primary productivity or 437 

normalized difference vegetation index may be better predictors of organic matter accumulation. 438 

The strength of this approach lies in the fact that no assumptions are made about the initial 439 

conditions of the soil forming system or the specific soil forming processes. Predicting probable 440 

distributions of soil physical properties implicitly acknowledges that our understanding of any 441 
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system is incomplete, but explicitly quantifies uncertainty in predictions and constrains the 442 

potential observable values to a predicted range. Utilizing this approach will require the 443 

necessary data to build distributions that are widely representative and applicable to most 444 

locations (Yaalon, 1975). With wide accessibility to large databases of soil information, such as 445 

the US National Soil Information System (NASIS) and the FAO Harmonized World Soil 446 

Database, access to the required amount and quality of data may be possible. Similar to the 447 

present study, simple bivariate distributions could be solved to calculate conditional distributions 448 

based on the soil-forming state factors, effectively producing quantitative probabilistic 449 

representations of Jenny’s original equation (Jenny, 1941).  450 

The simplicity of the present approach allows easy integration into pre-existing 451 

geomorphic models of landscape evolution. Past approaches that have combined pedogenic and 452 

landscape evolution models have generally focused on producing hypothetical soil-landscape 453 

relationships that progress forward through time (Minasny and McBratney, 2001; Vanwalleghem 454 

et al., 2013), or have focused on idealized landscapes (Temme and Vanwalleghem, 2015). 455 

However, by combining probabilistic approaches parameterized using known landscapes, and 456 

geomorphically based landscape evolution models, both potential soil-landscape evolution 457 

scenarios can be investigated, as well as predictions of the current state of the soil-landscape. As 458 

was demonstrated in Fig 7B, combining the present approach with geomorphically based soil 459 

depth models generated from DEMs has great potential to predict soil properties across a diverse 460 

range of environments, without needing prior knowledge of the landscape other than topography 461 

and climate. 462 

 463 

4.3 Limitations and potential refinements 464 
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There are obvious limitations within the current model: lack of consideration of parent 465 

material influences, topographic variation, or internal soil feedbacks and thresholds, and 466 

differences in paleoclimate variation. Parent material control on the relative proportion of 467 

weatherable minerals and mineral weathering rates (Jackson et al., 1948) can manifest as vastly 468 

different soil morphologies and rates of pedogenesis when controlling for other soil forming 469 

factors (Heckman and Rasmussen, 2011; Parsons and Herriman, 1975). The current approach 470 

implicitly assumes no information about the initial conditions, only that all clay production is a 471 

pedogenic process. Applying this approach to parent materials, where a large fraction of clay-472 

sized particles formed through non-pedogenic processes, is thus limited and may explain why the 473 

model was ineffective for some soils. Refining the current approach would require normalization 474 

of soil to the particle size distribution of the soil parent material. Past studies have utilized highly 475 

characterized parent material data to model soil property change with time (Chadwick et al., 476 

1990; Harden, 1982), but these data are generally difficult to obtain and often not reported in the 477 

available chronosequence literature. 478 

Topography dictates soil chemical and physical properties and residence times, especially 479 

in complex terrain (Almond et al., 2007; Egli et al., 2008; Lybrand and Rasmussen, 2015), where 480 

non-linear diffusive hillslope processes control the fluxes of matter and energy into and out of 481 

the soil system (Heimsath et al., 1997; Pelletier and Rasmussen, 2009a; Rasmussen et al., 2015; 482 

Yoo and Mudd, 2008b; Yoo et al., 2007). Using earlier versions of EEMT (Rasmussen and 483 

Tabor, 2007; Rasmussen et al., 2005), the current formulation of the model and TPE does not 484 

explicitly quantify topographic variation, which may account for error within current soil 485 

property distributions and predictions. With the inclusion of topographic variation within EEMT 486 

(Rasmussen et al., 2015) and topographic control of soil residence times (Foster et al., 2015; 487 
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West et al., 2013), we were able to correct this error within the present approach, particularly in 488 

complex terrain, and effectively predicted clay stocks. 489 

Internal or intrinsic feedbacks and thresholds within the soil system drive pedogenic 490 

development without changes in the external state factors (Chadwick and Chorover, 2001; Muhs, 491 

1984). For example, greater chemical weathering and clay production due to increased water 492 

residence time caused by argillic horizon development is the result of an internal feedback that is 493 

independent of the external climatic and biological system (Schaetzl and Anderson, 2005). These 494 

thresholds can operate as progressive or regressive processes, driving soil formation forward or 495 

hindering further development (Johnson and Watson-Stegner, 1987; Phillips, 1993a). Internal 496 

soil development feedbacks were not explicitly considered in the present model formulation. The 497 

presence of these internal feedbacks may partially explain error within the model predictions. 498 

Changes in EEMT would not explain all observed differences in soil properties over the age of 499 

the soil. However, if these feedbacks were operating in the included soils, the influence of 500 

intrinsic thresholds was implicitly captured within the probability distributions, partially 501 

accounting for the role of internal soil development feedbacks on soil formation. 502 

 Furthermore, global climate patterns have shifted dramatically over the last 65 Mya 503 

(Zachos et al., 2001). The majority of soils observed in the compiled chronosequence database 504 

span the Quaternary, including both the Holocene and Pleistocene. The Pleistocene was marked 505 

by a number of major glacial-interglacial cycles at approximately 100,000-year intervals (Imbrie 506 

et al., 1992; Wallace and Hobbs, 2006), which corresponded with shifting climatic conditions, 507 

e.g., for large portions of the northern mid-latitudes glacial periods were generally cooler and 508 

wetter, and interglacial periods were warmer and drier (Connin et al., 1998; Petit et al., 1999). 509 

Further, the Pleistocene climate shifts likely influenced the rates of weathering and clay 510 
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production (Hotchkiss et al., 2000). Taking into account the differences in past and modern 511 

climate would likely diminish disparities between observed and modeled soil physical properties. 512 

Reconstructed global paleo-EEMT values would improve model accuracy, and limit uncertainty 513 

in the probabilistic ranges of soil properties for soils older than Holocene age. 514 

 515 

5. Conclusion 516 

The present approach effectively predicts soil physical properties across a diverse range 517 

of geomorphic surfaces, lithologies, ecosystems, and climates. Further, this approach is 518 

mathematically simple and only requires knowledge of the probable age of a geomorphic surface 519 

and the effective energy and mass transfer value associated with a given location, making this 520 

approach universally applicable. The simplicity of the probabilistic approach is the lack of 521 

assumptions about the initial conditions of the soil forming state or the processes driving soil 522 

property change. A probabilistic approach does not exactly predict a soil physical property value 523 

at a given location, but constrains the probable values based upon the state of the external 524 

environment to the soil. Using probabilistic approaches, we can model probable soil-landscape 525 

evolution scenarios, greatly informing our understanding of the evolution of critical zone 526 

structure. 527 
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Figure 1. Map of study sites. Yellow points indicate location of chronosequences, and red triangles 
indicate location of soils in complex terrain. 
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Table 1. Complex terrain study sites and characteristics. 
Table 1. Complex terrain study sites and characteristics

Site Study Number of 
Sites Elevation (m) MAP (cm) MAT (°C) Parent 

Material Slope Aspect Vegetation

Marshall Gulch Granite 
Subcatchment, Arizona, USA

Holleran et al., 2015. SOIL. 
1:47-64. Lybrand and 

Rasmussen. 2015. SSSAJ. 79, 
1: 104-116

24 2300-2500 85-90 10
Granite, 

Amphibolite, 
Quartzite

45% North
Pinus ponderosa, 

Pseudotsuga 
menziesii, Abies 

concolor

Frog's Hollow, New South 
Wales, Australia

Yoo et al., 2007. JGR. 112: 
F02013 2 930 55-75 ~16 Granodiorite - - Ecalyptus grassland 

savannah

Cross Keys, South Carolina, 
USA

Bacon et al., 2012. Geology. 
40, 9: 847-850 1 - 115-140 14-18 Granitic gneiss <2% - Quercus, Carya

Gordon Gulch, Colorado, USA
Foster et al.,  2015. GSA 

Bulletin. 127, 5/6: 862-878; 
Dethier et al., 2012. 

Geomorph. 173-174: 17-29
9 2440-2740 52 5

Gneiss, Quartz 
monzonite, 
granodiorite

15°  - 28° North and 
South

Pinus ponderosa, 
Pinus contorta 

Rincon Mountains, Arizona, 
USA

Rasmussen, 2008. Geochem. 
Cosmochem. Acta. 72: A778. 11 1050-2500 <40-80 10-18 Granodiorite(?) - -

Oak grass woodland, 
Piñon-Juniper 

woodland, Mixed 
Conifer

Jemez Mountains,  New 
Mexico, USA

Huckle et al., 2016. Chem. 
Geol. in press. 4 2990-3100 ~50 4 Rhyolite, tuff - West and 

East

Pseudotsuga 
menziesii, Abies 
concolor, Picea 

pungens, Populus 
tremuloides

Shale Hills, Pennsylvania, 
USA

West et al., 2013. JGR: Earth 
Surf. 118: 1877-1896; Ma et 

al., unpublished
6 260-280 100 - Shale, 

sandstone 15° - 20° North and 
South -

Sierra Nevada Mountains, 
California, USA

Dixon et al., 2009. Earth Surf. 
Proc. Landf. 34: 1507-1521 5 216-2991 37-106 3.9-16.6 Tonalite, 

granodiorite - -
Oak-grass woodland, 

Mixed Conifer, 
Subalpine
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Figure 2. Marshall Gulch study site. (A) Location of the Santa Catalina Mountains and the Marshall Gulch catchment within 
Arizona, USA; (B) Elevation of the granite sub-catchment of Marshall Gulch; (C) Predicted soil depth in the granite sub-catchment 
(Pelletier and Rasmussen, 2009a); (D) EEMTv2.0 in the granite sub-catchment (Rasmussen et al., 2015); (E) Mismatch between the 
measured soil depths and predicted soil depths. 
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Table 2. Parameters for the bivariate normal probability distributions for the soil physical properties and 
TPE. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Soil property parameters
Variable n μ σ ρa

Max Sand 398 70.51 25.39 -0.48
Max Silt 398 34.80 18.38 0.32
Max Clayb 416 4.52 2.24 0.78
DWT Sand 398 59.03 26.04 -0.57
DWT Siltb 398 4.55 1.68 0.26
DWT Clayb 416 3.66 2.09 0.73
Solum Thicknessc 410 1.77 0.52 0.65

416d 8.71 1.29 -
398e 8.72 1.28 -
410f 8.73 1.26 -

aρ, Pearson correlation between soil variables and Total Pedogenic Energy
bSquare root transformed
cLog10 transformed
dFor clay variables
eFor sand and silt variables
fFor solum thickness
n = number of profiles, μ = mean, σ = standard deviation
Max indicates maximum content
DWT indicates depth weighted average content

TPEc
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Table 3. Spearman rank correlations between soil physical properties and TPE and age. 

 
 
 
 
 

Table 3. Spearman Rank Correlations
Variable NPP MAP MAT TPE Age % Increasea n

Max Sand -0.30 -0.10 -0.26 -0.46 -0.37 22.4 398
Max Silt -0.03 -0.16 0.09 0.31 0.32 -4.5 398
Max Clay 0.15 -0.01 0.36 0.80 0.73 9.3 416
DWT Sand -0.22 -0.04 -0.29 -0.57 -0.50 14.1 398
DWT Silt 0.05 -0.06 0.06 0.24 0.23 1.9 398
DWT Clay 0.21 0.02 0.39 0.75 0.67 12.4 416
Solum Thickness 0.12 0.06 0.22 0.63 0.57 10.4 410
Max indicates maximum content
DWT indicates depth weighted average content
aPrecent increase in Spearman rank correlation between TPE and age 
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Figure 3. Bivariate normal distribution between TPE and max clay content. The points indicate 
individual soils. The red ellipses represent lines of equal probability, which corresponds to a three 
dimensional probability distribution. From this relationship the conditional mean and variances for the 
soil physical properties were calculated. 
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Figure 4. LOOCV results for max clay content. The results were subdivided by general soil parent 
material: igneous, metamorphic, and sedimentary; the points represent the geomorphic surface each soil 
formed on, and the colors represents the EEMT value for the location of each soil. Using LOOCV, 
where one chronosequence was removed from the model dataset and the remaining datasets were used 
to predict the parameters of the bivariate distributions, the conditional means of the left out 
chronosequence was determined. The model was effectively able to predict the conditional mean values 
of the max clay contents with an r2=0.54 (RMSE=14.7%). The model was least capable of predicting the 
clay contents on coral reef terraces (+), and appeared the most effective for alluvial surfaces (□). 
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Figure 5. Selected relationships between the measured maximum clay content and predicted maximum 
clay content. A) Harden, 1987, B) Howard et al., 1993, C) Birkeland 1984, D) Muhs, 2001, E) Huang et 
al., 2010, and F) Merritts et al., 1991. The errors represent the conditional standard deviations around the 
mean, which correspond to a probability of 50%. The model effectively predicted clay content across a 
diverse range of climates, landforms, and parent materials. The model was the least effective at 
predicting the clay content of soils in tropical climates, and soils forming on coral reef terraces. 
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A) B)  
Figure 6. Model results in complex terrain. (A) Prediction of depth weighted (DWT) clay contents; 
(B) Prediction of mass per area clay using Eq. 9. The model was incapable of directly predicting DWT 
clay for the soils in complex terrain due to redistributive hillslope processes, r2=0.25 between measured 
and predicted conditional mean DWT clay (A). By including information about soil depth and percent 
volume rock fragment, and converting DWT clay to mass per area clay, the model was significantly 
more effective at predicting clay contents for these soils r2=0.81.  
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Table 4. Sensitivity analysis of model prediction in complex terrain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Sensitivity analysis of model prediction in complex terrain

Effects DF Sums of 
Squares

Mean 
Sums of 
Squares

F value p

Depth, h (cm) 1 1129156 1129156 469.0 < 2e-16
CM DWT Clay, μY|X=x  (%) 1 142430 142430 59.2 2.0E-10
Rock fragment, RF% (%) 1 3013 3013 1.3 0.27
Residuals 58 139632 2407
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A) B)  
 
Figure 7. Model results of coupled geomorphic-EEMT-TPE model in Marshall Gulch granite sub-
catchment. (A) Prediction of mass per area clay for sites from Holleran et al. (2015) and Lybrand and 
Rasmussen et al. (2015); (B) Spatial prediction of mass per area clay When combining the present 
approach, with a geomorphic based soil depth model, the combined models together were highly 
effective at predicting the clay contents for a majority of soils in the Santa Catalina Mountains (Catalina-
Jemez CZO), r2=0.74. 
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