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Abstract 31 

Soils form as the result of a complex suite of biogeochemical and physical processes; 32 

however, effective modeling of soil property change and variability is still limited, and does not 33 

yield widely applicable results. We suggest that predicting a distribution of probable values 34 

based upon the soil-forming state factors is more effective and applicable than predicting discrete 35 

values. Here we present a probabilistic approach for quantifying soil property variability through 36 

integrating energy and mass inputs over time. We analyzed changes in the distributions of soil 37 

texture and solum thickness as a function of increasing time and pedogenic energy (effective 38 

energy and mass transfer, EEMT) using soil chronosequence data compiled from literature. 39 

Bivariate normal probability distributions of soil properties were parameterized using the 40 

chronosequence data; from the bivariate distributions, conditional univariate distributions based 41 

on the age and flux of matter and energy into the soil were calculated, and probable ranges of 42 

each soil property determined. We tested the ability of this approach to predict the soil properties 43 

of the original soil chronosequence database, and soil properties in complex terrain at several 44 

Critical Zone Observatories in the U.S. The presented probabilistic framework has the potential 45 

to greatly inform our understanding of soil evolution over geologic time-scales. Considering 46 

soils probabilistically captures soil variability across multiple scales and explicitly quantifies 47 

uncertainty in soil property change with time. 48 

 49 

 50 

 51 

 52 

 53 
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1. Introduction 54 

The need for pedogenic models that can be widely applied and easily utilized is 55 

paramount for understanding soil-landscape evolution, soil property change with time, and 56 

predicting future soil conditions. A mathematically simple, easily parameterized approach has 57 

yet to be developed that is capable of predicting current soil properties or recreating potential soil 58 

evolution with time. Here we address this knowledge gap through development of a probabilistic 59 

model of soil property change capable of predicting soil properties across a wide range of 60 

terrains, climates, and ecosystems.  61 

The state factor approach has been one of the primary pedogenic models since it’s 62 

development in the late 1800’s and early 1900’s (Dokuchaev, 1883; Jenny, 1941). The soil state 63 

factor approach (Jenny, 1941) assumes the state of the soil system or specific soil properties (S) 64 

may be described as a function of the external environment, represented by climate (cl), biology 65 

(o), relief (r), parent material (p), and time (t): S = f(cl, o, r, p, t). This approach increased our 66 

understanding of soil variation across each factor, but more complex, multivariate approaches are 67 

generally not possible or difficult to derive from this formulation (Yaalon, 1975). From the 68 

original state factor model have evolved pedogenic models that include functional (Jenny, 1961), 69 

energetic (Rasmussen and Tabor, 2007; Rasmussen et al., 2005, 2011; Runge, 1973; Smeck et 70 

al., 1983; Volobuyev, 1964), and mechanistic approaches (Finke, 2012; Minasny and 71 

McBratney, 1999; Salvador-Blanes et al., 2007; Vanwalleghem et al., 2013). However, many of 72 

these approaches are either limited to a site-specific basis, require a high degree of 73 

parameterization, or lack wide-scale applicability.  74 

Here we develop a simple probabilistic approach to predict soil physical properties using 75 

a large dataset of chronosequence studies. The model compresses state factor variability into two 76 
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key components (parent material and total pedogenic energy, defined in Section 1.1) that were 77 

parameterized and calibrated using the chronosequence database. We hypothesized that a 78 

probabilistic approach predicts accurate ranges of soil physical properties based on the soil-79 

forming environment. Additionally, we modified the model to include soil depth to capture the 80 

influence of redistributive hillslope processes to predict soil properties. We hypothesized that by 81 

including soil depth, the model would effectively predict the clay content in an independent 82 

dataset synthesizing soil and landscape variability in complex, hilly terrain from a wide range of 83 

environments. 84 

 85 

1.1 Probabilistic model of soil property change 86 

The model presented here is based on a reformulated state-factor model, where a location 87 

has a probability of displaying a range of differing soil morphologies and properties based upon 88 

the state factors, with some range of values more probable than others, meaning the state-factor 89 

model (Jenny, 1941) may be restated as:  90 

ℙ s! ≤ S ≤ s! = f(cl, o, r,p, t)          (1) 91 

where, the left hand side of the equation, ℙ s! ≤ S ≤ s! , represents the probability that a given 92 

soil will have a value located between a lower limit (s1) and an upper limit (s2) (Phillips, 1993b). 93 

Eq. 1 can be restated more simply as: 94 

ℙ s! ≤ S ≤ s! = f(L!,P!, t)          (2) 95 

where, the original soil forming state factors have been simplified to represent the fluxes of 96 

matter and energy into the soil system (Px), incorporating the influence of climate and biology, 97 

and the initial state of the soil forming conditions (Lo), incorporating the influence of the initial 98 

topography and original soil parent material, and time or age of the soil system (t) (Jenny, 1961).  99 
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Equation 2 was further simplified to make the approach operational. A quantitative 100 

measure of climate and biology was needed to represent the influence of Px on soil formation. 101 

We used a quantification of Px calculated from effective precipitation and biological 102 

productivity, termed effective energy and mass transfer (EEMT, J m-2 yr-1)(Rasmussen and 103 

Tabor, 2007; Rasmussen et al., 2005, 2011). EEMT provides a measure of the energy transferred 104 

to the subsurface, in the form of reduced carbon from primary productivity and heat transfer 105 

from effective precipitation, which has the potential to perform pedogenic work, e.g., chemical 106 

weathering and carbon cycling. Using EEMT as a simplification of Px, Eq. 2 was restated as 107 

(Rasmussen et al., 2011): 108 

ℙ s! ≤ S ≤ s! = f(L!,EEMT, t)          (3) 109 

We further simplified Eq. 3 by combining the flux term EEMT and the age of the soil system (t).  110 

EEMT multiplied by the age of the soil system, i.e. EEMT*t, provides an estimate of the total 111 

energy transferred to the soil system over the course of its evolution, referred to here as “total 112 

pedogenic energy” (TPE, J m-2). The TPE provides an estimate of Px that incorporates soil age, 113 

thus Eq. 3 may be restated as: 114 

ℙ s! ≤ S ≤ s! = f(L!,TPE)          (4) 115 

where at a certain point in time the probability of a soil property existing between s1 and s2 is a 116 

function of Lo and TPE. Lo controls the spread or variation of the probability distribution 117 

ℙ s! ≤ S ≤ s!  over time and the potential observable soil states, whereas TPE is proportional 118 

to the internal soil state at a given time (Jenny, 1961). Explicitly including time in Eq. 4 through 119 

TPE partially captures variation in soil property change attributable to topography and parent 120 

material. Soil residence time may be directly related to landscape position through topographic 121 

control on soil production and sediment transport/deposition (Heimsath et al., 1997, 2002; Yoo et 122 
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al., 2007). Additionally, parent material modulates soil residence time through control on soil 123 

depth (Heckman and Rasmussen, 2011; Rasmussen et al., 2005), soil production, and sediment 124 

transport rates (Andre and Anderson, 1961; Portenga and Bierman, 2011). The initial conditions 125 

of the soil forming system (Lo) are never fully known; however, representing the state of the soil 126 

system as a probable distribution of values, implicitly accounting for soil age, and not 127 

constraining the initial soil forming conditions, the influence of initial conditions can be partially 128 

ignored and hence herein focus on modeling soil properties using only TPE. 129 

Quantitatively realizing Eq. 4 required the use of predetermined joint probability density 130 

functions parameterized with TPE and a selected soil physical property. Bivariate normal density 131 

functions were calculated to determine the probability of a soil property range given a TPE 132 

value. The bivariate density function was selected due to its simplicity and ease of 133 

parameterization, other bivariate density functions are available that may better fit the selected 134 

soil property data but are not considered here. The bivariate normal density distribution (Ugarte 135 

et al., 2008) was calculated as: 136 

f x, y = !
!"!!!! !!!! exp − !

! !!!!
!!!! !

!!!
+ !!!!

!

!!!
− !" !!!! !!!!

!!!!
           (5) 137 

where, ρ represents the Pearson correlation coefficient, µx is the mean of TPE, µy is the mean of 138 

the selected soil physical property, σx is the standard deviation of TPE, σy is the standard 139 

deviation of the selected soil physical property. Using the bivariate normal density functions, 140 

conditional mean and variance values were calculated given a value of TPE; the conditional 141 

means and variances parameterized conditional univariate normal distributions for the selected 142 

soil physical properties. The conditional mean (Ugarte et al., 2008) was calculated as: 143 

!!|!!! = !! + ρ
!!
!!
(x− !!)           (6) 144 
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where, µY|X=x is the conditional mean soil property value given a value for TPE. The conditional 145 

variance (Ugarte et al., 2008) was calculated as:  146 

σ!|!!!! = σ!! 1− ρ!            (7) 147 

where, σ!|!!!!  is the conditional variance of the soil property given a value of TPE. 148 

Applying this approach required certain assumptions and simplifications. The model 149 

assumes that climate was constant over the entire duration of pedogenesis. The model makes no 150 

assumptions about the progressive and regressive processes that drive pedogenesis; by weighing 151 

all profiles equally, the net effects of both progressive (e.g., horizonation, clay accumulation, 152 

reddening, etc.) and regressive (e.g., haplodization, erosion, pedoturbation, etc.) pedogenic 153 

processes (Johnson and Watson-Stegner, 1987; Phillips, 1993a), are captured in the model 154 

structure. The model also does not consider the net effect of progressive and regressive 155 

pedogenic processes on the distribution of selected soil properties with depth. The model makes 156 

no assumptions about the initial soil forming system, and we did not constrain the model to any 157 

particular initial condition for either parent material or geomorphic landform; the model simply 158 

describes the probability of a location exhibiting a range of soil properties based on TPE. The 159 

model assumes all changes in soil physical properties are due to pedogenic processes. We used a 160 

bivariate normal distribution; consequently the model assumes the data conforms to a normal 161 

distribution.  162 

 163 

2. Methods 164 

2.1 Data collection and preparation 165 

The probability distributions were parameterized using an extensive literature review of 166 

chronosequence studies. More than 140 chronosequence publications were identified using 167 
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Google Scholar (scholar.google.com) and ThomsonReuters Web of Science 168 

(webofknowledge.com), forty-four of which contained the required data. Inclusion within the 169 

present study required: profile descriptions with horizon-level clay, sand, and silt content, soil 170 

depth; well-defined ages of the soil-geomorphic surfaces; and geographic coordinates or maps 171 

showing locations of the described profiles. The chronosequences spanned a wide range of 172 

geographic locations, ecosystems, climates, rock types, and geomorphic landforms (Fig 1, Table 173 

S1). The chronosequence soils spanned ages from 10 years to 4.35 Myr and depth ranges from 174 

3.0 cm to 1460 cm, with mean annual temperature and precipitation ranging from -11.2 to 28.0 175 

°C and 3.0 to 400 cm yr-1, respectively. We were limited in site selection by the available data; as 176 

such we could not control for any bias that may exist with regards to site selection and reported 177 

soil property values. 178 

 179 

2.2 Total Pedogenic Energy   180 

The influence of both climate and vegetation at the locations of each soil profile was 181 

determined using effective energy and mass transfer (EEMT) (Rasmussen and Tabor, 2007; 182 

Rasmussen et al., 2005). EEMT quantifies the heat and chemical energy from effective 183 

precipitation and net primary productivity added to the soil system (Rasmussen and Tabor, 2007; 184 

Rasmussen et al., 2005, 2011). EEMT describes the energy added to the soil system that can 185 

perform pedogenic work, such as chemical weathering and carbon cycling. EEMT is adaptable to 186 

include specific energetic inputs to the soil system based upon the prevailing soil forming 187 

environment, e.g. the energetics from added fertilizer in an agriculture field or the impact of 188 

human induced erosion (Rasmussen et al., 2011). The EEMT values for each soil profile were 189 

extracted from a global map of EEMT derived from the monthly global climate dataset of New et 190 
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al. (1999) at 0.5°x0.5° resolution using ArcMap 10.1 (ESRI, Redlands, CA) (Rasmussen et al., 191 

2011). For the chronosequence soils, EEMT values ranged from 2,235 to >200,000 kJ m-2 yr-1. 192 

Total pedogenic energy (TPE, J m-2) was derived simply by multiplying EEMT (J m-2 yr-1) for 193 

each soil profile by its reported age (yr). TPE was used because it was a better predictor of soil 194 

physical properties relative to mean annual temperature, mean annual precipitation, or net 195 

primary productivity (Table 3). 196 

 197 

2.3 Application to chronosequence data 198 

The chronosequence database included 44 distinct chronosequences representing 405 199 

different soil profiles. We focused here on changes in sand, silt, and clay content and solum 200 

thickness as examples of soil property change with time. We tested the approach on depth 201 

weighted (DWT) sand, silt and clay content (reported as weight %), as well as the maximum 202 

measured value of sand, silt, and clay content within each soil profile. Buried horizons were 203 

removed from the soil profiles before either the maximum or DWT content values were 204 

calculated. Solum thickness was extracted for each profile, defined as the thickness of the 205 

horizons influenced by pedogenic processes or the depth to C horizons (Schaetzl and Anderson, 206 

2005). The site RW-14 from McFadden and Weldon (1987) was not included in the solum 207 

thickness model calculations, the measured solum thickness of RW-14 was 1460 cm, an order of 208 

magnitude greater than all other soil profiles included in the study. Four hundred and five 209 

profiles reported clay content data, only 387 profiles reported sand and silt content, and 399 soil 210 

profiles contained a developed solum. We classified the soil profiles by parent material in terms 211 

of igneous, metamorphic, or sedimentary and by geomorphic landform, e.g., alluvial surface, 212 
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marine terrace, or moraine, etc. (Shoeneberger et al., 2012); for example, if a soil was formed on 213 

an alluvial fan from granitic parent material, it would be defined as alluvial and igneous.  214 

Using the soils data, we calculated bivariate normal probability distributions using TPE 215 

and the soil physical properties (Eq. 5). The soil data were transformed using logarithmic and 216 

square root transformations when appropriate to meet the normality assumption of the bivariate 217 

normal probability distribution. Conditional univariate normal distributions (Eqs. 6, 7) were 218 

calculated to approximate probable ranges of soil properties using leave one out cross validation 219 

(LOOCV). Each of the soil chronosequences was removed from the model dataset, with the all 220 

remaining chronosequence data used to calculate the parameters of the bivariate and conditional 221 

univariate normal distributions.  The conditional univariate normal distributions were calculated 222 

using the TPE values for the profiles within the left-out chronosequence.  223 

 224 

2.4 Application to complex terrain 225 

 By design, soil chronosequences are generally sited on gentle, low sloping terrain to 226 

minimize the influence of topography and erosion/deposition on soil formation (Harden, 1982). 227 

However, much of the Earth’s surface is characterized by complex topography with high relief, 228 

steep slopes, and differences in slope aspect. Any predictive soil model or approach must be 229 

effective in both simple and complex terrain. To test the ability of the model to predict soil 230 

properties in complex terrain, we compiled data from upland catchments with variable parent 231 

material and topography from the literature, as well as data available from the US NSF Critical 232 

Zone Observatory Network (CZO, wwww.criticalzone.org) (Table 1) (Bacon et al., 2012; 233 

Dethier et al., 2012; Foster et al., 2015; Holleran et al., 2015; Lybrand and Rasmussen, 2015; 234 

Rasmussen, 2008; West et al., 2013). Data from several additional studies from complex terrain 235 
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were also included to test the model (Table 1) (Dixon et al., 2009; Yoo et al., 2007). These data 236 

were accessed from: www.criticalzone.org, or Google Scholar (scholar.google.com). These 237 

studies were included because they all contained horizon-level soil texture data, soil depth, 238 

percent volume rock fragment data, and 10Be or U-series measures of soil erosion rates or 239 

residence time, where mean residence time (MRT) was calculated as: MRT=h/E, where h is soil 240 

depth (m) and E is erosion rate (m/yr) (Pelletier and Rasmussen, 2009b). We used published 241 

coordinates to extract EEMT values, calculated from New et al. (1999), for each soil profile 242 

using ArcGIS 10.1, and used EEMT and MRT to calculate TPE. It should be noted the coarse 243 

resolution of New et al. (1999) EEMT values do not account for local scale variation in water 244 

redistribution and primary productivity that can lead to significant topographic variation in 245 

EEMT (Rasmussen et al., 2015). Using Eq. 5 and the parameters generated from the 246 

chronosequence database, conditional mean depth weighted clay content was calculated for each 247 

profile.  248 

 Due to the influence of redistributive hillslope processes on soil development (Yoo et al., 249 

2007), soil depth varies systematically across hillslopes (Heimsath et al., 1997); thus, soil depth 250 

can be used to incorporate information about these processes within the model calculations. We 251 

calculated the mass per area clay content of these profiles using soil depth to incorporate this 252 

variation, as:  253 

Mass!per!area!clay! kg!m!! = ! (ρ!)(h)
!!|!!!,!"#!!"#$

!"" 1− !"%
!""           (8) 254 

where, ρb is the soil bulk density assumed to be 1500 kg m-3
 for all soil profiles, µY|X=x, DWT CLAY 255 

is the predicted conditional mean for depth weighted clay content (DWT CLAY) using Eq. 6, 256 

RF% is the measured depth weighted percent volume rock fragments within the soil, when no 257 

RF% data were available we assumed a value of 41.7%, which was the average RF% for profiles 258 
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with reported values, and h is the soil depth in meters. Using Eq. 8, mass per area clay was 259 

calculated for each soil profile. Further, we examined the impact of depth, rock fragment 260 

percentage, and predicted conditional mean DWT clay on the predicted mass per area clay 261 

predictions using multiple linear regression. 262 

 263 

2.4.1 Coupling geomorphic model with probabilistic model 264 

Additionally, we applied the probabilistic model independent of measured soil data, 265 

across a small complex catchment in the Santa Catalina Mountains (Catalina-Jemez CZO, Fig 266 

2a-b, Table 1) (Holleran et al., 2015; Lybrand and Rasmussen, 2015). The ~6 ha catchment is 267 

located at an elevation between 2300-2500 m with mixed conifer vegetation, approximately 30 268 

km northeast of Tucson, AZ (Fig 2, Table 1). The approach utilized soil depth and residence time 269 

output from a process-based numerical soil depth model (Pelletier and Rasmussen, 2009a). The 270 

model used high resolution LiDAR derived topographic data to estimate 2 m pixel resolution soil 271 

depth and erosion rates (Fig 2c) (Pelletier and Rasmussen, 2009a). These data were coupled with 272 

topographically resolved EEMT values that accounted for local hillslope scale variation in water 273 

redistribution and primary productivity at a 10 m pixel resolution (Rasmussen et al., 2015) (Fig 274 

2d). We used calculated TPE from the topographically-resolved EEMT and soil residence time 275 

values to predict DWT clay, and coupled predicted DWT clay values with modeled depth from 276 

Pelletier and Rasmussen (2009a) in Eq. 8 to predict mass per area clay at 2 m pixel resolution; 277 

the data processing and model apparatus are shown in Fig 3. We assumed a constant 50% rock 278 

fragment value for each location. The coupled geomorphic-TPE model outputs were compared 279 

with point measures of mass per area clay from Holleran et al. (2015) and Lybrand and 280 
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Rasmussen (2015). Model data were completely independent from the Holleran et al. and 281 

Lybrand and Rasmussen datasets such that they served as validation data for the modeled output. 282 

 283 

2.5 Model domain 284 

 The model was parameterized using chronosequence studies; as such, the model is best 285 

suited for generally low, sloping terrain. The model was extended to complex terrain using the 286 

described correction above (Section 2.4), widening the model domain to steeply sloping terrain. 287 

The model does not consider human activities or aeolian additions, and should not be extended to 288 

soils significantly impacted by either humans or dust. The model was trained on a diverse array 289 

of parent materials and ecosystems, and could be utilized in climates with MAT ranging from -290 

10 to 28°C and MAP ranging from 3 to 400 cm yr-1. The model could be utilized on soils 291 

spanning multiple magnitudes in age, from 10 yr to greater than 4Myr.  292 

 293 

3. Results 294 

3.1 Application and parameterization to chronosequences 295 

The relationships between TPE and soil texture and solum thickness were used to 296 

calculate the bivariate probability distributions. The bivariate probability distributions (Eq. 5) 297 

were parameterized using the means, standard deviations and Pearson’s correlation from the 298 

chronosequence database (Table 2). Furthermore, the relationship between TPE and the soil 299 

properties was stronger than just using age, NPP, MAP, or MAT alone (Table 3). Age was 300 

expected to strongly correlate to the soil properties due to the design of chronosequence studies; 301 

however, comparing age and TPE separately, the percent increase in Spearman rank correlations 302 

(r) ranged from 8.7% (DWT Silt) to 25.6% (Max Sand). Maximum and depth weighted silt 303 
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content were weakly correlated to both age and TPE and exhibited only a minimal change in 304 

Spearman’s rank correlation with TPE relative to age. 305 

The correlation between TPE and maximum clay content (Fig 4, Pearson’s ρ=0.78, 306 

r2=0.62, Max!Clay = −7.38+ 1.37 ∗ log(TPE), df=403) was highly significant, and presented 307 

the strongest probabilistic relationship determined between TPE and the soil properties. The 308 

bivariate probability surface displayed the greatest probability around the joint means between 309 

TPE and maximum clay content (Fig 4). Solum thickness and TPE were also strongly related, 310 

but weaker relative to the maximum clay-TPE relationship (Fig S1, Pearson’s ρ=0.65, r2=0.42, 311 

log!(solum!thickness) = −0.58+ 0.27 ∗ log(TPE), df=397). The relationships between TPE 312 

and max sand (Fig S2) and silt (Fig S3) contents were generally weaker, relative to clay and 313 

solum thickness, with little to no relationship between TPE and silt content.   314 

The conditional univariate normal distribution parameters were determined for the soil 315 

physical properties from the bivariate distribution and using Eqs. 6 and 7. The bivariate normal 316 

distribution effectively predicted maximum clay content (Fig 5) with an r2 = 0.54 317 

(RMSE=14.8%) between the measured maximum clay content and predicted conditional mean 318 

maximum clay content (Eq. 6) across all sites based on LOOCV (Fig 5d). The model effectively 319 

predicted maximum clay content regardless of parent material with r2 of 0.61 (RMSE=14.4%), 320 

0.56 (RMSE=12.0%), and 0.59 (RMSE=16.8%), for igneous, metamorphic, and sedimentary 321 

parent materials, respectively. The r2 between the measured values and predicted values for 322 

solum thickness, max sand, and max silt were 0.28 (RMSE=101.0 cm, Fig S4), 0.17 323 

(RMSE=23.4%, Fig S5), and 0.04 (RMSE=18.0%, Fig S6), respectively. 324 

The relationship of predicted to actual maximum clay content varied significantly across 325 

individual studies. The predicted values represent the predicted conditional means (Eq. 6) 326 
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bounded by the conditional standard deviation (Eq. 7), which approximates a 50% probability 327 

that the measured maximum clay content will be within 1 standard deviation of the conditional 328 

mean (Fig 6). The individual studies presented in Fig 6 were selected to represent a broad range 329 

of climates and landforms, and demonstrate both the strengths and weaknesses of the model. For 330 

Harden (1987) (Fig 6a, r2=0.88, p<0.0001, df=20, RMSE=9.4%) and Howard et al. (1993) (Fig 331 

6b, r2=0.86, p<0.001, df=6, RMSE=10.2%), the model was generally successful at predicting the 332 

maximum clay content values; both the Harden (1987) and Howard et al. (1993) sequences were 333 

located in alluvial deposits but in vastly different climates, xeric (winter-dominated annual 334 

rainfall regime) vs. udic (evenly distributed annual rainfall regime), respectively. The model was 335 

capable of predicting maximum clay content values for glacial moraine deposits, in a frigid 336 

climate (Fig 6c, r2=0.87, p<0.0001, df=12, RMSE=6.0% Birkeland, 1984) and on marine terraces 337 

in Northern California with a xeric climate (Fig 6f, r2=0.98, p<0.001, df=4, RMSE=8.9%, 338 

Merritts et al., 1991). The model was incapable of predicting clay accumulation on marine 339 

terraces in hot, wet climates in Barbados (Fig 6d, r2=0.31, p=0.08, df=9, RMSE=44.9% Muhs, 340 

2001) or Taiwan (Fig 6e, r2=0.67, p<0.001, df=11, RMSE=23.1%, Huang et al., 2010). 341 

 342 

3.2 Application in complex terrain 343 

The model was much less effective in complex terrain and highly overpredicted DWT 344 

clay contents in soils located in complex landscapes (Fig 7a, r2=0.26, y=0.39x+7.36, p<0.0001, 345 

RMSE=5.4%). The model highly over predicted the clay content of the South Carolina site and 346 

the Gordon Gulch soils, and under predicted the clay content of the Rincon, Santa Catalina, 347 

Jemez sites.  348 
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When correcting for the influence of hillslope processes by explicitly including soil depth 349 

and calculating mass per area clay, the approach effectively predicted clay content, with an 350 

r2=0.81 (Fig 7b, y=1.58x-15.5, p<0.0001, RMSE=86.4 kg clay m-2), only slightly overpredicting 351 

clay content, with a regression slope of 1.58. Soil depth was the strongest contributing factor to 352 

the mass per area clay prediction with the greatest sums of squares in a simple multiple linear 353 

regression including depth, RF%, and DWT clay% (Table 4); predicted conditional mean clay 354 

content percentage was the second strongest contributing factor to the mass per area clay 355 

prediction. Rock fragment percentage did not influence the mass per area clay content prediction.  356 

 357 

3.3 Coupled geomorphic-TPE model 358 

The coupled geomorphic-TPE model effectively predicted mass per area clay for the 359 

majority of soils located within the Marshall Gulch subcatchment with an r2=0.74 (Fig 8a, 360 

y=0.86x-5.06, p<0.0001, RMSE=17.7 kg clay m-2). For a subset of soils, the model did not 361 

effectively predict mass per area clay, and were excluded from the regression in Fig 8a; four of 362 

these soils were located on the east-facing ridge of the catchment, and an additional two soils 363 

were formed on amphibolite rather than the granite or quartzite materials that all of the other 364 

soils in the catchment were derived from. All of these locations also exhibited a poor fit between 365 

modeled and measured soil depth (Fig 2e). The spatial distribution of mass per area clay was also 366 

predicted across the catchment (Fig 8b), independently of measured data, and generally 367 

conformed to previously predicted spatial distribution of clay stocks in the Marshall Gulch 368 

catchment (Holleran et al., 2015). 369 

 370 

4. Discussion 371 
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4.1 Model effectiveness 372 

4.1.1 Model results for chronosequences 373 

The model predicted maximum clay content across a diverse range of lithologies, 374 

climates, and landforms. Weathering and clay production are primary pedogenic processes 375 

(Birkeland, 1999; Schaetzl and Anderson, 2005), and because the model assumed all changes in 376 

the soil profile are due to these processes and TPE is closely related to degree of weathering, the 377 

model was the most effective at predicting clay content. For initial soil states that begin 378 

pedogenesis with a potentially significant amount of clay-sized particles the model was much 379 

less effective. The soils of the Taiwanese chronosequence formed from conglomerates (Huang et 380 

al., 2010); conglomerates are typically poorly sorted, such that these soils initially formed with 381 

high clay contents slowing clay accumulation, limiting the effectiveness of the model to predict 382 

clay contents in these soils. Additionally, the model highly underestimated the clay content of 383 

soils located on coral reef terraces in tropical environments (Maejima et al., 2005; Muhs, 2001). 384 

Coral reef terraces represent a relatively unique landform that weathers rapidly to fine sized 385 

particles, especially under tropical climates, and generally have complicated parent material 386 

compositions (Muhs et al., 1987). The combination of these factors limited the ability of the 387 

model to predict the soil properties on these surfaces.   388 

Sand and silt displayed weaker relationships with increasing total pedogenic energy. The 389 

lack of correlation of sand and silt to TPE may result in part from the definitions of the particle 390 

size classes. Sand sized particles span several orders of magnitude difference in particle size, 391 

ranging from particles of 2 mm to 0.05 mm (Soil Survery Staff, 2010), whereas clays are 392 

constrained to particles less than 0.002 mm. The sequential weathering of rock fragments and 393 

coarse sand to fine and very fine sands therefore is not reflected in total sand content and likely 394 
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diminishes the relationship between sand content and total pedogenic energy and time (Pye and 395 

Sperling, 1983; Pye, 1983; Sharmeen and Willgoose, 2006). The relationship between silt 396 

content and pedogenic energy was the weakest of the three broad particles size classes (Tables 2, 397 

3). Similar to sand, the silt size fractions span an order of magnitude in particle size ranging from 398 

0.05 to 0.002 mm in diameter. Further, the sand and silt fractions are dominated by resistant 399 

primary minerals (Pye, 1983), and would not change greatly in response to increased TPE or 400 

weathering, which may partly account for the weaker correlations with TPE. Additionally, the 401 

silt fraction may also be heavily influenced by deposition of eolian material and thereby 402 

introduce an additional mass of silt that was not derived from the direct weathering of the initial 403 

soil forming system (McFadden et al., 1987) effectively uncoupling silt content from total 404 

pedogenic energy. 405 

Solum thickness displayed a relatively strong relationship with increasing pedogenic 406 

energy, with TPE explaining up to 42% of the variance in solum thickness (Tables 2, 3). Soil 407 

production is related to climatic variation (Amundson et al., 2015), with this variation partly 408 

captured by EEMT and TPE, leading to the slightly stronger predictive power of the model. 409 

However, soil production is also highly influenced by redistributive hillslope process, chemical 410 

and physical weathering, and tectonic uplift (Heimsath et al., 1997; Riebe et al., 2004; Yoo and 411 

Mudd, 2008b), and can be a highly non-linear process (Pelletier and Rasmussen, 2009a). These 412 

factors were not directly accounted for in this study in that topography was not a quantified 413 

factor, which likely represents a large proportion of the remaining unexplained variance in solum 414 

thickness. 415 

 416 

4.1.2 Model results in complex terrain 417 
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Due to using soil chronosequence data to parameterize the approach, the influence of 418 

redistributive hillslope processes was not captured. Additionally, in the amount of time required 419 

to transport soil across a hillslope, chemical and physical alterations of the soil particles are 420 

possible and may not be reflected in mean residence time calculations (Yoo and Mudd, 2008a; 421 

Yoo et al., 2007). Soil thickness is highly dependent upon hillslope position and landscape 422 

morphology (Dietrich et al., 2003; Heimsath et al., 1997; Pelletier and Rasmussen, 2009a). By 423 

using soil thickness as a proxy for the strength of these redistributive hillslope processes, and 424 

converting the predicted conditional mean clay content value to a mass per area basis, the model 425 

was able to capture differences in clay content across complex terrain for a variety of lithologies 426 

and climates. The differing lithologies, climates, or vegetation types did not appear to impact the 427 

ability of the model to predict clay contents, likely because local variation in soil depth accounts 428 

for many of these controls. Parent material and climate influence the weathering process and 429 

production of clay in soils (Harden and Taylor, 1983; Muhs et al., 2001); however, these factors 430 

are collinear with soil depth (Heckman and Rasmussen, 2011; Lybrand and Rasmussen, 2015; 431 

Pelletier and Rasmussen, 2009a), such that by including soil depth, differences due to lithology 432 

or climate were partly incorporated in the model prediction. 433 

 434 

4.1.3 Results from coupled geomorphic-TPE model 435 

For the majority of sites in the Marshall Gulch sub-catchment, the coupled geomorphic-436 

TPE model was highly effective at predicting clay content, and the spatial distribution of clay 437 

stocks. Large differences were found for four soils located on the east-facing ridge of the 438 

catchment underlain by granite with the model generally over-predicting soil depth and clay 439 

content. Discrepancies between the modeled and measured depths were likely the primary 440 
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sources of error within the mass per area clay predictions for the four east-facing ridge soils (Fig 441 

2e). The geomorphic model predicted deeper soil depths due to the presence of an apparent 442 

convergent zone on the east-facing ridge of the sub-catchment; however, this convergent zone is 443 

only a small feeder tributary to the larger catchment drainage. The inability of the model to 444 

effectively predict clay contents and the mismatch between modeled and actual soil depths in the 445 

four soils located on the east-facing ridge is likely due to this local, fine-scale topographic 446 

variation. The fine-scale topographic variation may indicate that the scale of soil property 447 

predictions is important in achieving accurate predictions. Fine spatial scales match the scale of 448 

local soil-landscape variation and processes, but fine scale variation in weathering rates and 449 

lithology is also required to better predict soil depth within the catchment (McKenzie and Ryan, 450 

1999).  451 

Error in predicted soil depths due to fine-scale differences in lithology within the 452 

Marshall Gulch sub-catchment partly explains the discrepancies between measured and predicted 453 

mass per area clay contents. For two amphibolite-derived soils, the model greatly underestimated 454 

mass per area clay. The geomorphic soil depth model assumed a uniform weathering rate based 455 

on the granitic soils (Pelletier and Rasmussen, 2009a); due to differences in primary mineral 456 

assemblage, the amphibolite materials are likely weathering at a faster rate compared to the 457 

granite derived soils (White et al., 2001; Wilson, 2004), resulting in greater clay production and 458 

likely explaining the underestimated clay contents. Inclusion of differential weathering rates for 459 

varying lithologies within the geomorphic model would likely lead to better prediction of clay 460 

contents, but in areas of complex lithology this would require detailed information about 461 

distributions of differing lithologies. With these adjustments, the coupled geomorphic-TPE 462 

model represents an effective, independent prediction of clay stocks. 463 
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 464 

4.2 Advantages of probabilistic approach 465 

Simplifying and representing the soil-forming factors as multivariate distributions and 466 

probabilities has the potential to quantitatively represent the general state-factor model, making 467 

the approach universally applicable. The initial state of the soil can likely never be fully known, 468 

leading to variability in soil properties over time that cannot necessarily, or ever, be attributed to 469 

any external factor (Phillips, 1989, 1993b). A probabilistic approach utilizes that variability to 470 

drive predictions and understanding of these systems. Similar to the approach taken here, 471 

building distributions of the soil-forming state factors that are associated with distributions of 472 

particular soil properties could yield probabilistic predictions of soil formation and change. We 473 

selected to use a representation of climate and biology (EEMT), however, depending on the soil 474 

property of interest the variables needed to parameterize the distributions would likely change; 475 

for example, if interested in organic matter content, aboveground net primary productivity or 476 

normalized difference vegetation index may be better predictors of organic matter accumulation. 477 

The strength of this approach lies in the fact that no assumptions are made about the initial 478 

conditions of the soil forming system or the specific soil forming processes. Predicting probable 479 

distributions of soil physical properties implicitly acknowledges that our understanding of any 480 

system is incomplete, but explicitly quantifies uncertainty in predictions and constrains the 481 

potential observable values to a predicted range. Utilizing this approach will require the 482 

necessary data to build distributions that are widely representative and applicable to most 483 

locations (Yaalon, 1975). With wide accessibility to large databases of soil information, such as 484 

the US National Soil Information System (NASIS) and the FAO Harmonized World Soil 485 

Database, access to the required amount and quality of data may be possible. Similar to the 486 
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present study, simple bivariate distributions could be solved to calculate conditional distributions 487 

based on the soil-forming state factors, effectively producing quantitative probabilistic 488 

representations of Jenny’s original equation (Jenny, 1941).  489 

The simplicity of the present approach allows easy integration into pre-existing 490 

geomorphic models of landscape evolution. Past approaches that have combined pedogenic and 491 

landscape evolution models have generally focused on producing hypothetical soil-landscape 492 

relationships that progress forward through time (Minasny and McBratney, 2001; Vanwalleghem 493 

et al., 2013), or have focused on idealized landscapes (Temme and Vanwalleghem, 2015). 494 

However, by combining probabilistic approaches parameterized using known landscapes, and 495 

geomorphically based landscape evolution models, predictions of the current state of the soil-496 

landscape can be investigated. As was demonstrated in Fig 7B, combining the present approach 497 

with geomorphically based soil depth models generated from DEMs has great potential to predict 498 

soil properties across a diverse range of environments, without needing prior knowledge of the 499 

landscape other than topography and climate. Further, potential soil-landscapes can be 500 

investigated by updating EEMT values to incorporate future climate scenarios available from 501 

predictive climate models (Gent et al., 2011; Taylor et al., 2012) and topographic and 502 

hydrological impacts due to changes in topography over time (Rasmussen et al., 2015). 503 

 504 

4.3 Limitations and potential refinements 505 

There are obvious limitations within the current model: lack of consideration of parent 506 

material influences, topographic variation, human impacts, internal soil feedbacks and 507 

thresholds, determination of landscape and soil age, and differences in paleoclimate variation. 508 

Parent material control on the relative proportion of weatherable minerals and mineral 509 
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weathering rates (Jackson et al., 1948) can manifest as vastly different soil morphologies and 510 

rates of pedogenesis when controlling for other soil forming factors or even without controlling 511 

for other factors (Heckman and Rasmussen, 2011; Parsons and Herriman, 1975; Phillips, 1993b). 512 

The current approach implicitly assumes no information about the initial conditions, only that all 513 

clay production is a pedogenic process. Applying this approach to parent materials, where a large 514 

fraction of clay-sized particles formed through non-pedogenic processes, is thus limited and may 515 

explain why the model was ineffective for some soils. Refining the current approach would 516 

require normalization of soil to the particle size distribution of the soil parent material. Past 517 

studies have utilized highly characterized parent material data to model soil property change with 518 

time (Chadwick et al., 1990; Harden, 1982), but these data are generally difficult to obtain and 519 

often not reported in the available chronosequence literature. 520 

Topography dictates soil chemical and physical properties and residence times, especially 521 

in complex terrain (Almond et al., 2007; Egli et al., 2008; Lybrand and Rasmussen, 2015), where 522 

non-linear diffusive hillslope processes control the fluxes of matter and energy into and out of 523 

the soil system (Heimsath et al., 1997; Pelletier and Rasmussen, 2009a; Rasmussen et al., 2015; 524 

Yoo and Mudd, 2008b; Yoo et al., 2007). Using earlier versions of EEMT (Rasmussen and 525 

Tabor, 2007; Rasmussen et al., 2005), the current formulation of the model and TPE does not 526 

explicitly quantify topographic variation, which may account for error within current soil 527 

property distributions and predictions. With the inclusion of topographic variation in EEMT 528 

(Rasmussen et al., 2015) and topographic control of soil residence times (Foster et al., 2015; 529 

West et al., 2013), we were able to correct this error with the present approach, and effectively 530 

predicted clay stocks in complex terrain. 531 
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Human activities significantly alter soil physical properties (Grieve, 2001; Neff et al., 532 

2005; Pouyat et al., 2007). For example, differences in land use and increased grazing activity 533 

can alter soil physical properties such as clay and sand content across landscapes (Neff et al., 534 

2005; Pouyat et al., 2007), or compaction from farming equipment leading to increased bulk 535 

density and increased erosion rates (Fullen, 1985; Hamza and Anderson, 2005). Human impacts 536 

on soil physical properties were not included in the presented model. The energetic contributions 537 

due to human impacts can be incorporated within the EEMT apparatus, and adjusted model 538 

parameters can be calculated (Rasmussen et al., 2011). Human impacts on soil physical 539 

properties may be locally important, but for the majority of locations, human energetic 540 

contributions to the soil system are generally orders of magnitude smaller compared to the 541 

energetic inputs from solar radiation, precipitation, or primary productivity. 542 

Internal or intrinsic feedbacks and thresholds within the soil system drive pedogenic 543 

development without changes in the external state factors (Chadwick and Chorover, 2001; Muhs, 544 

1984). For example, greater chemical weathering and clay production due to increased water 545 

residence time caused by argillic horizon development is the result of an internal feedback that is 546 

independent of the external climatic and biological system (Schaetzl and Anderson, 2005). These 547 

thresholds can operate as progressive or regressive processes, driving soil formation forward or 548 

hindering further development (Johnson and Watson-Stegner, 1987; Phillips, 1993a). Internal 549 

soil development feedbacks were not explicitly considered in the present model formulation. The 550 

presence of these internal feedbacks may partially explain error within the model predictions. 551 

Changes in EEMT would not explain all observed differences in soil properties over the age of 552 

the soil. However, if these feedbacks were operating in the included soils, the influence of 553 
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intrinsic thresholds was implicitly captured within the probability distributions, partially 554 

accounting for the role of internal soil development feedbacks on soil formation. 555 

 Soil age is typically unmeasured in most geomorphological and pedological studies, 556 

limiting the applicability of the current model. Numerical age dating, e.g. cosmogenic 557 

radionuclides or optically stimulated luminescence, is expensive and requires time-consuming 558 

preparation to be broadly utilized and can be complicated by transport and burial histories of soil 559 

and sediment (Anderson et al., 1996; Bierman, 1994; Gosse and Phillips, 2001; Granger and 560 

Muzikar, 2001; Schaetzl and Anderson, 2005). Fortunately, relative age dating methods using 561 

landscape position are easily utilized and can provide the necessary age constraint needed to 562 

make model predictions (Burke and Birkeland, 1979; Favilli et al., 2009; Huggett, 1998; 563 

Matthews and Shakesby, 1984; Nicholas and Butler, 1996; Schaetzl and Anderson, 2005). Age 564 

constraint may also be achieved using landscape or hillslope morphology derived from elevation 565 

transects or digital elevation models to estimate a “diffusivity age” for the soil (Hsu and Pelletier, 566 

2004; Pelletier et al., 2006). 567 

 Global climate patterns have shifted dramatically over the last 65 Myr (Zachos et al., 568 

2001). The majority of soils observed in the compiled chronosequence database span the 569 

Quaternary, including both the Holocene and Pleistocene. The Pleistocene was marked by a 570 

number of major glacial-interglacial cycles at approximately 100,000-year intervals (Imbrie et 571 

al., 1992; Wallace and Hobbs, 2006), which corresponded with shifting climatic conditions, e.g., 572 

for large portions of the northern mid-latitudes glacial periods were generally cooler and wetter, 573 

and interglacial periods were warmer and drier (Connin et al., 1998; Petit et al., 1999). Further, 574 

the Pleistocene climate shifts likely influenced the rates of weathering and clay production 575 

(Hotchkiss et al., 2000). Taking into account the differences in past and modern climate would 576 
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partially reduce prediction errors between observed and modeled soil physical properties. 577 

Reconstructed global paleo-EEMT values would improve model accuracy, and limit uncertainty 578 

in the probabilistic ranges of soil properties for soils older than Holocene age. 579 

 580 

5. Conclusion 581 

The present approach effectively predicts soil physical properties across a diverse range 582 

of geomorphic surfaces, lithologies, ecosystems, and climates. Further, this approach is 583 

mathematically simple and only requires knowledge of the probable age of a geomorphic surface 584 

and the effective energy and mass transfer value associated with a given location, making this 585 

approach universally applicable. The simplicity of the probabilistic approach lies in the lack of 586 

the need to consider the initial conditions of the soil forming state or the processes driving soil 587 

property change. A probabilistic approach does not exactly predict a soil physical property value 588 

at a given location, but constrains the probable values based upon the state of the external 589 

environment to the soil. Using probabilistic approaches, we can model probable soil-landscape 590 

evolution scenarios, greatly informing our understanding of the evolution of critical zone 591 

structure. 592 
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Figure 1. Map of study sites. Yellow points indicate location of chronosequences, and red triangles 
indicate location of soils in complex terrain. 
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Table 1. Complex terrain study sites and characteristics. 
Table 1. Complex terrain study sites and characteristics

Site Study Number of 
Sites Elevation (m) MAP (cm) MAT (°C) Parent 

Material Slope Aspect Vegetation

Marshall Gulch Granite 
Subcatchment, Arizona, USA

Holleran et al., 2015. SOIL. 
1:47-64. Lybrand and 

Rasmussen. 2015. SSSAJ. 79, 
1: 104-116

24 2300-2500 85-90 10
Granite, 

Amphibolite, 
Quartzite

45% North
Pinus ponderosa, 

Pseudotsuga 
menziesii, Abies 

concolor

Frog's Hollow, New South 
Wales, Australia

Yoo et al., 2007. JGR. 112: 
F02013 2 930 55-75 ~16 Granodiorite - - Ecalyptus grassland 

savannah

Cross Keys, South Carolina, 
USA

Bacon et al., 2012. Geology. 
40, 9: 847-850 1 - 115-140 14-18 Granitic gneiss <2% - Quercus, Carya

Gordon Gulch, Colorado, USA
Foster et al.,  2015. GSA 

Bulletin. 127, 5/6: 862-878; 
Dethier et al., 2012. 

Geomorph. 173-174: 17-29
9 2440-2740 52 5

Gneiss, Quartz 
monzonite, 
granodiorite

15°  - 28° North and 
South

Pinus ponderosa, 
Pinus contorta 

Rincon Mountains, Arizona, 
USA

Rasmussen, 2008. Geochem. 
Cosmochem. Acta. 72: A778. 11 1050-2500 <40-80 10-18 Granodiorite(?) - -

Oak grass woodland, 
Piñon-Juniper 

woodland, Mixed 
Conifer

Jemez Mountains,  New 
Mexico, USA

Huckle et al., 2016. Chem. 
Geol. in press. 4 2990-3100 ~50 4 Rhyolite, tuff - West and 

East

Pseudotsuga 
menziesii, Abies 
concolor, Picea 

pungens, Populus 
tremuloides

Shale Hills, Pennsylvania, 
USA

West et al., 2013. JGR: Earth 
Surf. 118: 1877-1896; Ma et 

al., unpublished
6 260-280 100 - Shale, 

sandstone 15° - 20° North and 
South -

Sierra Nevada Mountains, 
California, USA

Dixon et al., 2009. Earth Surf. 
Proc. Landf. 34: 1507-1521 5 216-2991 37-106 3.9-16.6 Tonalite, 

granodiorite - -
Oak-grass woodland, 

Mixed Conifer, 
Subalpine
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Figure 2. Marshall Gulch study site. (A) Location of the Santa Catalina Mountains and the Marshall Gulch catchment within 
Arizona, USA; (B) Elevation of the granite sub-catchment of Marshall Gulch; (C) Predicted soil depth in the granite sub-catchment 
(Pelletier and Rasmussen, 2009a); (D) EEMTv2.0 in the granite sub-catchment (Rasmussen et al., 2015); (E) Mismatch between the 
measured soil depths and predicted soil depths. 
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Table 2. Parameters for the bivariate normal probability distributions for the soil physical properties and 
TPE, n = number of profiles, µ = mean, σ = standard deviation, and ρ = Pearson’s correlation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Soil property parameters
Variable n μ σ ρa

Max Sand 387 70.97 25.55 -0.48
Max Silt 387 34.27 18.32 0.32
Max Clayb 405 4.52 2.26 0.78
DWT Sand 387 59.47 26.22 -0.57
DWT Siltb 387 4.50 1.66 0.26
DWT Clayb 405 3.66 2.12 0.73
Solum Thicknessc 399 1.77 0.53 0.65

405d 8.69 1.30 -
387e 8.70 1.29 -
399f 8.72 1.27 -

aρ, Pearson correlation between soil variables and Total Pedogenic Energy
bSquare root transformed
cLog10 transformed
dFor clay variables
eFor sand and silt variables
fFor solum thickness
n = number of profiles, μ = mean, σ = standard deviation
Max indicates maximum content
DWT indicates depth weighted average content

TPEc
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Table 3. Spearman rank correlations between soil physical properties and TPE and age. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Spearman Rank Correlations
Variable NPP MAP MAT TPE Age % Increasea n

Max Sand -0.34 -0.15 -0.23 -0.46 -0.36 25.6 387
Max Silt 0.00 -0.11 0.05 0.31 0.32 -1.1 387
Max Clay 0.16 -0.01 0.37 0.80 0.73 8.8 405
DWT Sand -0.25 -0.07 -0.27 -0.57 -0.50 15.2 387
DWT Silt 0.11 -0.01 0.02 0.23 0.21 8.7 387
DWT Clay 0.22 0.02 0.40 0.75 0.67 11.7 405
Solum Thickness 0.12 0.07 0.22 0.63 0.58 9.9 399
Max indicates maximum content
DWT indicates depth weighted average content
aPrecent increase in Spearman rank correlation between TPE and age 
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Figure 3. Coupled geomorphic-probabilistic model apparatus. The process-based numerical soil 
depth model is used to predict soil depth, which is used to predict soil residence time. The 
topographically resolved EEMT model is used to calculate TPE using the soil residence time and EEMT 
values. The probabilistic model is used to calculate DWT clay contents using the TPE values, and mass 
per area clay is calculated using predicted DWT clay and predicted soil depth values. 
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Figure 4. Bivariate normal distribution between TPE and max clay content. The points indicate 
individual soils. The red ellipses represent lines of equal probability, which corresponds to a three 
dimensional probability distribution. From this relationship the conditional mean and variances for the 
soil physical properties were calculated. 
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Figure 5. LOOCV results for max clay content. The results were subdivided by general soil parent 
material: igneous, metamorphic, and sedimentary; the points represent the geomorphic surface each soil 
formed on, and the colors represents the EEMT value for the location of each soil. Using LOOCV, 
where one chronosequence was removed from the model dataset and the remaining datasets were used 
to predict the parameters of the bivariate distributions, the conditional means of the left out 
chronosequence was determined. The model was effectively able to predict the conditional mean values 
of the max clay contents with an r2=0.54 (RMSE=14.7%). The model was least capable of predicting the 
clay contents on coral reef terraces (+), and appeared the most effective for alluvial surfaces (□). 
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Figure 6. Selected relationships between the measured maximum clay content and predicted maximum 
clay content. A) Harden, 1987, B) Howard et al., 1993, C) Birkeland 1984, D) Muhs, 2001, E) Huang et 
al., 2010, and F) Merritts et al., 1991. The errors represent the conditional standard deviations around the 
mean, which correspond to a probability of 50%. The model effectively predicted clay content across a 
diverse range of climates, landforms, and parent materials. The model was the least effective at 
predicting the clay content of soils in tropical climates, and soils forming on coral reef terraces. 
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A) B)  
Figure 7. Model results in complex terrain. (A) Prediction of depth weighted (DWT) clay contents; 
(B) Prediction of mass per area clay using Eq. 9. The model was incapable of directly predicting DWT 
clay for the soils in complex terrain due to redistributive hillslope processes, r2=0.26 between measured 
and predicted conditional mean DWT clay (A). By including information about soil depth and percent 
volume rock fragment, and converting DWT clay to mass per area clay, the model was significantly 
more effective at predicting clay contents for these soils r2=0.81.  
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Table 4. Sensitivity analysis of model prediction in complex terrain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Sensitivity analysis of model prediction in complex terrain

Effects DF Sums of 
Squares

Mean 
Sums of 
Squares

F value p

Depth, h (cm) 1 1158897 1158897 472.9 < 2e-16
CM DWT Clay, μY|X=x  (%) 1 148896 148896 60.8 1.4E-10
Rock fragment, RF% (%) 1 1563 1563 0.6 0.428
Residuals 58 142140 2451
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A) B)  
 
Figure 8. Model results of coupled geomorphic-EEMT-TPE model in Marshall Gulch granite sub-
catchment. (A) Prediction of mass per area clay for sites from Holleran et al. (2015) and Lybrand and 
Rasmussen et al. (2015); (B) Spatial prediction of mass per area clay When combining the present 
approach, with a geomorphic based soil depth model, the combined models together were highly 
effective at predicting the clay contents for a majority of soils in the Santa Catalina Mountains (Catalina-
Jemez CZO), r2=0.74. 
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