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Abstract 14 

Improving the accuracy of pedotransfer functions (PTFs) requires studying how prediction uncertainty 15 

can be apportioned to different sources of uncertainty in inputs. In this study, the question addressed 16 

was: Which variable input is the main or best complementary predictor of water retention, and at which 17 

water potential? Two approaches were adopted to generate PTFs: multiple linear regressions (MLR) 18 

for point PTFs; and multiple non-linear regressions (MNLR) for parametric PTFs. Reliability tests 19 

showed that point PTFs provided better estimates than parametric PTFs (RMSE: 0.0414; 0.0444 cm
3
 20 

cm
-3 and 0.0613; 0.0605 cm

3
 cm

-3 at -33 kPa and -1500 kPa, respectively). The local parametric PTFs 21 

provided better estimates than Rosetta PTFs at -33 kPa. No significant difference in accuracy, 22 

however, was found between the parametric PTFs and Rosetta H2 at -1500 kPa, with RMSE values of 23 

0.0605 cm
3
 cm 

-3
 and 0.0636 cm

 3
 cm

-3
, respectively. The results of global sensitivity analyses (GSAs) 24 

showed that the mathematical formalism of PTFs and their input variables reacted differently in terms 25 

of point pressure and texture. The point and parametric PTFs were sensitive mainly to the sand 26 

fraction in the fine and medium textural classes. The use of clay percentage (C %) and bulk density 27 

(BD) as inputs in the medium textural class improved the estimation of PTFs at -33 kPa. 28 

Keywords:  soil-water retention, multiple regressions, pedotransfer function, sensitivity 29 
 30 

I.  Introduction 31 
 32 

Predictive information on the spatial distribution of soil water and its availability for plants enables 33 

producers to take effective decisions (e.g., on nutrient management and plant cover) to maximize 34 

profitability. The soil-water balance is central to many processes that influence plant growth and the 35 

degradation of soil and water resources.  36 

Hydrologists face the situation where soil hydraulic data such as water retention or hydraulic 37 

conductivity are often missing. Therefore, pedotransfer functions (PTFs) are used as an alternative to 38 

estimate these properties. The extrapolation of PTFs in different agropedoclimatic context limits their 39 

performance (Touil et al., 2016). The development of local PTFs could be useful in meeting the 40 

agricultural requirements for modelling with reasonable accuracy. 41 

Soil-water retention (SWR) curves can usually be estimated using two approaches: point PTFs 42 

and parameter PTFs. With point PTFs, SWR is estimated at defined pressure points (Pachepsky et 43 

https://en.wikipedia.org/wiki/Uncertainty
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al., 1996; Minasny et al., 1999). One of the most commonly used SWR curves is the Van Genuchten 44 

model (1980). With parameter PTFs, the parameters of SWR models, such as θs, θr, α and n, are 45 

estimated by fitting them to the data and then relating then by empirical correlation to basic soil 46 

properties (Vereecken et al., 1992; Wösten et al., 1995; Schaap et al., 1998; Minasny and McBratney, 47 

2002; Rawls and Brakensiek, 1985; Van Genuchten et al., 1992; Wösten et al., 2001; Vereecken et 48 

al., 2010). Schaap et al. (2001) developed the Rosetta package based on the artificial neural network 49 

(ANN) method, which uses five hierarchical models to predict the van Genuchten (VG) parameters 50 

(θs, θr, α and n) with soil texture classes only and the input data (texture, bulk density [BD], and one or 51 

two water content values at -33 and -1500 kPa). 52 

 PTFs for point and parametric estimation of SWR from basic soil properties can be developed 53 

using multiple regression methods (Lin et al., 1999; Mayr and Jarvis, 1999; Tomasella et al., 2000).  54 

Some 97% of water retention PTFs for soils in the tropics are based on multiple linear and polynomial 55 

regressions of n
th 

order techniques (Botula et al. 2014). 56 

 Using PTFs in environments that differ from those from which they were derived can lead to 57 

an under- or overestimation of SWR. Several studies have shown that SWR is a complex function of 58 

soil structure and composition (Rawls et al., 1991; Wösten et al., 2001; Rawls et al., 2003; Mirus et al., 59 

2015). Applying PTFs to different textural or structural classes could also be a source of uncertainty 60 

(Bruand et al., 2002; Pachepsky et al., 2003). SWR and hydraulic conductivity vary widely and non-61 

linearly with soil-water potential. Soil texture is the main determinant of the water-holding 62 

characteristics of most agricultural soils (Saxton et al., 1986). The relationship between the SWR 63 

curve and particle size distribution (PSD) has been investigated in many studies (Jonasson et al., 64 

1992; Minasny et al., 2006; Ghanbarian et al., 2009; Xu Yang et al., 2013; Tae-Kyu Lee et al., 2014). 65 

SWR depends mainly on texture, with other factors such as BD, structure, organic matter (OM), clay 66 

type and hysteresis having a secondary impact (Williams et al., 1983,  Saxton et al., 1986, Vereecken 67 

et al., 1989, Winfield et al., 2006).  68 

 The variability in PTF response depends on the variability and uncertainty of one or more of 69 

the input variables. Uncertainty analysis in the variety of available PTF approaches is necessary to 70 

minimize error in estimation and identify its source. Recently, sensitivity analysis techniques and 71 

uncertainty analysis have begun to receive considerable attention in PTF studies (Nemes et al., 72 

2006b; Kay et al., 1997; Grunwald et al., 2001; Deng et al., 2009; Moeys et al., 2012; Loosvelt et al., 73 

2013). The question is: Which variable input is the main or best complementary predictor of SWR, and 74 

at which potential? Global sensitivity analysis (GSA) enables us to study how uncertainty in the output 75 

of a model can be apportioned to different sources of uncertainty in the model inputs (Saltelli et al., 76 

2000). Generally, GSA is useful for identifying which variables make the main contribution to output 77 

variables (Jaques et al., 2004).    78 

 The objectives of this study were to:  79 

 Develop and validate two PTF approaches using regression methods: point PTFs for 80 

estimating SWR in Algerian soils at -33 kPa and -1500 kPa;  and parametric PTFs for 81 

estimating the VG parameters 82 
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 Study the impact of each input on the PTF responses 83 

 84 
 85 

II. Materials and methods  86 
 87 

1. The database 88 
 89 

The soil dataset used for this study was collected from various regions in Algeria, mainly in the 90 

north, which has a Mediterranean climate. It contained 242 samples, with basic soil properties: texture 91 

fractions (based on the USDA system; clay and silty-clayey for most of the soils, Fig. 1a), Bulk density 92 

(BD), organic matter percentage (OM) and water content at -33 kPa and -1500kPa. Descriptive 93 

statistics of the development and validation datasets are presented in Table 1. The available database 94 

was split into two datasets.  Subset 1, which was used to develop the PTFs, contained 78.1% of the 95 

samples. Used as the calibration set, they were collected from the coastal plain of Annaba in north-96 

eastern Algeria (13 samples), the Beni Slimane plain of Media (42 samples), the Kherba El Abadia 97 

plain of Ain Defla (54 samples) and the Lower Cheliff plain in north-western Algeria (80 samples). 98 

Subset 2 contained the remaining 21.9% of the samples. Used to verify the PTFs, they were collected 99 

from Benziane valley in the lower south-western Cheliff plain. The depth of the two upper horizons 100 

varied from site to site, with a maximum of 30 cm for surface horizons and more than 30 cm for 101 

subsurface horizons. 102 

Particle size distribution (PSD) analysis was conducted using the international Robinson's pipette 103 

method (Robinson, 1922). Undisturbed soil samples obtained with 500-1,000 cm
3
 cylinders were used 104 

to determine BD. The SWR values at -33 kPa and -1500 kPa were obtained using Richards’s 105 

apparatus (Richards et al., 1943). Undisturbed soil samples were collected near field capacity with 100 106 

cm
3
 cylinders. Water content was measured using the gravimetric method at 105°C (24 h). Organic 107 

carbon content was determined using the wet oxidation method (Walkley and Black, 1934). Variation 108 

in soil texture in the dataset is displayed using the textural triangle proposed by FAO (1990) in Figure 109 

1b.  110 

The SWR model devised by Van Genuchten (1980) is defined as: 111 

 112 

        
     

          
                                                                                                  (1) 113 

 114 
Where θr and θs are residual and saturated soil-water content (cm

3
 cm

–3
), respectively, and α (cm

–1
) 115 

and n are the shape factors of the SWR function. The VG parameters were indirectly estimated for 116 

each soil sample from four levels of measured data inputs:  sand, silt and clay percentages, and BD 117 

using the Rosetta model H3 (Schaap et al., 2001). The ‘m’ parameter was calculated as follows:  118 

m = 1 -1 / n. 119 

2. PTF development  120 

Two approaches were used in this study to develop the PTFs: point PTFs for estimating SWR 121 

for particular points of pressure (h); and parametric PTFs for predicting the VG parameters. Each 122 

water content level at selected water potentials of -33 kPa and -1500 kPa and estimated VG 123 
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parameters were related to basic soil properties (i.e., sand, silt, clay content, OM content and BD) 124 

using multiple regression techniques (Table 2). The most significant input variables were determined 125 

using the Pearson correlation (α =5%). For the multiple-linear regression (MLR) models, the general 126 

form of the resulting equations was expressed thus:  127 

Y= a0+ b1 X1 + b2 X2 + b3X3 +b4 X4                                                                                              (2)                                                                                                                                                                                        128 

 129 

For the multiple-non-linear regression (MNLR) models, it was expressed thus:  130 

Y= a0 + b1X1 + b2X2 + b3X1^2 + b4X2^ 2 + b5X 1^3 + b6X2^3 + b7 X1* X2 + b8X1^2* X2 + b9 X1*X2^2                                                                                                                                              131 

(3) 132 

Where Y represents the dependent variable,  a0 is the intercept; b1…, bn are the regression 133 

coefficients, and X1 to X4 refer to the independent variables representing the basic soil properties.  134 

The prediction quality of the point and parametric PTFs developed from Algerian soils were 135 

then compared with three Rosetta PTFs (H1, H2 and H3). We chose the Rosetta model because it 136 

gives the user flexibility in inputting the data required (Stumpp et al., 2009), with the option of five 137 

levels based on input data (Schaap et al. 2002):  138 

 H1: Textural classes (USDA system) 139 

 H2 : Clay+Silt+Sand 140 

 H3: Clay+Silt+Sand+ BD 141 

 H4: Clay+Silt+Sand+ BD +Volumetric water at -33 kPa 142 

 H5: Clay+Silt+Sand+ BD +Volumetric water at -33 kPa + Volumetric water at -1500 kPa 143 

 144 

The Rosetta model was also chosen because it has given reasonable predictions in several evaluation 145 

studies (Frederick et al., 2004, Nemes et al., 2003). In our study, the three Rosetta model levels (H1, 146 

H2, and H3) were selected to compare their performance in the Algerian soils because they require 147 

only texture data and BD as inputs, as locally developed PTFs do. 148 

3. Evaluation criteria 149 

PTFs are regularly assessed by comparing the values that they predict with the measured values 150 

(Pachepsky and Rawls, 1999). In order to assess the validity of the PTFs developed, we used the 151 

following criteria: mean prediction error (ME) to indicate the bias of the estimate; root mean square 152 

error (RMSE) to assess the quality of the prediction (it is frequently used in studies on PTFs); and the 153 

index of agreement (d) developed by Willmott and Wicks (1980) and Willmott (1981) as a standardized 154 

measure of the degree of model prediction error. They were calculated using the following equations, 155 

respectively: 156 

                                                   
 

 
  

 

   
                                                   (4) 157 

Where N is number of horizons, and θp, θm, predicted and measured volumetric water content, 158 

respectively. The estimate was better when ME was close to 0’. Negative ME values indicated an 159 

average underestimation of θm, whereas positive values indicated overestimation. 160 
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                                    (5) 161 

Thus, the lower the RMSE, the better the estimate. 162 

                                                    
  

 

   
       

                        
 

   

                                 (6) 163 

 164 
The index of agreement varied from 0 to 1, with higher index values indicating that the modeled values 165 

   were in better agreement with the observations   . 166 

 167 

4. Global sensitivity analysis (GSA)   168 

 169 

GSA involves determining which part of the variance in model response is due to variance in which 170 

input variable or group of inputs. The impact of the parameters is quantified by calculating the global 171 

sensitivity indices. 172 

 The Sobol method (Sobol, 1990) is an independent GSA method based on decomposition of 173 

the variance. When the model is non-linear and non-monotonic, the decomposition of the output 174 

variance is still defined and can be used. The Sobol model is represented by the following function: 175 

  176 

                                                 Y= f (X1, X2, X3,……..,Xp)                                                          (7) 177 

Where Y is the model output (or objective function) and X=(X1,….., Xp) is the input variable set. 178 

                                                 V(Y) = V (E (Y|X)) + E (Var (Y|X))                                              (8) 179 

 180 

Where V(Y) is the total variance in the model, V (E(Y|X)) and E (Var(Y|X)) signify variance in the 181 

conditional expected value and expected value of the conditional variance, respectively. When the 182 

input variables Xi are independent, the variance decomposition of the model is:  183 

                                   
 
                                                                                 (9) 184 

                              Vi  = V [ E(Y|Xi)] 185 

                              Vij = V [ E(Y|Xi , Xj)] -Vi-Vj 186 

                              Vijp= V [ E(Y|Xi , Xj, Xp)] - Vij - Vip - Vjp - Vi - Vj - Vp 187 

 188 
Where Vi is the proportion of variance due to variable Xi. Dividing Vi by V(Y) produces the expression 189 

of the first-order sensitivity index (Si), such that: 190 

 191 

                                                 
  

    
 

          

    
                                                                        (10) 192 

The term Si is the measure that guarantees an informed choice in cases where the factors are 193 

correlated and interact (Saltelli and Tarantola, 2002). This index is always between 0 and 1, and 194 

represents a proper measurement of the sensitivity used to classify the input variables in order of 195 

importance (Saltelli and Tarantola, 2001).   196 
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In order to quantify variation in the sensitivity index (V Si) of an input factor Xi, we fixed it at        197 

(   : the average when the variable follows the normal distribution, the median when the variable 198 

follows the lognormal distribution). In order to calculate how much this assumption changed the 199 

variance of Y, we used this formula:  200 

V Si  =    
         

    
 

               

    
                                                                                              (11)      201 

V Si   > 0   and Si close to 1 indicate increasing accuracy of PTFs; 202 

V Si   < 0    and Si close to 1 indicate increasing accuracy of PTFs; 203 

V Si    > 0   and Si close to 0 indicate decreasing accuracy of PTFs; 204 

V Si   < 0    and Si close to 0 indicate decreasing accuracy of PTFs. 205 

In addition, combining the RMSE and Si enabled us to detect the contribution of each variable to 206 

improvement in the quality of prediction of the PTFs.  207 

 208 

III. Results and discussion 209 
 210 

 In Table 3, most of the PTFs underestimated SWR except for the point PTF at the two 211 

pressure points (-33 kPa and -1500 kPa). The Rosetta H2 model, which considers only texture as an 212 

input, gave a ME values close to zero than the H1 and H3 models (- 0.0728; -0.0436 cm
3 
cm

-3 
at -33 213 

kPa and -1500 kPa, respectively). 214 

 The poor ME values indicated better estimates of PTFs. They were produced after the 215 

application of point PTFs followed by parametric PTFs (Figure 2).  216 

 Among the five tested models in the Lower Cheliff soils, the point PTFs (MLR) derived from a 217 

database taken from some Algerian soils had the lowest RMSE values (0.041 and 0.044 cm
3 
cm

-3 
at -218 

33 kPa and -1500 kPa, respectively). Performances equivalent or superior to PTFs derived by multiple 219 

regression methods have been reported in some studies (Minasny et al., 1999; Nemes et al., 2003). 220 

The non-linear models (parametric PTFs), however, gave a better estimation than the Rosetta models 221 

based on ANN (RMSE: 0.0613 and 0.0605 cm
3
 cm

-3 at -33 kPa and -1500 kPa, respectively). The 222 

RMSE and ME values of the three Rosetta models also showed that H2 was better than H1 or H3 223 

(Table 3, Figure 3). 224 

 The index of agreement results showed that point PTFs were more suitable for Lower Cheliff 225 

soils than parametric PTFs (Table 3 3), with values of 0.9975 and 0.9911 cm
3
 cm

-3
). Similar 226 

comparisons in different regions were undertaken by Minasny et al. (1999), Tomasella et al. (2003) 227 

and Ghorbani Dashtaki et al. (2010), who all reported similar differences between these two PTF 228 

approaches. As Table 3 shows, there was no significant difference in RMSE values between the 229 

parametric PTFs and Rosetta H2 at -1500 kPa (RMSE: 0.0605 cm
3
 cm

-3
 and 0.0636 cm

3
 cm

-3
, 230 

respectively).  231 

 232 

1. Sensitivity index before textural grouping 233 
 234 
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In the development of PTFs, using PSD as an input is the usual approach (texture as an 235 

overall expression of PSD, clay, silt and sand content) and its contribution is fundamental to 236 

understanding the process of retaining water at different pressure points, although various physical 237 

and chemical characteristics are used to describe the SWR curve, such as BD and OM. 238 

The importance of each input variable was assessed by the first order S i. It was clear for the 239 

PTFs developed that OM% and clay percentages (C %) were the variables with the greatest impact 240 

(Figure 4). For the point PTFs (MLR), the most sensitive estimations were at two pressure points (S i: 241 

0.821; 0.782 at -33 kPa and 0.630; 0.585 at -1500 kPa for OM% and C%, respectively. The 242 

percentage of silt (Si %) was second in importance in parametric PTFs (0.576 at -33 kPa) after OM, 243 

followed by BD and C (Fig. 2). The Si values placed sand content in third place in the MLR 244 

(0.262; 0.162), indicating that its impact on the parametric model was almost insignificant, with very 245 

low values (Si: 0.077; 0.017) at -33 kPa and -1500 kPa, respectively).  246 

The prediction quality of point PTFs (MLR) can be explained, first, by taking into account the 247 

basic characteristics of soil as an input from the textural and structural information given by the BD. 248 

Second, point PTFs (MLR) are based mainly on these input variables, unlike parameter PTFs 249 

(MNLR), which have inputs other than texture and BD, as well as other parameters (VG parameters: 250 

θr, θs, α, n).  251 

 252 

2. Sensitivity and uncertainty analysis after the textural grouping  253 

 254 

The sensitivity of the multiple regression methods (linear and non-linear) used to develop PTFs 255 

from basic soil characteristics for estimating SWR for different textural classes was analyzed. We 256 

grouped the samples into three classes of particles (Figure 1.b) in line with FAO guidelines (FAO, 257 

1990): very fine (12 samples); fine (31 samples); and medium (10 samples).    258 

The results showed that after the textural grouping, there was an improvement in the quality 259 

estimation of PTFs only in the medium class. A better prediction at -1500 kPa was provided by point 260 

PTFs (RMSE = 0.027 cm
3
 cm

-3
) and parametric PTFs (RMSE = 0.038 cm

3
 cm

-3
) at -1500 kPa (Figure 261 

5). 262 

1. Texture: After textural grouping, the MLR and MNLR PTFs developed were always sensitive 263 

mainly to the sand fraction in the fine and medium classes (Table 4). The variation in the first S i in 264 

the point PTFs was significantly greater in the medium texture class at the two pressure points ( -33 265 

kPa and -1500 kPa). In the MNLR, sand had the most influence, particularly with regard to the fine 266 

class (-40.9%, 18.9% at -33 kPa and 1500 kPa) and the medium class (-16.7% at -1500 kPa).  267 

The Si of a variable quantifies the influence of its uncertainty on the output. This is the part of the 268 

variability output explained by the variability input. What was confirmed after calculating the variation 269 

in the first order Si was that the PTFs developed were still more influenced by the variability in sand at 270 

-33 kPa than at -1500 kPa. This impact could be explained by the irregularity of the dispersion of sand 271 

content in the validation database, with a coefficient of variation (CV) of about 119% compared with 272 

the other input variables (33%, 18%, 9% and 57% for clay, silt, BD and OM, respectively). This 273 

heterogeneity in the sand data series clearly influenced the uncertainty of the PTF response.  274 
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Looking at the matrix correlation (Table 5), the clay and silt fractions were significantly correlated with 275 

sand content. Saltelli and Tarantola (2002) observed that when X1 and X2 were correlated with a third 276 

factor, X3, the Si calculated depended on the force of this correlation as well as the distribution of X3. In 277 

this case, the index power could be influenced by this statistical association, as it explains the higher 278 

value difference of index variation in the sand percentage compared with the other variables. 279 

We observed that point PTF (MLR) produced a lower error of estimation when the variation of the first 280 

order Si for sand was the most important (MLR in the medium class: RMSE 0.030 cm
3 
cm

-3
; 0.027 cm

3 281 

cm
-3

 with VSi -103% and 86.4% at -33 kPa and -1500 kPa, respectively). A negative Si variation in 282 

sand content when the latter was fixed was apparent in all texture classes (Table 4). This could be 283 

explained by the proportional relationship between sand and clay content, particularly in the validation 284 

dataset with a dominant clay texture. Insignificant sensitivity of sand was recorded for the very fine 285 

texture. Rawls et al. (2003) observed that 10% of sand provides an increase in SWR at low clay 286 

content and a decrease in SWR at high clay content of more than 50%.  287 

The relationship between VG’s SWR curve parameters (especially n and α) and PSD has been 288 

examined in many studies (e.g., Minasny et al., 2007; Benson et al., 2014) in order to explain why the 289 

sand impact increases in the fine texture class in parametric PTFs. It could be explained by the 290 

predominant presence of sand and clay content as inputs in parametric PTFs. For soils with clay 291 

content between 35% and 70%, water content is greatly influenced by the percentage of sand in the 292 

soil (Loosvelt et al., 2013).   293 

In addition, when the sand content of a sample increased to 60%, the drying rate was faster and water 294 

absorbing ability was weaker than with the low sand content. When sand content falls to 20%, the 295 

small pores occupy a large part of the pore structure, making the soil compact (Hao et al., 2015). 296 

In the medium texture class, there was increasing accuracy in PTFs at -33 kPa after fixing the clay 297 

content. This could be explained by the reduced clay percentage in the medium class (mean of clay 298 

(%) = 23%), which produced fewer errors at -33 kPa.  299 

The accuracy of the PTFs decreased when they were applied to some soil samples with a clay content  300 

> 60% (Figure 5). In the very fine class, insignificant sensitivity was recorded at all pressures defined 301 

in this study. In this class, the variation in clay was much lower because it is only the dominant solid 302 

fraction, which could explain the smaller variation in Si after fixing the clay percentage.. The greatest 303 

impact of clay (%) was observed at -1500 kPa in the point and parametric PTFs in different textural 304 

classes (Figure 6). The clay content of soils is a major predictor for modelling the permanent wilting 305 

point of soils (Minasny et al., 1999). 306 

The silt percentage was introduced as an explanatory variable only in parametric PTFs (MNLR). This 307 

fraction is known for its ability to retain water at high and medium soil water potentials. The GSA 308 

showed that the silt percentage had a stronger impact on the estimation of parametric PTFs at -1500 309 

kPa than at -33 kPa with the MNLR model. After textural grouping, an important variation in the first 310 

order Si was observed in the medium class (-36.7% to -1500 kPa). The lowest values were recorded 311 

in the very fine class. It was clear that the silt percentage has an important role in estimating VG’s 312 

parameters (α, n), and that its use as an input influences the estimate in the medium and fine classes. 313 
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There was an increasing accuracy, however, in the PTFs recorded in the fine class at -1500 kPa. With 314 

silt and clay as inputs, there was a better estimation. Plant-available water content variation is more 315 

related to sand and silt than to clay content (Reichert et al., 2009). 316 

2. Bulk density: this is the second most influential variable on the point PTF (MLR) response on all 317 

textural class. The important variation of sensitivity index is noted mainly in the very fine textural class 318 

at -33 kPa (VSi = -50, 5%). In parametric PTFs, BD influenced the medium class at -33 kPa. The 319 

accuracy of quality estimation at - 33 kPa in the medium class when fixing the BD for the two PTF 320 

approaches (Table 4). The very fine textural class represented 16 surface samples (0–30 cm) with a 321 

dominance of clay texture. In a similar study on clay soils, volumetric water content (VWC) was highly 322 

related to the inverse of BD at field capacity (Bruand et al., 1996). The inclusion of BD as an input 323 

provides information on pore volume, which can influence the performance of PTFs when applied to 324 

soil with high clay content. In addition, the soil structural information characterized by BD 325 

measurements is an indirect measurement of pore space and is affected mainly by texture and 326 

structure. For structureless soils, primarily coarse and medium textured soils, the pore-size distribution 327 

can be satisfactorily described by PSD. The medium texture is related in general to pore-size 328 

distribution, as large particles give rise to large pores between them, and therefore have a major 329 

influence on the SWR curve (Arya and Paris, 1981; Nimmo, 2004). With BD and texture as inputs in 330 

point PTF (MLR), predicted values very close to the experimental results are obtained.  331 

3. Organic matter content:  The less insignificant variation in the Si after textural grouping is related 332 

to OM content. This could be explained, first, by the poor OM content in the Algerian soil samples. Lal 333 

(1979) did not find any effect of OM content on SWR. Danalatos et al. (1994) attributed this to the 334 

generally low OM content in their samples. Second, homogeneity of the data for OM content in every 335 

textural class reduced the variation in PTF response.  The increasing accuracy of parametric PTFs, 336 

however, was apparent for medium-textured soils at -33 kPa, where OM was used as an input to 337 

predict θs.  SWR at -33 kPa is affected more strongly by organic carbon than at -1500 kPa (Rawls et 338 

al., 2003). The sensitivity analysis conducted by Rawls et al. (2003) to study the role of OM content as 339 

a predictor showed that the SWR of coarse-textured soils is much more sensitive to changes in 340 

organic carbon than is the case with fine-textured soils. Bauer and Black (1981) found that the effect 341 

of organic carbon on SWR in disturbed samples was substantial in sandy soil and marginal in medium 342 

and fine textured soils.  343 

IV. Conclusion 344 

The objective of this study was to analyze the sensitivity of estimating the SWR properties of 345 

Algerian soils using PTFs. We developed and validated point and parametric PTFs from basic soil 346 

properties using regression techniques and compared their predictive capabilities with the Rosetta 347 

models (H1, H2, and H3). The reliability tests showed that point PTFs produce more accurate 348 

estimations than parametric PTFs. The derived parametric PTFs, however, provided better estimates 349 

than the Rosetta models originally developed from a large intercontinental database. 350 

 The GSA showed that the mathematical formalism of the PTF models and their input variables 351 

reacted differently in terms of point pressure and textural class:   352 
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 After textural grouping, the two PTF approaches developed (MLR and MNLR) were 353 

always sensitive primarily to the sand fraction in the fine and medium classes at -33 kPa, 354 

rather than at -1500 kPa. 355 

 The results illustrated the accuracy of estimation at -33 kPa in the medium class for the 356 

two PTF approaches when fixing the clay percentage (C %) and BD.  357 

 The accuracy of PTFs decreased when they were applied to soil samples with a clay 358 

content > 60%.  359 

 The most insignificant variation in the Si after textural grouping was related to the OM 360 

content in Algerian soils.  361 
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 537 

Tables:  538 
 539 
 540 
Table 1. Soil characteristics of the developed and validated datasets. 541 
 542 

  PSD        VWC (cm
3
 cm

-3
) 

  S (%) Si (%) C (%) 
BD 

(g/cm
3
) 

OM (%) - 33 kPa -1500 kPa 

Samples used for deriving PTF (n = 189)  

Average 17.81 39,23 42.97 1.71 0.95 0.44 0.27 
Standard deviation 10.32 10.76 13.90 0.20 0. 93 0.09 0.08 
Min 1.00 9.20 4.00 0.60 0.08 0.13 0.03 
Max 50.00 67.00 84.30 2.10 8.40 0.73 0.56 

Coefficient of variation (CV)  0.58 0.27 0.32 0.12 0.98 0.21 0.31 

Samples used for testing PTF (n = 53)  

Average 12.50 41.58 45.92 1.49 0.87 0.40 0.21 

Standard deviation 14.84 7.62 14.94 0.13 0.50 0.10 0.07 

Min - 29.00 9.00 1.15 0.20 0.14 0.07 

Max 59.00 58.00 70.00 1.73 2.74 0.57 0.45 

Coefficient of variation (CV) 1.19 0.18 0.33 0.09 0.57 0.24 0.35 

(*) S: sand, C: clay, Si: silt, BD: bulk density, OM: organic matter, PSD: particle size distribution, VWC:  volumetric 543 
water content 544 
 545 
Table 2.  Developed pedotransfer functions 546 

Point  PTFs 

at -33 kPa: θ =  0.0246  –  0.0040*S  +  0.0012*C  +  0.2554*BD  +  0.0067 * OM 

at -1500 kPa: θ = - 0.0627  –  0.0029*S  +  0.00165*C  +  0.1837*BD + 0,0017* OM 

Parametric PTFs 

θ s = 0,44  -  0,0013369*S  +  0,0002*C  +  0,01771343* BD  -   0,0018272* OM 

θ r = 0,09  +  0,000777943*S  -  0,000319883* C  +   0,000063602*S
2 
+  0,000012*C

2
  +   0,00000093*S

3
  - 

0,0000001* C
3
 

α = 0,003  -  0,0001*S  +  0,000089* Si  +  0,0000054*S
2   

-  0,0000045*Si
 2
    -   0,000000073*S

3  
+   

0,000000045*Si
 3  

+  0,0000077*S*Si   -   0,000000031* S
2 

*Si   -   0,000000062*S*Si
2
 

n =  2,9  -  0,00277395*C  -    0,09478943* Si  -   0,00036644 * C
2
 +   0,00202592*Si

 2    
+   0,00000249*C

3 
  -  

0,000015*Si
 3
   +   0,00028374* C*Si   +   0,00000491* C

2
 * Si  -   0,00000532*C*Si

 2
 

S: sand (%), C: clay (%), Si: silt (%), BD: bulk density (g/cm
3
), OM: organic matter (%), θr and θs are residual and 547 

saturated soil-water content (cm3 cm–3), respectively, and α (cm–1) and n are the shape factors of the of van 548 
Genuchten model.  549 

 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 
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Table 3. Evaluation criteria of water retention pedotransfer functions (PTFs) at -33 kPa and -1500 kPa.  563 
 564 

 
    -33 kPa -1500 kPa 

ME (cm
3
 cm

-3
) Point PTF  MLR 0.0188 0.0261 

 
 

Parametric PTF MNLR -0,0016 -0.0020 

 
Rosetta H1 - 0.0902 -0.0458 

 
  H2 - 0.0728 -0.0436 

 
  H3 -0.0991 -0.0552 

RMSE (cm
3
 cm

-3
) Point PTF MLR 0.0414 0.0444 

 
Parametric PTF MNLR 0.0613 0.0605 

 
Rosetta H1 0.1170 0.0738 

 
  H2 0.0970 0.0636 

 
  H3 0.1280 0.0749 

d (cm
3
 cm

-3
) Point PTF MLR 0.9975 0.9911 

 
Parametric PTF MNLR 0.9938 0.9775 

  Rosetta H1 0.9623 0.9427 

    H2 0.9775 0.9597 

    H3 0.9519 0.9331 

 565 
 566 
Table 4. Variation of first order sensitivity index (Si) in the different textural classes. 567 

  
Si (%) S (%) C (%) BD (g/cm

3
) OM (%) 

  
Tex-class V Si A.E V Si A.E V Si A.E V Si A.E V Si A.E 

RML at -33 kPa VF Abs -1.2  -0.4  -50.5 - 4.6 
 

  
F Abs -43.2 - -10.7 - -39.9 - 0.2 

 
  

M Abs -103.3 - -27.5 + -44.4 + -5.7 
 

 
at -1500 kPa VF Abs -0.3  0.9  -27.3 - 1.1 

 
  

F Abs -46.2 - -20.7 - -41.6 - 0.1 
 

  
M Abs -86.4 - -52.9 - -22.9 - -2.3 

 
MNLR at -33 kPa VF 0.4  -0.2  0.1  -00.1  -0.05 

 
  

F -1.6  -40.9 - -1.1  -2.5  -0.1 
 

  
M 15.0  -5.2  15.1 + 21.6 + 22.3 + 

 
at -1500 kPa VF - 4.6  -0.3  -1.8  -1.4  -00.5 

 
  

F 28.6 + 18.9 - 4.6  0.4  0.1 
 

    M -36.7 - -16.7 - -22.6 - 8.9  -8.4 
 

Abs: absent in the model, V Si: variation first sensitivity index;   A.E.: improving estimation. 568 

 569 

Table 5. Pearson correlation matrix between basic soil characteristics in the validation dataset of 53 570 
soil samples. 571 

 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 

 583 
 584 
 585 
 586 
 587 
 588 
 589 

Variables Si (%) C (%) S (%) BD (g/cm
3
) OM (%) 

Si% 1 
    

S % -0.334 1 
  

C % -0.159 -0.878 1 
 

 

BD (g/cm3) 0.164 -0.185 0.11 1 
 

OM (g/100g) -0.174 -0.166 0.263 -0.19 1 

The values in bold differ from 0 to a level of significance α = 0.05,   
Si: silt, S: sand, C: clay, BD: bulk density, OM: organic matter 
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 590 
Figures:  591 
 592 

            593 
 594 
Figure 1.  (a): Texture fractions of dataset (242 samples) based on USDA system. (b): Particle size 595 
distribution of 53 soil samples from Algeria according to FAO textural triangle (FAO, 1990).  596 
 597 

 598 
Figure 2. Scatter plots of measured versus predicted soil water retention by Rosetta H2. 599 
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 601 

Figure 3. Scatter plots of measured soil water retention versus predicted soil water retention. 602 
 603 

 604 
Figure 4. First order sensitivity index. 605 
 606 
 607 

  608 
 609 
Figure 5. Root mean square error (RMSE) values calculated for the different textural classes . 610 
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  612 
 613 
Figure 6. Variation in first sensitivity index with RMSE after textural grouping.  614 
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