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Abstract 14 

Improving the accuracy of pedotransfer functions (PTFs) requires studying how prediction uncertainty 15 

can be apportioned to different sources of uncertainty in inputs. In this study, the question addressed 16 

was: Which variable input is the main or best complementary predictor of water retention, and at which 17 

water potential? Two approaches were adopted to generate PTFs: multiple linear regressions (MLR) 18 

for point PTFs; and multiple non-linear regressions (MNLR) for parametric PTFs. Reliability tests 19 

showed that point PTFs provided better estimates than parametric PTFs (RMSE: 0.0414; 0.0444 cm
3
 20 

cm
-3 and 0.0613; 0.0605 cm

3
 cm

-3 at -33 kPa and -1500 kPa, respectively). The local parametric PTFs 21 

provided better estimates than Rosetta PTFs at -33 kPa. No significant difference in accuracy, 22 

however, was found between the parametric PTFs and Rosetta H2 at -1500 kPa, with RMSE values of 23 

0.0605 cm
3
 cm 

-3
 and 0.0636 cm

 3
 cm

-3
, respectively. The results of global sensitivity analyses (GSAs) 24 

showed that the mathematical formalism of PTFs and their input variables reacted differently in terms 25 

of point pressure and texture. The point and parametric PTFs were sensitive mainly to the sand 26 

fraction in the fine and medium textural classes. The use of clay percentage (C %) and bulk density 27 

(BD) as inputs in the medium textural class improved the estimation of PTFs at -33 kPa. 28 

Keywords:  soil-water retention, multiple regressions, pedotransfer function, sensitivity 29 
 30 

I.  Introduction 31 
 32 

Predictive information on the spatial distribution of soil water and its availability for plants enables 33 

producers to take effective decisions (e.g., on nutrient management and plant cover) to maximize 34 

profitability. The soil-water balance is central to many processes that influence plant growth and the 35 

degradation of soil and water resources.  36 

Hydrologists face the situation where soil hydraulic data such as water retention or hydraulic 37 

conductivity are often missing. Therefore, pedotransfer functions (PTFs) are used as an alternative to 38 

estimate these properties. The extrapolation of PTFs in different agropedoclimatic context limits their 39 

performance (Touil et al., 2016). The development of local PTFs could be useful in meeting the 40 

agricultural requirements for modelling with reasonable accuracy. 41 

Soil-water retention (SWR) curves can usually be estimated using two approaches: point PTFs 42 

and parameter PTFs. With point PTFs, SWR is estimated at defined pressure points (Pachepsky et 43 

https://en.wikipedia.org/wiki/Uncertainty
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al., 1996; Minasny et al., 1999). One of the most commonly used SWR curves is the Van Genuchten 44 

model (1980). With parameter PTFs, the parameters of SWR models, such as θs, θr, α and n, are 45 

estimated by fitting them to the data and then relating then by empirical correlation to basic soil 46 

properties (Vereecken et al., 1992; Wösten et al., 1995; Schaap et al., 1998; Minasny and McBratney, 47 

2002; Rawls and Brakensiek, 1985; Van Genuchten et al., 1992; Wösten et al., 2001; Vereecken et 48 

al., 2010). Schaap et al. (2001) developed the Rosetta package based on the artificial neural network 49 

(ANN) method, which uses five hierarchical models to predict the van Genuchten (VG) parameters 50 

(θs, θr, α and n) with soil texture classes only and the input data (texture, bulk density [BD], and one or 51 

two water content values at -33 and -1500 kPa). 52 

 PTFs for point and parametric estimation of SWR from basic soil properties can be developed 53 

using multiple regression methods (Lin et al., 1999; Mayr and Jarvis, 1999; Tomasella et al., 2000).  54 

Some 97% of water retention PTFs for soils in the Some 97% of PTFs aretropics are based on 55 

multiple linear and polynomial regressions of n
th 

order techniques (Botula et al. 2014). 56 

 Using PTFs in environments that differ from those from which they were derived can lead to 57 

an under- or overestimation of SWR. Several studies have shown that SWR is a complex function of 58 

soil structure and composition (Rawls et al., 1991; Wösten et al., 2001; Rawls et al., 2003; Mirus et al., 59 

2015). Applying PTFs to different textural or structural classes could also be a source of uncertainty 60 

(Bruand et al., 2002; Pachepsky et al., 2003). SWR and hydraulic conductivity vary widely and non-61 

linearly with soil-water potential. Soil texture is the main determinant of the water-holding 62 

characteristics of most agricultural soils (Saxton et al., 1986). The relationship between the SWR 63 

curve and particle size distribution (PSD) has been investigated in many studies (Jonasson et al., 64 

1992; Minasny et al., 2006; Ghanbarian et al., 2009; Xu Yang et al., 2013; Tae-Kyu Lee et al., 2014). 65 

SWR depends mainly on texture, with other factors such as BD, structure, organic matter (OM), clay 66 

type and hysteresis having a secondary impact (Williams et al., 1983,  Saxton et al., 1986, Vereecken 67 

et al., 1989, Winfield et al., 2006).  68 

 The variability in PTF response depends on the variability and uncertainty of one or more of 69 

the input variables. Uncertainty analysis in the variety of available PTF approaches is necessary to 70 

minimize error in estimation and identify its source. Recently, sensitivity analysis techniques and 71 

uncertainty analysis have begun to receive considerable attention in PTF studies (Nemes et al., 72 

2006b; Kay et al., 1997; Grunwald et al., 2001; Deng et al., 2009; Moeys et al., 2012; Loosvelt et al., 73 

2013). The question is: Which variable input is the main or best complementary predictor of SWR, and 74 

at which potential? Global sensitivity analysis (GSA) enables us to study how uncertainty in the output 75 

of a model can be apportioned to different sources of uncertainty in the model inputs (Saltelli et al., 76 

2000). Generally, GSA is useful for identifying which variables make the main contribution to output 77 

variables (Jaques et al., 2004).    78 

 The objectives of this study were to:  79 

 Develop and validate two PTF approaches using regression methods: point PTFs for 80 

estimating SWR in Algerian soils at -33 kPa and -1500 kPa;  and parametric PTFs for 81 

estimating the VG parameters 82 
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 Study the impact of each input on the PTF responses 83 

 84 
 85 

II. Materials and methods  86 
 87 

1. The database 88 
 89 

The soil dataset used for this study was collected from various regions in Algeria, mainly in the 90 

north, which has a Mediterranean climate. It contained 242 samples, with basic soil properties: texture 91 

fractions (based on the USDA system; clay and silty-clayey for most of the soils, Fig. 3a1a), Bulk 92 

density (BD), organic matter percentage (OM) content and water content at -33 kPa and -1500kPa. 93 

Descriptive statistics of the development and validation datasets are presented in Table 1. The 94 

available database was split into two datasets.  Subset 1, which was used to develop the PTFs, 95 

contained 78.1% of the samples. Used as the calibration set, they were collected from the coastal 96 

plain of Annaba in north-eastern Algeria (13 samples), the Beni Slimane plain of Media (42 samples), 97 

the Kherba El Abadia plain of Ain Defla (54 samples) and the Lower Cheliff plain in north-western 98 

Algeria (80 samples). Subset 2 contained the remaining 21.9% of the samples. Used to verify the 99 

PTFs, they were collected from Benziane valley in the lower south-western Cheliff plain. The depth of 100 

the two upper horizons varied from site to site, with a maximum of 30 cm for surface horizons and 101 

more than 30 cm for subsurface horizons. 102 

Particle size distribution (PSD) analysis was conducted using the international Robinson's pipette 103 

method (Robinson, 1922). Undisturbed soil samples obtained with 500-1,000 cm
3
 cylinders were used 104 

to determine BD. The SWR values at -33 kPa and -1500 kPa were obtained using Richards’s 105 

apparatus (Richards et al., 1943). Undisturbed soil samples were collected near field capacity with 100 106 

cm
3
 cylinders. Water content was measured using the gravimetric method at 105°C (24 h). Organic 107 

carbon content was determined using the wet oxidation method (Walkley and Black, 1934). Variation 108 

in soil texture in the dataset is displayed using the textural triangle proposed by FAO (1990) in Figure 109 

3b1b.  110 

The SWR model devised by Van Genuchten (1980) is defined as: 111 

 112 

𝜃(ℎ) = 𝜃𝑟 +
𝜃𝑠−𝜃𝑟

(1+|𝛼ℎ|𝑛)𝑚                                                                                                 (1) 113 

 114 
Where θr and θs are residual and saturated soil-water content (cm

3
 cm

–3
), respectively, and α (cm

–1
) 115 

and n are the shape factors of the SWR function. The VG parameters were indirectly estimated for 116 

each soil sample from four levels of measured data inputs:  sand, silt and clay percentages, and BD 117 

using the Rosetta model H3 (Schaap et al., 2001). The ‘m’ parameter was calculated as follows:  118 

m = 1 -1 / n. 119 

2. PTF development  120 

Two approaches were used in this study to develop the PTFs: point PTFs for estimating SWR 121 

for particular points of pressure (h); and parametric PTFs for predicting the VG parameters. Each 122 

water content level at selected water potentials of -33 kPa and -1500 kPa and estimated VG 123 
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parameters were related to basic soil properties (i.e., sand, silt, clay content, OM content and BD) 124 

using multiple regression techniques (Table 2). The most significant input variables were determined 125 

using the Pearson correlation (α =5%). T For the multiple-linear regression (MLR) models, the general 126 

form of the resulting equations was expressed thus:  127 

Y= a0+ b1 X1 + b2 X2 + b3X3 +b4 X4                                                                                              (2)                                                                                                                                                                                        128 

 129 

For the multiple-non-linear regression (MNLR) models, it was expressed thus:  130 

Y= a0 + b1X1 + b2X2 + b3X1^2 + b4X2^ 2 + b5X 1^3 + b6X2^3 + b7 X1* X2 + b8X1^2* X2 + b9 X1*X2^2                                                                                                                                              131 

(3) 132 

Where Y represents the dependent variable,  a0 is the intercept; b1…, bn are the regression 133 

coefficients, and X1 to X4 refer to the independent variables representing the basic soil properties.  134 

The prediction quality of the point and parametric PTFs developed from Algerian soils were 135 

then compared with three Rosetta PTFs (H1, H2 and H3). We chose the Rosetta model because it 136 

gives the user flexibility in inputting the data required (Stumpp et al., 2009), with the option of five 137 

levels based on input data (Schaap et al. 2002):  138 

 H1: Textural classes (USDA system) 139 

 H2 : Clay+Silt+Sand 140 

 H3: Clay+Silt+Sand+ BD 141 

 H4: Clay+Silt+Sand+ BD +VolumicVolumetric water at -33 kPa 142 

 H5: Clay+Silt+Sand+ BD +VolumetricVolumic water at -33 kPa + VolumetricVolumic water at -143 

1500 kPa 144 

 145 

The Rosetta model was also chosen because it has given reasonable predictions in several evaluation 146 

studies (Frederick et al., 2004, Nemes et al., 2003). In our study, the three Rosetta model levels (H1, 147 

H2, and H3) were selected to compare their performance in the Algerian soils because they require 148 

only texture data and BD as inputs, as locally developed PTFs doas well as the locally developed 149 

PTFs. 150 

3. Evaluation criteria 151 

PTFs are regularly assessed by comparing the values that they predict with the measured values 152 

(Pachepsky and Rawls, 1999). In order to assess the validity of the PTFs developed, we used the 153 

following criteria: mean prediction error (ME) to indicate the bias of the estimate; root mean square 154 

error (RMSE) to assess the quality of the prediction (it is frequently used in studies on PTFs); and the 155 

index of agreement (d) developed by Willmott and Wicks (1980) and Willmott (1981) as a standardized 156 

measure of the degree of model prediction error. They were calculated using the following equations, 157 

respectively: 158 

                                               𝑴𝑬 =  
1

𝑁
∑ (

𝑛

𝑖=1
𝜃p − 𝜃m)                                             (4) 159 
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Where N is number of horizons, and θp, θm, predicted and measured volumetric water content, 160 

respectively. The estimate was better when ME was close to 0’. Negative ME values indicated an 161 

average underestimation of θm, whereas positive values indicated overestimation. 162 

                                                𝑹𝑴𝑺𝑬 =  {
1

𝑛
∑ (

𝑛

𝑖=1
𝜃p − 𝜃m)2}

1

2
                                    (5) 163 

Thus, the lower the RMSE, the better the estimate. 164 

                                                𝒅 = 1 −
1

𝑛
∑ (

𝑛

𝑖=1
𝜃p−𝜃m)2

∑ [|(𝜃p−𝜃̅m)|+|(𝜃m−𝜃̅m)|]
𝑛

𝑖=1

2                                (6) 165 

 166 
The index of agreement varied from 0 to 1, with higher index values indicating that the modeled values 167 

θp were in better agreement with the observations θm. 168 

 169 

4. Global sensitivity analysis (GSA)   170 

 171 

GSA involves determining which part of the variance in model response is due to variance in which 172 

input variable or group of inputs. The impact of the parameters is quantified by calculating the global 173 

sensitivity indices. 174 

 The Sobol method (Sobol, 1990) is an independent GSA method based on decomposition of 175 

the variance. When the model is non-linear and non-monotonic, the decomposition of the output 176 

variance is still defined and can be used. The Sobol model is represented by the following function: 177 

  178 

                                                 Y= f (X1, X2, X3,……..,Xp)                                                          (7) 179 

Where Y is the model output (or objective function) and X=(X1,….., Xp) is the input variable set. 180 

                                                 V(Y) = V (E (Y|X)) + E (Var (Y|X))                                              (8) 181 

 182 

Where V(Y) is the total variance in the model, V (E(Y|X)) and E (Var(Y|X)) signify variance in the 183 

conditional expected value and expected value of the conditional variance, respectively. When the 184 

input variables Xi are independent, the variance decomposition of the model is:  185 

                           𝑉(𝑌) = ∑ 𝑉𝑖
𝑝
𝑖=1 + ∑ ∑ 𝑉𝑖𝑗𝑗𝑖 + + ∑ ∑ ∑ 𝑉𝑖𝑗𝑝𝑝𝑗𝑖 +. . . . . . . . . +𝑉1,2,3,....𝑝                                   (9) 186 

                              Vi  = V [ E(Y|Xi)] 187 

                              Vij = V [ E(Y|Xi , Xj)] -Vi-Vj 188 

                              Vijp= V [ E(Y|Xi , Xj, Xp)] - Vij - Vip - Vjp - Vi - Vj - Vp 189 

 190 
Where Vi is the proportion of variance due to variable Xi. Dividing Vi by V(Y) produces the expression 191 

of the first-order sensitivity index (Si), such that: 192 

 193 

                                              𝑆𝑖 =
𝑉𝑖

𝑉(𝑌)
=

𝑉[𝐸(𝑌 𝑋𝑖⁄ )]

𝑉(𝑌)
                                                                        (10) 194 

The term Si is the measure that guarantees an informed choice in cases where the factors are 195 

correlated and interact (Saltelli and Tarantola, 2002). This index is always between 0 and 1, and 196 
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represents a proper measurement of the sensitivity used to classify the input variables in order of 197 

importance (Saltelli and Tarantola, 2001).   198 

In order to quantify variation in the sensitivity index (V Si) of an input factor Xi, we fixed it at Xi = Xi ∗ 199 

(Xi ∗: the average when the variable follows the normal distribution, the median when the variable 200 

follows the lognormal distribution). In order to calculate how much this assumption changed the 201 

variance of Y, we used this formula:  202 

V Si  =  ( 
𝑉[𝐸(𝑌 𝑋⁄ )]

𝑉(𝑌)
−

𝑉[𝐸(𝑌/ 𝑋𝑖=X𝑖∗)]

𝑉(𝑌)
) ∗ 100                                                                                         (11)      203 

V Si   > 0   and Si close to 1 indicate increasing accuracy of PTFs; 204 

V Si   < 0    and Si close to 1 indicate increasing accuracy of PTFs; 205 

V Si    > 0   and Si close to 0 indicate decreasing accuracy of PTFs; 206 

V Si   < 0    and Si close to 0 indicate decreasing accuracy of PTFs. 207 

In addition, combining the RMSE and Si enabled us to detect the contribution of each variable to 208 

improvement in the quality of prediction of the PTFs.  209 

 210 

III. Results and discussion 211 
 212 

 In Table 3, most of the PTFs underestimated SWR except for the point PTF at the two 213 

pressure points (-33 kPa and -1500 kPa). The Rosetta H2 model, which considers only texture as an 214 

input, gave a ME values close to zerosmaller ME value than the H1 and H3 models (- 0.0728; -0.0436 215 

cm
3 
cm

-3 
at -33 kPa and -1500 kPa, respectively). 216 

 The poor ME values indicated better estimates of PTFs. They were produced after the 217 

application of point PTFs followed by parametric PTFs (Figure 2).  218 

 Among the five tested models in the Lower Cheliff soils, the point PTFs (MLR) derived from a 219 

database taken from some Algerian soils had the lowest RMSE values (0.041 and 0.044 cm
3 
cm

-3 
at -220 

33 kPa and -1500 kPa, respectively). Performances equivalent or superior to PTFs derived by multiple 221 

regression methods have been reported in some studies (Minasny et al., 1999; Nemes et al., 2003). 222 

The non-linear models (parametric PTFs), however, gave a better estimation than the Rosetta models 223 

based on ANN (RMSE: 0.0613 and 0.0605 cm
3
 cm

-3 at -33 kPa and -1500 kPa, respectively). The 224 

RMSE and ME values of the three Rosetta models also showed that H2 was better than H1 or H3 225 

(Table 3, Figure 23). 226 

 The index of agreement results showed that point PTFs were more suitable for Lower Cheliff 227 

soils than parametric PTFs (Figure Table 3 623), with values of 0.9975 and 0.9911 cm
3
 cm

-3
). Similar 228 

comparisons in different regions were undertaken by Minasny et al. (1999), Tomasella et al. (2003) 229 

and Ghorbani Dashtaki et al. (2010), who all reported similar differences between these two PTF 230 

approaches.  231 

 As Table 3 shows, there was no significant difference in RMSE values between the parametric 232 

PTFs and Rosetta H2 at -1500 kPa (RMSE: 0.0605 cm
3
 cm

-3
 and 0.0636 cm

3
 cm

-3
, respectively).  233 

 234 
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1. Sensitivity index before textural grouping 235 
 236 
In the development of PTFs, using PSD as an input is the usual approach (texture as an 237 

overall expression of PSD, clay, silt and sand content) and its contribution is fundamental to 238 

understanding the process of retaining water at different pressure points, although various physical 239 

and chemical characteristics are used to describe the SWR curve, such as BD and OM. 240 

The importance of each input variable was assessed by the first order S i. It was clear for the 241 

PTFs developed that OM% and clay percentages (C%C %) were the variables with the greatest 242 

impact (Figure 24). For the point PTFs (MLR), the most sensitive estimations were at two pressure 243 

points (Si: 0.821; 0.782 at -33 kPa and 0.630; 0.585 at -1500 kPa for OM% and C%, respectively. The 244 

percentage of silt (Si %) was second in importance in parametric PTFs (0.576 at -33 kPa) after OM, 245 

followed by BD and C (Fig. 2). The Si values placed sand content in third place in the MLR 246 

(0.262; 0.162), indicating that its impact on the parametric model was almost insignificant, with very 247 

low values (Si: 0.077; 0.017) at -33 kPa and -1500 kPa, respectively).  248 

The prediction quality of point PTFs (MLR) can be explained, first, by taking into account the 249 

basic characteristics of soil as an input from the textural and structural information given by the BD. 250 

Second, point PTFs (MLR) are based mainly on these input variables, unlike parameter PTFs 251 

(MNLR), which have inputs other than texture and BD, as well as other parameters (VG parameters: 252 

θr, θs, α, n).  253 

 254 

2. Sensitivity and uncertainty analysis after the textural grouping  255 

 256 

The sensitivity of the multiple regression methods (linear and non-linear) used to develop PTFs 257 

from basic soil characteristics for estimating SWR for different textural classes was analyzed. We 258 

grouped the samples into three classes of particles (Figure 31.b) in line with FAO guidelines (FAO, 259 

1990): very fine (12 samples); fine (31 samples); and medium (10 samples).   260 

The results showed that after the textural grouping, there was an improvement in the quality 261 

estimation of PTFs only in the medium class class(Figure 45). . A better prediction at -1500 kPa was 262 

provided by point PTFs (RMSE = 0.027 cm
3
 cm

-3
) and parametric PTFs (RMSE = 0.038 cm

3
 cm

-3
) at -263 

1500 kPa (Figure 5).. 264 

 265 

1. Texture: After textural grouping, the MLR and MNLR PTFs developed were always sensitive 266 

mainly to the sand fraction in the fine and medium classes (Table 4). The variation in the first S i in 267 

the point PTFs was significantly greater in the medium texture class at the two pressure points ( -33 268 

kPa and -1500 kPa). In the MNLR, sand had the most influence, particularly with regard to the fine 269 

class (-40.9%, 18.9% at -33 kPa and 1500 kPa) and the medium class (-16.7% at -1500 kPa).  270 

The Si of a variable quantifies the influence of its uncertainty on the output. This is the part of the 271 

variability output explained by the variability input. What was confirmed after calculating the variation 272 

in the first order Si was that the PTFs developed were still more influenced by the variability in sand at 273 

-33 kPa than at -1500 kPa. This impact could be explained by the irregularity of the dispersion of sand 274 
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content in the validation database, with a coefficient of variation (CV) of about 119% compared with 275 

the other input variables (33%, 18%, 9% and 57% for clay, silt, BD and OM, respectively). This 276 

heterogeneity in the sand data series clearly influenced the uncertainty of the PTF response.  277 

Looking at the matrix correlation (Table 5), the clay and silt fractions were significantly correlated with 278 

sand content. Saltelli and Tarantola (2002) observed that when X1 and X2 were correlated with a third 279 

factor, X3, the Si calculated depended on the force of this correlation as well as the distribution of X3. In 280 

this case, the index power could be influenced by this statistical association, as it explains the higher 281 

value difference of index variation in the sand percentage compared with the other variables. (Fig. 2).       282 

We observed that point PTF (MLR) produced a lower error of estimation when the variation of the first 283 

order Si for sand was the most important (MLR in the medium class: RMSE 0.030 cm
3 
cm

-3
; 0.027 cm

3 284 

cm
-3

 with VSi -103% and 86.4% at -33 kPa and -1500 kPa, respectively]. ). A negative Si variation in 285 

sand content when the latter was fixed was apparent in all texture classes (Table 4). This could be 286 

explained by the proportional relationship between sand and clay content, particularly in the validation 287 

dataset with a dominant clay texture. Insignificant sensitivity of sand was recorded for the very fine 288 

texture. Rawls et al. (2003) observed that 10% of sand provides an increase in SWR at low clay 289 

content and a decrease in SWR at high clay content of more than 50%.  290 

The relationship between VG’s SWR curve parameters (especially n and α) and PSD has been 291 

examined in many studies (e.g., Minasny et al., 2007; Benson et al., 2014) in order to explain why the 292 

sand impact increases in the fine texture class in parametric PTFs. It could be explained by the 293 

predominant presence of sand and clay content as inputs in parametric PTFs. For soils with clay 294 

content between 35% and 70%, water content is greatly influenced by the percentage of sand in the 295 

soil (Loosvelt et al., 2013).   296 

In addition, when the sand content of a sample increased to 60%, the drying rate was faster and water 297 

absorbing ability was weaker than with the low sand content. When sand content falls to 20%, the 298 

small pores occupy a large part of the pore structure, making the soil compact (Hao et al., 2015). 299 

In the medium texture class, there was increasing accuracy in PTFs after fixing the clay content at -33 300 

kPa after fixing the clay content. This could be explained by the reduced clay percentage in the 301 

medium class (mean of clay [%] (%) = 23%), which produced fewer errors at -33 kPa. The greatest 302 

impact of clay (%) was observed at -1500 kPa in the point and parametric PTFs in different textural 303 

classes (Figure 4). The clay content of soils is a major predictor for modelling the permanent wilting 304 

point of soils (Minasny et al., 1999).  305 

The accuracy of the PTFs decreased when they were applied to some soil samples with a clay content 306 

(%) > 60% (Figure 45). In the very fine class, insignificant sensitivity was recorded at all pressures 307 

defined in this study. In this class, the variation in clay was much lower because it is only the dominant 308 

solid fraction, which could explain the smaller variation in Si after fixing the clay percentage. SWR the 309 

water retention quantity was is higher in the very fine and fine classes than in the medium class, 310 

because they quickly drained water initially retained. The greatest impact of clay (%) was observed at 311 

-1500 kPa in the point and parametric PTFs in different textural classes (Figure 6). The clay content of 312 

soils is a major predictor for modelling the permanent wilting point of soils (Minasny et al., 1999). 313 
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The silt percentage was introduced as an explanatory variable only in parametric PTFs (MNLR). This 314 

fraction is known for its ability to retain water at high and medium soil water potentials. The GSA 315 

showed that the silt percentage had a stronger impact on the estimation of parametric PTFs at -1500 316 

kPa than at -33 kPa with the MNLR model. After textural grouping, an important variation in the first 317 

order Si was observed in the medium class (-36.7% to -1500 kPa). The lowest values were recorded 318 

in the very fine class. It was clear that the silt percentage has an important role in estimating VG’s 319 

parameters (α, n), and that its use as an input influences the estimate in the medium and fine classes. 320 

There was an increasing accuracy, however, in the PTFs recorded in the fine class at -1500 kPa. With 321 

silt and clay as inputs, there was a better estimation. Plant-available water content variation is more 322 

related to sand and silt than to clay content (Reichert et al., 2009). 323 

2. Bulk density: this is the second most influential variable on the point PTF (MLR) response is by 324 

variation of sensitivity index on all textural class, . The Vimportant variation of sensitivity index is noted 325 

mainly in the very fine textural class at -33 kPa with elevated values at -33 kPa (VSi = -50, 5%). In 326 

parametric PTFs, BD influenced the medium class at -33 kPa. The accuracy of quality estimation at - 327 

33 kPa in the medium class when fixing the BD for the two PTF approaches The results showed the 328 

accuracy of quality estimation in the medium class when fixing the BD at -33 kPa for the two PTF 329 

approaches (Table 4). The very fine textural class represented 16 surface samples (0–30 cm) with a 330 

dominance of clay texture. In a similar study on clay soils, volumetric water content (VWC) was highly 331 

related to the inverse of BD at field capacity (Bruand et al., 1996). This might also explain the fact that 332 

many soils with high clay content in the database are Vertisols in which BD and VWC are lower 333 

(Rawls et al., 2003). The inclusion of BD as an input provides information on pore volume, which can 334 

influence the performance of PTFs when applied to soil with high clay content. In addition, the soil 335 

structural information characterized by BD measurements is an indirect measurement of pore space 336 

and is affected mainly by texture and structure. For structureless soils, primarily coarse and medium 337 

textured soils, the capillary pore-size distribution can be satisfactorily described by PSD. The medium 338 

texture is related in general to pore-size distribution, as large particles give rise to large pores between 339 

them, and therefore have a major influence on the SWR curve (Arya and Paris, 1981; Nimmo, 2004). 340 

With BD and texture as inputs in point PTF (MLR), predicted values very close to the experimental 341 

results are obtained. This study showed that the effect of using soil structural information in estimating 342 

SWR depended on the type of regression technique (Nguyen et al., 2015). 343 

3. Organic matter content:  The lessmost  insignificant variation in the Si after textural grouping is 344 

related to OM content. This could be explained, first, by the poor OM content in the Algerian soil 345 

samples. Lal (1979) did not find any effect of OM content on SWR. Danalatos et al. (1994) attributed 346 

this to the generally low OM content in their samples. Second, homogeneity of the data for OM content 347 

in every textural class reduced the variation in PTF response.  The increasing accuracy of parametric 348 

PTFs, however, was apparent for medium-textured soils at -33 kPa, where OM was used as an input 349 

to predict θs.  SWR at -33 kPa is affected more strongly by organic carbon than at -1500 kPa (Rawls et 350 

al., 2003). The sensitivity analysis conducted by Rawls et al. (2003) to study the role of OM content as 351 

a predictor showed that the SWR of coarse-textured soils is much more sensitive to changes in 352 

organic carbon than is the case with fine-textured soils. Bauer and Black (1981) found that the effect 353 
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of organic carbon on SWR in disturbed samples was substantial in sandy soil and marginal in medium 354 

and fine textured soils.  355 

IV. Conclusion 356 

The objective of this study was to analyze the sensitivity of estimating the SWR properties of 357 

Algerian soils using PTFs. We developed and validated point and parametric PTFs from basic soil 358 

properties using regression techniques and compared their predictive capabilities with the Rosetta 359 

models (H1, H2, and H3). The reliability tests showed that point PTFs produce more accurate 360 

estimations than parametric PTFs. The derived parametric PTFs, however, provided better estimates 361 

than the Rosetta models originally developed from a large intercontinental database. 362 

 The GSA showed that the mathematical formalism of the PTF models and their input variables 363 

reacted differently in terms of point pressure and textural class:   364 

 After textural grouping, the two PTF approaches developed (MLR and MNLR) were 365 

always sensitive primarily to the sand fraction in the fine and medium classes at -33 kPa, 366 

rather than at -1500 kPa. 367 

 The results illustrated the accuracy of quality estimation at -33 kPa in the medium class for 368 

the two PTF approaches when fixing the clay percentage (C %) and BD at -33 kPa.  369 

 The accuracy of PTFs decreased when they were applied to soil samples with a clay 370 

content > 60%.  371 

 The most insignificant variation in the Si after textural grouping was related to the OM 372 

content in Algerian soils.  373 
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 537 
Tables:  538 
 539 
 540 
Table 1. Soil characteristics of the developed and validated datasets. 541 
 542 

  PSD        VWC (cm
3
 cm

-3
) 

  S (%) Si (%) C (%) 
BD 

(g/cm
3
) 

OM (%) - 33 kPa -1500 kPa 

Samples used for deriving PTF (n = 189)  

Average 17.81 39,23 42.97 1.71 0.95 0.44 0.27 
Standard deviation 10.32 10.76 13.90 0.20 0. 93 0.09 0.08 
Min 1.00 9.20 4.00 0.60 0.08 0.13 0.03 
Max 50.00 67.00 84.30 2.10 8.40 0.73 0.56 

Coefficient of variation (CV)  0.58 0.27 0.32 0.12 0.98 0.21 0.31 

Samples used for testing PTF (n = 53)  

Average 12.50 41.58 45.92 1.49 0.87 0.40 0.21 

Standard deviation 14.84 7.62 14.94 0.13 0.50 0.10 0.07 

Min - 29.00 9.00 1.15 0.20 0.14 0.07 

Max 59.00 58.00 70.00 1.73 2.74 0.57 0.45 

Coefficient of variation (CV) 1.19 0.18 0.33 0.09 0.57 0.24 0.35 

(*) S: sand, C: clay, Si: silt, BD: bulk density, OM: organic matter, PSD: particle size distribution, VWC:  volumetric 543 
water content 544 
 545 
Table 2. .  Developed pedotransfer functions 546 

Point  PTFs 

at -33 kPa: θ =  0.0246  –  0.0040*S  +  0.0012*C  +  0.2554*BD  +  0.0067 * OM 

at -1500 kPa: θ = - 0.0627  –  0.0029*S  +  0.00165*C  +  0.1837*BD + 0,0017* OM 

Parametric PTFs 

θ s = 0,44  -  0,0013369*S  +  0,0002*C  +  0,01771343* BD  -   0,0018272* OM 

θ r = 0,09  +  0,000777943*S  -  0,000319883* C  +   0,000063602*S
2 
+  0,000012*C

2
  +   0,00000093*S

3
  - 

0,0000001* C
3
 

α = 0,003  -  0,0001*S  +  0,000089* Si  +  0,0000054*S
2   

-  0,0000045*Si
 2
    -   0,000000073*S

3  
+   

0,000000045*Si
 3  

+  0,0000077*S*Si   -   0,000000031* S
2 

*Si   -   0,000000062*S*Si
2
 

n =  2,9  -  0,00277395*C  -    0,09478943* Si  -   0,00036644 * C
2
 +   0,00202592*Si

 2    
+   0,00000249*C

3 
  -  

0,000015*Si
 3
   +   0,00028374* C*Si   +   0,00000491* C

2
 * Si  -   0,00000532*C*Si

 2
 

S: sand (%), C: clay (%), Si: silt (%), BD: bulk density (g/cm
3
), OM: organic matter (%), θr and θs are residual and 547 

saturated soil-water content (cm3 cm–3), respectively, and α (cm–1) and n are the shape factors of the of van 548 
Genuchten model.  549 

 550 

Multiple regression coefficient R
2 
and regression coefficients of models developed.  551 

 552 

 553 

 

Point  PTFs Parametric PTFs 

-33 kPa -1500 kPa θs(cm
3 
cm

3
) θr(cm

3 
cm

3
) α n 

Regression 
technique 

MLR MLR MNLR 

 
Inputs (*) S%, C%, S%, C%, S%, C%, C%,S% Si%, S% C%, Si% 
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BD, OM BD, BD, OM 

Regression 
coefficients 

Multiple R
2 

 0.74 0.66 0.62 0.67 0.60 0.66 

a0 0.0246 -0.0627 0.4136 9.00 × 10
-02

 3.00 × 10
-03

 2.90 

b1 -0.0040 -0.0029 -0.0013 7.78 × 10
-04

 -1.00 × 10
-04

 -2.77 × 10
-03

 

b2 0.0012 0.00165 0.0002 3.20 × 10
-04

 8.90 × 10
-05

 -9.48 × 10
-02

 

b3 0.2554 0.1837 0.0177 -6.36 × 10
-05

 5.40 × 10
-06

 -3.66 × 10
-04

 

b4 0.0067  - 0.0018 1.20 × 10
-05

 -4.50 × 10
-06

 2.03 × 10 
-03

 

b5 - - - 9.30 × 10
-07

 -7.30 × 10
-08

 2.49 × 10 
-06

 

b6 - - - -1.00 × 10
-07

 4.50 × 10
-08

 -1.50 × 10
-05

 

b7 - - - 9.00 × 10
-02

 7.70 × 10
-06

 2.84 × 10 
-04

 

b8 - - - 7.78 × 10
-04

 -3.10 × 10
-08

 4.91 × 10 
-06

 

b9 - -- - 3.20 × 10
-04

 -3.10 × 10
-08

 -5.32 × 10
-06

 

(*) S: sand, C: clay, Si: silt, BD: bulk density, OM: organic matter, MLR: Multiple Linear Regression,  MNLR: 554 
Multiple Non-linear Regression. 555 
 556 
 557 
 558 
Table 3. Evaluation criteria of water retention pedotransfer functions (PTFs) at -33 kPa and -1500 kPa.  559 
 560 

 
    -33 kPa -1500 kPa 

ME (cm
3
 cm

-3
) Point PTF  MLR 0.0188 0.0261 

 
 

Parametric PTF MNLR -0,0016 -0.0020 

 
Rosetta H1 - 0.0902 -0.0458 

 
  H2 - 0.0728 -0.0436 

 
  H3 -0.0991 -0.0552 

RMSE (cm
3
 cm

-3
) Point PTF MLR 0.0414 0.0444 

 
Parametric PTF MNLR 0.0613 0.0605 

 
Rosetta H1 0.1170 0.0738 

 
  H2 0.0970 0.0636 

 
  H3 0.1280 0.0749 

d (cm
3
 cm

-3
) Point PTF MLR 0.9975 0.9911 

 
Parametric PTF MNLR 0.9938 0.9775 

  Rosetta H1 0.9623 0.9427 

    H2 0.9775 0.9597 

    H3 0.9519 0.9331 

 561 
 562 
 563 
 564 
Table 4. . Variation of first order sensitivity index (Si) in the different textural classes. 565 

  
Si (%) S (%) C (%) BD (g/cm

3
) OM (%) 

  
Tex-class V Si A.E V Si A.E V Si A.E V Si A.E V Si A.E 

RML at -33 kPa VF Abs -1.2  -0.4  -50.5 - 4.6 
 

  
F Abs -43.2 - -10.7 - -39.9 - 0.2 

 
  

M Abs -103.3 - -27.5 + -44.4 + -5.7 
 

 
at -1500 kPa VF Abs -0.3  0.9  -27.3 - 1.1 

 
  

F Abs -46.2 - -20.7 - -41.6 - 0.1 
 

  
M Abs -86.4 - -52.9 - -22.9 - -2.3 

 
MNLR at -33 kPa VF 0.4  -0.2  0.1  -00.1  -0.05 

 
  

F -1.6  -40.9 - -1.1  -2.5  -0.1 
 

  
M 15.0  -5.2  15.1 + 21.6 + 22.3 + 

 
at -1500 kPa VF - 4.6  -0.3  -1.8  -1.4  -00.5 

 
  

F 28.6 + 18.9 - 4.6  0.4  0.1 
 

    M -36.7 - -16.7 - -22.6 - 8.9  -8.4 
 

Abs: absent in the model, V Si: variation first sensitivity index;   A.E.: improving estimation. 566 

 567 
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Table 5. Pearson correlation matrix between basic soil characteristics in the validation dataset of 53 568 
soil samples. 569 

 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 

 581 
 582 
Figures:  583 
 584 

            585 
 586 
Figure 31.  .  (a): Texture fractions of dataset (242 samples) based on USDA system. (b): Particle 587 
size distribution of 53 soil samples from Algeria according to FAO  textural triangle (FAO, 1990).  588 
 589 

 590 
Figure 2.. Scatter plots of measured versus predicted soil water retention by Rosetta H2. 591 
 592 
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Variables Si (%) C (%) S (%) BD (g/cm
3
) OM (%) 

Si% 1 
    

S % -0.334 1 
  

C % -0.159 -0.878 1 
 

 

BD (g/cm3) 0.164 -0.185 0.11 1 
 

OM (g/100g) -0.174 -0.166 0.263 -0.19 1 

The values in bold differ from 0 to a level of significance α = 0.05,   
Si: silt, S: sand, C: clay, BD: bulk density, OM: organic matter 
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 593 

Figure 3.. Scatter plots of measured soil water retention versus predicted soil water retention. 594 
 595 

 596 
Figure 4.. First order sensitivity index. 597 
 598 
 599 

  600 
 601 
Figure 54. . Root mean square error (RMSE) values calculated for the different textural classes. 602 
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  604 
 605 
Figure 56. . Variation in first sensitivity index with RMSE after textural grouping.   606 
  607 
 608 
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