

Synchrotron Microtomographic Quantification of Geometrical Soil Pore Characteristics Affected by Compaction

Ranjith P. Udawatta*^{1,2}, Clark J. Gantzer¹ Stephen H. Anderson¹, and
Shmuel Assouline³

Dept. of Soil, Environmental and Atmospheric Sciences¹, The Center for Agroforestry²

School of Natural Resources, University of Missouri,

Columbia, MO 65211, USA and

12

Received June 26, 2015

14

15

16

17

18

*Corresponding author's

Telephone number: 573-882-4347

Fax number: 573-882-1977

E-mail address: UdawattaR@Missouri.edu

23
24 **Synchrotron Microtomographic Quantification of Geometrical Soil Pore**
25 **Characteristics Affected by Compaction**
26
27

28 Ranjith P. Udawatta*, Dept. of Soil, Environmental and Atmospheric Sciences¹, The
29 Center for Agroforestry², School of Natural Resources, University of Missouri,
30 Columbia, MO 65211, USA

31
32 Clark J. Gantzer, Dept. of Soil, Environmental and Atmospheric Sciences, School of
33 Natural Resources, University of Missouri, Columbia, MO 65211, USA

34
35 Stephen H. Anderson, Dept. of Soil, Environmental and Atmospheric Sciences, School of
36 Natural Resources, University of Missouri, Columbia, MO 65211, USA

37
38 and
39

40 Shmuel Assouline, Dept. of Environmental Physics and Irrigation, Agricultural Research
41 Organization, Volcani Center, Bet-Dagan, Israel.

42
43 *Corresponding author's
44 Telephone number: 573-882-4347
45 Fax number: 573-882-1977
46 E-mail address: UdawattaR@Missouri.edu
47

Synchrotron Microtomographic Quantification of Geometrical Soil Pore

Characteristics Affected by Compaction

ABSTRACT

51 Soil compaction degrades soil structure and affects water, heat, and gas exchange
52 as well as root penetration and crop production. The objective of this study was to use X-
53 ray computed microtomography (CMT) techniques to compare differences in geometrical
54 soil pore parameters as influenced by compaction of two different aggregate size classes.
55 Sieved (diam. < 2mm and < 0.5mm) and repacked (1.51 and 1.72 Mg m⁻³) Hamra soil
56 cores of 5- by 5-mm (average porosities were 0.44 and 0.35) were imaged at 9.6-
57 micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility)
58 using X-ray computed microtomography. Images of 58.9 mm³ volume were analyzed
59 using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the
60 spatial distributions of pore structures (pore radii, volume, connectivity, path length, and
61 tortuosity) were numerically investigated. Results show that the coordination number
62 (CN) distribution and path length (PL) measured from the medial axis were reasonably fit
63 by exponential relationships $P(CN) = 10^{-CN/Co}$ and $P(PL) = 10^{-PL/PLo}$, respectively, where Co
64 and PLo are the corresponding characteristic constants. Compaction reduced porosity,
65 average pore size, number of pores, and characteristic constants. The average pore radii
66 (63.7 and 61 μ m; p<0.04), largest pore volume (1.58 and 0.58 mm³; p=0.06), number of
67 pores (55 and 50; p=0.09), characteristic coordination number (6.32 and 5.94; p=0.09),
68 and characteristic path length number (116 and 105; p=0.001) were significantly greater
69 in the low density than the high density treatment. Aggregate size also influenced
70 measured geometrical pore parameters. This analytical technique provides a tool for

71 assessing changes in soil pores that affect hydraulic properties and thereby provides
72 information to assist in assessment of soil management systems.

73

74 **Abbreviations:** 3-DMA, 3-Dimensional Medial Axis software; 3-D, three dimensional;
75 CN, coordination number; Co, characteristic coordination number constant; CMT,
76 computed microtomography; diam., diameter; PL, path length; PLo, characteristic
77 path length constant.

78

79 INTRODUCTION

80 Degradation of soil structure is a serious worldwide problem (Schrader et al.,
81 2007). Soil structure is important for crop production because it partly determines
82 rooting depth, the amount of water that can be stored, and movement of air, water,
83 nutrients, and soil microfauna (Brussaard and van Faassen, 1994; Whalley et al., 1995).
84 During soil compaction, soil structure is degraded and soil aggregates are consolidated
85 decreasing soil porosity; and subsequently these changes alter water, heat, and gas
86 transport as well as root penetration and soil productivity (Kim et al., 2010). Assessment
87 of soil compaction is a fundamental way to evaluate environmental impacts of
88 agricultural operations on soils.

89 Researchers have been evaluating soil compaction due to natural and
90 anthropogenic activities (Soane and van Ouwerkerk, 1995; Assouline et al., 1997; Marsili
91 et al., 1998; Green et al., 2003). Differences in porosity among dissimilar soils and
92 treatments are often quantified using bulk density estimated with soil cores, changes in
93 soil thickness, and changes in penetrometer resistance. Porosity determined by

94 traditional methods often lacks detailed information on spatial variability in geometrical
95 pore characteristics. In addition, porosity is often estimated by indirect procedures which
96 do not contain information on the spatial distribution of pores and most measurements are
97 based on observations in two-dimensions (Beven and Germann, 1982; Gantzer and
98 Anderson, 2002; Mooney, 2002).

99 Soil scientists are working to examine microstructure of the soil system to better
100 predict water and gas movement, to assess the effects of management on soil pore
101 parameters and microbial habitats, as well as to evaluate treatment effects on root
102 development. Microstructure governs the flow of resources through the pore space of the
103 soil media and creates spatial and temporal differences in the media (Young and
104 Crawford, 2004; Zhang et al., 2005). Research suggests that understanding of
105 geometrical pore parameters is critically important to issues related to movement of
106 microfauna, water, solute, and gases as well as root development. These pore parameters
107 include: pore dimension, pore size distribution, connectivity, shape factor, and tortuosity
108 as well as distributions or probabilities of these parameters (Ioannidis and Chatzis, 1993;
109 Tollner et al., 1995; Ioannidis and Chatzis, 2000; Lindquist et al., 2000).

110 Computed microtomography can be viewed as a technique in soil studies that
111 enables examination of local variation (micrometer scale), whereas conventional
112 tomography enables examination at a millimeter scale (Macedo et al., 1998). CMT has
113 been used in examination of pores in sealing materials for nuclear waste and in rock and
114 soil media as well as evaluation of fluid transport; in addition pore dynamics, and
115 bacterial and root studies have been reported (Coles et al., 1998; Kozaki et al., 2001;
116 Lindquist, 2002; Gregory et al., 2003; Thieme et al., 2003; Udawatta et al., 2008; Peth et

117 al., 2010). However, these procedures require images at μm resolution to accurately
118 describe changes within the media. Better resolution in tomography requires a smaller
119 sample size. Advantages of CMT procedures include repeated examination of interior
120 structural features of samples at micrometer-scale resolution within three dimensions,
121 measurement of connectivity and tortuosity, nondestructive evaluation of sample interiors
122 retaining connectivity and spatial variation in pores, as well as enabling examination of
123 dynamic soil processes and quantification of pore geometry (Asseng et al., 2000; Al-
124 Raoush, 2002; Mooney, 2002; Pierret et al., 2002; Carlson et al., 2003; Udawatta et al.,
125 2008).

126 Quantitative information of soil structure is required to improve understanding of
127 infiltration, contaminant movement through porous media, and quantification of model
128 parameters associated with fluid and gas movement (Pachepsky et al., 1996; Perret et al.,
129 1999; Ioannidis and Chatzis, 2000; Wildenschild et al., 2002; Fox et al., 2004; Assouline,
130 2004). However, CMT, volume rendering and three-dimensional (3-D) image analysis
131 studies focusing on soil compaction are rare. The objective of this study was to use
132 synchrotron X-ray computed microtomography to quantify the influence of mechanical
133 compaction on geometrical soil pore characteristics of two soil aggregate classes.

134

135 MATERIALS AND METHODS

136 Soil and Sample Preparation

137 The soil used for this study was a loamy sand (Typic Rhodoxeralf) collected from
138 the 0-100 mm depth of an experimental field at Bet-Dagan, Central Israel ($32^{\circ} 12' \text{N}$ and
139 $35^{\circ} 25' \text{E}$). The soil contains 87% sand, 2% silt, and 11% clay (mainly smectite). Air-dry

140 soil was sieved through 2.0 and 0.5 mm mesh sieves to separate into two aggregate size
141 classes: < 2 mm and < 0.5 mm. Soil was packed in 5 mm long by 5 mm diameter
142 aluminum cores with 1.0 mm wall thickness, in three replicates for each treatment. Soil
143 cores from each aggregate class were compacted with a small press to obtain pre-
144 determined bulk density values of 1.51 and 1.72 Mg m⁻³. The selected two values
145 represent the range in bulk densities commonly found with these soils and site conditions.
146 The open ends of the soil core were covered with aluminum plates and sealed with tape to
147 secure soil materials inside the core. Samples were stored at room temperature before
148 scanning.

149

150 **Image Acquisition and Tomographic Reconstruction**

151 Air-dry soil cores were transported to the GeoSoilEnviroCARS (GSECARS)
152 sector at the Argonne Advanced Photon Source for image acquisition at the X-ray
153 computed microtomography facility (<https://gsecars.uchicago.edu/>). Soil cores were
154 imaged at a 9.6 μ m resolution using the bending magnet beam line 13-BM-D, which
155 provides a parallel beam of high-brilliance radiation with a vertical beam size of about 5
156 mm. Specific synchrotron tomographic procedures and additional details can be found in
157 Kinney and Nichols (1992).

158 The data processing consisted of three main steps: preprocessing, sinogram
159 creation, and reconstruction. Since there is a constant digitization offset (~ 50 counts)
160 this value was subtracted from each pixel. The second step was to remove "zingers",
161 these are bright pixels caused by scattered X-rays striking the CCD chip. The third step

162 of the preprocessing was completed to normalize each data frame to the field image and
163 to correct for drift.

164 The first step of sinogram creation was to take the logarithm of the data relative to
165 air. Centering the rotation axis of the projection was completed by fitting a sinusoid to
166 the center-of-gravity of each row in the sinogram. Ring artifacts were removed by
167 detecting and correcting anomalous columns in the sinogram. Tomographic
168 reconstruction was completed using filtered back projection with the IDL programming
169 language (Rivers, 1998). The raw data used for tomographic reconstruction were 12-bit
170 images with a total of 360 images collected as the sample was rotated twice from 0 to
171 180° in 0.5° steps. The data were piped to massive parallel SGI computers to view real
172 time data before image acquisition was completed.

173

174 **Image Analysis**

175 The 3-Dimentional Medial Axis (3-DMA) computer software was used to
176 examine differences in geometrical pore characteristics among the treatments (Lindquist
177 and Venkatarangan, 1999) using a 1.7 GHz Linux computer with 2 GB of memory. Pore
178 characteristics were analyzed at $9.2 \times 10^2 \mu\text{m}^3$ voxel size (1 pixel=9.61 μm and 1 slice=10
179 μm ; voxel size=9.61x9.61x10). Images were cropped into a 3.7 by 3.7 by 4.3 mm
180 rectangular array block to remove artifacts. Spatial distributions for nodal pore volume,
181 coordination numbers, pore path length, and tortuosity, were obtained for 58.9 mm^3
182 volumes. The six main analysis steps in 3-DMA were completed by a number of
183 imbedded algorithms: segmentation of image, extraction and modification of the medial
184 axis of pore paths, throat construction using the medial axis, pore surface construction,

185 assembly of pore throat network, and geometrical characterization of pore throat network
186 (http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html accessed June
187 2012).

188 The grey-scale intensity of each CT-image voxel is an integer value from 0-255
189 (2^8 bit scale). Simple thresholding and indicator kriging (IK; Oh and Lindquist, 1999)
190 separated the voxels into two populations using intensity values and voxels having
191 intermediate intensities by using the maximum likelihood estimate of the population set,
192 respectively (Fig. 1). Indicator kriging requires sub-populations of voxels for each phase
193 (pore and solid) to be positively identified. The remaining voxels were assigned by the
194 IK algorithm according to neighborhood statistics. This was satisfied by using grey-scale
195 intensity values for air and aluminum as threshold cutoff values. These two thresholds
196 were set manually on histograms to separate populations.

197 The *Medial Axis* of a digitized sample is a 26-connected centrally-located
198 skeleton of voids which preserves the topology and geometry of the object (Sirjani and
199 Cross, 1991). An erosion-based algorithm is used to extract and modify the medial axis
200 of the pore space (Lee et al., 1994). Spurious paths, which are not significant descriptors
201 of the object, and all dead-end paths were removed (trimmed) from the volume. A filter
202 was used to minimize misidentification of segmentation artifacts such as small isolated
203 pores/clusters. The process resulted in the medial axis, ‘backbone’.

204 3DMA uses throat finding algorithms (Venkatarangan, 2000; Shin, 2002) to
205 determine the location of minimal area cross-sectional surfaces where one or more void
206 paths pass, called pore-throats (Kwiecien et al., 1990). The throat region is defined by

207 the voxel sets through which each triangulated throat surface pass, and throat surface
208 areas are determined as triangulated interfaces.

209 The next step is to determine the network of pore paths (a connected curve of
210 voxels) and vertices (a cluster of one or more voxels where three or more paths intersect).

211 Throat surfaces separate pore spaces and determine network of pores. Pores are cross-
212 indexed with their connecting throats and adjoining pores while throats are cross-indexed
213 with the pores they connect. The algorithm also computes a center of mass, principal
214 directions for each pore, and the diameter passing through the center of mass in each
215 principal direction. An effective pore radius can be computed using the sphere of
216 equivalent volume. The analysis generated distributions of the principal diameters and
217 the effective radius values for the pores and throats.

218 Path length (the distance between the centers of any two adjacent nodal pores
219 along the mid line of the connecting path) is determined by the distance measure
220 algorithm (Lindquist, 2002). Dijkstra's algorithm (Cormen et al., 1990) embedded as
221 part of the 3DMA software determined path tortuosity. The algorithm uses a gamma
222 distribution for tortuosity probability distribution (Lindquist et al., 1996) and generated
223 tortuosity of each pore and, and average and cumulative tortuosity values for each
224 sample. The software generated an assembly of pore networks and geometrical
225 characteristics of pore networks. The following information generated by the 3DMA was
226 analyzed as outlined in Lindquist et al. (2005): effective radius, pore volume,
227 coordination number, path length, and path tortuosity along with their corresponding
228 probability density relationships.

229 The coordination number (CN) is measured by directly counting the distribution
230 of medial axis vertex sets. Coordination numbers between 3 and 20 were used to develop
231 exponential distribution relationships $[P(CN) = 10^{-CN/Co}]$ between coordination numbers
232 and probability density values to determine characteristic coordination number constants
233 (Co) for each sample. A similar approach was used to determine characteristic path
234 length constants (PLo), fitting an exponential distribution $[P(PL) = 10^{-PL/PLo}]$ of path
235 length (PL) and probability density. Pore radii (μm), pore volume (mm^3), coordination
236 number, path length, and tortuosity differences were compared among treatments. A
237 selected replicate for each treatment was used to show the distributions of above
238 properties in figures.

239

Statistical Analysis

Geometrically determined pore parameters were analyzed to examine differences and similarities among treatments for: pore radius, volume, porosity, mean pore volume, number of pores, coordination number, path length, and tortuosity as described by Lindquist et al. (2000). Bulk averaged variables have become the “historical operational descriptors” in theoretical description of porous media microstructure. Therefore, the averaged values are given in Table 1 with respective standard deviations. Four treatments in factorial design (two factors of density and aggregate size; two levels) were compared: two aggregate size classes (<2.0 and <0.5 mm diam. referred to as H2 and H5, respectively) and two compaction levels identified as low (L) and high (H) representing two bulk density values (1.51 and 1.72 Mg m⁻³, respectively) with three replicates. Analysis of variance was conducted with SAS using the GLM procedure to test differences between treatments (SAS Institute, 1999). Least square means were

253 calculated to find significant differences between treatments for each measured
254 parameter. Statistical tests included normality of data distribution and significant
255 differences among treatments.

256

257 **RESULTS AND DISCUSSION**

258 **Effective Pore Radii and Volume**

259 Since effective pore radii were not normally-distributed, log-transformed effective
260 pore radii values were used in the statistical analysis. Effective pore radii were 63.75 and
261 61.18 μm for 1.51 and 1.72 Mg m^{-3} treatments (averaged for both aggregate sizes),
262 respectively (Table 1, Fig. 2) and the compaction was significant ($p=0.04$). As expected,
263 pore radius decreased with increasing density. However, aggregate particle size had no
264 significant effect on measured pore radii. Mean pore radii were 62.64 and 62.29 μm for
265 0.5 and 2.0 mm aggregate sizes (averaged for both densities), respectively.

266 Similar to effective pore-radii, log-transformed pore volumes were used for
267 analysis. Table 1 shows that total pore volume, largest pore size, mean pore volume, and
268 number of pores decreased with increasing compaction for the high density samples
269 compared to low density. The largest pore volume and number of pores were different
270 ($p<0.10$, Fig. 3). However, the largest pore size was 2.7 times larger in the less
271 compacted treatment as compared to the high-density treatment. The average pore
272 volumes were 7.1×10^5 and $6.6 \times 10^5 \mu\text{m}^3$ for 1.51 and 1.72 Mg m^{-3} bulk density treatments
273 (averaged for both aggregate sizes), respectively. CMT-measured porosity values were
274 10.9% and 4.9% for the high and low-density treatments, respectively. Note that the
275 CMT-measured porosity is lower than the core-estimated porosity due to the limited

276 resolution of the scanner. Total core porosity was 1.2 times smaller and CMT-measured
277 pore volume was 2.2 times smaller in the high-density treatment as compared to the low-
278 density treatment. This result is consistent with the fact that the soil porosity should
279 decrease when moving from low to high bulk density; although the range in values will
280 be smaller for the bulk core properties. The aggregate size-class containing finer
281 aggregates (H5) had 1.7 times more pore volume, 2.1 times greater largest pore volume,
282 and more pores than the aggregate class including larger aggregates (H2). In terms of the
283 effect of compaction on pore size distribution, Figures 1 and 2 show that compaction
284 preferentially affected the larger pores, reducing them in size (radius and volume) in both
285 aggregate categories. This is in agreement with the estimated effect of compaction on the
286 pore size distribution derived from changes in the water retention curve (Assouline,
287 2006a).

288 The results observed in this study agree with findings between soil porosity and
289 pore size distribution relationships in previously published data (Lindquist et al., 2000;
290 Seright et al., 2001; Udawatta et al., 2008). Although differences in pore volume and
291 radii may exist among treatments, the effects may be somewhat less dominant due to
292 fewer aggregates (due to sandy texture) and/or few inter-aggregate spaces (due to sandy
293 texture).

294

295 **Coordination Number**

296 Higher pore coordination numbers (CN) imply greater connectivity developing
297 between nodal pore sites that are well connected and extended; a good pore network.
298 Coordination numbers varied between 3 and 40 and ≤ 20 were used to develop

299 relationships (Fig. 4). Coefficients of determination for the CN and probability
300 relationships were > 0.99 for all treatments. The coordination number constant (Co)
301 values varied between 5.70 and 6.62 with a mean of 6.13 ± 0.32 for all samples.
302 Coordination number constants were greater for low-density (6.32) than high-density
303 (5.94) treatment (Table 1; $p < 0.10$). The low-density treatment had 6% greater probability
304 for pore connectivity than the high-density treatment. The same trend was observed for
305 both aggregate categories of low-density treatments as compared to the high-density
306 (Table 1). The mean Co values were 6.01 and 6.25 for 0.5 and 2.0 mm diameter
307 aggregate treatments, respectively (not significantly different). The results of the study
308 show that compaction reduced the Co of larger aggregate samples by ~4% more as
309 compared to the smaller aggregates.

310 The range of Co values observed in this study were greater compared to values
311 observed for heterogeneous soil material (Udawatta et al., 2008). In Udawatta et al.
312 (2008), larger soil cores were analyzed at 84 μm resolution and Co values ranged
313 between 3.30 and 5.14. The selected 3 to 20 coordination number range for the current
314 study resulted in a straight line as compared to the ranges used by Lindquist et al. (2000)
315 and Udawatta et al. (2008) in their relationships. Lindquist et al. (2000) imaged rock
316 material at 6- μm resolution, as compared to 9.6- μm resolution in this study. Both
317 Lindquist et al. (2000) and Udawatta et al. (2008) reported significant differences in Co
318 values among treatments. We speculate that soil material with more uniform size
319 particles and lack of aggregates may have caused small differences among treatments. In
320 addition, treatments examined in this study further segregated soil particles by creating
321 aggregate size classes as a treatment and thereby forming more homogeneous samples.

322 This also suggests that these soils with more uniform larger grain size lose more pore
323 connectivity than small particles during compaction. Results may indicate that the rate of
324 air and liquid flow may be reduced by compaction due to a lower number of connected
325 pores. Another reason for the observed Co values could be that compaction preferentially
326 affected larger pores reducing them in size while smaller pores maintained the same
327 connectivity (Fig. 1, 2, and 3). This pattern has been observed by soil water retention
328 studies as influenced by compaction (Or et al., 2000; Assouline, 2006a; Kumar et al.,
329 2008).

330

331 **Path Length**

332 Path lengths (PL) measured in this study ranged from 3 to 597 μm (Fig. 5). Path
333 lengths between 100 and 400 μm were selected for the development of exponential
334 relationships $[P(PL) \sim 10^{-PL/PL_0}]$ between path length and probability density. The selected
335 range exhibited a linear relationship with coefficients of determination ranging from 0.96
336 to 0.98 with a mean of 0.97. Characteristic path length constants (PL₀) ranged from
337 102.3 to 122.3 with a mean of 110.5 ± 6.5 . Mean PL₀ values for the low density and high-
338 density treatments were 116.0 and 105.0, respectively, and the difference was significant
339 (Table 1). The greater PL₀ of low density implies a greater probability of occurrence of a
340 given path length than in the high-density treatment. Between the two aggregate size
341 classes, 0.5 mm aggregates had a significantly larger PL₀ (112.8) as compared to the
342 larger aggregates (108.1). This high PL₀ of small aggregates is an indication of greater
343 probability of paths in a soil with small aggregates.

344 Researchers have used differences in path lengths imaged by varying resolutions
345 to compare porosity in sandstone and conservation management effects on path lengths.
346 Lindquist et al. (2000) observed differences in PLo values in sandstone with porosities
347 varying from 7 to 22%. Udawatta et al. (2008) showed that PLo was significantly higher
348 for buffer treatments as compared to row-crop management. Similar to other studies, the
349 differences in PLo values as influenced by compaction and aggregate size were
350 significant between treatments in the current study. According to Wu et al. (2006), path
351 length was higher for smaller particles. The greater path lengths in smaller particle media
352 have been attributed to larger pore spaces among larger particles that reduced the distance
353 due to relatively easier corners in the media. They also noticed that relative path lengths
354 were higher through pores as compared to over the grains in their scanning electron
355 microscope study with cubic sodium chloride.

356

357 **Path Tortuosity**

358 Figure 6 shows that probability decreased with increasing path tortuosity and
359 tortuosity values ranged from 1 to 3.7. The highest probability occurred at a path
360 tortuosity of 1.12. In general, the probability was less than 0.05% for path tortuosity
361 values greater than two and the distribution of data points were more scattered for
362 tortuosity values > 2.5 , greater deviation from a linear distribution with probability.

363 Although tortuosity of the pore network depends on the grains in the media
364 (Friedman and Robinson, 2002), the aggregate treatment was not significant in the
365 current study ($p=0.13$; Table 1). Slightly greater tortuosity for smaller particles could be
366 due to image analysis techniques as larger particles create larger spaces between particles

367 thus reducing the tortuousness of paths. In contrast, tortuosity increased linearly with
368 increasing particle size and the gas diffusion coefficient decreased in a plant growth
369 media study with 1 to 16 mm size bark materials (Knongolo and Caron 2006). Higher
370 tortuosity values due to compaction, aggregate size, or management affect water, solute,
371 and gas movement through the media and higher tortuosity imposes greater resistance.

372 Mean tortuosity values were 1.20 and 1.21 for 1.51 and 1.72 Mg m⁻³ bulk density
373 treatments, respectively (Table 1). Pore paths were 0.8% more tortuous for the higher
374 compaction as compared to the lower compaction (not significantly different). In
375 addition, the probability was slightly higher for tortuosity > 2.5 for more compacted soils
376 than the 1.51 g cm⁻³ bulk density soil.

377 Average tortuosity values between 1.46 and 1.74 were observed among crop and
378 buffer soils (Udawatta et al., 2008). The mean tortuosity value was 2.7 with a 1.5 to 4.5
379 range in a fluid transport study, using synchrotron CMT (Coles et al., 1998). Path
380 tortuosity values observed in this study and the Udawatta et al. (2008) were less than 1.75
381 while Perret et al. (1999) observed values as high as 2.4. The difference can be attributed
382 to image resolution and image analysis software.

383 Imaging techniques are capable of estimating tortuosity in X, Y, and Z directions
384 (Wu et al., 2006). Such measurements are important for materials with anisotropic pore
385 structure that have preferential pore directions. For example, clay soils with restrictive
386 horizons may promote lateral flow above the restrictive horizons. In contrast,
387 compaction may occur in three dimensions and pore structure may not always form a
388 continuous network; could be an isolated entity. At this time, it is not clear whether
389 tortuosity data measured in all cardinal directions and locations will be useful in

390 predicting transport. Future studies are needed to examine how water, solute, and gas
391 movement are affected by anisotropic tortuosity among porous media with heterogeneous
392 particles.

393

394 **Pore characteristics of (Co) and (PLo) as influenced by aggregate-size and
395 compaction.**

396 Conventional methods for determination of porosity document that aggregate size and
397 compaction significantly decrease pore-size. Our results show that these changes are
398 relatively small making it difficult to discriminate among soils of differing aggregate-size
399 and compaction.

400 Using CMT methods, determination of the network of pore paths (Co) and the path
401 length of pores (PLo) is possible. Results show much greater change in these
402 characteristics compared to pore-size. Change in Co from 2- to 0.5-mm aggregates
403 averaged over density reduced the connections 4%, while change in Co from 1.51- to
404 1.72 - Mg m^{-3} reduced the pores connections 6.4%, a much greater reduction than the
405 reduction in pore radius. Values for PLo reflecting the tortuous nature of path lengths
406 show the greatest discrimination among the aggregate-size and compaction treatments.
407 Not surprisingly, change in PLo from 2- to 0.5-mm aggregates averaged over density
408 increased path tortuosity by 4.3% as smaller aggregates reduced the probability of direct
409 pore paths. In contrast, change in PLo from 1.51- to 1.72 - Mg m^{-3} decreasing PLo by
410 10.5%, demonstrated the greatest ability to discriminate among treatments.

411 Our results suggest that inclusion of CMT pore characteristics allow a better
412 description of soil structure that can discriminate differences in pore characteristics of
413 soil.

414

415 **CONCLUSIONS**

416 This study provides insight into the effects of compaction of two aggregate-size
417 classes on soil structure parameters through the application of computed
418 microtomography technology at a $9\mu\text{m}$ scale using a nondestructive and 3-dimensional
419 rendering microtomography of a loamy sand soil. Two compaction levels on pore radius,
420 largest average pore volume, number of pores, characteristic coordination number, and
421 path length were investigated. The results provide a picture of how the pore space
422 changes as the porosity decreased with compaction. These results can improve
423 quantification and the ability to model soil structure. This method should aid with the
424 development of tools to better assess soil structure and the measure the benefits of soil
425 management to improve soil quality.

426 The study approach detected significant differences in certain measured
427 parameters. The study results also show that differences in tortuosity were not clearly
428 detected by the microtomography method used in this study. This could possibly be
429 because of the imaging resolution and image analysis procedures used in the study.

430

431

432

433

434

ACKNOWLEDGEMENTS

435 We acknowledge BARD-US Research project (Grants No US-3393-03) for the
436 financial support. Appreciation is extended to Dr. Brent Lindquist, Srilalitha
437 Yanamanamanda, Thomas Smith, Dr. Mark Rivers, and Dr. Brian Hedecker for computer
438 software and assistance with data analysis, and Dr. Mark A Haidekker for providing
439 computing resources.

440

441

REFERENCES

442 Al-Raoush, R.I. 2002. Extraction of physically-realistic pore network properties from
443 three-dimensional synchrotron microtomography images of unconsolidated porous
444 media. Ph.D. Diss. Louisiana State University, Baton Rouge, LA. 173 p.

445 Asseng, S., L.A.G. Alymore, J.S. MacFall, J.W. Hopmans, and P.J. Gregory. 2000.
446 Computer-assisted tomography and magnetic resonance imaging. pp 343-363. *In*
447 A.L. Smit, A.G. Bengough, C. Engels, M. van Noordwijk, S. Pellerin, and S.C. van
448 de Geijn (eds.) Techniques for studying roots. Springer, Berlin.

449 Assouline, S., J. Tavares-Filho, and D. Tessier. 1997. Effect of compaction on soil
450 physical and hydraulic properties: Experimental results and modeling. *Soil Sci. Soc.*
451 *Am. J.* 61: 390-398.

452 Assouline, S. 2002. Modeling soil compaction under uniaxial compression. *Soil Sci. Soc.*
453 *Am. J.* 66: 1784-1787.

454 Assouline, S. 2004. Rainfall-induced soil surface sealing: a critical review of
455 observations, conceptual models and solutions, *Vadose Zone J.* 3: 570-591.

456 Assouline, S. (2006a), Modeling the relationship between soil bulk density and water
457 retention curve. *Vadose Zone J.* 5: 554-563.

458 Assouline, S. (2006b), Modeling the relationship between soil bulk density and the
459 hydraulic conductivity function. *Vadose Zone J.* 5: 697-705.

460 Beven, K., and P. Germann. 1982. Macropores and water flow in soils. *Water Resour.*
461 *Res.* 18: 1311-1325.

462 Bloomenthal, J. 1988. Polygonization of implicit surfaces. *Computer Aided Geometric*
463 *Design* 5: 341-355.

464 Brussaard, L., and H.G. van Faassen. 1994. Effects of compaction on soil biota and soil
465 biological processes. pp 215-235. *In* B.D. Soane and V. van Ouwerkerk (ed.) *Soil*
466 *compaction in crop production*. Elsevier Science, Amsterdam.

467 Carlson, W.D., T. Rowe, R.A. Ketcham, and M.W. Colbert. 2003. Application of high
468 resolution X-ray computed tomography in petrology, meteoritics, and palaeontology.
469 pp 7-22. *In* F. Mess, R. Swennen, M. Van Geet, and P. Jacobs (ed.) *Application of*
470 *X-ray Computed Tomography in the Geosciences*. The Geological Society, London.
471 UK.

472 Coles, M.E., R.D. Hazlett, P. Spanne, W.E. Soll, E.L. Muegge, and K.W. Jones. 1998.

473 Pore level imaging of fluid transport using synchrotron X-ray microtomography.
474 Petroleum Sci. Engineer. 19: 55-63.

475 Cormen, T.H., C.E. Leiserson, and R.L. Rivest. 1990. Introduction to Algorithms. MIT
476 Press, Cambridge, MA. 1028 p.

477 Fox, G.A., R.M. Malone, G.J. Sabbagh, and K. Rojas. 2004. Interrelationship of
478 macropores and subsurface drainage for conservative tracer and pesticide transport.
479 J. Environ. Qual. 33: 2281-2289.

480 Gantzer, C.J., and S.H. Anderson. 2002. Computed tomographic measurement of
481 macroporosity in chisel-disk and no-tillage seed-beds. Soil Tillage Res. 64: 101-111.

482 Green, T.R., L.R. Ahuja, and J.G. Benjamin. 2003. Advances and challenges in
483 predicting agricultural management effects on soil hydraulic properties. Geoderma
484 116: 3-27.

485 Gregory, P.J., D.J. Hutchison, D.B. Read, P.M. Jenneson, W.B. Gilboy, and E.J. Morton.
486 2003. Noninvasive imaging of roots with high resolution X-ray microtomography.
487 Plant and Soil 255: 351-359.

488 Ioannidis, M.A., and I. Chatzis. 1993. Network modeling of pore structure and transport
489 properties of porous media. Chem. Engi. Sci. 45: 951-972.

490 Ioannidis, M.A., and I. Chatzis. 2000. On the geometry and topology of 3D stochastic
491 porous media. J. Colloid and Interface Science 229: 323-334.

492 Kim, H.M., S.H. Anderson, P.P. Motavalli, and C.J. Gantzer. 2010. Compaction effects
493 on soil macropore geometry and related parameters for an arable field. Geoderma
494 160:244-251.

495 Kinney, J.H., and M.C. Nichols. 1992. X-ray tomographic microscopy (XTM) using
496 synchrotron radiation. Annu. Rev. Mater. Sci. 22: 121-152.

497 Knongolo, N.V., and J. Caron. 2006. Pore space organization and plant response in peat
498 substrate: II *Dendrathemum morifolium* Ramat. Scientific Research and Essay 1: 93-
499 102.

500 Kozaki, T., S. Suzuki, N. Kozai, S. Sato, and H. Ohashi. 2001. Observation of
501 microstructures of compacted bentonite by microfocus X-ray computerized
502 tomography (Micro-CT). J. Nuclear Sci. and Technol. 38: 697-699.

503 Kumar, S., S.H. Anderson, L.G. Bricknell, and R.P. Udawatta. 2008. Soil hydraulic
504 properties influenced by agroforestry and grass buffers for grazed pasture systems. J.
505 Soil and Water Conserv. 63: 224-232.

506 Kwiecien, M.J., I.F. Macdonald, and F.A.L. Dullien. 1990. Three dimensional
507 reconstruction of porous media from serial section data. J. Microscopy 159: 343-359.

508 Lee, T.C., R.L. Kashyap, and C.N. Chu. 1994. Building skeleton models via 3-D medial
509 surface/axis thinning algorithms, CGVIP: graph, Model Image Process. 56: 462-478.

510 Lindquist, W.B., S.M. Lee, D.A. Coker, K.W. Jones, and P. Spanne. 1996. Medial axis
511 analysis of three dimensional tomographic images of drill core samples. J. Geophys.
512 Res. 101B: 8296-8310.

513 Lindquist, W.B. 1999. 3DMA General Users Manual. SUNY-Stony Brook technical
514 report SUNYSB-AMS-99-20. Stony Brook, N.Y.

515 Lindquist, W.B., and A.B. Venkatarangan. 1999. Investigating 3D geometry of porous
516 media from high resolution images. Phys. Chem. Earth (A) 25: 593-599.

517 Lindquist, W.B., A.B. Venkatarangan, J.H. Dunsmuir, and T.F. Wong. 2000. Pore and
518 throat size distributions measured from synchrotron X-ray tomographic images of
519 Fontainebleau sandstones. *J. Geophys. Res.* 105B: 21508-21528.

520 Lindquist, W.B. 2002. Quantitative analysis of three dimensional X-ray tomographic
521 images. In U. Bonse (ed.) *Development in X-ray tomography*. Proceedings of SPIE
522 4503, SPIE Bellingham, WA.

523 Lindquist, W.B., S.M. Lee, W. Oh, A.B. Venkatarangan, H. Shin, and M. Prodanovic.
524 2005. 3DMA-Rock A Software Package for Automated Analysis of Rock Pore
525 Structure in 3-D Computed Microtomography Images. [Online]. Available at
526 http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html (verified
527 November 2011). Department of Applied Mathematics and Statistics, SUNY at
528 Stony Brook, Stony Brook, N.Y.

529 Lorensen, W.E., and H.E. Cline. 1987. Marching cubes: a high resolution 3D surface
530 construction. *ACM Comput. Graph.* 21: 163-169.

531 Macedo, A., S. Crestana, and C.M.P. Vaz. 1998. X-ray microtomography to investigate
532 thin layers of soil clod. *Soil Tillage. Res.* 49: 249-253.

533 Marsili, A., P. Servadio, M. Pagliai, and N. Vignozzi. 1998. Changes of some physical
534 properties of a clay soil following passage of rubber-metal-tracked tractors. *Soil Till.*
535 *Res.* 49: 185-199.

536 Mooney, S.J. 2002. Three-dimensional visualization and quantification of soil
537 macroporosity and water flow patterns using computed tomography. *Soil Use and*
538 *Manage.* 18: 142-151.

539 Oh, W., and W.B. Lindquist. 1999. Image thresholding by indicator kriging. *IEEE Trans.*
540 *Pattern Anal. Machine Intell.* 21: 590-602.

541 Or, D., F.J. Leij, V. Snyder, and T.A. Ghezzehei. 2000. Stochastic model of post tillage
542 soil pore space evolution, *Water Resour. Res.* 36: 1641-1652.

543 Pachepsky, Y., V. Yakovchenko, M.C. Rabenhorst, C. Pooley, and L.J. Sikora. 1996.
544 Fractal parameters of pore surfaces as derived from micromorphological data: effect
545 of long-term management practices. *Geoderma* 74: 305-319.

546 Perret, J., S.O. Prasher, A. Kantz, and C. Langford. 1999. Three-dimensional
547 quantification of macropore networks in undisturbed soil cores. *Soil Sci. Soc. Am. J.*
548 63: 1530-1543.

549 Peth, S., J. Nellesen, G. Fisher, F. Beckman, and R. Horn. 2010. Dynamics of soil pore
550 space structure investigated by X-ray microtomography. Pp 17- 20. 19th World
551 Congress of Soil Science, Soil solution for a changing world. 1-6 Aug, 2010,
552 Brisbane, Australia.

553 Pierret, A., Y. Capowiez, L. Belzunces, and C.J. Moran. 2002. 3D reconstruction and
554 quantification of macropores using X-ray computed tomography and image analysis.
555 *Geoderma* 106: 247-271.

556 Rivers, M.L. 1998. Tutorial introduction to X-ray computed microtomography data
557 processing. <http://www-fp.mcs.anl.gov/xray-cmt/rivers/tutorial.html> (accessed
558 December 2011).

559 SAS Institute. 1999. SAS user's guide. Statistics. SAS Inst., Cary, NC.

560 Seright, R.S., J. Liang, W.B. Lindquist, and J.H. Dunsmuir. 2001. Characterizing
561 disproportionate permeability reduction using synchrotron X-ray computed

562 tomography. Society of Petroleum Engineers Annual Technical Meeting. Sep 3 to
563 Oct 3, 2001. New Orleans, Louisiana. SPE 71508.

564 Shin, H., W.B. Lindquist, D.L. Sahagian, and S.R. Song. 2002. Analysis of sesicular
565 structure of basalts. *Computers and Geosciences* 31: 473-487.

566 Shrader, S., H. Rogasik, I. Onasch, and D. Jégou. 2007. Assessment of soil structural
567 differentiation around earthworm burrows by means of X-ray computed tomography
568 and scanning electron microscopy. *Geoderma* 137: 378-387.

569 Sirjani, A. and G.R. Cross. 1991. On representation of a shape's skeleton. *Pattern*
570 *Recognit. Lett.* 12: 149-154.

571 Soane, B.D., and C. van Ouwerkerk. 1995. Implications of soil compaction in crop
572 production for the quality of the environment. *Soil Till. Res.* 35: 5-22.

573 Thieme, J., G. Schneider, and C. Knöchel. 2003. X-ray tomography of a microhabitat and
574 other soil colloids with sub-100 nm resolution. *Micron* 34: 339-344.

575 Tollner, E.W., D.E. Radcliffe, L.T. West, and P.F. Hendrix. 1995. Predicting hydraulic
576 transport parameters from X-ray CT analysis. Paper 95-1764. ASAE, St. Joseph. MI.

577 Udawatta, R.P., C.J. Gantzer, S.H. Anderson, and H.E. Garrett. 2008. Agroforestry and
578 grass buffer effects on pore characteristics measured by high-resolution X-ray
579 computed tomography. *Soil. Sci. Soc. Am. J.* 72: 295-304.

580 Venkataraman, A.B. 2000. Geometric and statistical analysis of porous media. Ph.D.
581 Diss., Stat Univ. of New York, Stony Brook, NY. 113p.

582 Whalley, W.R., E. Dimitru, and A.R. Dexter. 1995. Biological effects of soil compaction.
583 *Soil Till. Res.* 35: 53-68.

584 Wildenschild, D., J.W. Hopmans, C.M.P. Vaz, M.L. Rivers, D. Rikard, and B.S.B.
585 Christensen. 2002. Using X-ray computed tomography in hydrology: systems,
586 resolutions, and limitations. *J. Hydrol.* 267: 285-297.

587 Wu, Y.S., L.J. van Vliet, H.W. Frijlink, K. van der Voort Maarschalk. 2006. The
588 determination of relative path length as a measure for tortuosity in compacts using
589 image analysis. *European Journal of Pharmaceutical Sciences* 28: 433-440.

590 Young, I.M., and J.W. Crawford. 2004. Interactions and self-organization in the soil-
591 microbe complex. *Science* 304: 1634-1637.

592 Zhang, X., L.K. Leeks, A.G. Bengough, J.W. Crawford, and I.M. Young. 2005.
593 Determination of soil hydraulic conductivity with the lattice Boltzmann method and
594 soil thin-section technique. *J. Hydrol.* 306: 59-70.

595

596

597 Table 1. Geometrical pore parameters (pore radius, pore volume, number of pores,
 598 characteristic coordination number, characteristic path length, and tortuosity) as
 599 influenced by aggregate size and compaction treatments and the ANOVA. Soil
 600 cores were scanned at the GeoSoilEnviroCARS (GSECARS) sector at the
 601 Argonne Advanced Photon Source X-ray computed microtomography facility.
 602 Values in parenthesis indicate standard deviations).

603
604

Treatment	Mean Pore radius μm	Total Pore volume mm ³	Largest Pore volume mm ³	Mean pore volume μm ³
Aggregate Treatment means				
0.5 mm	62.64(2.41)	5.87(5.36)	1.47(1.02)	6.8x10 ⁵ (6x10 ⁵)
2.0 mm	62.29(1.99)	3.45(3.52)	0.69(0.76)	6.9x10 ⁵ (7x10 ⁵)
Compaction Treatment means				
1.51 Mg m ⁻³	63.75(1.26)	6.45(4.81)	1.58(0.86)	7.1x10 ⁵ (6x10 ⁵)
1.72 Mg m ⁻³	61.18(2.08)	2.87(3.71)	0.58(0.82)	6.6x10 ⁵ (6x10 ⁵)
<i>Analysis of variance</i>				
Treatment	0.183	0.478	0.129	0.640
Aggregate (0.5 vs. 2.0 mm)	0.753	0.384	0.127	0.790
Compaction (1.51 vs 1.72 Mg m ⁻³)	0.044	0.212	0.063	0.286
Aggregate * compaction	0.533	0.852	0.773	0.556

605
606
607
608

Treatment	Number of pores	Characteristic coordination number (Co)	Characteristic path length number (PLo)	Tortuosity
Aggregate Treatment means				
0.5 mm	54(6)	6.01(0.28)	112.77(10.54)	1.21(0.01)
2.0 mm	50(4)	6.25(0.29)	108.14(6.13)	1.20(0.01)
Compaction Treatment means				
1.51 Mg m ⁻³	55(5)	6.32(0.31)	115.96(8.40)	1.20(0.01)
1.72 Mg m ⁻³	50(4)	5.94(0.27)	104.95(11.30)	1.21(0.01)
<i>Analysis of variance</i>				
Treatment	0.184	0.192	0.005	0.341
Aggregate (0.5 vs. 2.0 mm)	0.193	0.217	0.047	0.134
Compaction (1.51 vs 1.72 Mg m ⁻³)	0.089	0.092	0.001	0.346
Aggregate * compaction	0.537	0.461	0.291	0.747

List of Figures:

Figure 1. Cross sectional and three dimensional images of soil core samples for bulk density 1.51 Mg m^{-3} (left) and 1.72 Mg m^{-3} (right).

Figure 2. Probability density distributions versus pore radii for Hamra 2.0 and 0.5 mm aggregate treatments (H2 and H5) and Low and High compaction treatments (L and H). Selected replicates are shown in the figure (last number in treatment name is replicate). The number within parentheses is the sample mean pore radius in μm . The circle represents the average pore radii and the horizontal line indicates the standard deviation of the mean.

Figure 3. Probability density distributions versus pore volume for Hamra 2.0 and 0.5 mm aggregate treatments (H2 and H5) and Low and High compaction treatments (L and H). Selected replicates are shown in the figure (last number in treatment name is replicate). The number within parentheses is the sample mean pore volume in μm^3 . The circle represents the average pore volume and the horizontal line indicates the standard deviation of the mean.

Figure 4. Probability density distributions versus coordination number for Hamra 2.0 and 0.5 mm aggregate treatments (H2 and H5) and Low and High compaction treatments (L and H). Selected replicates are shown in the figure (last number in treatment name is replicate). Coordination number (CN) is number of curve segments meeting at the vertex and Co is the characteristic coordination number constant which is the value in each equation.

Figure 5. Probability density distributions versus pore path length for Hamra 2.0 and 0.5 mm aggregate treatments (H2 and H5) and Low and High compaction treatments (L and H). Selected replicates are shown in the figure (last number in treatment name is replicate). Path

length (PL) is the length of the path between adjacent connected nodal pores and PLo is the characteristic path length constant which is the value in each equation.

Figure 6. Probability density (solid points) versus path tortuosity and cumulative probability density (solid line) versus path tortuosity for Hamra 0.5 and 2.0 mm aggregate treatments (H0.5 and H2.0) and Low and High compaction treatments (Land H). Selected replicates are shown in the figure (last number in treatment name is replicate). The vertical line and the number within parenthesis is the sample mean tortuosity.