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Abstract 1 

Understanding the role of vegetation in the interface between the atmosphere and 2 

groundwater is the most decisive key in analyzing the processes involved in water transfer. 3 

The main effect of vegetation is its root water uptake, which significantly modifies the 4 

processes involved in water transfer in the vadose zone. This paper focuses on mapping 5 

temporal and spatial changes in soil moisture using electrical resistivity tomography (ERT). 6 

The main objective of this study was to assess how electrical resistivity (ER) is useful for 7 

mapping water distribution along a heterogeneous toposequence crossed by a hedgerow. Ten 8 

ERT were performed over the studied period for a 28 m long toposequence and compared to 9 

matric potential and groundwater level measurements. Soil Volumetric Water Content (VWC) 10 

was predicted with two methods: (i) from ER using the Waxman and Smits model (ii) and 11 

from matric potential using an experimental retention curve fitted by a Van Genuchten model. 12 

Probability Density Functions (Pdfs) of our set of data show that the largest change, in mean 13 

ER and matric potential, was observed in the topsoil layer. We then analyzed the consistency 14 

between ER and point measurements in this layer by extracting the arrays at the junction of 15 

ER grids and point measurements. Pdfs of ER maps at each monitoring time (from T01 to 16 

T10) were also calculated to select the most contrasting distributions, corresponding to the 17 

wettest (T06) and driest states (T10). Results of ER were consistent with matric potential 18 

measurements, with two different behaviors for locations inside and outside the root zone. A 19 

strong correlation (r=0.9) between VWC values from the Waxman and Smits model and those 20 

obtained from the retention curve was observed outside the root zone. The heterogeneous soil 21 

system inside the root zone shows a different pattern in this relationship. The shift in the 22 

relationship between ER and soil moisture for the locations outside and inside the root zone 23 

highlights the non-stationarity in the heterogeneous soil system. Such systems were actually 24 

related to the high hedgerow root density and also to a particular topographical context (ditch 25 

and bank) that is encountered in Brittany and throughout northwestern Europe. 26 

27 
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1 Introduction 1 

Understanding the role of vegetation in the interface between the atmosphere and 2 

groundwater is the most decisive key for analyzing the processes involved in water transfer. 3 

The main impact of vegetation is root water uptake and hydraulic redistribution, which 4 

significantly modifies the processes involved in water transfer in the vadose zone. In Western 5 

Europe, hedgerow networks are a common and ancient tree alignment surrounding 6 

agricultural fields. Hedgerow removal due to farm enlargement is the major land use change 7 

since the Second World War. Previous studies suggest a significant impact of hedgerows on 8 

soil moisture (Caubel, 2001; Thomas et al., 2008) and rainfall distribution (Ghazavi et al., 9 

2008). Many studies have explored the effect of hedgerows surrounding wetlands on water 10 

fluxes and the subsequent increase in transpiration (Thomas et al., 2012) and decrease in 11 

nitrate concentration (Grimaldi et al., 2009). The benefits of hedgerows in soil conservation 12 

have been highlighted by Walter et al. (2003). In agricultural landscapes throughout the 13 

world, combining trees and crops seems an appropriate alternative for providing the benefits 14 

of trees to crop requirements. Water availability can be monitored using direct and indirect 15 

soil moisture sensors. As significant spatial variability exists in the vadose zone, a dense array 16 

of sensors (e.g. tensiometers, TDR, piezometers) is usually required. However, a high density 17 

of sensors is not only expensive, but drilling to install them can disrupt hydraulic contact and 18 

induce preferential flow. Non-invasive geophysical imaging techniques, such as electrical 19 

resistivity tomography (ERT), might be an alternative way to monitor matric-potential 20 

distribution in the soil in relation to root water uptake. Specifically, ERT allows the spatial 21 

distribution of soil electrical resistivity (ER) to be mapped in 2D or 3D. 22 

As a geophysical signal, ER is related to varying physical and chemical characteristics. ERT 23 

helps to identify spatial and temporal soil physical properties (e.g. structure, water content, 24 

fluid composition). Many applications of ERT have been developed over the last 20 years, 25 

from assessment of solute transport in aquifers (Muller el al., 2010) to detection of soil 26 

salinity in irrigated zones (Adam et al., 2012). Samouëlian et al. (2005) reviewed ER as a 27 

function of soil properties, described the main electrical devices for 2D or 3D surveys and 28 

explained the basic principles of data interpretation. Soil ER mainly involves the constant 29 

physical properties of the soil, such as clay content, but also involves variable properties over 30 

time, such as soil water content, soil water electrical conductivity and temperature (Ward, 31 

1990; Samouëlian et al., 2005). Thus, time-lapse ERT is an alternative way to monitor spatial 32 

and temporal water flux providing larger spatial scales. Numerous studies have tested the 33 
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potential of ERT to monitor water flux processes, such as infiltration in unsaturated 1 

conditions (Descloitres et al., 2008; Al Hagrey and Michaelsen., 1999; Michot et al., 2001; 2 

Michot et al., 2003; Yamakawa et al., 2011; Zhou et al., 2001). Thus, in order to use ER to 3 

monitor VWC, it is necessary to perform a laboratory or field calibration (Michot, 2003), or to 4 

develop a pedotransfer function integrating data about soil properties (Hadzick et al., 2011; 5 

Brillante et al., 2014). Another alternative is to use a petro-physical model linking ER to 6 

VWC. Various petro-physical models have been derived from Archie’s (1942) law and were 7 

developed first for pure sand (without any clay). The empirical Waxman and Smits (1968) 8 

model based on Archie’s (1942) law takes into account the effect of clays on resistivity and 9 

has been successfully applied in its simplified form to agricultural soils (Garré et al., 2011; 10 

Beff et al., 2013). Among five petro-physical models tested on a loamy soil to predict VWC 11 

and soil bulk density, the Waxman and Smits model appeared more consistent for electrical 12 

resistivity values > 100Ωm (Laloy et al., 2011), which are often observed in dry soils. For 13 

lower ER values (<100Ωm), the volume-averaging method (Pride, 1994; Linde et al., 2006) 14 

outperformed other tested models. A review of possible techniques to develop models that 15 

allow the use of ERT to spatialize soil water availability to plants was presented by Brillante 16 

et al. (2015). They describe methods and models to calibrate ER using TDR measurements.  17 

Several authors have also described the distribution and biomass of tree roots using ERT 18 

(Amato et al., 2008; Amato et al., 2009; Zenone et al., 2008; Al Hagrey and Petersen, 2001; 19 

Rossi et al., 2011). Root presence in the soil is characterized by a highly resistive area close to 20 

the tree trunk (Amato et al., 2008; Al Hagrey, 2007), and soil ER varies with root biomass 21 

density (Rossi et al., 2011). However, understanding the spatial heterogeneity of soil water 22 

content and the hydrological processes in a hedgerow landscape implies estimating the root 23 

water uptake of tree hedgerows. Werban et al. (2008) used ERT to monitor temporal changes 24 

in the distribution of soil water content in the root zone of a lupine plant in the laboratory. 25 

Garré et al. (2011) used ERT to measure soil water depletion caused by barley plants grown 26 

on an undisturbed soil monolith in a lysimeter. Michot et al. (2003) monitored soil water 27 

fluxes with ER imaging in an agricultural field after irrigation and detected preferential 28 

dryness just below cultivated maize plants. Similar observations of root zone drying, 29 

highlighted by an increase in ER, were shown in Mediterranean contexts by Al Hagrey (2007) 30 

and Nijland et al. (2010) on soils planted with cork oaks or covered by semi-natural 31 

vegetation of evergreen shrubs and trees. However, only Srayeddin and Doussan (2009) have 32 

quantified and mapped root water uptake of maize and sorghum in field conditions using 33 
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time-lapse ERT. Recently, Garré et al. (2012) tested the ability of different ERT electrode 1 

arrays to detect soil moisture dynamics in a monocropping and an intercropping system. The 2 

most promising electrode array they tested was a combination of dipole-dipole and Wenner 3 

measurements. This effective electrode array was then tested for monitoring soil water 4 

dynamics in mixed cropping systems in the warm and humid tropical climate of Thailand 5 

(Garré et al., 2013). Most previous ERT work on soil water depletion induced by tree or plant 6 

root water uptake has focused on well-drained soils.  7 

The present study had a double goal: (i) to investigate effects of hedgerow roots on soil 8 

moisture using ERT and point monitoring and (ii) to verify the correlation between ER and 9 

soil moisture in a heterogeneous soil system. Soil water depletion was estimated by point 10 

measurements of soil matric potential over the studied period. ER values were converted to 11 

soil volumetric water content (VWC) using the Waxman and Smits petro-physical model. 12 

VWC values were compared to those obtained from matric potential using a retention curve. 13 

Our case study focused on a toposequence located in a hillslope whose hydrology was 14 

controlled by shallow groundwater. The toposequence was located in a bottomland crossed by 15 

a hedgerow. The hydrological year was particularly wet. 16 

2 Materials and methods 17 

2.1 Study site  18 

The study site was located in Brittany, western France. Hillslope hydrology was controlled by 19 

shallow groundwater developed in schist bedrock with silt loam soils. An oak hedgerow 20 

(Quercus robur) running north-to-south, planted perpendicular to the slope, created a clear 21 

barrier between two contrasting zones. Upslope of the hedgerow, the only land use was well-22 

drained hillslope soils with permanent pasture. Downslope of the hedgerow was a bottomland 23 

with waterlogged soils and both permanent pasture and wet-meadow vegetation (Carex spp.). 24 

A 28-m toposequence perpendicular to the hedgerow was established from 16 m upslope of 25 

the hedgerow (UP16) to 12 m downslope (DW12). The mean slope was 4.8% and 11.8%, 26 

respectively, on the toposequence upslope and downslope of the hedgerow. The difference in 27 

elevation between UP16 and DW12 was about 2 m (Fig. 1). In the study site, the wetland 28 

extended from 10 m downslope the hedgerow to the stream.  29 

Long-term (32-year mean) annual rainfall (R) at a nearby weather station (Le Rheu, 5 km 30 

from the study site) was ∼720 mm, annual potential evapotranspiration (PET-Penmann) was 31 
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∼650 mm, and annual air temperature was ∼11.7°C, ranging from 5.4°C in January to 18.4°C 1 

in August (Ferren, 2004). During the studied period, rainfall and PET data were collected at 2 

the Saint-Jacques meteorological station (48° 4’12” N, 1° 43’ 36” W), 5 km from the study 3 

site. Ten monitoring times from 10 March to 13 August 2007 are denoted T01 to T10. 4 

Cumulative rainfall and PET-Penmann were calculated between each monitoring time (T01 to 5 

T10). During the monitoring period, net rainfall (Rainfall−PET) of each interval between 6 

ERTs was higher than that during the same period of the previous 6 years (2001-2006) (Fig. 7 

2). Also, the lowest net rainfall measured between ERTs during the monitoring period was 8 

about -40 mm, compared to -150 mm observed during the previous 6 years. Thus, the 9 

hydrological year studied was particularly wet. 10 

2.2 Soil organization and properties 11 

The organization and geometry of soil horizons was described in 2D vertical cross section of 12 

the toposequence in a trench of 2 m deep and 28 m long that was excavated parallel to the 13 

toposequence (Fig. 1). Soils and horizons were identified according to the World Reference 14 

Base of Soil Resources (FAO, 2006).  15 

The geometry and properties of these pedological horizons vary greatly over small spatial 16 

scales, according to previous observations in a similar hedged landscape (Walter et al., 2003; 17 

Follain et al., 2009). We observed a luvic and stagnic Cambisol and a stagnic Fluvisol from 18 

upslope to downslope, respectively. In the upslope zone, the thickness of the organo-mineral 19 

loamy A horizon increased from 0.4 m to 1.1 m from upslope to the ditch close to the 20 

hedgerow (Fig. 1). In the downslope zone, the organo-mineral A horizon was thinner and 21 

ranged from 0.1 m below the hedgerow to 0.5 m at the boundary with the epistagnic fluvic 22 

horizon (B1 horizon, see Fig. 1) of the wetland. The complexity of this soil’s spatial 23 

organization within the hedged landscape is controlled by past and recent redistribution 24 

processes, such as hydric and tillage erosion. Also, past and recent hedgerow network design 25 

may influence soil organization, as highlighted by Follain et al. (2009). Increasing thickness 26 

of the A horizon from upslope to the hedge is due to the anti-erosive effect of the hedge as a 27 

barrier. Soil horizon organization differed slightly below the hedgerow, particularly due to 28 

anthropogenic topographical features, such as under the ditch and in the soil bank (Fig. 1). 29 

Soil thickness above the weathered schist bedrock varied greatly. It ranged from 1.3-1.6 m 30 

near the hedgerow in the upslope zone to less than 0.9 m in the downslope zone. 31 
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Redoximorphic features appeared below a depth of 0.5 m in the upslope zone and began at the 1 

soil surface in the downslope zone. 2 

Soil texture, bulk density and hydraulic conductivity were measured at seven locations along 3 

the toposequence (Fig. 1) where soil matric potential (Ψ) and groundwater level (GWL) were 4 

monitored: 16 m, 8 m, 4 m and 1 m upslope (UP16, UP8, UP4 and UP1) and 2 m, 6 m, 12 m 5 

downslope (DW2, DW6 and DW12). 6 

 The clay content of shallow and organo-mineral horizons ranged from 14.6-16.0% in the 7 

upslope zone and exceeded 20% in the downslope zone (Ghazavi et al., 2008). At greater 8 

depths, the endostagnic B horizon observed in the luvic Cambisol (UP16) had a clay content 9 

of 23.3%, but the highest clay content was observed in the stagnic Fluvisol in the bottomland 10 

(DW12). It ranged from 24.7% in the shallow epistagnic fluvic B1 horizon to 27.1% in the 11 

endostagnic fluvic B2 horizon at depths of 0.4 m to 0.9 m. At depth, the schist saprolite (C 12 

mineral horizon) had a loam-sandy-clayey texture (Fig. A and Ghazavi et al., 2008). We 13 

observed several coarse particle accumulations (e.g. stones, quartz veins) in the 2D vertical 14 

soil cross section, in particular in the upslope zone and near the ditch along the hedgerow. 15 

As expected, soil bulk density increased with soil depth at all distances along the 16 

toposequence (Fig. S2 a and b, in the Supplement). Vertically, variability in bulk density in 17 

the upslope zone was lower than that in the downslope zone. Horizontally, in the upslope 18 

zone, soil bulk density increased with distance from the hedgerow, respectively, from 1.3 19 

(UP4) to 1.6 (UP16) at 5 cm deep and from 1.5 (UP4) to 1.7 (UP16) at 100 cm deep (Fig. S1 20 

a and b, in the Supplement). Additionally, bulk density was higher in the topsoil layer (0-50 21 

cm deep) in the upslope versus downslope zone. 22 

Soil hydraulic conductivity was measured at conditions of near saturation, i.e. at a low water 23 

potential of -0.05 kPa, with a Decagon 4.5-cm diameter mini disk infiltrometer (Decagon 24 

Devices, 2006). Soil hydraulic conductivity was determined from steady-state flux data 25 

according to the Wooding (1968) approach. Multiple depths were measured at each monitored 26 

location along the toposequence (Fig. S1 c and d, in the Supplement). As a function of 27 

changes in bulk density, hydraulic conductivity at -0.5 hPa water potential (K (-0.5 hPa)) 28 

decreased with increasing soil depth at all locations along the toposequence except for DW2, 29 

where a singular point was observed at a depth of 60 cm. Mean K (-0.5 hPa) values were 30 

significantly higher in the downslope zone (6 .10-4, 5.7.10-4 and 5.5.10-4 m.s-1 at DW2, DW6 31 

and DW12, respectively) versus the upslope zone, especially in the topsoil i.e. depth >50 cm 32 
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(200.10-6 m.s-1 at UP4, UP8 and UP16). K(-0.5 hPa) values (Fig. S1, in the Supplement) were 1 

relatively homogeneous in the vertical plane upslope from the hedgerow; while a difference of 2 

two orders of magnitude was observed between the topsoil and subsoil in the downslope zone. 3 

A lower K and higher bulk density are well-known characteristics of bottomland soils.  4 

The soil surface occupied by roots along the trench was estimated using a quadrat of 1 m² 5 

subdivided into 100 squares of 100 cm2 each (Breda et al., 1995). First, the quadrat was 6 

located at a depth of 10-110 cm to avoid counting pasture roots in the top layer. Otherwise, 7 

roots without woody structure were not considered. For each 100 cm² square, only the woody 8 

roots were counted and summed for the 1 m² section of the trench, both upslope and 9 

downslope, and the percentage of total woody roots that occurred in each section was 10 

calculated as presented by Ghazavi et al. (2008). Along the toposequence, vertical root 11 

distribution within each 1 m was also calculated at four depth classes: 10-50, 50-100, 100-12 

150, and 150-200 cm (Figs. S2 e and f, in the Supplement). According to the observations of 13 

Ghazavi et al. (2008), horizontal distribution of tree roots in the upslope and downslope zones 14 

was asymmetric, with 76% of tree roots located upslope and only 24% of roots located 15 

downslope. Vertically, tree roots reached deeper in the upslope zone than in the downslope 16 

zone. Moreover, in the upslope zone, 61%, 36%, 3% of roots were, respectively, located 10-17 

50, 50-100, and 100-200 cm deep. In the downslope zone, 92% of roots were located 10-50 18 

cm deep, and only 8% were 50-100 cm deep. 19 

2.3 Hydrological monitoring: point measurements 20 

Soil matric potential and groundwater level were monitored as described by Ghazavi et al. 21 

(2008, 2011). Seven locations were monitored continuously with one piezometer and five 22 

tensiometers each (Fig. 1). Three piezometers were located at 16, 8 and 4 m upslope of the 23 

hedgerow, each with a tube diameter of 11.2 cm and a total length of 7.5 m, of which 4 m at 24 

its base were screened. The other four piezometers were located at 1 m upslope and 2, 6 and 25 

12 m downslope of the hedgerow, each with a diameter of 6.8 cm and a total length of 4.5 m, 26 

of which 2 m at its base were screened. For each monitored location, five tensiometers were 27 

installed at depths of 25, 50, 100, 150, and 200 cm. The vertical soil matric-potential gradient 28 

was used to interpret the ER. 29 
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2.4 Electrical resistivity monitoring 1 

2.4.1 Timeframe ERT 2 

Temporal monitoring of ER along the toposequence (Fig. 1) was performed at 10 monitoring 3 

times (T01 to T10). Resistivity was measured with a Syscal R1 resistivity meter (Iris 4 

Instruments, Orléans, France). The precision of its intensity and voltage was ±0.3% which is 5 

consistent with measurements taken under constant surface conditions. The experimental 6 

design included a row of 64 electrodes that were lined up on the soil surface perpendicular to 7 

the hedgerow (Fig. 1). With an electrode spacing of 0.5 m, the experimental device measured 8 

31.5 m long. The electrodes remained on the soil surface during the entire experiment to 9 

avoid changes in electrode polarization and ensure high-quality measurements. The 10 

resistivimeter followed a pre-programmed measurement sequence, and a multiplexer switched 11 

among the electrodes.  12 

A dipole-dipole arrangement was chosen because it allowed the greatest number of 13 

measurements for the number of electrodes present, which was advantageous for data 14 

inversion. Moreover, the dipole-dipole array was highly sensitive to horizontal changes in 15 

resistivity but relatively insensitive to vertical changes. For each resistivity measurement, an 16 

electrical current was passed between two adjacent electrodes (dipole AB), and the potential 17 

difference was measured between two other neighboring electrodes (dipole MN). The bulk 18 

ER ρa of a half-space measured with a dipole-dipole electrode array is: 19 

( ) I

V
k

NANBMBMAI

V
a

∆=
−+−

∆=
1111

1
2πρ    (1) 20 

Where I is the intensity of the current passed between electrodes A and B, ∆V is the potential 21 

difference measured between electrodes M and N, and k is the “geometric factor”, whose 22 

value depends on the type of array. For a dipole-dipole array, k is calculated as: 23 

  ( ) ( )( )annnk ⋅+⋅+⋅= 21π  (2) 24 

Where a is the spacing (distance, in m) between electrodes of each dipole, and n is a dipole-25 

separation factor whose value is usually an integer multiple of the distance between the 26 

current or potential electrode pair. To obtain the necessary resolution, 646 measurements were 27 

taken during each ERT. Measurements were located at 12 pseudodepths of investigation, the 28 

first 5 with a of 0.5 m and n of 1, 2, 3, 4 and 6. Since the potential measured between M and 29 
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N decreases rapidly with increasing n, it is not advisable for n to exceed 6. To maintain 1 

measurement quality at greater depths, which have high signal-to-noise ratios, three 2 

pseudodepths were investigated with a of 1 m and n of 2, 3 and 4. The remaining four 3 

pseudodepths had a of 1.5 m and n of 2, 3, 4 and 5. In a dipole-dipole electrode setup, the 4 

spacing between the dipole that passes the current and the dipole that measures the potential 5 

difference is gradually increased. By convention, bulk ER measurements are represented at 6 

the centre of the quadripole and at a depth proportional to the spacing between dipoles. Each 7 

ERT required 1 hour and 40 minutes. 8 

2.4.2 ERT data processing 9 

Inverting resistivity measurements is an essential step before interpreting them because the 10 

raw resistivity measurements rarely reveal the true structure of the soil. Thus, resistivity 11 

sections were inverted with the software RES2DINV (Loke and Barker, 1996) using a 12 

smoothness-constrained least-square method to produce a 2D subsurface model. In the first 13 

iteration, a homogeneous earth model was used as a starting point from which partial 14 

derivative values of resistivity could be calculated analytically. For subsequent iterations, a 15 

quasi-Newton method was used to estimate the partial derivatives, which reduced computing 16 

time. In this method, Jacobian matrices for the homogeneous earth model were used for the 17 

first iteration, and those of subsequent iterations were estimated with an updating technique. 18 

The model consisted of a rectangular grid. Software determined the resistivity of each mesh, 19 

which calculated the ER of each section according to field measurements. An iterative 20 

optimization method consisted of minimizing the difference between measured resistivity 21 

values and those calculated with the inversion model by minimizing the root mean square 22 

error (RMSE). Topographic correction was applied to this inversion process. The cells of the 23 

grid obtained (Fig. S2, in the Supplement) were defined by their 4 corners coordinates. Each 24 

ERT was inverted independently, considering the same number of measurements. Further 25 

details about inversion methods are available in the literature (Loke and Barker, 1996).  26 

Bulk ER of unsaturated soils decreases when water content increase, and vice versa (Ward, 27 

1990). In saturated zones, changes in bulk ER are usually linked to changes in groundwater 28 

electrical conductivity.  29 

During the monitoring period, soil drying due to evapotranspiration was analyzed using 30 

statistics of each ER map. A probability density function (Pdf) of the map at each monitoring 31 

time (T01 to T10) was calculated, and Pdfs were compared to select the most contrasting 32 
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distributions. The lowest ER mean represents the wettest state (T06), while the highest ER 1 

mean represents the driest state (T10). The change in ER was calculated between those states 2 

and was compared to that in matric potential for the same states.  3 

2.4.3 ER conversion to VWC  4 

To quantify the relationship between ER and matric potential, ERs values were extracted at 5 

the location of each tensiometer (Fig. S2, in the Supplement). ER and matric potential of the 6 

topsoil layer (at depths of 25 and 50 cm) corresponding to the unsaturated zone were 7 

analyzed. ER values were also converted to soil VWC from the Waxman and Smits (WS) 8 

model (Waxman and Smits, 1968) simplified by Garré et al. (2011, 2013) using equation (3).  9 

��� = �� ��	
��
 �
� �� 	(3) 10 

where a (S m-1), b (S m-1), and n are fitting parameters. As explained by Garré et al. (2011), 11 

these parameters can be explained in a physical way in combination with porosity: a is related 12 

to pore water conductivity, and b is related to soil surface conductivity. The parameter n is 13 

related to pore connectivity in the full WS model.  14 

Since the variation range of WS parameters is unknown for the toposequence studied, a 15 

sensitivity analysis was performed using the range of the parameters presented by Garré et al. 16 

(2011). Their study examined four horizons of an orthic Luvisol developed in a Loess parent 17 

material from Germany. Orthic Luvisol has relatively similar pedogenesis and texture as those 18 

observed in our toposequence, especially in the upslope zone. For each parameter of the WS 19 

model, three values (Table 1) were tested, leading to 27 simulations. VWC values were 20 

calculated for each extracted cell grid.  21 

Using the retention curves from Ghazavi et al. (2011), measured in the soil horizons of this 22 

studied toposequence, we also converted soil matric potential data into VWC. Experimental 23 

retention curves (Fig. S3, in the supplement) were fitted using the Van Genuchten model (Van 24 

Genuchten, 1980) from equation (4): 25 

��ℎ� = ��� + ���
����� |".$|%&' 	()*	ℎ < 0�- 	()*	ℎ ≥ 0 	(4) 26 

where θs and θr are saturated and residual volumetric water content (VWC [cm3cm-3]), 27 

respectively; h is pressure head or matric potential [hPa]; and α, n and l are Van Genuchten 28 

parameters m=1-l/n (Table S1). 29 
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3 RESULTS 1 

3.1 ER sections and statistical distribution of ER 2 

 Pdfs of ER at each measurement time (from T01 to T10) were Gaussian and similar to each 3 

other except at T10 (Fig. 3). T06 and T10 had the greatest differences in ER value statistics 4 

(see Table 1) and were selected as the wet and dry states, respectively. To avoid redundancy, 5 

we describe only ER maps of T06 and T10. At both dates, a superficial layer from 0-0.8 m 6 

deep in the upslope zone with 100-200 Ω.m of ER. In the downslope zone, a small localized 7 

resistive structure appeared at a distance of 1-2 m from the hedgerow. In the upslope zone a 8 

resistive layer was formed by the unsaturated well-drained organo-mineral A horizons (Fig. 9 

4). Below this resistive layer, a conductive one was observed with 20-60 Ω m of ER. The 10 

thickness of this conductive structure decreased and reached the ground surface 4-12 m 11 

downslope from the hedgerow and had a vertical conductive structure below the hedgerow. A 12 

third layer with resistivity ranging from 60 to >200 Ω m was observed deeply (<-2 m) in the 13 

upslope zone and was shallow downslope from the hedgerow and slightly variable along the 14 

slope (Fig. 4). Over the studied period, a discontinuity in this layer between upslope and 15 

downslope zones appeared vertically below the hedgerow where the lowest resistivity (< 20 Ω 16 

m) was observed (Fig. 4). Local resistive structures (>150 Ω m) were observed at cross-17 

section boundaries, below the ditch and at DW12. These local anomalies were probably due 18 

to inversion -method artefacts.  19 

3.2 Time-frame ERT and matric potential profiles 20 

The map of percentage change in electrical resistivity highlights temporal changes in ER 21 

between wet (T06) and dry (T10) states (Fig. 5). This map was compared to matric potential 22 

profiles measured for each location at T06 and T10 (Fig. 5). The map of Fig. 5 and point 23 

measurements highlight two main areas with large differences in ER. From 16 m upslope to 7 24 

m downslope along the toposequence, an increase in ER by 20-100% in the topsoil (0-0.9 m 25 

deep) (Fig. 5). In contrast, ER of the subsoil (>1m) increased by approximately 20%, with 26 

multiple localized structures in which ER decreased by 20-80%. Below the hedgerow, ER 27 

increased in a three-pronged pattern, with the upslope branch turning down toward the ditch 28 

at 45°, a vertical branch extending beneath the tree, and the downslope branch following the 29 

soil surface. Changes in ER were negative from 7-13 m downslope, but the highest decrease 30 

in ER (-80%) was observed 1-4 m upslope below a depth of 2 m. Changes in soil matric 31 
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potential corresponded to changes in ER (Fig. 5). According to matric potential data, the 1 

topsoil layer was drier (at depths of 0.25 and 0.5 m) than the subsoil (at depths of 1, 1.5 and 2 2 

m). Soil matric potential decreased upslope at a depth of 0.5 m: from -20 to -152 hPa at 16 m, 3 

-127 to -615 hPa at 8 m and -75 to -425 hPa at 4 m. Under the ditch 1 m upslope and 2 m 4 

downslope, the change in soil matric potential confirmed soil drying down to 1 m and 0.5 m, 5 

respectively. The soil was unsaturated to a depth of 0.40 m at 6 m downslope. Moreover, even 6 

though the soil was saturated by groundwater, electrical resistivity of several localized 7 

structures increased by 5-80% (Fig. 5). These structures were located mainly from 9-11 m and 8 

1-3 m upslope and 1.5-4 m and 11-13 m downslope. 9 

Pdfs of ER (Fig. 6a) highlight the shift in mean ER between the entire domain and the topsoil 10 

layer, as do mean values of matric potential Pdf (Fig. 6b). For the topsoil layer, mean ER was 11 

highest when mean matric potential was lowest, corresponding to the driest soil, for both the 12 

wet and dry states. The difference in ER between the entire domain and the topsoil layer was 13 

about 26 Ω m for T06 (wet state) and reached 110 Ω m for T10 (Fig. 6a). For matric potential, 14 

the difference between the entire domain and the topsoil layer was about -73 hPa for T06 and 15 

-200 hPa for T10 (Fig. 6b). The greatest changes in both ER and matric potential were located 16 

in the topsoil. In the topsoil layer, change in mean ER and matric potential between the wet 17 

and the dry state was about 120.5 Ω m and -277 hPa (Fig. 6 a and b), respectively. Pdfs of ER 18 

and Pdfs of matric potential show the same shape between the wet (T06) and dry (T10) state, 19 

with an increase in data dispersion due to the highest amplitude during the dry state (Fig. 6). 20 

3.3 Comparison of point measurements: matric potential versus ER  21 

In the unsaturated topsoil, point measurements of matric potential were consistent with ER 22 

extracted from each grid (Fig. 7). Two behaviors were observed for the locations inside and 23 

outside the root zone (Fig. 7). According to the root system pattern (Fig. S1e and S1f, in the 24 

Supplement), we assumed that UP16, UP8 and DW12 were not influenced by the root system 25 

and were thus outside the root zone. The locations assumed to be inside the root zone were 26 

UP4, UP1, DW2 and DW6. For the locations inside (Fig. 7) and outside (Fig. 7) the root zone, 27 

two different patterns in the relationship between ER and matric potential were observed. 28 

Outside the root zone, a linear relationship was observed (R²=0.8), whereas a dispersion in 29 

this relationship appears for the measurements inside the root zone (R²=0.3). Also, matric 30 

potential range measured outside the root zone remained in the same order of magnitude for 31 
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both wet and dry states. The wet (T01 to T06 in Fig. 7) and dry (T07 to T10 in Fig. 7) states 1 

were analyzed separately.  2 

Upslope, the location situated 4 m from the hedgerow (UP4) showed a pattern similar to those 3 

outside the root zone during the wet state (Fig. 7). UP4 switched to the pattern of the locations 4 

inside the root zone during the dry state (Fig. 7).  5 

3.4 VWC estimation 6 

Figure 8 shows relationship between ER and VWC obtained from the WS model with a 7 

standard deviation corresponding to the set of WS parameters. The range of variation in VWC 8 

prediction from the WS model was highest for small ER values (<75 Ω m). Outside the root 9 

zone (Fig. 8), VWC values predicted from the retention curve were consistent with VWC 10 

from the WS model both for wet (Fig. 8a) and dry states (Fig. 8b). Inside the root zone (Fig. 11 

8), VWC values predicted from the retention curve were smaller than VWC from the WS 12 

model except for UP4 during the wet state (Fig. 8a). At UP4, VWC predicted from the 13 

retention curve was slightly smaller than that predicted by the WS model during the dry state 14 

(Fig. 8b). 15 

Figure 9 shows the relationship between VWC estimated from the retention curve and VWC 16 

predicted by the WS model. Red and gray circles show locations outside and inside the root 17 

zone, respectively. The wet (T01 to T06 in Fig. 9) and dry (T07 to T10 in Fig. 9) states were 18 

analyzed separately. For the both wet and dry states, the relationship between the two 19 

predictions had a strong correlation (r=0.9) for locations outside the root zone. Predictions for 20 

UP4 were quite good, especially for the wet state (Fig. 9). During the dry state, the 21 

relationship between the two predictions remained acceptable, with a smaller VWC from the 22 

retention curve (Fig. 9). A shift between the locations inside and outside the root zone 23 

indicates two different patterns. VWC values predicted from the WS model show highest soil 24 

moisture for locations inside the root zone (Fig. 9). 25 

4 DISCUSSION 26 

Predicting VWC from ERT has become a classical approach widely used by geophysicists. 27 

The method we developed has several steps, from data acquisition to processing (Fig. 10). 28 

Changes in ER over time were predicted without removing the effect of soil temperature 29 

variations over the study period, since these data were missing. Pdfs of ER and matric 30 

potential were helpful for analyzing the statistical range of data and selecting the relevant 31 
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monitoring time. The most contrasting times, corresponding to the wettest (T06) and driest 1 

(T10) states, were analyzed. ER and matric potential data from the unsaturated zone were 2 

extracted to analyze the relationship between ER and matric potential (Fig. 10). The 3 

simplified petro-physical model of Waxman and Smits was then used to convert ER data to 4 

VWC. VWC was also predicted using retention curves (Fig. 10). 5 

4.1 Soil properties and horizons organization  6 

Vertically, ER maps revealed three main structures along the toposequence: (i) a resistive 7 

topsoil layer (Fig. 4) underlying the well-drained organo-mineral A horizon in the upslope 8 

zone, (ii) stagnic (A) and endostagnic (E, B) horizons that are more conductive (Fig. 4), (iii) 9 

deep C mineral horizon with intermediate ER (Fig. 4) and irregular structures that were 10 

probably related to the degree of weathering of the Brioverian schist. 11 

The three main structures are intersected by a vertical conductive structure below the 12 

hedgerow (Fig. 4). We hypothesized that this structure may result from a higher degree of 13 

bedrock weathering caused by the main taproot (Baffet, 1984). The increase with clay content 14 

due to bedrock weathering caused ER to decrease in the vertical conductive structure. Near 15 

the taproot, preferential water flow also contributes to bedrock weathering. 16 

As expected, our results show that lateral and vertical changes in ER are consistent with clay 17 

content measurements at multiple depths (Ward, 1990). In the downslope zone, clay content is 18 

4-6% higher than upslope zone (Ghazavi et al., 2008). In addition, clay content increased and 19 

ER decreased with depth for all upslope locations (UP16, UP8, and UP4). ER also decreased 20 

when soil bulk density increased from the topsoil to the depth of the unsaturated zone (Figs. 21 

S2a and S2b). Besson et al. (2004) obtained similar results, indicating that soil ER was 22 

sensitive to bulk density. An increase in bulk density from 1.39 to 1.59 in a loamy soil 23 

corresponded to an 11 Ω m decrease in ER (Besson et al., 2004).  24 

4.2 Spatial distribution of hedgerow roots in the unsaturated zone 25 

Most roots were located in the upslope zone from 0.1-1.0 m deep (61% from 0.1-0.5 m deep 26 

and 36% from 0.5-1.0 m deep) and extended up to 6 m upslope from the hedgerow (Figs. S2e 27 

and S2f). Downslope, 92% of roots were located from 0.1-0.5 m deep and only 8% were 28 

located from 0.5-1.0 m deep (Figs. S2e and S2f). In addition, oak roots did not extend further 29 

than 9 m downslope. The temporal change in ER was largest in the topsoil layer and inside 30 

the root zone (Fig. 5a). Also, matric potential gradients were highest near the hedgerow (Fig. 31 
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5b). They were induced by root water uptake and agree with the literature on the spatial 1 

distribution of oak root systems (Drénou, 2006; Lucot, 1994). In our study, the spatial 2 

distribution of the root system was influenced by soil characteristics and anthropogenic 3 

features such as the ditch and the embankment on which the hedgerow was planted. 4 

Investigation of root depth along the toposequence was limited by a compact soil layer with a 5 

high bulk density of 1.6 (Fig. 4b, in the Supplement) starting at a depth of 0.6 m.  6 

In agreement with previous observations (Amato et al., 2008; Al Hagrey, 2007; Rossi et al., 7 

2011), our results show several highly resistive areas close to the tree trunk (Fig. 4). Increases 8 

in ER between the wet and dry states (Fig. 5) likely identify the spatial limits of the hedgerow 9 

root system highlighting a three-pronged pattern inside the root zone. Rossi et al. (2011) 10 

demonstrated that ER variability in an orchard was related only to root biomass density. In 11 

our experiment, quantitative analysis of the relationship between ER and root density was not 12 

relevant, since their locations in the toposequence were not exactly the same.  13 

4.3 Consistency between ER and matric potential  14 

Changes in ER are related to parameters such as volumetric water content, solute 15 

concentration and temperature (Ward, 1990). According to our experimental design, changes 16 

in ER were compared to those in soil matric potential, which were converted into volumetric 17 

water content by using measured retention curve (section 4.4).  18 

Two different behaviors in the relationship between ER and matric potential were observed 19 

between locations outside the root zone (UP16, UP8, and DW12) and those inside the root 20 

zone (UP4, UP1, DW2 and DW6), with R² values of 0.8 and 0.3, respectively (Fig. 7). 21 

However, for UP4, this relationship adequately fit the curve obtained outside the root zone 22 

during the wet state (T01-T06). Despite high root density, UP4 showed the same behavior as 23 

the locations outside the root zone. The wet and leafless period, which occurred from autumn 24 

to the beginning of spring, without transpiration (Thomas et al., 2012), was characterized by 25 

no influence from the root system. ER values showed this lack of influence for UP4 during 26 

this period. The ER-matric potential relationship of UP4 shifted to that of the locations inside 27 

the root zone during the dry state. For all locations inside the root zone, we also identified 28 

distinct differences in the relationship between ER and matric potential between wet and dry 29 

states. Inside the root zone, the relationship between matric potential and ER had high 30 

variability from wet to dry states, probably caused by soil heterogeneity (Fig. 7). A decrease 31 

in matric potential (from -100 to -650 hPa) inside the root zone was related to a small change 32 
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in ER. At our study site, the hedgerow with a bank and a ditch increased soil variability (Fig. 1 

1). Moreover, as described by Hesse (1990), variation in topography modifies bulk ER 2 

measurements for a given electrode array. For a homogenous soil system, bulk ER decreases 3 

over a bank and increases over a ditch (Hesse, 1990). Topographical singularities create 4 

anomalies in ER values. 5 

The ability of ER to predict soil matric potential was quite good along the toposequence 6 

outside the root zone (Fig. 7). We hypothesized that the many singularities around the 7 

hedgerow, combined with the high root density, increased the signal-to-noise ratio. 8 

Considering the shift in mean ER (Pdf in Fig. 6a) between the wettest (T06) and driest (T10) 9 

states, the decrease in matric potential did not change the shape of ER distributions but only 10 

their mean values, which was highest when the soil was drier. Matric potential gradients (Fig. 11 

5b) showed a drier zone inside the root zone. 12 

4.4 VWC prediction using ER inside and outside the root zone 13 

By analyzing 27 simulations from the WS model, our results highlight the sensitivity of VWC 14 

prediction to WS parameters (standard deviation = 0.030- 0.014%). Outside the root zone, 15 

VWC values predicted by the WS model were consistent with those from the retention curve 16 

(Fig. 8), suggesting the ability of ER to predict soil moisture in a homogenous soil system. 17 

Differences in VWC prediction inside the root zone were observed for both wet and dry states 18 

(Fig. 8). Moreover, ER values were smaller than 50 Ω m, indicating limitations of the WS 19 

model. As suggested by (Laloy et al., 2011), among five petro-physical models tested on a 20 

loamy soil to predict VWC and soil bulk density, the Waxman and Smits model appeared 21 

more consistent for electrical resistivity values > 100Ωm which are often observed in dry 22 

soils. For lower ER values (<100Ωm), the volume-averaging method (Pride, 1994; Linde et 23 

al., 2006) outperformed other tested models. In our study, the bad results obtained from WS 24 

model are probably related to the inconsistency in parameters as soil water electrical 25 

conductivity changes with soil moisture inside the root zone. Outside the root zone, a good 26 

agreement between WS and retention curve predictions during the wet state highlights the 27 

ability of ER to predict soil moisture (Fig. 9). A linear relationship was observed between 28 

VWCs predicted by the WS model and the retention curve. Inside the root zone, VWC 29 

predicted with the WS model overestimated soil moisture for both wet and dry states. 30 

Overestimation of soil moisture inside the root zone was probably related to soil 31 

heterogeneity. Also, shallow groundwater up to 2 m deep maintained a high soil moisture 32 
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along the toposequence. No change in water content occurred, since the all pores of the 1 

saturated zone were occupied by water. We conclude that changes in ER were probably 2 

related to changes in electrical conductivity of soil water. We also observed a high chloride 3 

concentration below the hedgerow in the same toposequence (Grimaldi et al., 2009). It is well 4 

known that ER decreases when ionic concentration increases (Ward, 1990). Since chloride is 5 

a conservative solute, its concentration increased with water and nutrient uptake. At this 6 

location, the highly conductive structures (Fig. 4) were observed below the hedgerow, in 7 

agreement with observations of chloride concentration (Grimaldi et al., 2009). These 8 

structures, probably due to a high chloride concentration, moved little over time on the ER 9 

maps (T01 to T10, Fig. 4). The conductive structure observed at UP1 from T01 to T04 10 

disappeared at T05 due to high rainfall (Figs. 2 and 3). Rainfall events observed between T04 11 

and T05 should have diluted solutes. Another conductive structure below the hedgerow 12 

appeared at T07 and at T09, when root water uptake was highest. Change in conductive zones 13 

and their small degree of movement was probably related to water fluxes and chloride 14 

concentration. 15 

To analyze the relationship between soil ER and individual parameters, further studies are 16 

needed. High-resolution analysis should be performed by monitoring chloride concentration, 17 

ER, and soil matric potential at the same spatial (grid size) and temporal resolutions. In this 18 

way, the perspective of using ER maps as a proxy for chloride accumulation in the vadose 19 

zone could be addressed. 20 

The originality of our approach consists in analyzing both spatial and temporal effects of soil 21 

moisture. Spatial effects of the root zone induced a non-stationarity of the relationship 22 

between VWC (or ψ) and ER (Figs. 7 and 8). The temporal effect was mainly controlled by 23 

the seasonality (wet and the dry periods), which is well known as a first-order forcing. 24 

 25 

5 CONCLUSION 26 

ERT monitoring offers a non-invasive tool with a high resolution, providing information 27 

about soil horizon geometry as well as physical and chemical properties. The geophysical 28 

signal reveals combined contributions from the main parameters (i.e. structure, water content, 29 

fluid composition), but their individual effects are more difficult to assess. 30 

The hydrological year studied was particularly wet but the link between ER and matric 31 

potential highlights different trends inside and outside the root zones. The Pdfs of ER and 32 
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matric potential measurements for wettest and driest states show the largest difference in 1 

mean values in the topsoil layer. 2 

The heterogeneous driest zones, below the hedgerow, identified using ER changes and matric 3 

potential maps, were consistent with vertical and horizontal root density.  4 

Results of ER were consistent with matric potential measurements, with two different 5 

behaviors for locations inside and outside the root zone. A strong correlation (r=0.9) between 6 

VWC values predicted by the Waxman and Smits model and those predicted by the retention 7 

curve was observed outside the root zone. In our case study, a shift in the relationship 8 

between ER and soil moisture was observed between the locations inside and outside the root 9 

zone. Soil heterogeneities, inside the root zone, were related to the high root density in a 10 

particular topographical context (ditch and bank near the hedgerow). Such context is 11 

encountered in Brittany and throughout northwestern Europe. A shift observed in the 12 

relationship between ER and soil moisture reveals the non-stationarity in this relationship. 13 

Similar monitoring with ERT should be extended to a variety of toposequences with 14 

contrasting topographical contexts. More investigations of heterogeneous soil systems would 15 

help not only to characterize structures (e.g., soil, weathered bedrock, bedrock) but also to 16 

improve prediction of soil moisture in time and space. In many hedgerow landscapes where 17 

the frequency of linear vegetation structure is high, heterogeneity in the soil system is due 18 

mainly to anthropogenic and topographic singularities such as ditches and banks. 19 

Deconvolution of ER signals to separate effects related to the root system from perturbations 20 

due to the singularities requires further investigation. 21 
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 25

Tables and Figures 1 

Table 1. Parameters used to predict volumetric water content in the Waxman and Smits 2 

model. Sensitivity analysis of WS using 27 simulations (for N parameters and m values, 3 

simulation number =Nm). 4 

 5 

  a (S m-1) b (S m-1) n 

Value 1 0.059 1.00E-03 1.0356 

Value 2 0.080 1.00E-03 1.1271 

Value 3 0.150 1.00E-03 1.3996 

  6 



 26

Table 2. Statistics of electrical resistivity measurements calculated from the 548 cells of the 1 

entire 2D section (entire domain) at each monitoring time (T01 to T10) of electrical resistivity 2 

tomography.  3 

 4 

Electrical resistivity 

(Ω m) 
T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 

Minimum 9.2 10.5 10.9 11.8 10.6 10.7 11.4 11.7 12.1 9.3 

Maximum 615.2 436.3 386.8 493.0 413.5 382.9 344 354.8 384.1 722.9 

Standard Deviation 63.7 61.6 59.9 63.3 53.0 52.6 57.2 57.0 60.6 99.2 

Mean 89.2 88.6 86.7 88 78.5 78 80.8 80 83 104.3 

Median 74.4 71.9 68.6 68.8 66.4 65.4 64.4 64.7 66.4 73.5 

 5 
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 27

Figure 1. Experimental setup and soil horizon organization along the toposequence. Soil was 1 

excavated up from 16 m upslope (UP16) to 12 m downslope (DW12). Soil horizons are 2 

named according to the World Reference Base for Soil Resources (FAO, 1998). D and B 3 

indicate ditch and bank locations, respectively. Each monitored location (UP16, UP8, UP4, 4 

UP1, DW2, DW6 and DW12) was equipped with 5 tensiometers and 1 piezometer. 5 

 6 

Figure 2. (a) Daily rainfall and potential evapotranspiration (PET) measured during the 7 

monitoring period (10 April to 13 August 2007). ERT measurement dates (T01 to T10) and 8 

intervals between them (dt1 to dt10) are indicated along the x axis. (b) Net rainfall (rainfall – 9 

PET) calculated for each interval of the monitoring period and compared to those of the 10 

previous 6 years.  11 

 12 

Figure 3. Probability density functions (Pdf) estimated from electrical resistivity 13 

measurements of the entire 2D section at each date of electrical resistivity tomography. 14 

Curves were fitted with a Gaussian model. 15 

 16 

Figure 4. ERT maps at 10 measurement dates (from T01 to T10). Black points indicate 17 

tensiometer locations and black arrow the hedgerow location. 18 

 19 

Figure 5. (a) Variation (%) in electrical resistivity from the wettest state (T06) to the driest 20 

state (T10). (b) Measured soil matric potential profiles at 7 locations: UP16, UP8, UP4 and 21 

UP1 for upslope and DW2, DW6 and DW12 for downslope. Dashed lines indicate the wettest 22 

state (T06) and solid lines the driest state (T10). 23 

 24 

Figure 6. Probability density functions (Pdf) of (a) electrical resistivity and (b) matric 25 

potential between wet (T06) and dry (T10) states for the entire domain (solid line) and the 26 

topsoil layer (dashed line).  27 

 28 



 28

Figure 7. Relationship between matric potential and ER measured in the topsoil during the 1 

study period (T01-T10). Red and gray circles indicate the data collected regularly outside and 2 

inside the root zone, respectively. Filled circles indicate the wet period (T01-T06) and open 3 

circles the dry period (T07-T10). 4 

 5 

Figure 8. Relationship between VWC and ER in the topsoil for (a) the wet period (T01 to 6 

T06) and (b) the dry period (T07 to T10). Black circles with standard deviation indicate VWC 7 

from the Waxman and Smits model. Red and gray circles indicate VWC predicted from the 8 

retention curve outside and inside the root zone, respectively. 9 

 10 

Figure 9. VWC predicted by the Waxman and Smits model compared that predicted by the 11 

retention curve outside the root zone (red circles) and inside the root zone (gray circles). 12 

Filled circles represent the wet period (T01 to T06) and open circles the dry period (T07-13 

T10). 14 

 15 

Figure 10. Conceptual diagram summarizing the method, from site monitoring to data 16 

processing. 17 

 18 

 19 
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 24 
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 1 

 2 

Figure 1. Experimental setup and soil horizon organization along the toposequence. Soil was 3 

excavated up from 16 m upslope (UP16) to 12 m downslope (DW12). Soil horizons are 4 

named according to the World Reference Base for Soil Resources (FAO, 1998). D and B 5 

indicate ditch and bank locations, respectively. Each monitored location (UP16, UP8, UP4, 6 

UP1, DW2, DW6 and DW12) was equipped with 5 tensiometers and 1 piezometer. 7 
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 2 

Figure 2. (a) Daily rainfall and potential evapotranspiration (PET) measured during the 3 

monitoring period (10 April to 13 August 2007). ERT measurement dates (T01 to T10) and 4 

intervals between them (dt1 to dt10) are indicated along the x axis. (b) Net rainfall (rainfall – 5 

PET) calculated for each interval of the monitoring period and compared to those of the 6 

previous 6 years. 7 
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 2 

Figure 3. Probability density functions (Pdf) estimated from electrical resistivity 3 

measurements of the entire 2D section at each date of electrical resistivity tomography. 4 

Curves were fitted with a Gaussian model. 5 
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 2 

Figure 4. ERT maps at 10 measurement dates (from T01 to T10). Black points indicate 3 

tensiometer locations and black arrow the hedgerow location. 4 
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 2 

Figure 5. (a) Variation (%) in electrical resistivity from the wettest state (T06) to the driest 3 

state (T10). (b) Measured soil matric potential profiles at 7 locations: UP16, UP8, UP4 and 4 

UP1 for upslope and DW2, DW6 and DW12 for downslope. Dashed lines indicate the wettest 5 

state (T06) and solid lines the driest state (T10). 6 
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 2 

Figure 6. Probability density functions (Pdf) of (a) electrical resistivity and (b) matric 3 

potential between wet (T06) and dry (T10) states for the entire domain (solid line) and the 4 

topsoil layer (dashed line).  5 
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 2 

Figure 7. Relationship between matric potential and ER measured in the topsoil during the 3 

study period (T01-T10). Red and gray circles indicate the data collected regularly outside and 4 

inside the root zone, respectively. Filled circles indicate the wet period (T01-T06) and open 5 

circles the dry period (T07-T10). 6 
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Figure 8. Relationship between VWC and ER in the topsoil for (a) the wet period (T01 to 3 

T06) and (b) the dry period (T07 to T10). Black circles with standard deviation indicate VWC 4 

from the Waxman and Smits model. Red and gray circles indicate VWC predicted from the 5 

retention curve outside and inside the root zone, respectively. 6 

 7 
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 2 

Figure 9. VWC predicted by the Waxman and Smits model compared that predicted by the 3 

retention curve outside the root zone (red circles) and inside the root zone (gray circles). 4 

Filled circles represent the wet period (T01 to T06) and open circles the dry period (T07-5 

T10). 6 

 7 
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Figure 10. Conceptual diagram summarizing the method, from site monitoring to data 3 

processing. 4 

 5 

 6 


