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Impact of quartz on the thermal properties of grastand soils in
southern France

Jean-Christophe Calvet, Noureddine Fritz,
Christine Berne, Bruno Piguet, William Maurel, aDdtherine Meurey
CNRM, UMR 3589 (Météo-France, CNRS), Toulouse, Eean

12 January 2016

Abstract

The information @uartz fraction in soils is usudly unavaila@ but has a major effect on
the accuracy of soil thermal co@ctivity models ad on their application in land surface
models. This paper inve@ates the influence of qutz fraction, soil organic matter (SOM)
and gravels on soil thermal conductivity. Field obsrvations of soil temperature and Water@
content from 21 weather stations in southern Frangealong with the information on soil

texture and bulk density, are used to estimate sadihermal diffusivity and heat capacity, and

then thermal conductivity. The quartz fraction is inversely estimated using an empirical
thermal conductivity mo@ Sev@ pedotransfer factions for estimating quartz content
from soil texture information are analysed. It is bund that the soil volumetric fraction of

quartz (fy) is systematically better correlated to soil chatics than the gravimetric

fraction of quartz. More than 60 % of the varianceof fq can be explained using indicators
based on the sand fraction. It is shown that @I ah (or) gravels may have a marked
impact on thermal conductivity values depending orwhich predictor of fq is used. For the
grassland soils examined in this study, the ratiofosand to SOM fraction@ the best

predictor of fq. An error propagation analysis and a comparison wh independent data
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from Lu et al. (2@) show that the gravimetric fraction of sand is a better predictor offg

when a larger variety of soil types is considered.

1. Introduction

Soil moisture is the main driver of temporal change values of the soil thermal condu@ity.
The latter is a key variable in land surface moqeBSMs) used in hydrometeorology, for the
simulation of the vertical profile of soil tempaugs in relation to soil moisture. Shortcomings in
soil thermal conductivity models tend to limit tirapact of improving the simulation of soil
moisture in LSMs. Models of the thermal conducyivitf soils are affected by uncertainties,
especially in the representation of the impactailf groperties such as the volumetric fraction of
quartz {g), soil organic matter, and Qels. As soil organatter and gravels are often neglected
in LSMs, the soil thermal conductivity models usadmost LSMs represent the mineral fine
earth, only. 1@aytq estimates are not given in global digital soil s\and it is often assumed
that this quantity is equal to the fraction of sand

Soil thermal properties are characterized by twp \kariables: the soil volumetric heat capacity
(Cr), and the soil thermal conductivity)( in Jm*K™ and WK™, respectively. Provided the
volumetric fractions of moisture, minerals and migamatter are knownC,, can be calculated
easily. On the other@]d, the estimationdofelies on empirical models and is affected by
uncertainties (Peters-Lidard et al., @ ; Tarhaves al., 2012). The construction and the
verification of theAd models is not easy ak is often measured in the lab on perturbed soil

samples (Abu-Hamdeh et al., 2000; Lu et al., 208Rhough recent advances in line-source


s6jerodr
Notiz
please, avoid cites in the abstract
mention only "other tested models".

s6jerodr
Notiz
citation

s6jerodr
Notiz
Please, there is any citation.

s6jerodr
Notiz
nowadays

s6jerodr
Notiz
The...

s6jerodr
Notiz
space

s6jerodr
Hervorheben
Understable sentence, please rephrase it


58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

probe and heat pulse methods have made it easworior soil thermal conductivity in the field
(Bristow et al., 1994; Zhang et al., 2014), suchasumeements are currently not made in
operational meteorological networks. Moreover,dmen soil moisture conditiong, depends to

a large extent on the fraction of soil mineralsspraging high thermal conductivities such as
quartz, hematite, dolomite or pyrite (C6té and @dn2005). At mid-latin@\s, guartz is the main
driver of A. The information on quartz fraction in a soil sually unavailable as it can only be
measured using X-ray diffraction or X-ray fluoresce techniques, which are difficult to
implement (Schonenberger et aI@OlZ). This hasagor effect on the accuracy of thermal
conductivity models and their applications (Brisfh998).

Today, most of the Land Surface Models (LSMs) usedheteorology and hydrometeorology
simulate A following the approach proposed by Peters-Lidardale (1998). This approach
consists of an updated version of the Johanserb]1f®ddel, and assumes that the gravimetric
fraction of quartzQ) is equal to the gravimetric fraction of sand withineral fine earth. This is

a strong assumption, as some sandy soils (e.@realgs sands) may contain little quartz, and as
quartz may be found in the silt and clay fractiamighe soil minerals. Moreover, soil organic
matter (SOM) and gravels are often neglected in £Sdhd thed models used in most LSMs
represent the mineral fine eart@nly. Yang e{2005) and Chen et al. (2012) have shown the
importance of accounting for SOM and gravelsdirmodels for organic top soil layers of
grasslands of the Tibetan plateau.

In this study, an attempt is made to use routinéoraatic soil temperature su@urly
measurements to retrieve instantaneous soil thediffakivity value@ 21 weather stations of
the Soil Moisture Observing System — Meteorologhsalomatic Network Integrated Application

(SMOSMANIA) network (Calvet et al., 2007) in southd-rance, at a depth of 0.10 m. Using
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information on soil moisture, soil texture, soilagel content, soil organic matter, and bulk
density,A values are derived from soil thermal diffusivitydaheat capacity. The responseldd

soil moisture is investigated and the feasibilityradelling thel value at saturatiom{,) with or
without using SOM and gravel fraction observatiogisassessed using an empirical thermal
conductivity model based on Lu et al. (2007). Thiimetric fraction of quart4y, is retrieved by
reverse modelling together wit. Pedotransfer functions are further proposed &imating
quartz content from soil texture information.

The field data and the method to retrieMealues are presented in Sect. 2. Hirendf, retrievals

are presented in Sect. 3 together with a sengitantalysis ofis;to SOM and gravel fractions.
Finally, the results are discussed in Sect. 4,thadnain conclusions are summarized in Sect. 5.

Technical details are given in Supplement@

2. Data and methods
2.1. The SMOSMANIA data

The SMOSMANIA soil moisture network was developed ®@alvet et al. (2007) in south
France in order to validate satellite-derived sodisture products (Parrens et al., 2012), assess
land surface models used in hydrological modelsafer et al., 2011) and in meteorological
models (Albergel et al., 2010), and monitor the actpof climate change on water resources and
droughts. The station network forms a transect betwhe Atlantic coast and the Mediterranean

sea (Fig. 1). It consists of pre-existing automatgather stations operated by Meteo-France,
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upgraded with four soil moisture probes at fourtdep0.05 m, 0.10 m, 0.20 m, and 0.30 m. In
general, the stations are located o@rmer cudtvdields and consist of grasslands. Soill
properties were measured at each stations usihgaaples collected during the installation of
the probes. The 21 stations cover a very large eran soil texture charact@ics (see
Supplement 1). Other properties such as the grasmoniaction of the Soil Organic Matter
(SOM) and of gravels were determined from the sahples. In addition, th@llk dry density of
the soil @) was measured using @erturbed oven-dried sailpks collected using metal
cylinders of known volume (abou&Z0™* m®).

Twelve SMOSMANIA stations were activated in 2006siouthwestern France. In 2008, nine
more stations were installed along the Mediterrarezast, and the whole network (21 stations)
was gradually equipped with temperature sensaifseasgame depths as soil moisture probes. The
soil moisture and soil temperature probes consiste@ihetaprobe ML2X and PT100 sensors,
respectively.@

The ThetaProbe sensors provide a voltage gahiils of V. In order to convert the voltage
signal into volumetric soil moisture content (M), site-specific calibration curves were
developed using in situ gravimetric soil samplasdib stations, and for all depths (Albergel et
al., 2008). In this study, the calibration was sed in order to avoid spurious high soil moisture
values during intense precipitation events. Logssturves were used (see Supplement 1) instead
of exponential curves in the previous version efdata set.

The soil temperature observations are recordedaviisolution of 0.1 °C.

The observations from the 48 soil moisture p flom the 48 temperature probes are
automatically recorded every 12 minutes. The daéaavailable to the research community

through the International Soil Moisture Network wate (https://ismn.geo.tuwien.ac.at/).
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Figure 2 shc@ soil temperature time series aStiat-Félix-de-Lauragais (SFL) station on 23
February 2015. The impact of recording temperaitie a resolution of 0.1 °C is clearly visible
at all depths as this causes a levelling of theesur

In this study, sub-hourly measurements of soil terapre and soil moisture at a depth of 0.10 m
are used, together with soil temperature measuresnan0.05 m and 0.20 m, from 1 January

2008 to 30 September 2015.
2.2. Soil characteristics

The porosity values at a depth of 0.10 m are Iiskltedabl@logether with gravimetric and
volumetric fractions of soil particle-size rangsar{d, clay, silt, gravel) and SOM. The porosity,
or soil volumetric moisture at saturatiof), is derived from the bulk dry densipy, to@ner

with soil texture and soil organic matter obseiwasi as:

rn&and + rTlclay + msilt + mgravel + rnso|\/|

gsat =1- IOd
lomin IOSOM
or
Hsit =1- fsind - fClay - fsilt - fgravel - fSDM (1)

wheremy (fx) represents the gravimetric (volumetric) fractiminthe soil component. The fy
values are derived from the measured gravimet@ctions, multiplied by the ratio ofy
observations t@,, the density of each soil componen¥alues ofosow = 1300 kg it andgmin =

2660 kg Nt are used for soil organic matter, and soil mirenaspectively.
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2.3. Retrieval of soil thermal diffusivity

The soil thermal diffusivityDy) is expressed in fs* and is defined as:
Dh =5 @)

In this study, a @Ie numerical method is usexktoeve instantaneous values Bf, at a depth
of 0.10 m using three soil temperature observatain@.05 m, 0.10 m and 0.20 m, performed

every 12 minutes, by solving the Fourier thermé#udion equation. The latter can be written as:

"ot~ az\” oz (3).

In this study, given that soil properties are ey homogeneous on the vertical (Sect. 2.1),

values oDy, can be derived from the Fourier one-dimensional la

T _p 9T

ot "oz )
However, large differences in soil bulk densitynir the top soil layer to deeper soil layers were
observed for some soils (see Supplement 1). Inrdodiémit this effect as much as possible, we
only used the soil temperature data presentingaséiwvely low vertical gradient close to the saill
surface, where most differences with deeper lageesfound. This data sorting procedure is
described in Supplement 2.
Given that three soil temperaturggi ranging from 1 to 3) are measured at depths—0.05 m,
z = -0.10 m, andz = —0.20 m, the soil diffusivitypy atz = z = -0.10 m can be obtained by

solving the one-dimensional heat equation, usifigite difference method based on the implicit

Crank-Nicholson sch@. When three soil depthcansideredz.i1, z, z+1, the change in soill
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171 temperaturdl; at depthz, from timet,; to timet,, within the time intervalAt = t, - t,.; can be

172 written as:

T [ ), A -

oA M2l Az, ) o2 Az, with

_Tin _Tifl — AZi +Azi+
174 W -A—;,Azm -Tl,andﬂa =4 -4, (5).
175

176 In this studyAz = -0.05 m,Az., = —0.10 m, and a value &t = 2880 s (48 minutes) is used.

177 It is important to ensure th&, retrievals are related to diffusion processes amg not to the
178 transport of heat by water infiltration or evaparat(Parlange et al., 1998 ; Schelde et al., 1998).
179 Therefore, only situations for which changes in smisture at all depths do not exceed 0.001
180 m’m’ within theAt time@ are considered.

181

182 2.4. From soil diffusivity to soil thermal condudty

183

184

185 The observed soil properties and volumetric soilistooe are used to calculate the soil

186 volumetric heat capacit@, at a depth of 0.10 m, using the de Vries (196Ximgimodel. TheCy,

187 values, in units of JAK™, are calculated as:

188 C, =0C ae * FrinChmin * fsom Crsom (6)

189 where @ and fmin represent the volumetric soil moisture and theundtric fraction of soil
190 minerals, respectively. Values of #10° Jnmi’K™, 2.0x10° Imi*K ™, and 2.5%10° Jm*K?, are used

191 for Chwater Chmins Chsom, respectively.

192 TheA values at 0.10 m are then derived fromBhendC;, estimates (Eq. (2)).
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194  2.5. Soil thermal conductivity model
195

196 In dry conditions, soils present low thermal cortduity values (ar). Experimental evidence

197 sh@aﬂdry is negatively correlated with porosity. For exaealu et al. (2007) give:
198 /]dry = 051- 056x gsat (in Wm'K™ (7)

199 When soil pores are gradually filled with watértends to increase towards a maximum value at

200 saturation 4sa). Between dry and saturation conditioAss expressed as:

201 A= /ldry + Ke(/lsit _/ldry) (8)

202 where K. is the Kersten number. The latter is related sovtblumetric soil moistured, i.e. to the

203 degree of saturatiorg{). In this study, the formula recommended by Lale{2007) is used:

04 Ke — exda,(l_ Sd(a—133) )}

205 with a=0.96 forMnsana= 0.4 kg kg*, @ = 0.27 forMnsana< 0.4 kg kg*, and

206 Sy =06/6, (9).

207 Mngagrepresents the sand mass fraction of mineraldarth (values are given in Supplement 1).
208 Following Peters-Lidard et al. (1998)te is taken as 2.0 WK™ for soils withMnsang> 0.2
209 kg kg™, and 3.0 WK™ otherwise. In this studyinsang> 0.2 kg kg* for all soils, except for
210 URG, PRG, and CDM.

211 The geometric mean equation &y proposed by Johansen (1975) for the mineral coemusn

212 of the soil can be generalized to include the S@&trhal conductivity (Chen et al., 2012) as:
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ln(Asat) = fq In (Aq)+ fother ln (Aother )+ Hsat In (Awater )+ fSDM ln (ASDM )

(10)
wheref, is the volumetric fraction of quartz, add = 7.7 Wm'K™, Aohe = 2.0 WM'K™, Ayater
= 0.594 Wm'K™, Asom = 0.25 Wm'K™ are the thermal conductivities of quartz, soil emals
other than quartz, water and SOM, respectively. Idlametric fraction of soil minerals other

than quartz is defined as:

fare =1= fy =0 = Tsom

other
with fq = QX (1_ Hsat) (11)

2.6. Reverse modelling

The Asa: values are retrieved through reverse modellinggugieA model described above (Egs.
(7)-(11)). Thed model is used to produce simulatior@t the same soil moisture conditions as
those encountered for thievalues derived from observations in Sect. 2.4.d&given station, a
set of 401 simulations is produced fdy ranging from 0 WK™ to 4 Wm'K™, with a
resolution of 0.01 WMK™. The Asy retrieval corresponds to the simulation presenting the
lowest root mean square difference (RMSD) valuéh witspect to thel observations. Onlyl
observations fo§; values higher than 0.4 are used because in dmitcams: (1) conduction is
not the only mechanism for heat exchange in sas#sthe convective water vapour flux may
become significant (Schelde et al., 1998, Parlaigsd. 19@ (2) th&, functions found in the
literature display more variab@ (3) thia4 retrievals are more sensitive to uncertaintied in

observations. The threshold value &f= 0.4 results from a compromise between the néed o

10


s6jerodr
Notiz
three times the same letter in the same sentence

s6jerodr
Notiz
;

s6jerodr
Notiz
; and,


236

237

238

239

240

241

242
243

244

245

246

247

248

249

250

251

252

253

254

255

256

limiting the influence of convection, of the shapfethe K¢ function on the retrieved values of
Asas @and of using as many observations as possibikeirretrieval process. Moreover, the data
filtering technique to limit the impact of soil leebgeneities, described in Supplement 2, is used
to select validl observations.

Finally, thefy value is derived from the retrievee solving Eq. (10).

2.7. Scores

Pedotransfer functions for quartz ahg:are evaluated using the following scores:

the Pearson correlation coefficien),(@nd the squared correlation coefficierf) {s used

to assess the fraction of explained variance,

the RMSD,

the Mean Absolute Error (MAE), i.e. the mean ofabte differences,

the mean bias, i.e. the mean of differences.

In order to test the predictive and generalizagiower of the pedotransfer regression equations, a
simple bootstrapping resampling technique is ulezbnsists in calculating a new estimatefof

for each soil using the pedotransfer function atdiwithout using this specific soil. Gathering
these new, estimates, one can calculate new scores with cespehe retrieved, values. Also,

this method provides a range of possible valueth@fcoefficients of the pedotransfer function

and permits assessing the influence of a gfyegtrieval on the final result.

11
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3. Results

3.1. Asarandfy retrievals

Retrievals ofAsaandfy could be obtained for 14 soils. Figure 3 showseaee¢d and modelled
value@. the observed degree of saturation oftile at a depth of 0.10 m, for contrasting
retrieved values oflsy, from high to lowAsy values (2.80, 1.96, 1.52, and 1.26 Wii') at the
SBR, MNT, MTM, and PRD stations, respectively.

All the obtainedAsy andfy retrievals are listed in Table 2, together wite AARMSD values and
the number of selected observations. For three soils (CRD, MZN, and VL¥)e reverse
modelling technique described in Sect. 2.6 couldb®applied as not enoughobservations
could be obtained fa®; values higher than 0.4. For four soils (NBN, PBRZ, and MJN), all
the A retrievals were filtered out as the obtained vawere influenced by heterogeneities in soll
density (see Supplement 2). For the other 14 sajlsandfy retrievals were obtained using a
subset of 201 retrievals per soil, at most, corresponding to b temperature data presenting

the lowest vertical gradient close to the soil acef (Supplement 2).

3.2 Pedotransfer functions for quartz

Thefq retrievals can be used to assess the possilmlggtimatdy using other soil characteristics,
which can be easily measured. Another issue is hvanetolumetric or gravimetric fraction of
quartz should be used. Figure 4 presents the dracti variancerf) of Q andfy explained by
various indicators. A key result is thigtis systematically better correlated to soil cheeastics

thanQ. More than 60 % of the variancefgfcan be explained using indicators based on theé san

12
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fraction (eitherfsang Or Msand. The use of other soil mineral fractions does giote good
correlations, even when they are associated tedhd fraction as shown by Fig. 4. For example,
thefgraverandfgravertfsangindicators present low? values of 0.04 and 0.24, respectively.

Thefy values cannot be derived directly from the indicaias illustrated by Fig. 5: assumiiger
fsanatends to markedly underestimatg: Therefore, more elaborate pedotransfer equatoas
needed. They can be derived from the best indisatosing them as predictors of;. The

modelledfy is written as:

quOD =a, +a, xP

and fouop $1~ 64 — Tou (12)

whereP represents the predictor fgf

The ap anda; coefficients are given in Table 3 for four pedosfer functions based on the best
predictors off;. The pedotranfer functions are illustrated in Fig.The scores are displayed in
Table 4. The bootstrapping indicates that the S&mlg soil has the largest individual impact on
the obtained regression coefficients. This is winy $cores without SBR are also presented in
Table 4.

For themsangpredictor, a? value of 0.56 is obtained without SBR, againsalue of 0.67 when
all the 14 soils are considered. An alternativethis msang pedotransfer function consists in
considering onlymsangvalues smaller than 0.6 kg kdn the regression, thus excluding the SBR
soil. The corresponding predictor is calledind. In this configuration, the sensitivity d to
Msang IS Much increased (witlyy = 0.944, against; = 0.572 with SBR). For SBRf; is
overestimated by thesand equation but this is corrected by th&op limitation of Eq. (12), and

in the end a bettaf score is obtained when the 14 soils are considefed0.74) .
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Values ofr? larger than 0.7 are obtained for two predictor&;ofisandMsom andmsand. A value

of r> = 0.65 is obtained for + G4 — fsana (the fraction of soil solids other than sand). The
MsandMsom predictor presents the bedtand RMSD scores in all the configurations (regoess
bootstrap, and regression without SBR). Anotheraittaristic of themsandmsom pedotransfer
function is that the confidence interval for #aeanda; coefficients derived from bootstrapping is
narrower than for the other pedotransfer functi@rable 3), indicating a more robust relationship
of fq with msandmsom than with other predictors. Modelled valuesig (Asamop) can be derived
from fgmop using Eq. (10) together with, observations. Thésamop r?, RMSD, and mean bias
scores are given in Table 5. Again, the best scam@®btained using thasandmMsom predictor of

fo, with r>, RMSD, and mean bias values of 0.86, 0.14 I and +0.01 WiiK ™, respectively
(Fig. 7).

Finally, we investigated the possibility of estiingt &, from the soil characteristics listed in
Table 1 and of deriving a statistical model 85 (Gamon). We found the following statistical

relationship betweeBsamon, Meay, Msit, @NAMsow:

my,
wop = 0456—0.0735—2 + 2238mg,, (13)

silt

e,

sat|

(r* = 0.48, F-tesp-value = 0.0027, RMSD=0.036°m").

Volumetric fractions of soil components need tacbasistent withamop and can be calculated
using the modelled bulk density values derived f@gaop using Eq. (1).

Equations (10) to (13) constitute an empirical ém@&nd model ofls;: Table 5 shows that using

Gsamop (Egs. (13) ) instead of thg, observations has little impact on thgwop scores.
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3.3. Impact of gravels and SOM dgy

Gravels and SOM are often neglected in soil therooalductivity models used in LSMs. The
Egs. (10)-(13) empirical model obtained in Se@.@rmits the assessment of the impad§ki
andfsom 0N Asa: Table 5 shows the impact dguviop scores of imposing a null value fgfyerand

a small value ofsom to all the soils. The combination of these assiuonptis evaluated, also.
Imposingfsom = 0.013 mMm™ (the smallestsom value, observed for CBR) has a limited impact
on the scores, except for theandmsom pedotransfer function. In this casky is overestimated
by +0.20 Wm'K ™, and r? drops to 0.57.

Neglecting gravelsfgavel = 0 nm) also has a limited impact but triggers the unstéretion
(overestimation) ofls for the MsandMsom (Msand) pedotransfer function, by-0.12 Wm*K™
(+0.11 Wm'k™).

On the other hand, it appears that combining tlassemptions has a marked impact on all the
pedotransfer functions. Neglecting gravels and smugpfsom = 0.013 nmm= has a major impact
on Asai the modelledAsy is overestimated by all the pedotransfer functipmgh a mean bias
ranging from +0.16 WAtK™ to +0.24 Wm'K™) andr? is markedly smaller, especially for the
Msand aNd Msand® pedotransfer functions. These results are ilatstt in Fig. 8 in the case of the
Msand® pedotransfer function. Figure 8 also shows thsingl the 8, observations instead of
Gsamop (EQ. (13)) has little impact orsamop (Sect. 3.2) but tends to enhance the impact of

neglecting gravels. A similar result is found witle msangpedotransfer function (not shown).
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4. Discussion

4.1. Sources of uncertainties in heat capacitynesés

In this study, the de Vries (1963) mixing modelaigplied to estimate soil volumetric heat
capacity, and a fixed value of D0° Jnmi°K™ is used for soil minerals (E@G)). Soil-specific
values forCnmin may be more appropriate than using a constantiatdnvalue. For example,
Tarara and Ham (1997) used a value of 2182 Jm®K™. However, we did not measure this
quantity and we were not able to find such valuebe literature.

We investigated the sensitivity of our results hese uncertainties, considering the following
minimum and maximunChmin values:Cnmin = 1.9210° J m® K™ and Cymin = 2.0&10° J m*
K. The impact of changes @hmi» On the retrieved values @, andf, is presented in Fig. 9. On
average, a change of +)(0.08<10° J m® K™*in Chmin triggers a change ifarandf, of + 1.7 %

(- 1.8 %) and + 4.8 %~(7.0 %), respectively.

The impact of changes i@nmin 0N the regression coefficients of the pedotran&factions is
presented in Table 3 (last column). The impacteiy/wmall, except for tha; coefficient of the
Msand® pedotransfer function. However, even in this ¢dlse impact ofChmin ON thea; coefficient

is much lower than the confidence interval given thg bootstrapping, indicating that the
relatively small number of soils considered in #itigdy (as in other studies, e.g. Lu et al. (2007))

Is a larger source of uncertainty.
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Moreover, uncertainties in tHgay, fsit, foraver OF fsom fractions may be caused by (1) the natural
heterogeneity of soil properties, (2) the livingtrdiomass, (3) stones that may not be accounted
for in the gravel fraction.

In particular, during the installation of the prgbé& was observed that stones are present at some
stations. Stones are not evenly distributed insthik and it is not possible to investigate whether
the soil area where the temperature probes wegrté@ts contains stones as it must be left
unperturbed.

The grasslands considered in this study are nehantely managed. They consist of set-aside
fields cut once or twice a year. Calvet et al. @9§ave an estimate of 0.160 kg“rfor the root

dry matter content of such soils for a site in baugstern France, with most roots contained in
the 0.25m top soil layer. This represents a gratriméraction of organic matter smaller than
0.0005 kg k@', i.e. less than 4% of the lowastom values observed in this study (0.013 kg'kg

or less than 5% ofsom values. We checked that increasiggu values by 5% has negligible

impact on heat capacity and on theetrievals. @

4.3. Applicability of the newls,smodel to other soil types

The Asq; values found in this study are consistent withugal reported by other authors. In this
study, Asy; values ranging between 1.26 Wit and 2.80 WK™ are found (Table 2).
Tarnawski et al. (2011) gavky values ranging between 2.5 Wik and 3.5 WritK™ for
standard sands. Lu et al. (2007) galg values ranging between 1.33 Wi and 2.2

Wm K™,
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A key component of thelsas model is the pedotransfer function for quartz (EkR)). Thef,
pedotranfer functions proposed in this study aetiaon basic soil characteristics. The current
global soil digital maps provide information ab&®M, gravels and bulk density (Nachtergaele
et al., 2012). Therefore, using Eq. (1) and Egs(18) at large scale is possible, and porosity can
be derived from Eqg. (1). On the other hand, theysstedf, pedotranfer functions are obtained
for temperate grassland soils containing a ratrgel amount of organic matter, and are valid for
MsandMsom ratio values lower than 40 (Table 2). These equatishould be evaluated for other
regions. In particular, hematite has to be considldogether with quartz for tropical soils.
Moreover, while the pedotransfer function we getéa: (Eq. (13)) is valid for the specific sites
considered in this study and is used to conducs#msitivity study of Sect. 3.3, Eq. (13) cannot
be used to predict porosity in other regions.

In order to assess the applicability of the pedwtier function for quartz obtained in this study,
we used the independent data from Lu et al. (2@@d) Tarnawski et al. (2009), for ten Chinese
soils (see Supplement 3 and Table S3.1). These smilsist of reassembled sieved soil samples
and contain no gravel, while our data concern uadhed soils. Moreover, most of these soils
contain very little organic matter and thie,ndMsowm ratio can be much larger that timg,ndMsom
values measured at our grassland sites. For tHereéidch soils used to determine pedotransfer
functions for quartz, thexandMsowm ratio ranges from 3.7 to 37.2 (Table 2). Only éseils of Lu

et al. (2007) present such low valuesnef.dmsom. The other seven soils of Lu et al. (2007)
presenimsandMsom vValues ranging from 48 to 1328 (see Table S3.1).

We usedisa experimental values derived from Table 3 in Tarskivet al. (2009) to calcula®
andfq for the ten Lu et al. (2007) soils. Figure 10 shdte statistical relationship between these

quantities anansang Very good correlations @ andfy with msangare observed, with? values of
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416 0.72 and 0.83, respectively. This is consistenhwaitir finding thatf, is systematically better
417 correlated to soil characteristics th@r{Sect. 3.2).

418 The pedotransfer functions derived from Frenchsstehd to overestimatig for the Lu el al.
419 (2007) soils, especially for the seven soils presgmsandMsom values larger than 40. Note that
420 Lu et al. (2007) obtained a similar result for cmatextured soils with their model, which
421 assumed) = msang FOr the three other soils, presentimgdmsom values smaller than 4@,
422 MAE values are given in Table 4. The best MAE sq@@871 mim™) is obtained for thensad
423  predictor offq.

424  These results are illustrated by Fig. 11 for mfg,q predictor off,. Figure 11 also shows tlig
425 and sy estimates obtained using specific coefficient&dn (12), based on the seven Lu et al.
426 (2007) soils presentingsandmsom Values larger than 40. These coefficients arengiegether
427 with the scores in Table 6. Table 6 also presesddlvalues for other predictorsfgfit appears
428 that mganggives the best scores. The contrasting coefficiahtes between Table 6 and Table 3
429 (Chinese and French soils, respectively) illustréte variability of the coefficients of
430 pedotransfer functions from one soil category totler, and thénsandmsowm ratio seems to be a

431 good indicator of the validity of a given pedotriandunction.

432 On the other hand, thesahdmsowm ratio is not a good predictor &f for the Lu et al. (2007) soils
433  presentingnsandMsowm values larger than 40, antipresents a small value of 0.40 (Table 6). This
434 can be explained by the very large rangengf,dmsom values for these soils (see Table S3.1).
435  UsingIn(msandmsowm) instead ofmsandMsom is @ way to obtain a predictor linearly correlatedi,.
436 This is shown by Fig. 12 for the ten Lu et al. (2P8oils: the correlation is increased to a large

437 extent (? = 0.60).
438
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4.4. Cammsangbasedy pedotransfer functions be used across soil types ?

Given the results presented in Tables 3, 4, and éan be concluded thats,nqis the best
predictor offy across mineral soil types. TheandMsowm predictor is relevant for the mineral soils

containing the largest amount of organic matter.

The results presented in this study suggest treathdMmsowm ratio can be used to differentiate
temperate grassland soils containing a rather langeunt of organic matter (3.7%andMsom <
40) from soils containing less organic matt@.(dmsom > 40). Themsang predictor can be used
in both cases, with the following, anda; coefficient values in Eq. (12): 0.15 and 0.572 for
MsandMsom ranging between 3.7 and 40 (Table 3), and 0.040a886 formsandmsom > 40 (Table

6), respectively.

Although themsandmsom predictor gives the best scores for the 14 grassland soils considered in
this study, it seems more difficult to apply thisegictor to other soils, as shown by the high
MAE score (MAE = 0.135 fim™) for the corresponding Lu et al. (2007) soils iable 4.
Moreover, the scores are very sensitive to ermtheé estimation ofnisom as shown by Table 5.
Although themsand predictor gives slightly better scores thagnq(Table 4), thex, coefficient in
more sensitive to errors @wmin (Table 3), and the bootstrapping reveals largedainties inag

anda; values.
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4.5. Prospects for using soil temperature profiles

Using standard soil moisture and soil temperatlservations is a way to investigate soil
thermal properties over a large variety of soitstte access to such data is facilitated by online
databases (Dorigo et al., 2013).

A limitation of the data used in this study, howevs that soil temperature observatiomy are
recorded with a resolution &T; = 0.1 °C only (see Sect. 2.1). This low resolutadfects the
accuracy of the soil thermal diffusivity estimatesorder to limit the impact of this effect, a dat
filtering technique is used (see Supplement 4)nid retrieved with a precision of 18 %.

It can be noticed that i; data were recorded with a resolution of 0.03 °@i¢w corresponds to
the typical uncertainty of PT100 probeB), could be retrieved with a precision of about 56 i
the conditions of Eq. (S4.3). Therefore, one magom@mend to revise the current practise of
most observation networks consisting in recordiad) temperature with a resolution of 0.1 °C
only. More precision in thel estimates would permit investigating other proessef heat

transfer in the soil such as those related to wedesport (Rutten, 2015).
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5. Conclusions

An attempt was made to use routine soil temperatndesoil moisture observations of a network
of automatic weather stations to retrieve instaedais values of the soil thermal conductivity at
a depth of 0.10 m. The data from the SMOSMANIA ratgy in southern France, are used. First,
the thermal diffusivity is derived from consecutineasurements of the soil temperature. 7he
values are then derived from the thermal diffugiwiétrievals and from the volumetric heat
capacity calculated using measured soil properdibs.relationship between thleestimates and
the measured soil moisture at a depth of 0.10 migethe retrieval oflsy; for 14 stations. The
Lu et al. (2007) empirical model is then used to retrieve the quartz voluimetontent by
reverse modelling. A number of pedotransfer fumgies proposed for volumetric fraction of
quartz, for the considered region in France. Ferdgrassland soils examined in this study, the
ratio of sand to SOM fractions is the best prediotcf,. A sensitivity study shows that omitting
gravels and the SOM information has a major immecls;: Eventually, an error propagation
analysis and a comparison with independégt data from Lu et al. (2007) show that the
gravimetric fraction of sand within soil solidsclading gravels and SOM, is a good predictor of

the volumetric fraction of quartz when a largeriegr of soil types is considered.
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592 Table 1 — Soil characteristics at 10 cm for the 21 statiohthe SMOSMANIA network.
593 Porosity values are derived from Eq. (1). Solicttien values higher than 0.3 are in bold. The
594 stations are listed from West to East (from todttom). oy, G4 f, andm, stand for soil bulk
595 density, porosity, volumetric fractions, and graetnt fractions, respectively.

596

fsand fcla fsilt fgravel fSOM Msand mclay Mij¢ rrlgravel Msom

- 6
Soil I((I)<dg m?) (m%;n@) (m’m?®) (m’m?®) (m*m®) (m’m?®) (m°’m?) (kg kg*) (kg kg?) (kg kg?) (kg kg?) (kg kg?)

SBR 1680 0.352 0.576 0.026 0.013 0.002 0.032 0.911 0.041 0.020 0.003 0.024
URG 1365 0.474 0.076 0.078 0.341 0.005 0.025 0.149 0.153 0.665 0.009 0.024
CRD 1435 0.438 0.457 0.027 0.033 0.000 0.045 0.848 0.051 0.060 0.000 0.041
PRG 1476 0.431 0.051 0.138 0.138 0.214 0.028 0.092 0.250 0.248 0.385 0.025
CDM 1522 0.413 0.073 0.241 0.231 0.012 0.030 0.128 0.422 0.404 0.020 0.026
LHS 1500 0.416 0.102 0.202 0.189 0.051 0.039 0.181 0.359 0.335 0.091 0.034
SVN 1453 0.445 0.127 0.073 0.176 0.162 0.017 0.233 0.133 0.322 0.296 0.015
MNT 1444 0.447 0.135 0.066 0.230 0.102 0.020 0.248 0.121 0.424 0.188 0.018
SFL 1533 0.413 0.127 0.071 0.118 0.250 0.021 0.221 0.123 0.205 0.434 0.018
MTM 1540 0.405 0.110 0.081 0.076 0.297 0.032 0.189 0.140 0.131 0.512 0.027
LZzC 1498 0.429 0.129 0.066 0.068 0.292 0.015 0.229 0.117 0.121 0.519 0.013
NBN 1545 0.401 0.063 0.135 0.075 0.290 0.035 0.109 0.232 0.130 0.499 0.030
PZN 1311 0.495 0.222 0.074 0.131 0.054 0.023 0.450 0.151 0.266 0.111 0.023
PRD 1317 0.494 0.038 0.052 0.069 0.326 0.021 QOZ6 0.105 0.139 0.659 0.021
LGC 1496 0.428 0.253 0.044 0.042 0.214 0.019 l@ 0.078 0.074 0.380 0.017
MZN 1104 0.560 0.212 0.037 0.045 0.097 0.049 0.510 0.089 0.109 0.234 0.057
VLV 1274 0.506 0.294 0.054 0.086 0.031 0.029 0.614 0.112 0.179 0.064 0.030
BRN 1630 0.379 0.105 0.009 0.016 0.474 0.016 0.171 0.015 0.027 0.774 0.013
MJIJN 1276 0.506 0.064 0.029 0.056 0.317 0.028 0.133 0.060 0.118 0.661 0.029
BRZ 1280 0.508 0.097 0.074 0.109 0.190 0.020 0.202 0.154 0.228 0.396 0.021
CBR 1310 0.501 0.120 0.057 0.068 0.241 0.013 0.243 0.116 0.139 0.489 0.013

597
598
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598 Table 2— Thermal properties of 14 grassland soils in soutleance:Asy fq andQ retrievals
599 using thed model (Egs. (7)-(9) and Eq. (10), respectively)degree of saturation values higher
600 than 0.4, together with the minimized RMSD betwé#®n simulated and observddvalues, and
601 the number of used observationsn). The soils are sorted from the largest to thellestaratio
602  of Msangto Msom.

603
. A RMSD f Q Mo

Sol  wmikYy  wmikY) " @fmd)  Ceke)
si®) 2.80 0255 6 062 096  37.2
LGC 2.07 0311 20 044 077 266
CBR 1.92 0156 20 044 088 184
LzC 1.71 0107 20 029 051  17.3
SVN 1.78 0163 20 034 061 154
MNT 1.96 0058 20 042 076  13.8
BRN 1.71 0131 20 025 040 135
SFL 1.57 0134 20 022 037 125
MTM 1.52 0.095 20 021 035 7.0
URG 1.37 0.066 20 005 0.0 6.2
LHS 1.57 0136 20 026 045 5.3
CDM 1.82 0.086 20 026  0.44 5.0
PRG 1.65 0.086 20 018  0.32 3.7
PRD 1.26 0176 20 014 028 3.7

604
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609 Table 3— Coefficients of four pedotransfer functionsfgffor 14 soils of this study, together
610 with indicators of the coefficient uncertainty, ted by bootstrapping and by perturbing the
611 volumetric heat capacity of soil mineral&fin). The best predictor is in bold.

Predictor off,

Coefficients for 14 soils

Confidence interval

from bootstrapping

Impact of a change of
+0.08<10° I ni® K™ in

Chmin
do ai ao a ao a
Msand/ Msom 0.12 0.0134 [0.10,0.14] [0.012,0.014]][0.11,0.13] [0.013,0.013]
Msand 0.08 0.944 [0.00,0.11] [0.85,1.40] |[0.07,0.09] [0.919,0.966]
Msand 0.15 0.572 [0.08,0.17] [0.54,0.94] |[0.14,0.17] [0.55,0.56]
1- Gai— fsand 0.73 -1.020 [0.71,0.89] [-1.38,-0.99]]| [0.70,0.73] [-1.00,-0.99]

612  (*) only msangvalues smaller than 0.6 kg kgre used in the regression

613
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613 Table 4 —Scores of four pedotransfer functionsfofor 14 soils of this study, together with the
614 scores obtained by bootstrapping, without the saB&8R soil. The MAE score of these
615 pedotransfer functions for three Chinese soils wfek al. (2007) for whicmsandmsom < 40 is
616 given. The best predictor and the best scorendreld.

Regression scores Bootstrap scores Scores without SBR

Predictor offq (and MAE for 3 Lu soils)

r RMSD MAE | r* RMSD MAE | r* RMSD MAE

(m3m'3) (msm-ss) (m3m'3) (msm-ss) (m3m'3) (msm-ss)

Msand/ Msom 0.77 0.067 0.053| 0.72 0.074 0.059| 0.62 0.070 0.057

(0.135)

Msand® 0.74 0.072 0.052| 0.67 0.126 0.100| 0.56 0.075 0.056

(0.0712)

Msand 0.67 0.081 0.060| 0.56 0.121 0.084| 0.56 0.075 0.056

(0.086)

1- Bat— fsand 0.65 0.084 0.064| 0.56 0.102 0.079| 0.45 0.084 0.061

(0.158)

617  (*) only msng values smaller than 0.6 kg kg™ are used in the regression

618
619
620
621
622
623
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623 Table 5— Ability of the Egs. (10)-(13) empirical model totiesate As5 values for 14 soils and
624 impact of changes in gravel and SOM volumetric eohtfyave = O nm~ andfsow = 0.013
625 m°m (the smallesfsom value, observed for CBR)? values smaller than 0.60, RMSD values
626 higher than 0.20 WK™, and mean bias values higher (smaller) than +3-20Q.0) are in bold.

r? RMSD  Mean bias

Model configuration Predictor off, (Wm*K?YH  (wm?k?
Model using8s,:observations Msana/ Msom 0.86 0.14 +0.01
Msand" 0.83 0.15 -0.01
Msand 0.81 0.16 -0.03
1 - Bat— fsand 0.82 0.16 -0.03
Full model using&amon (Egs. (13)) Msand/ Msom 0.85 0.14 +0.03
Msand" 0.85 0.14 -0.03
Msand 0.84 0.15 -0.03
1- gsat_ fsand 0.82 0.16 -0.02
same with: Msana/ Msom 0.57 0.35 +0.20
fsom = 0.013 Mm™> Meand: 0.83  0.15 +0.00
rnsand 081 016 _002
1 - Gat— fsana 0.83 0.15 -0.02
same with: Msang/ Msom 0.87 0.19 -0.12
fgra\/e|: 0 mgm_g msan(T 070 023 +011
Msand 0.79 0.17 +0.04
1_ esat_ fsand 0-81 0.17 +005
same with: Msand/ Msom 0.63 0.31 +0.16
fsom = 0.013 Mm™® Meand" 052  0.36 +0.24
andfyaver= 0 MM 2 Msand 059  0.29 +0.16
1 - Bat— fsand 0.70 0.25 +0.16
627 (*) only meng values smaller than 0.6 kg kg™ are used in the regression
628
629
630
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630 Table 6 — Pedotransfer functions &f for 7 soils of Lu et al. (2007) wittsandmsom > 40. The

631 Dbest predictor and the best scores are in bold.

Regression scores
Predictor offq for 7 Lu soils with Coefficients
MsandMsom > 40
r* RMSD MAE
(pvalug)  (m'm?)  (m’m?) ao a
Msand/ Msom 0.40 0.089 0.075 0.20 0.000148
(0.13)
Msand* 0.82 0.073 0.054 0.07 0.425
(0.005)
Msand 0.82 0.048 0.042 0.04 0.386
(0.005)
1- Gia— fsand 0.81 0.050 0.043 0.44 -0.814
(0.006)
632 (*) only mng values smaller than 0.6 kg kg™ are used in the regression
633
634
635
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Fig. 1— Location of the 21 SMOSMANIA stations in southé&rance.
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660 Fig. 2— Soil temperature measured at the Saint-Félikaleagais (SFL) station on 23 February
661 2015, at depths of 0.05, 0.10, 0.20, and 0.30 melliag is due to the low resolution of the
662 temperature records (0.1°C).
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667 Fig. 3— Retrievedd values (dark dots) vs. the observed degree ofatain of the soil, at a
668 depth of 0.10 m, for (from top to bottom) SabreBR$ Montaut (MNT), Mouthoumet (MTM),
669 and Prades-le-Lez (PRD), together with simuladedalues from dry to wet conditions (dark
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674 Fig. 4 — Fraction of variancer{) of gravimetric and volumetric fraction of quaft2 andfg, red
675 and blue bars, respectively) explained by variaesligtors.
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681 Fig. 6 — Pedotransfer functions for quarfg:retrievals (dark dots) vs. the four predictorsfof
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