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The Editor, SOIL Discuss.,  

Dear Sir: 

Thank you for the two reviews of the MS:  

Ref. No.: soil-2015-30 

Interactive comment on “Local versus field scale soil heterogeneity characterization – a challenge 

for representative sampling in pollution studies” by Z. Kardanpour et al. 

Anonymous Referee #1 

Received and published: 23 July 2015 

We have addressed each issue raised by the reviewers. We report the changes made in the MS, 

and use “track-changes” on the master manuscript. On the rare occasion where we have not 

addressed a specific issue, full argumentation is given.  

Rewiwer comments: 

General comment: 

 
 

Commments to the alledged „limitation of using only 1-D variograms“. The following has been 

added to the revised MS: 

We here introduce the variographic approach mainly for the cases of 1-D and 2-D as a means of 

characterising the heterogeneity in the X-Y plane. Compared to the typical major variability in the Z-

direction of soil depth profiles (soil horizons, layers, geological formations), the linear (1-D) or 2-D 

heterogeneity within soil horizons is significantly smaller, although this is exactly the kind of heterogeneity 

the present study aims at controlling. Contrary to depth profile zonation a.o. the within-horizon 1-D and 2-

D heterogeneity complies with the requirements of both TOS and geostatistics, i.e. spatial heterogeneity can 

be modelled variographically w.r.t. a physically  meaningful average level (the inherent stationarity 

assumption in geostatistics), e.g. Fig.s 2-5. It is not meaningful to apply variographic characterisation on 

measurement series which contain discontinuous shifts, upsets or other disrupt, level changes, as is the 

prime characteristicon of soil depth zonations. The geostatistical tradition of modelling 2-D patterns based 

on projection onto a 1-D transect can also be debated. In the present context all isotropic 2-D heterogeneity 

patterns can be characterised comprehensively by a randomly selected 1-D direction (transect). In all 

sampling operations there should preferentially always be some sort of random selection involved, unless 

compelling geo-science reasons exists for choosing a direction related to the genesis of the specific 

heterogeneity met with, e.g. choosing a 1-D transect either along a dominant plow direction. 



 

Rational for a central Roman Square etc. The follwing has been added: 

The experimental design allows comparison of the small-scale and large-scale variability. All profiles can 

for example be directly compared with the level and variation at the small-scale experiment, by the 

pertinent mean ±2 SD. This is just for visual orientation however and not to be confused with the nugget 

effect, a much more general characterisation of the small(est) scale variability pertaining to below lag = 1, 

summing up and averaging this information for all the sample pairs in the transect. 

 

 

 

Comments re. PCA yielding an average range vs. individual, and specifically, the minimum 

range. The following has been added: 

The results from the present study show that for well-mixed sandy soil it is recommended to sample 

locations with less than 2.5 meters inter-distance in between, preferentially smaller. It is necessary to 

conduct a similar variographic pilot experiment in order to outline the relevant scale-heterogeneity 

characteristics for other soil types, which unavoidably will tend to show more irregular spatial 

heterogeneity patterns – each principal soil type will in principle be characterised by a specific range, but 

there is a further caveat. Each analyte may in fact display its own, more or less specific range, as witnessed 

above, as well as by a plethora of studies in the literature. When controlling the spatial heterogeneity is of 

the essence, the logical solution is to design the sampling according the the analyte with the smallest range, 

i.e. the most heterogeneously distributed analyte – this will by necessity also take care of all other analytes 

with higher ranges. If emphasis is on sampling costs (a not totally unlikely alternative scenario that may, or 

may not clash with other requirements of which only one really matters though: representativity) it is a 

comforting thought that all analytes are measured on the same final aliquot. By carefully optimising the 

primary field sampling according to the principles presented here, all analytes will be measured with the 

same, optimal relevance, indeed w.r.t. the same representativity. If sampling is done right from the start, 

there are no extra costs – while the opposite is a very different case, as should be abundant clear.  



 

Comments re. small vs. large scale dependency a.o. 

The results from the present study show that for well-mixed sandy soil it is recommended to sample 

locations with less than 2.5 meters inter-distance in between, preferentially smaller. It is necessary to 

conduct a similar variographic pilot experiment in order to outline the relevant scale-heterogeneity 

characteristics for other soil types, which unavoidably will tend to show more irregular spatial 

heterogeneity patterns – each principal soil type will in principle be characterised by a specific range, but 

there is a further caveat. Each analyte may in fact display its own, more or less specific range, as witnessed 

above, as well as by a plethora of studies in the literature. When controlling the spatial heterogeneity is of 

the essence, the logical solution is to design the sampling according the the analyte with the smallest range, 

i.e. the most heterogeneously distributed analyte – this will by necessity also take care of all other analytes 

with higher ranges. If emphasis is on sampling costs (a not totally unlikely alternative scenario that may, or 

may not clash with other requirements of which only one really matters though: representativity) it is a 

comforting thought that all analytes are measured on the same final aliquot.   

Specific soil types and/or other analytes will in principle display different ranges and nugget effects, and hence 

our call for systematic deployment of the variographic pilot experiment, from which can be derived all necessary 

information for designing an optimal sampling plan e.g. identifying the analyte with the smallest range (for 

significantly correlated analytes). For the case of well-mixed soil components, a general PCA-approach for 

modelling a whole set of variograms may be useful in addition to individual analyte consideration. 

Without this type of information, experimental fate study work is essentially devoid a valid basis as regards 

interpretation, scale-up and scientific generalisation of the experimental results back to the field scale. 

 



Primary - and sub-sampling relationships to TOS. The following has been added: 

The primary sampling in this study (200-300g) was specifically intended to correspond to current sampling 

traditions in the soil and microbiology communities, so as to be as relevant as possible. We wanted to show 

the inherent deficiency in using a standardised sample size. In other studies efforts have been made to TOS-

optimize each individual field sample, for example with respect to the famous “Gy’s formula”, from which 

control over the so-called Fundamental Sampling Error is often sought, while also controlling GSE and the 

incorrect (bias-generating) sampling errors. However, in the present study it is a major point to outline how 

the variographic approach a.o. lead to a procedure with which to characterize the magnitude of the total 

sampling-plus-analytical error and thus to be warned of the need to control (better) all the inherent 

sampling errors which are affected by both theDistributional Heterogeneity as well as the Constitutional 

Heterogeneity. The paper refer to the international standard DS 3077 (2013) for a comprehensive 

introduction to all aspects of sampling error reduction vs. lot/material heterogeneity in general and to 

Kardanpour et al. (2105b) in particular regarding these present variographic studies. 

All sub-sampling steps were carried out with stringent attention to all TOS‘ principles for representative 

mass reduction. This has been described in minute detail in:  

Kardanpour, Z, Jakobsen, O.S. & Esbensen, K.H. (2015b) Counteracting soil heterogeneity sampling for environmental studies (pesticide 

residues, contaminants transformation) - TOS is critical. Proceedings 7.th World Conference on Sampling and Blending (WCSB7), 
p.205-209.  

“Why did subsampling not involve some sort of comminution” 

In this study the sandy soil samples did not need comminution (because of the well-sorted, small grain size).  

 
The part related to grab/composite sampling in conclusion is not relevant to this study 
We have deleted this discussion. 

 

 
Re. abbreviation LOI 
This abbreviation is defined at first mentioning in the MS, and written out in full in the abstract. 
 
Reference check needed 
A thorough reference check has been carried out. 

 

 

 

We hope the revision has improved the manuscript sufficiently to allow publication. 

Sincerely yours,  

Zahra Kardanpour, Ole Stig Jacobsen, Kim H. Esbensen 
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Dear Sir: 

Thank you for the two reviews of the MS:  

Ref. No.: soil-2015-30, 

Interactive comment on “Local versus field scale soil heterogeneity characterization – a challenge 

for representative sampling in pollution studies” by Z. Kardanpour et al. 

Anonymous Referee #1 

Received and published: 7 August 2015 

We have addressed each issue raised by the reviewers. We report the changes made in the MS, 

and use “track-changes” on the master manuscript. On the rare occasion where we have not 

addressed a specific issue, full argumentation is given.  

Rewiwer comments: 

General comment: 

 



Isotropic 2-D soil can be fully described by a randomly selected 1-D variogram. The following 

has been added to the revised MS: 

We here introduce the variographic approach mainly for the cases of 1-D and 2-D as a means of 

characterising the heterogeneity in the X-Y plane. Compared to the typical major variability in the Z-

direction of soil depth profiles (soil horizons, layers, geological formations), the linear (1-D) or 2-D 

heterogeneity within soil horizons is significantly smaller, although this is exactly the kind of heterogeneity 

the present study aims at controlling. Contrary to depth profile zonation a.o. the within-horizon 1-D and 2-

D heterogeneity complies with the requirements of both TOS and geostatistics, i.e. spatial heterogeneity can 

be modelled variographically w.r.t. a physically  meaningful average level (the inherent stationarity 

assumption in geostatistics), e.g. Fig.s 2-5. It is not meaningful to apply variographic characterisation on 

measurement series which contain discontinuous shifts, upsets or other disrupt, level changes, as is the 

prime characteristicon of soil depth zonations. The geostatistical tradition of modelling 2-D patterns based 

on projection onto a 1-D transect can also be debated1. In the present context all isotropic 2-D heterogeneity 

patterns can be characterised comprehensively by a randomly selected 1-D direction (transect). In all 

sampling operations there should pererentially always be some sort of random selection involved, unless 

compelling geo-science reasons exists for choosing a direction related to the genesis of the specific 

heterogeneity met with, e.g. choosing a 1-D transect either along a dominant plow direction. 

 

Augmented description of laboratory sub-sampling and mass reduction. The following has been 

added to the revised MS:  

After the stored samples were thawed and accommodated for 20 °C for a week, before being processed 

further. The primary field sample size (200-300 gram) must be reduced to the analytical sample size (1-2 

gram), not at all a trivial mass-handling issue. In order to provide representative sub-samples, TOS 

principles were applied scrupulously to all mass reduction steps. Thus samples were dried and macerated, 

or ground, where appropriate, and subsequently deployed in a longitudinal tray, forming a 1-D lot, using 

the soil-adapted bed-blending/cross-cut reclaiming technique described in detail in (Petersen et al. 2004) 

and Kardanpour et al. (2015b). These pre-blended micro-beds were cut by 10 randomly selected transverse 

increments along the elongated dimension which were aggregated, resulting in subsamples of 20-30 gram 

each. The exact same procedure was repeated in a secondary mass reduction step ending up with the final 

analytical mass (2 gram) for the wet samples analyses. This procedure has been honed to full 

                                                           
1 The present authors do not wish to reject the 2-D geostatistical tradition with this statement, but in relation 

to the present matters this issue is better deferred to another occasion in which the 2-D modelling issue can be  

presented and discussed in full -  this issue is a legitimate and interesting area for a fruitful debate. Entering 

into a 3-D geostatistical modelling realm, there are also here issues that in need of further discussion, e.g. the 

required minimum number of samples (measurements) needed for meaningful, and stable variogram 

calculation. The present foray only aims at presenting the power of a simple 1-D variogram characterisation 

operator based on TOS, upon which several versions of potential follow-up generalisations to 2-D and 3-D cases 

may be entertained.  



representativity in the course of this project specifically so as to do away with all of the post-primary-

sampling errors in order better to be able to focus in the latter and the variogram deployment, ibid.  

The remainders of the secondary sub-samples were air-dried for four days in lab temperature (20 °C), to be 

used in parallel sorption experiments. As a further scale-down iteration, a similar bed–blending/cross-cut 

reclaiming were used to provide analytical samples of 2 gram, also based on 10 increments each. 

Kardanpour et al. (2015b) describe the “from-field-sampling-to-aliquot” pathway in full details, complete 

with an exhaustive pictorial exposé.  

Kardanpour, Z, Jakobsen, O.S. & Esbensen, K.H. (2015b) Counteracting soil heterogeneity sampling for environmental 
studies (pesticide residues, contaminants transformation) - TOS is critical. Proceedings 7.th World Conference on 
Sampling and Blending (WCSB7), p.205-209.  

 

Augmented argumentation re. primary sampling a.o. The following has been added: 

The primary sampling was specifically intended to correspond to current sampling traditions in the soil and 

microbiology communities. In other studies efforts have been made to optimize each individual field sample, 

for example with respect to the famous “Gy’s formula”, from which control over the so-called Fundamental 

Sampling Error is often sought. However, in the present study it is a major point to outline how the 

variographic approach a.o. lead to a procedure with which to characterize the magnitude of the total 

sampling-plus-analytical error and thus to be warned of the need to control (better) all the inherent 

sampling errors, see e.g. DS 3077 (2013) for a comprehensive introduction.  

 

Rational for a central Roman Square etc. The follwing has been added: 

The experimental design allows comparison of the small-scale and large-scale variability. All profiles can 

for example be directly compared with the level and variation at the small-scale experiment, by the 

pertinent mean ±2 SD. This is just for visual orientation however and not to be confused with the nugget 

effect, a much more general characterisation of the small(est) scale variability pertaining to below lag = 1, 

summing up and averaging this information for all the sample pairs in the transect. 

 

General rationale of paper; further elucidation. The following has been added: 

In cases where the next step in studies might be assessment of the main factors driving the spatial 

heterogeneity of soil contamination analytes for example, the 1-D (or 2-D X-Y) approach advocated here, 

will only serve as a basis for proper selection of experimental material to be taken to the laboratory - upon 

which further considerations will focus on, say, the potential factors involved in contaminant input and 

transport a.o. Note that these latter processes manifest themselves primarily in the Z-direction, where it is 

by no means a given that application of the same variographic approach (or geostatistical modelling) will 

necessary give meaningful results.   

 



 

Reviewer #2 did not like the use of “profile” in the meaning of a horizontal 1-D profile.  

We agree that this is confusing in the soil science world. We have replaced all such use with the “transect“. 

 

 

We hope the revision has improved the manuscript sufficiently to allow publication. 

Sincerely yours,  

Zahra Kardanpour, Ole Stig Jacobsen, Kim H. Esbensen 
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Abstract 16 

This study is a contribution to development of a heterogeneity characterisation facility for 17 

‘next generation’ soil sampling for example aimed at more realistic and controllable pesticide 18 

variability in laboratory pots in experimental environmental contaminant assessment. The 19 

role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, 20 

loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is 21 

described (to be compared with e.g. minerogenic parameters), including a brief background 22 

on how heterogeneity affects sampling/monitoring procedures in environmental pollutant 23 

studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop 24 

a more general fit-for–purpose soil heterogeneity characterization approach. All parameters 25 

were assessed in large-scale transect (1-100 m) vs. small-scale (0.1 –0.5 m) replication 26 

sampling pattern. Variographic profiles of experimental analytical results from a specific well 27 

mixed soil type concludes that it is essential to sample at locations with less than a 2.5 meter 28 

distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, 29 

inflated compositional variation in experimental pots; this range is an inherent characteristic 30 

of the soil heterogeneity and will differ among other soils types. This study has a significant 31 

carrying-over potential for related research areas e.g. soil science, contamination studies, and 32 

environmental monitoring and environmental chemistry. 33 

 34 

Keywords: Heterogeneity characterisation, soil, variogram, large-scale, representative 35 
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sampling, Theory of Sampling (TOS), MCPA, biomass, CFU 38 

1. Introduction 39 

All parameters for realistic, effective integration of variability over different scales are directly 40 

related to soil heterogeneity. There is a growing need for an integrated understanding of 41 

contaminant behaviour  in soil pollution studies (Arias-Estévez et al. 2008; Crespin et al. 42 

2001; Johnsen et al. 2013; Li et al. 2006; Rodriguez-Cruzet al. 2006; Sørensen et al. 2006; 43 

Torstensson and Stark 1975; Rasmussen et al. 2005). In this context there is a missing link in 44 

the form of soil heterogeneity and its effective characterization, a feature often overlooked. 45 

Heterogeneity characterisation is the first, and in some cases the most important step, in soil 46 

contaminant studies, with relationships to various other aspects of environmental research 47 

and monitoring. A result of introducing more valid soil heterogeneity characterisation will be 48 

improved soil sampling procedures (Kardanpour et al. 2014; Kardanpour et al. 2015a,b), 49 

which in turn will contribute towards improved environmental fate study reliability 50 

(Boudreault et al. 2012; Chappell and Viscarra Rossel 2013; de Zorzi et al. 2008; Lin et al. 51 

2013; Mulder et al 2013; Totaro et al. 2013).  52 

Even in simple systems, the variability and risk for misinterpretation may have strong effect 53 

on parameterisation of processes relating to compound fate studies. These latter issues are 54 

being increasingly more recognised, as is the lack of appropriate methods to ensure 55 

documented representativity of the experimental batch volumes/masses with respect to the 56 

surrounding geology and biotic/abiotic soil characteristics. There is an urgent need for 57 

scientifically based experimental approaches, scale-up procedures and attendant principles 58 

for parameterisation of variability in these types of natural systems(Kardanpour et al. 2014; 59 

Adamchuk et al. 2011; Chappell and Viscarra Rossel 2013; de Zorzi et al. 2008). 60 

Of particular interest will be a newly developed facility for empirical variability 61 

characterisation, which allows heterogeneity to be mapped at problem-dependent scale 62 

hierarchies. Based on this, it is possible to devise optimised sampling strategies that will allow 63 

fit-for-purpose representativity with respect to laboratory experiments depending of similar 64 

(or at least comparable) soil samples (pots). For this purpose the Theory of Sampling (TOS) 65 

delivers benchmarks measures expressing acceptable maximum heterogeneity limits and in 66 

the case of violations/transgressions furthers a complete understanding of how to identify 67 

and eliminate the detrimental sampling errors and provides tools for unambiguous mixing 68 

effectiveness. Combining these tools with specific knowledge on the relevant contaminant 69 

processes and compound properties, it will be possible to address the critical scale-dependent 70 

variability with increased confidence based on more realistic environmental parameter 71 

delineation. 72 

We here introduce the variographic approach mainly for the cases of 1-D and 2-D as a means 73 

of characterising the heterogeneity in the X-Y plane. Compared to the typical major variability 74 

in the Z-direction of soil depth profiles (soil horizons, layers, geological formations), the linear 75 
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(1-D) or 2-D heterogeneity within soil horizons is significantly smaller, although this is exactly 80 

the kind of heterogeneity the present study aims at controlling. Contrary to depth profile 81 

zonation a.o. the within-horizon 1-D and 2-D heterogeneity complies with the requirements of 82 

both TOS and geostatistics, i.e. spatial heterogeneity can be modelled variographically w.r.t. a 83 

physically  meaningful average level (the inherent stationarity assumption in geostatistics), e.g. 84 

Fig.s 2-5. It is not meaningful to apply variographic characterisation on measurement series 85 

which contain discontinuous shifts, upsets or other disrupt, level changes, as is the prime 86 

characteristicon of soil depth zonations. The geostatistical tradition of modelling 2-D patterns 87 

based on projection onto a 1-D transect is also not free from debatable issues1. In the present 88 

context all isotropic 2-D heterogeneity patterns can be characterised comprehensively by a 89 

randomly selected 1-D direction (transect). In all sampling operations there should 90 

pererentially always be some sort of random selection involved, unless compelling geo-91 

science reasons exists for choosing a direction related to the genesis of the specific 92 

heterogeneity met with, e.g. choosing a 1-D transect either along a dominant plow direction. 93 

This study focuses on development of the necessary heterogeneity characterisation for 94 

sampling/monitoring and multi-parameter modelling practices, allowing implementation of 95 

realistic pesticide variability in experimental environmental contaminant assessment studies. 96 

The study has a significant carrying-over potential for related research areas e.g. soil science, 97 

contamination studies, and environmental monitoring. 98 

We here focus on characterization of soil heterogeneity in terms of soil moisture, organic 99 

matter (LOI), biomass, microbiology, MCPA sorption and mineralization. The measured 100 

parameters are here used to illustrate effective management of heterogeneity; this particular 101 

location has been studied before in its own right. Following two earlier complementary 102 

studies, the focus below is on the necessary representativity demands when facing compound 103 

fate and mineralization studies (Kardanpour et al. 2014; Kardanpour et al. 2015). Field 104 

observation indicates a very well mixed sandy soil with almost no visual heterogeneity 105 

features. But the main issue is: does this apparent uniformity extend to all fate compounds? 106 

How is it possible to document that small sample masses, as typically used in pot experiments, 107 

are representative of their entire parent field, or to which sub-field scale? In other words, how 108 

can results and conclusions from laboratory experiments be reliably scaled-up and 109 

generalized  to larger scales? 110 

2. Materials and Methods 111 

                                                             
1 The present authors do not wish to reject the 2-D geostatistical tradition with this statement, but in relation to the 

present matters this issue is better deferred to another occasion in which the 2-D modelling issuecan be  presented 

and discussed in full -  this issue is a legitimate and interesting area for a fruitful debate. Entering into a 3-D 

geostatistical modelling realm, there are also here issues that in need of further discussion, e.g. the required minimum 

number of samples (measuements) needed for meaningful, and stable variogram calculation, The present foray only 

aims at presenting the power of a simple 1-D variogram characterisation operator based on TOS, upon which several 

versions of potential follow-up generalisations to 2-D and 3-D cases may be entertained.  
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2.1. Location and sampling pattern 113 

Fladerne Bæk is situated on the Karup peri-glacial outwash plain, Jutland, Denmark (56°N, 114 

9°E) South West of Karup airport. The substratum is an arable sandy soil which has been tilled 115 

and cropped for more than 100 years, mainly supporting barley and potatoes during last 30 116 

years. Thus this is a typical “very well mixed” soil type compared to the much more 117 

heterogeneity glacial clayey soil types treated in (Kardanpour et al. 2014). Soil samples were 118 

collected from the topsoil (A-horizon) in cylindric cores; the present samples cover depth 119 

interval from 0-15 cm. The 60 m long sampling transect was roughly N-S. Each field sample 120 

included 200-300 grams of fresh soil. At the center of this transect at point 29, seven 121 

additionally samples form a roman grid (3 x 3) replication experiment with 0.3 meter 122 

equidistance. 123 

The sampling rationale aimed at variographic fate characterization commensurate with a long 124 

profile at a scale length between 1m and 60 m; the roman square was intended as a basis for 125 

conventional statistical treatment (average and, standard deviation). This central sample 126 

layout serves as a small scale local ‘replication experiment’ compared with the transect 127 

dimensions (Kardanpour et al. 2014). In total 64 samples were collected, 57 samples from the 128 

long profile and nine samples of the small grid (two samples identical to two from the 129 

transect), one in between and three more in each side of transect with the same distance as 130 

the first three in the center of transect. The original fresh soil was kept frozen until use. 131 

The primary sampling was specifically intended to correspond to current sampling traditions 132 

in the soil and microbiology communities. In other studies efforts have been made to optimize 133 

each individual field sample, for example with respect to the famous “Gy’s formula”, from 134 

which control over the so-called Fundamental Sampling Error is often sought. However, in the 135 

present study it is a major point to outline how the variographic approach a.o. lead to a 136 

procedure with which to characterize the magnitude of the total sampling-plus-analytical 137 

error and thus to be warned of the need to control (better) all the inherent sampling errors, 138 

see e.g. DS 3077 (2013) for a comprehensive introduction.  139 

2.2. Theory of sampling and variographic analysis 140 

The Total Analytical Error (TAE) is most often under acceptable control in the analytical 141 

laboratory as regards to both accuracy and precision. A sampling procedure must be both 142 

correct (ensures accuracy) and reproducible (ensures precision); TOS defines representativity 143 

in a rigid conceptual and mathematical approach. The critical issue is always, even for TOS-144 

compliant sampling, that analytical results are but an estimate of the true (average) analytical 145 

grade of the lot sampled, because the aliquot is based on only a miniscule mass (0.5 – 2.0 g) 146 

compared to the entire field topsoil layer it is supposed to represent (typical mass/mass 147 

sampling ratios range 1:103 to 1:109). The full sampling-analysis process and its 148 

characteristics is therefore the only guarantee for the relevance and reliability of the aliquot 149 

brought forth for analysis. The fundamental TOS principles need to be applied to all 150 
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appropriate scales along the entire ‘field-to-aliquot’ pathway, not only to the primary 155 

sampling, but in particular also to the successive stages of mass reduction in the laboratory 156 

before the ultimate analytical aliquot extraction. The only change in this multi-stage sampling 157 

chain is the operative scale (TOS principles and unit operations are scale-invariant). A 158 

comprehensive overview of all subsampling issues (laboratory mass reduction) has been 159 

published in (Petersen et al. 2004), which does not include the ‘coning-and-quartering’ 160 

approach, despite the fact that this approach has enjoyed some popularity e.g. for certain field 161 

applications to soils (Gerlach et al. 2002). However the coning-and-quartering approach has 162 

been severely criticized in the professional TOS literature, e.g. most recently in (Esbensen and 163 

Wagner 2014); from a representativity point of view coning this mass reduction approach 164 

must be strongly discouraged 165 

On the basis of a correct sampling and mass reduction regimen, it is possible to characterize 166 

the inherent auto-correlation between units of a process/lot or along 1-D transect (or 167 

transect). The semi-variogram (in this work referred to simply as the ‘variogram’) is employed 168 

to describe the variation observed between sample pairs as a function of their internal 169 

distance.  170 

To calculate a variogram a sufficient number of units (increments/samples) are extracted 171 

equidistantly, spanning the process interval of interest, or the full transect length, as needed. 172 

The variogram is a function of a dimensionless, relative lag parameter, j, which is this distance 173 

between two units, the analytical results of which are compared. Full details of the 174 

variographic approach are described in (DS3077 2013; Esbensen et al. 2007; Esbensen et al. 175 

2012a; Esbensen et al. 2012b; Gy 1998; Minkkinen et al. 2012; Petersen and Esbensen 2006; 176 

Petersen et al. 2005). Variograms may have apparent different specific appearances, but three 177 

fundamental characterizing features carry all the important information related to sampling 178 

errors and the heterogeneity along the transect in any-and-all variogram: the sill, the range, 179 

and the y-axis intercept, termed the nugget effect. Definitions of these features are given 180 

below.  181 

The Sill is the y-axis value at which the variogram levels off and becomes horisontal. The Sill 182 

represents the total variance calculated from all experimental heterogeneity values. The sill 183 

corresponds to the overall maximum variance for the data series if/when calculated without 184 

taking their ordering into account. 185 

The Range is the lag distance beyond which the variogram v(j) levels off and reaches a stable, 186 

constant Sill. Samples taken at lags below the Range are auto-correlated to a larger and larger 187 

degree as the lags gets smaller and smaller. The range carries critical information as to the 188 

local heterogeneity with respect to the objective of the present method development. 189 

The Nugget Effect indicates the amount by which the variance differs from zero when a 190 

variogram is extrapolated backwards so as to correspond to what would have been a lag = 0. A  191 

lag equal to zero has no physical meaning, but it represents the hypothetical case of two 192 

samples extracted at the same time and location (indeed from exactly the same physical 193 
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volume of the lot). Thus although ‘true replicates’ from the exact same soil location (volume) 197 

are not physically possible, the nugget effect never-the-less allows to estimate the 198 

corresponding discontinuous variance difference. This can be viewed as a collapse of the 1-D 199 

sampling situation (profile, transect) to a stationary sampling situation (small lots, 2-D and 3-200 

D lots), see (DS3077 2013; Esbensen et al. 2007, 2012a, 2012b) for further descriptions. 201 

 202 

The nugget effect has a special interest, it contains all sampling, - sample handling/processing 203 

and analytical errors combined, which makes up the total measurement uncertainty. A 204 

variogram with a high nugget effect w.r.t. the sill signifies a measurement system not in 205 

sufficient control (DS3077 2013; Esbensen and Wagner 2014). 206 

 207 

Figure 1. A generic variogram, schematically defining nugget effect, sill, and range. The 208 

illustration depicts an increasing variogram, which is the most often occurring type of 209 

variogram in the case of significant auto-correlation (for lags below the range)(Kardanpour et 210 

al. 2014). The nugget effect magnitude relative to the sill in this illustration is significant of an 211 

acceptable total measurement system, < 20%. 212 

Variogram calculations are strongly influenced by outliers and/or trends. A valid variographic 213 

analysis often necessitates outlier deletion after proper recognition and description and 214 

occasionally also de-trending of the raw transects data if/when trends are dominant or 215 

severe. In this study the raw data transect was de-trended using a simple regression slope 216 

subtraction from the data set where needed. 217 

2.3. Mass reduction/subsampling procedure 218 

After the stored samples were thawed and accommodated for 20 °C for a week, before being 219 

processed further. The primary field sample size (200-300 gram) must be reduced to the 220 

analytical sample size (1-2 gram), not at all a trivial mass-handling issue. In order to provide 221 

representative sub-samples, TOS principles were applied scrupulously to all mass reduction 222 

steps. Thus samples were dried and macerated, or ground, where appropriate, and 223 

subsequently deployed in a longitudinal tray, forming a 1-D lot, using the soil-adapted bed-224 

blending/cross-cut reclaiming technique described in detail in (Petersen et al. 2004) and 225 

Kardanpour et al. (2015b). These pre-blended micro-beds were cut by 10 randomly selected 226 
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transverse increments along the elongated dimension which were aggregated, resulting in 228 

subsamples of 20-30 gram each. The exact same procedure was repeated in a secondary mass 229 

reduction step ending up with the final analytical mass (2 gram) for the wet samples analyses. 230 

This procedure has been honed to full representativity in the course of this project specifically 231 

so as to do away with all of the post-primary-sampling errors in order better to be able to 232 

focus in the latter and the variogram deployment, ibid.  233 

The remainders of the secondary sub-samples were air-dried for four days in lab temperature 234 

(20 °C), to be used in parallel sorption experiments. As a further scale-down iteration, a 235 

similar bed–blending/cross-cut reclaiming were used to provide analytical samples of 2 gram, 236 

also based on 10 increments each. 237 

Kardanpour et al. (2015b) describe the “from-field-sampling-to-aliquot” pathway in full 238 

details, complete with an exhaustive pictorial exposé.  239 

2.4. Analytical experiment methods 240 

MCPA Sorption  241 

The sorption experiment started in glass vials with Teflon caps containing 1 g of the 242 

respective soils, and 9 ml of Milli-Q water. The vials were kept for 24 hours and then shaken in 243 

a horizontal, angled shaker prior to addition of 1 mL14C-MCPA stock solution, with 10,000 244 

dpm in each individual vials. Sorption experiments were performed with two initial 245 

concentrations: 1 and 100 mg MCPA/L. Sorption was determined for MCPA in all off the 64 246 

soil samples, using 14C-labeled MCPA. 247 

After adding the stock solution, the vials were incubated in the shaker for 48 hours and then 248 

placed vertically for another 48 hours, all at 20 °C. Subsequently 2 mL of the solution were 249 

transferred to the 2 mL Eppendorf micro-centrifuge tubes and centrifuged at 14,500x g for 7 250 

min. Radioactivity in 1.5 mL supernatant was determined using a Wallac 1409 Liquid 251 

Scintillation Counter after mixing it with 10 mL OptiPhase Hisafe3 scintillation cocktail. 252 

MCPA Mineralization  253 

Mineralization experiments were carried out in100mL glass jar with air tight lid. Two gram 254 

soil (wet weight) was placed in small plastic vials before adding 0.5 mL of 14C -labeled MCPA 255 

(5 mg MCPA kg-1 soil) with a radioactivity of 2,000 dpm. In the glass jar a LSC vial was also 256 

placed containing 2 mL 0.2 M of NaOH as a CO2 trap. The jars were incubated at 20°C for 14 257 

days. Mineralization encountered as %-evolved 14CO2 was measured at day 3, 7 and 14. The 258 

CO2-traps were changed and replaced with a fresh trap at each sampling date.14C in the NaOH 259 

was measured as described in the sorption experiment by Liquid Scintillation Counting. 260 

Biomass; substrate induced respiration (SIR) 261 

The same set up as used for MCPA was used for the glucose mineralization with adding 0.5 262 

mL14C -labeled glucose with 5000dpm to the 2 gram of soil. All other set up details, equipment 263 
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and experimental design wereidentical. Alkaline traps were replaced with fresh alkaline traps 264 

and measured after 4 and 24 hours considering the rapid respiration of the glucose and 14C 265 

measured as described in the sorption experiment by Liquid Scintillation Counting. 266 

Conversion into biomass were according to ( Dictor et al 1998; Tate et al. 1988). 267 

Microbiology, Bacteria Colony Formation Units (CFU) 268 

A suspension was made with 2 gram of soil into 200 mL sterile water and after shaking for 15 269 

minutes, diluted with sterilized water ended in two different dilutions for each sample; with 270 

three and four order of magnitude To measure the soil microbiology, 1 mL of each sample 271 

were placed on a Petrifilm® (3M,  Saint Paul, Minnesota, USA) sheet and CFU was counted after 272 

3 and 7 days of incubation at 20°C.  273 

Insert something as LOI, define all acronyms 274 

3. Result 275 

3.1. Geochemical profiling 276 

In order to show the natural soil heterogeneity in a comparable format, Figures 2-5 illustrates 277 

the individual large-scale parameter transects; concentration vs location of the samples taken 278 

from the transect in the Fladerne field. Also shown is the variation of the central small-scale 279 

replication samples is shown as mean concentration ± 2 SD with dashed horizontal lines in 280 

the figures. The large-scale variation of the soil moisture, LOI and the biomass content (SIR) 281 

are to be compared to the small scale replication result for the same parameter in each graph, 282 

Figure 2.  283 

The same comparison graph illustrated for the MCPA sorption in Figure 3 for two different 284 

initial MCPA concentrations, as it is clear, the soil sorption behavior show different variation 285 

with different concentrations. The results of the MCPA mineralization of the soil in Figure 4 286 

also show different variability with different mineralization steps. The transect of the MCPA 287 

mineralization is illustrated for different mineralization steps: first three days, four to seven 288 

days and eight to fourteen days. The two latter periods shows rather a similar variation 289 

because these two periods are in the final part of the mineralization development, Figure 6.  290 

The soil microbiology (Log (CFU/g soil)) transect after seven days of incubation is also 291 

illustrated in Figure 5. 292 
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 299 

Figure 2. Fladerne Bæk, transects of soil moisture (%), LOI, and biomass (mg C/g); soil 300 

biomass vs. sample number (transect location). Dashed lines represent mean ± 2 SD of the 301 

small-scale replication experiment. 302 

 303 
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 306 

Figure 3. Fladerne Bæk, transects of Kd MCPA sorption vs sample number (transect location), 307 

Kd,1: MCPA (1 mg/ L), Kd,100: MCPA (100 mg/ L). Dashed lines represent mean ± 2 SD of the 308 

small-scale replication experiment. 309 
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 312 

Figure 4. Fladerne Bæk, transects of MCPA mineralization in three different periods: 0-3days, 313 

4-7days, 8-14 days vs. sample number (transect location). Dashed lines represent mean ± 2 314 

SD of the small-scale replication experiment. 315 

 316 

Figure 5. Fladerne Bæk, transects of log (CFU/g soil) vs sample number (transect location)  317 
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 322 

Figure 6. Average mineralisation rate for all 57 samples: Error bars are based on the standard 323 

deviation (solid bars) and the range of the whole sample set (stippled bars) 324 

The Fladerne case represent an inherently very well mixed soil type, which has been under 325 

the plow for up to 100 years2. This case was selected to represent the one (almost extreme) 326 

end of a spectrum (only little inherent heterogeneity) from which to compare a whole 327 

spectrum of increasingly more heterogeneous soil types, horizon and geological formations. 328 

Our own studies went a fair distance in this direction as possible with the (Kardanpour et al. 329 

2015), but obviously many, even more heterogeneous cases exist and are on record in the 330 

literature. It is for these, more and more so, that the present exposé has been developed.   331 

3.2. Experimental variograms 332 

Prior to variogram calculation, all parameters have been checked for outliers and trends, 333 

Figures 2-5. Variograms have been calculated with using large scale experimental transects 334 

without model fitting of the variogram parameters. This is common in geostatistics, but not 335 

used here as TOS’ variogram approach is not used for kriging but solely for heterogeneity 336 

characterization and interpretation.  337 

Two different behaviors can be observed as displayed by two parameters groupings, the 338 

increasing Min1, LOI and Biomass variograms at the top, versus the reminder of parameters, 339 

which show a strongly similar form and behavior, Figure 7. As the sill levels represent the 340 

maximum parameter variation along the transect, parameters Min1, LOI and Biomass clearly 341 

display the highest transect variability. All variograms are of the increasing type with a 342 

distinct nugget effect. Following (DS3077 2013), the %-age nugget effect in relation to the sill, 343 

termed RSV1-dim, is an expression of the total measurement uncertainty MU including TSE 344 

                                                             
2 The consequence of taking care of this, low-heterogeneity end of the spectrum, is that there is a limit to the degree 

of transect heterogeneity to be expected, as indeed witnessed in Fig.s 2-5, where concentrations only comparatively 

rarely deviate outside the +/- 2 STD of the central Roman square design employed. This specific soil- and tilling history 

feature must not lead to untoward confusion and illegitimate generalizations however. It is the general applicability of 

the variographic approach which is illustrated here, as it happens, on a very well-mixed substratum. Our parallel 

(Sjælland ..) study showcases the approach on a significantly more heterogeneous case, in which the central Roman 

square does not bracket most of the transect concentration manifestations. What is the rationale of +/-2SD ??? 
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(Esbensen and Wagner 2014). In the present study this MUtotal quality index ranges from 15% 350 

(Kd, 100) to 75% (Min1). There is thus an appreciable difference concerning the possibility to 351 

measure and characterize soil heterogeneity along the transect, ranging from very good to 352 

very poor. This facility for total measurement uncertainty validation is a powerful TOS 353 

benefit, with a wide carrying-over potential to many other sciences and application fields. 354 

This feature was is described in full in Esbensen & Romanach (2015) in which, by the way, the 355 

1-D transect of the present study appears in the form of a 1-D industrial process measurement 356 

series, illustrating the surprising generality of the variogram approach - modeling and 357 

interpretation of the variogram from such disparate data types are identical, showing the way 358 

for application also to natural process in the geo-science and environmental science realms.  359 

 360 

 361 

Figure 7. Synoptic variogram of all parameters in the present study comparing nugget effect, 362 

sill and range levels 363 

 364 

Applying the multivariate data analysis approach developed in the former studies 365 

(Kardanpour et al. 2014; Kardanpour et al. 2015), i.e. using the variograms as the input (X-366 

matrix) to a Principal Component Analysis (PCA) with no centering and no scaling (see further 367 

below), the first component is found to represent 99% of the total variogram variance over all 368 

parameters, making it easy to find the average range characterizing the heterogeneity of the 369 

Fladerne transect, ca. 5 meter. Figure 8 shows the loadings for PC components 1 and 2, 370 

displayed in a fashion that mimics a spectrum. As expected the PC-1 loadings delineates a 371 

general variogram shape, in fact presenting the average of all variograms in Figure. 7. The PC-372 

2 loadings accounts for deviations herefrom, as caused by the individual variograms (mainly 373 

expressing a higher or lower average slope), a general feature, markedly overprinted by 374 

random deviations. This component models the set of different slopes of the individual 375 

variograms, and it accounts for less than 1% total variance, but never-the-less lends itself 376 
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easily to be interpreted as the well-known spectroscopic ‘tilting’ signature, (Martens & Næs 381 

1991). 382 

 383 

 384 

        385 

Figure 8. PCA (Xvariogram) loading plot for PC-1 (left) and PC-2 (right). The Xvariogram matrix has 386 

not been subjected to pre-treatment before PCA (no centering, no scaling). The range of the 387 

average variogram shape as represented by the PC1 loadings is ca. 5meters. 388 

In our earlier studies, (Kardanpour et al. 2014), can be found a discussion pro et contra pre-389 

treatment of an X-matrix made up of variograms. When basing variograms on heterogeneity 390 

contributions (a one-to-one transformation of the original analytical concentrations), this 391 

issue becomes moot, as this transformation is already performing what amounts to scaling. In 392 

the present paper we therefore did not apply centering, opting for the easily interpreted and 393 

useful appearance of the average variogram shape, Figure 8 (left). 394 

4. Discussion 395 

Aiming for a general approach to soil heterogeneity characterisation, a set of naturally 396 

occurring organic, anthropogenic and biota parameters were studied at scales from 1 to 60 397 

(100) m to be compared with other, for example minerogenic parameters (see further below). 398 

The first step is always inspection of the raw data set with respect to potential outliers and/or 399 

trends. In the present study the geochemical parameter transects show no outliers and no 400 

strong trends, Figures 2-5.  401 

The experimental design allows comparison of the small-scale and large-scale variability. All 402 

transects can for example be directly compared with the level and variation at the small-scale 403 

experiment, by the pertinent mean ±2 SD. In figures 2-5 the variation of the parameters in any 404 

selected small scale window can not be overestimated to the large scale, indeed it can not be 405 

also obtained from a small scale replication study deviation estimate.  406 

 This is just for visual orientation however and not to be confused with the nugget effect, a 407 

much more general characterisation of the small(est) scale variability pertaining to below lag 408 

= 1, summing up and averaging this information for all the sample pairs in the transect. 409 
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Any short interval on a transect can be considered as a small scale study in its own right. In 414 

this context there is a clear difference between the empirical variability in different segments 415 

along each transect: the local variability does not necessarily extend to larger scales. This has 416 

an important practical conclusion: any local small-scale sample collection cannot be 417 

generalised to larger scales. Unwitting or un-reflected scaling-up of small scale experimental 418 

organic, anthropogenic and biota fate and mineralization results will bring an inflated 419 

uncertainty outside experimental control. The mineralisation parameters which show 420 

different variation behaviour in the different mineralisation steps send an important message 421 

regarding studies concerning time-dependent characterisations. A similar difference is 422 

observed for MCPA sorption with different concentrations, i.e. when studies are concerned 423 

with concentration-dependent phenomena. 424 

The general local variability behaviour is however well captured as the below-range part of 425 

the general variogram loading spectrum for PC1. The variogram is able to generalise the 426 

common local scale behaviour. With TOS, there is synoptic information residing in the range, 427 

sill and nugget effect for each individual parameter. Whenever heterogeneity variograms 428 

display a range, this relates to the ease and risk associated with attempting to secure field 429 

samples with minimum variability: Sampling with smaller inter-increment lag distances than 430 

the range makes it possible to use the inherent auto-correlation between samples in a 431 

beneficial fashion.  432 

From the earlier studies (Kardanpour et al. 2014; Kardanpour et al. 2015) the overall 433 

conclusion was only to employ composite sampling. In the present context this means that, 434 

wherever practically possible, increments should only be collected with a maximum of half 435 

the observed range as a means to avoid unnecessary compositional variability effects due to 436 

the inherent soil scale heterogeneity. It follows that in order to minimize the total sampling 437 

error, increments must be sampled with a maximum lag of 0.5*range, preferentially smaller. In 438 

the present soil variograms a general range of 5 meters is observed for multivariate 439 

variographic approach of the parameters, Figure 8. It is evident that a thorough mixing of the 440 

selected set of increments is mandatory to sample locations with less than 2.5 meters distance 441 

in between; for other soil types/analytes other numerical magnitudes apply. 442 

The variograms show different behaviour with respect to mineralisation stages. This is 443 

expected from the slower rate of the mineralisation in the latter stages, Figure 6. The later 444 

stages display a flat variogram that only represent little auto-correlation between sample 445 

locations, Figure 7, and the low sill level representing low variation along the transect. As it is 446 

common in environmental studies, results of the mineralisation are mostly reported in terms 447 

of the accumulated mineralisation rate (see Figure 6 as an example), i.e. results that are 448 

mostly affected by the first stages of the mineralisation.  449 

Most of the variograms level off quickly after only a few lags (range ca. 5 meters) followed by 450 

a flat (or slightly increasing) trend, while first step of MCPA mineralisation, biomass and LOI 451 

show more markedly increasing variograms, Figure 7. 452 
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The CFU sill level is lower than natural organic and anthropogenic compounds indicating 455 

lower variability of soil microbiology at the large scale(s). This can be compared with results 456 

from a series of other large-scale studies on different microbial communities for different 457 

anthropogenic and natural compound mineralization, which also showed that microbial 458 

biomass seem to be stable intrinsic parameter of longer periods. (Sørensen et al. 2003; 459 

Bending et al. 2001; Bending et al. 2003; Walker et al. 2001). 460 

It is always a matter for discussion when theoretically anticipated correlations between the 461 

physiochemical/microbial activities fail to appear in specific real-world case studies. The 462 

more complex compounds have shown a more irregular, patchy fashion of decaying due to 463 

more specific microbial communities (but still generally isotropic in nature). Analysis of soil 464 

parameters rarely gives a clear pattern; this seems to be associated to a number of not-465 

included or unknown parameters, resulting, in some cases in a high degradation potential, but 466 

low elsewhere (Sørensen et al. 2003; Rasmussen et al. 2005; Bending et al. 2001; Walker et al. 467 

2001). Upon reflection this is no mystery however, but simply a result of local soil 468 

heterogeneity, which cannot be formulated or predicted based on the physiochemical 469 

biological or microbial correlation of the properties of soil in large scale studies. A 470 

variographic heterogeneity characterization at all scales is thus a beneficial pilot experiment 471 

able to focus on the relevant heterogeneities characterizing individual, or group of parameters 472 

in their proper scale-dependent relationships. 473 

Summing up the results of all measured parameters studied here, for environmental purposes 474 

and objectives related to soil parameters at field scale, it is advantageous to employ a 475 

variographic heterogeneity characterisation as a pilot study. Results here from will lead to a 476 

comprehensive understanding of the spatial variability and auto-correlation of the 477 

parameters in the field.  478 

The results from the present study show that for well-mixed sandy soil it is recommended to 479 

sample locations with less than 2.5 meters inter-distance in between, preferentially smaller. It 480 

is necessary to conduct a similar variographic pilot experiment in order to outline the 481 

relevant scale-heterogeneity characteristics for other soil types, which unavoidably will tend 482 

to show more irregular spatial heterogeneity patterns – each principal soil type will in 483 

principle be characterised by a specific range, but there is a further caveat. Each analyte may 484 

in fact display its own, more or less specific range, as witnessed above, as well as by a plethora 485 

of studies in the literature. When controlling the spatial heterogeneity is of the essence, the 486 

logical solution is to design the sampling according the the analyte with the smallest range, i.e. 487 

the most heterogeneously distributed analyte – this will by necessity also take care of all other 488 

analytes with higher ranges. If emphasis is on sampling costs (a not totally unlikely alternative 489 

scenario that may, or may not clash with other requirements of which only one really matters 490 

though: representativity) it is a comforting thought that all analytes are measured on the 491 

same final aliquot. By carefully optimising the primary field sampling according to the 492 

principles presented here, all analytes will be measured with the same, optimal relevance, 493 

indeed w.r.t. the same representativity. If sampling is done right from the start, there are no 494 
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extra costs – while the opposite is a very different case, as should be abundant clear.  506 

Results from a parallel study on the minerogenic compounds for the same Fladerne field 507 

(Kardanpour et al. 2014) show a markedly similar soil heterogeneity compared to the present 508 

anthropogenic compounds. The nugget effect for most of the minerogenic compounds are of 509 

the same order of magnitude as those for the anthropogenic compounds, i.e. the total 510 

measurement system and procedures (sampling/handling/processing/analysis) pass all the  511 

quality criteria for representative sampling established in the recent sampling standard 512 

(DS3077 2013). 513 

In cases where the next step in studies might be assessment of the main factors driving the 514 

spatial heterogeneity of soil contamination analytes for example, the 1-D (or 2-D X-Y) 515 

approach advocated here, will only serve as a basis for proper selection of experimental 516 

material to be taken to the laboratory - upon which further considerations will focus on, say, 517 

the potential factors involved in contaminant input and transport a.o. Note that these latter 518 

processes manifest themselves primarily in the Z-direction, where it is by no means a given 519 

that application of the same variographic approach (or geostatistical modelling) will 520 

necessary give meaningful results (see earlier footnote).        521 

5. Conclusions 522 

A pilot experiment aimed at an intrinsic 1-D soil heterogeneity characterization is a critical 523 

success factor for laboratory studies relying on field samples to provide the experimental 524 

pots, which for replicate and comparative study objectives need to be as similar as at all 525 

possible. As a case study the variographic results for sandy soils show that the distance 526 

between two sample spot must be less than 2.5 meters for the present set of organic 527 

compounds and soil type. Specific soil types and/or other analytes will in principle display 528 

different ranges and nugget effects, and hence our call for systematic deployment of the 529 

variographic pilot experiment, from which can be derived all necessary information for 530 

designing an optimal sampling plan e.g. identifying the analyte with the smallest range (for 531 

significantly correlated analytes). For the case of well-mixed soil components, a general PCA-532 

approach for modelling a whole set of variograms may be useful in addition to individual 533 

analyte consideration. 534 

Without this type of information, experimental fate study work is essentially devoid a valid 535 

basis as regards interpretation, scale-up and scientific generalisation of the experimental 536 

results back to the field scale. A large-scale 1-D transect sampling can reveal the inherent 537 

heterogeneity at all scales from the smallest local sampling equidistance up to the maximum 538 

experimental length scale studied. Variographic analysis was here employed successfully to 539 

soil heterogeneity at scales between 1 and 100 meters, other scenarios may require other 540 

numerical parameters, while the general approach remains identical.  541 

The TOS-guided variogram pilot study approach illustrated here has a substantial carrying-542 

over potential to geochemistry and environmental science, as well as other application areas. 543 

It is even applicable to dynamic systems, i.e. to natural or technological processes in these 544 
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realms.  547 
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