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Local versus field scale soil heterogeneity characterization - a challenge for
representative sampling in pollution studies
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Abstract

This study is a contribution to development of a heterogeneity characterisation facility for
‘next generation’ soil sampling for example aimed at more realistic and controllable pesticide
variability in laboratory pots in experimental environmental contaminant assessment. The
role of soil heterogeneity on quantification of a set of exemplar parameters is described,
including a brief background on how heterogeneity affects sampling/monitoring procedures
in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis
has been applied to develop a more general fit-for-purpose soil heterogeneity
characterization approach. All parameters were assessed in large-scale transect (1-100 m) vs.
small-scale (0.1 -0.5 m) replication sampling point variability. Variographic profiles of
experimental analytical results from a specific well mixed soil type concludes that it is
essential to sample at locations with less than a 2.5 meter distance interval to benefit from
spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in
experimental pots; this range is an inherent characteristic of the soil heterogeneity and will
differ among other soils types. This study has a significant carrying-over potential for related
research areas e.g. soil science, contamination studies, and environmental monitoring and
environmental chemistry.

Keywords: Heterogeneity characterisation, soil, variogram, large-scale, representative
sampling, Theory of Sampling (TOS), MCPA, biomass, CFU
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1. Introduction

All parameters for realistic, effective integration of variability over different scales are directly
related to soil heterogeneity. There is a growing need for an integrated understanding of
contaminant behaviour in soil pollution studies (Arias-Estévez et al. 2008; Crespin et al.
2001; Johnsen et al. 2013; Li et al. 2006; Rodriguez-Cruzet al. 2006; Sgrensen et al. 2006;
Torstensson and Stark 1975; Rasmussen et al. 2005). In this context there is a missing link in
the form of soil heterogeneity and its effective characterization, a feature often overlooked.
Heterogeneity characterisation is the first, and in some cases the most important step, in soil
contaminant studies, with relationships to various other aspects of environmental research
and monitoring. A result of introducing more valid soil heterogeneity characterisation will be
improved soil sampling procedures (Kardanpour et al. 2014; Kardanpour et al. 2015a,b),
which in turn will contribute towards improved environmental fate study reliability
(Boudreault et al. 2012; Chappell and Viscarra Rossel 2013; de Zorzi et al. 2008; Lin et al.
2013; Mulder et al 2013; Totaro et al. 2013).

Even in simple systems, the variability and risk for misinterpretation may have strong effect
on parameterisation of processes relating to compound fate studies. These latter issues are
being increasingly more recognised, as is the lack of appropriate methods to ensure
documented representativity of the experimental batch volumes/masses with respect to the
surrounding geology and biotic/abiotic soil characteristics. There is an urgent need for
scientifically based experimental approaches, scale-up procedures and attendant principles
for parameterisation of variability in these types of natural systems(Kardanpour et al. 2014;
Adamchuk et al. 2011; Chappell and Viscarra Rossel 2013; de Zorzi et al. 2008).

Of particular interest will be a newly developed facility for empirical variability
characterisation, which allows heterogeneity to be mapped at problem-dependent scale
hierarchies. Based on this, it is possible to devise optimised sampling strategies that will allow
fit-for-purpose representativity with respect to laboratory experiments depending of similar
(or at least comparable) soil samples (pots). For this purpose the Theory of Sampling (TOS)
delivers benchmarks measures expressing acceptable maximum heterogeneity limits and in
the case of violations/transgressions furthers a complete understanding of how to identify
and eliminate the detrimental sampling errors and provides tools for unambiguous mixing
effectiveness. Combining these tools with specific knowledge on the relevant contaminant
processes and compound properties, it will be possible to address the critical scale-dependent
variability with increased confidence based on more realistic environmental parameter
delineation.

We here introduce the variographic approach mainly for the cases of 1-D as a means of
characterising the heterogeneity in one transect direction. Compared to the typical major
variability in the Z-direction of soil depth profiles (soil horizons, layers and geological
formations), the linear (1-D) or 2-D heterogeneity within soil horizons is significantly smaller,

although this is exactly the kind of heterogeneity the present study aims at controlling.
2
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Contrary to depth profile zonation a.o. the within-horizon 1-D and 2-D heterogeneity complies
with the requirements of both TOS and geostatistics, i.e. spatial heterogeneity can be modelled
variographically w.r.t. a physically meaningful average level (the inherent stationarity
assumption in geostatistics). It is not meaningful to apply variographic characterisation on
measurement series which contain discontinuous shifts, upsets or other disrupt, level
changes, as is the prime characteristicon of soil depth zonations. The geostatistical tradition of
modelling 2-D patterns based on projection onto a 1-D transect is also not free from debatable
issues. The present authors do not wish to reject the 2-D geostatistical tradition with this
statement, but in relation to the present matters this issue is better deferred to another
occasion in which the 2-D modelling issue can be presented and discussed in full - this issue is
a legitimate and interesting area for a fruitful debate. Entering into a 3-D geostatistical
modelling realm, there are also here issues that in need of further discussion, e.g. the required
minimum number of samples (measurements) needed for meaningful, and stable variogram
calculation, The present foray only aims at presenting the power of a simple 1-D variogram
characterisation operator based on TOS, upon which several versions of potential follow-up
generalisations to 2-D and 3-D cases may be entertained. In the present context all isotropic 2-
D heterogeneity patterns can be characterised comprehensively by a randomly selected 1-D
direction (transect). In all sampling operations there should preferentially always be some
sort of random selection involved, unless compelling geo-science reasons exists for choosing a
direction related to the genesis of the specific heterogeneity met with, e.g. choosing a 1-D
transect either along a dominant plow direction.

This study focuses on development of the necessary heterogeneity characterisation for
sampling/monitoring and multi-parameter modelling practices, allowing implementation of
realistic pesticide variability in experimental environmental contaminant assessment studies.
The study has a significant carrying-over potential for related research areas e.g. soil science,
contamination studies, and environmental monitoring.

We here focus on characterization of soil heterogeneity in terms of soil moisture, organic
matter (LOI), biomass, microbiology, MCPA sorption and mineralization. The measured
parameters are here used to illustrate effective management of heterogeneity; this particular
location has been studied before in its own right. Following two earlier complementary
studies, the focus below is on the necessary representativity demands when facing compound
fate and mineralization studies (Kardanpour et al. 2014; Kardanpour et al. 2015). Field
observation indicates a very well mixed sandy soil with almost no visual heterogeneity
features. But the main issue is: does this apparent uniformity extend to all fate compounds?
How is it possible to document that small sample masses, as typically used in pot experiments,
are representative of their entire parent field, or to which sub-field scale? In other words, how
can results and conclusions from laboratory experiments be reliably scaled-up and
generalized to larger scales?

2. Materials and Methods
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2.1. Location and sampling pattern

Fladerne Bzk is situated on the Karup peri-glacial outwash plain, Jutland, Denmark (56°N,
9°E) South West of Karup airport. The substratum is an arable sandy soil which has been tilled
and cropped for more than 100 years, mainly supporting barley and potatoes during last 30
years. Thus this is a typical “very well mixed” soil type compared to the much more
heterogeneous glacial clayey soil types treated in (Kardanpour et al. 2014). Soil samples were
collected from the topsoil (A-horizon) in cylindrical cores; the present samples cover depth
interval from 0-15 cm. The 60 m long sampling transect was roughly N-S. Each field sample
included 200-300 grams of fresh soil. At the center of this transect at point 29, seven
additionally samples form a roman grid (3 x 3) replication experiment with 0.3 meter
equidistance.

The sampling rationale aimed at variographic fate characterization commensurate with a long
profile at a scale length between 1m and 60 m; the roman square was intended as a basis for
conventional statistical treatment (average and, standard deviation). This central sample
layout serves as a small scale local ‘replication experiment’ compared with the transect
dimensions (Kardanpour et al. 2014). In total 64 samples were collected, 57 samples from the
long profile and nine samples of the small grid (two samples identical to two from the
transect), one in between and three more in each side of transect with the same distance as
the first three in the center of transect. The original fresh soil was kept frozen until use.

The primary sampling was specifically intended to correspond to current sampling traditions
in the soil and microbiology communities. In other studies efforts have been made to optimize
each individual field sample, for example with respect to the famous “Gy’s formula”, from
which control over the so-called Fundamental Sampling Error is often sought. However, in the
present study it is a major point to outline how the variographic approach a.o. lead to a
procedure with which to characterize the magnitude of the total sampling-plus-analytical
error and thus to be warned of the need to control (better) all the inherent sampling errors,
see e.g. (DS 3077 2013) for a comprehensive introduction.

2.2. Theory of sampling and variographic analysis

The Total Analytical Error (TAE) is most often under acceptable control in the analytical
laboratory as regards to both accuracy and precision. A sampling procedure must be both
correct (ensures accuracy) and reproducible (ensures precision); TOS defines representativity
in a rigid conceptual and mathematical approach. The critical issue is always, even for TOS-
compliant sampling, that analytical results are but an estimate of the true (average) analytical
grade of the lot sampled, because the aliquot is based on only a miniscule mass (0.5 - 2.0 g)
compared to the entire field topsoil layer it is supposed to represent (typical mass/mass
sampling ratios range 1:103 to 1:10°). The full sampling-analysis process and its
characteristics is therefore the only guarantee for the relevance and reliability of the aliquot
brought forth for analysis. The fundamental TOS principles need to be applied to all

4
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appropriate scales along the entire ‘field-to-aliquot’ pathway, not only to the primary
sampling, but in particular also to the successive stages of mass reduction in the laboratory
before the ultimate analytical aliquot extraction. The only change in this multi-stage sampling
chain is the operative scale (TOS principles and unit operations are scale-invariant). A
comprehensive overview of all subsampling issues (laboratory mass reduction) has been
published in (Petersen et al. 2004), which does not include the ‘coning-and-quartering’
approach, despite the fact that this approach has enjoyed some popularity e.g. for certain field
applications to soils (Gerlach et al. 2002). However the coning-and-quartering approach has
been severely criticized in the professional TOS literature, e.g. most recently in (Esbensen and
Wagner 2014); from a representativity point of view this mass reduction approach must be
strongly discouraged.

On the basis of a correct sampling and mass reduction regimen, it is possible to characterize
the inherent auto-correlation between units of a process/lot or along 1-D transect (or
transect). The semi-variogram (in this work referred to simply as the ‘variogram’) is employed
to describe the variation observed between sample pairs as a function of their internal
distance.

To calculate a variogram sufficient number of units (increments/samples) are extracted
equidistantly, spanning the process interval of interest, or the full transect length, as needed.
The variogram is a function of a dimensionless, relative lag parameter, j, which is this distance
between two units, the analytical results of which are compared. Full details of the
variographic approach are described in (DS3077 2013; Esbensen et al. 2007; Esbensen et al.
2012a; Esbensen et al. 2012b; Gy 1998; Minkkinen et al. 2012; Petersen and Esbensen 2006;
Petersen et al. 2005). Variograms may have apparent different specific appearances, but three
fundamental characterizing features carry all the important information related to sampling
errors and the heterogeneity along the transect in any-and-all variogram: the sill, the range,
and the y-axis intercept, termed the nugget effect. Definitions of these features are given
below.

The Sill is the y-axis value at which the variogram levels off and becomes horisontal. The Sill
represents the total variance calculated from all experimental heterogeneity values. The sill
corresponds to the overall maximum variance for the data series if/when calculated without
taking their ordering into account.

The Range is the lag distance beyond which the variogram v(j) levels off and reaches a stable,
constant Sill. Samples taken at lags below the Range are auto-correlated to a larger and larger
degree as the lags gets smaller and smaller. The range carries critical information as to the
local heterogeneity with respect to the objective of the present method development.

The Nugget Effect indicates the amount by which the variance differs from zero when a
variogram is extrapolated backwards so as to correspond to what would have been alag=0. A
lag equal to zero has no physical meaning, but it represents the hypothetical case of two
samples extracted at the same time and location (indeed from exactly the same physical

5
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volume of the lot). Thus although ‘true replicates’ from the exact same soil location (volume)
are not physically possible, the nugget effect never-the-less allows to estimate the
corresponding discontinuous variance difference. This can be viewed as a collapse of the 1-D
sampling situation (profile, transect) to a stationary sampling situation (small lots, 2-D and 3-
D lots), see (DS3077 2013; Esbensen et al. 2007, 2012a, 2012b) for further descriptions.

The nugget effect has a special interest, it contains all sampling, - sample handling/processing
and analytical errors combined, which makes up the total measurement uncertainty. A
variogram with a high nugget effect w.r.t. the sill signifies a measurement system not in
sufficient control (DS3077 2013; Esbensen and Wagner 2014).

” * . ¢0

V)

MNugget Effect
Range

o ; 10 1‘5 2‘0 2‘5
Lag()
Figure 1. A generic variogram, schematically defining nugget effect, sill, and range. The
illustration depicts an increasing variogram, which is the most often occurring type of
variogram in the case of significant auto-correlation (for lags below the range)(Kardanpour et
al. 2014). The nugget effect magnitude relative to the sill in this illustration is significant of an
acceptable total measurement system, < 20%.

Variogram calculations are strongly influenced by outliers and/or trends. A valid variographic
analysis often necessitates outlier deletion after proper recognition and description and
occasionally also de-trending of the raw transects data if/when trends are dominant or
severe. In this study the raw data transect was de-trended using a simple regression slope
subtraction from the data set where needed.

2.3. Mass reduction/subsampling procedure

After the stored samples were thawed and accommodated for 20 °C for a week, before being
processed further, the primary field sample size (200-300 gram) must be reduced to the
analytical sample size (1-2 gram), not at all a trivial mass-handling issue. In order to provide
representative sub-samples, TOS principles were applied scrupulously to all mass reduction
steps. Thus samples were dried and macerated, or ground, where appropriate, and
subsequently deployed in a longitudinal tray, forming a 1-D lot, using the soil-adapted bed-
blending/cross-cut reclaiming technique described in detail in (Petersen et al. 2004) and
(Kardanpour et al. 2015). These pre-blended micro-beds were cut by 10 randomly selected

6
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transverse increments along the elongated dimension which were aggregated, resulting in
subsamples of 20-30 gram each. The exact same procedure was repeated in a secondary mass
reduction step further down ending up with the final analytical mass (2 gram) for the wet
samples analyses. This procedure has been applied to provide full representativity in samples
and to exclude all of the post-primary-sampling errors in order better to be able to focus in
the latter and the variogram deployment, ibid.

The remainders of the secondary sub-samples were air-dried for four days in lab temperature
(20 °C), to be used in parallel sorption experiments. As a further scale-down iteration, a
similar bed-blending/cross-cut reclaiming were used to provide analytical samples of 2 gram,
also based on 10 increments each.

(Kardanpour et al. 2015) describe the “from-field-sampling-to-aliquot” pathway in full details,
complete with an exhaustive pictorial exposé.

2.4. Analytical experiment methods

MCPA Sorption

The sorption experiment started in glass vials with Teflon caps containing 1 g of the
respective soils, and 9 ml of Milli-Q water. The vials were kept for 24 hours and then shaken in
a horizontal, angled shaker prior to addition of 1 mL1#C-MCPA stock solution, with 10,000
dpm in each individual vials. Sorption experiments were performed with two initial
concentrations: 1 and 100 mg MCPA/L. Sorption was determined for MCPA in all off the 64
soil samples, using 14C-labeled MCPA.

After adding the stock solution, the vials were incubated in the shaker for 48 hours and then
placed vertically for another 48 hours, all at 20 °C. Subsequently 2 mL of the solution were
transferred to the 2 mL Eppendorf micro-centrifuge tubes and centrifuged at 14,500x g for 7
min. Radioactivity in 1.5 mL supernatant was determined using a Wallac 1409 Liquid
Scintillation Counter after mixing it with 10 mL OptiPhase Hisafe3 scintillation cocktail.

MCPA Mineralization

Mineralization experiments were carried out in100mL glass jar with air tight lid. Two gram
soil (wet weight) was placed in small plastic vials before adding 0.5 mL of 14C -labeled MCPA
(5 mg MCPA kg1 soil) with a radioactivity of 2,000 dpm. In the glass jar a LSC vial was also
placed containing 2 mL 0.2 M of NaOH as a CO; trap. The jars were incubated at 20°C for 14
days. Mineralization encountered as %-evolved 1*CO; was measured at day 3, 7 and 14. The
COz-traps were changed and replaced with a fresh trap at each sampling date.1C in the NaOH
was measured as described in the sorption experiment by Liquid Scintillation Counting.

Biomass; substrate induced respiration (SIR)

The same set up as used for MCPA was used for the glucose mineralization with adding 0.5
mL14C -labeled glucose with 5000dpm to the 2 gram of soil. All other set up details, equipment

7
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and experimental design wereidentical. Alkaline traps were replaced with fresh alkaline traps
and measured after 4 and 24 hours considering the rapid respiration of the glucose and 14C
measured as described in the sorption experiment by Liquid Scintillation Counting.
Conversion into biomass were according to ( Dictor et al 1998; Tate et al. 1988).

Microbiology, Bacteria Colony Formation Units (CFU)

A suspension was made with 2 gram of soil into 200 mL sterile water and after shaking for 15
minutes, diluted with sterilized water ended in two different dilutions for each sample; with
three and four order of magnitude To measure the soil microbiology, 1 mL of each sample
were placed on a Petrifilm® (3M, Saint Paul, Minnesota, USA) sheet and CFU was counted
after 3 and 7 days of incubation at 20°C.

3. Result
3.1. Geochemical profiling

In order to show the natural soil heterogeneity in a comparable format, Figures 2-5 illustrates
the individual large-scale parameter transects; concentration vs location of the samples taken
from the transect in Fladerne field. Also shown is the variation of the central small-scale
replication samples is shown as mean concentration + 2 SD with dashed horizontal lines in
the figures. The large-scale variation of the soil moisture, loss on ignition (LOI) and the
biomass content are to be compared to the small scale replication result for the same
parameter in each graph, Figure 2.

The same comparison graph illustrated for the MCPA sorption in Figure 3 for two different
initial MCPA concentrations, as it is clear, the soil sorption behavior shows different variation
with different concentrations. The results of the MCPA mineralization of the soil in Figure 4
also show different variability in different mineralization steps. The transect of the MCPA
mineralization is illustrated for different mineralization steps: first three days, four to seven
days and eight to fourteen days. The two latter periods shows rather a similar variation
because these two periods are in the final part of the mineralization development, Figure 6.

The soil microbiology (Log (CFU/g soil)) transect after seven days of incubation is also
illustrated in Figure 5.
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286  Figure 2. Fladerne Bzk, transects of soil moisture (%), LOI, and biomass (mg C/g); soil
287  biomass vs. sample number (transect location). Dashed lines represent mean + 2 SD of the
288  small-scale replication experiment.
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293 small-scale replication experiment.

10



]

[}

Mineralisation%/day (0-3 days)
N E=

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Sample number (profile location)

]

(4-7 days)

2
LSRN -

[

Mineralisation%/day

Lo Lo 0
MR o

[=]

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Sample number (profile location)

)
e
B N

-
]

o o o
B O 0 =

ineralisation% [day (814 days

M
o ¢
)

o

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Sample number (profile location)

294

295  Figure 4. Fladerne Bak, transects of MCPA mineralization in three different periods: 0-3days,
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297  SD of the small-scale replication experiment.
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The Fladerne case represents an inherently very well mixed soil type, which has been under
the plow for up to 100 years. The consequence of taking care of this, low-heterogeneity end of
the spectrum, is that there is a limit to the degree of transect heterogeneity to be expected, as
indeed witnessed in Fig.s 2-5, where concentrations only comparatively rarely deviate outside
the +/- 2 STD of the central Roman square design employed. This specific soil- and tilling
history feature must not lead to untoward confusion and illegitimate generalizations however.
It is the general applicability of the variographic approach which is illustrated here, as it
happens, on a very well-mixed substratum. Our parallel study showcases the approach on a
significantly more heterogeneous case, in which the central Roman square does not bracket
most of the transect concentration manifestations.This case was selected to represent the one
(almost extreme) end of a spectrum (only little inherent heterogeneity) from which to
compare a whole spectrum of increasingly more heterogeneous soil types, horizon and
geological formations. Our own studies went a fair distance in this direction as possible with
the (Kardanpour et al. 2015), but obviously many, even more heterogeneous cases exist and
are on record in the literature.

3.2. Experimental variograms

Prior to variogram calculation, all parameters have been checked for outliers and trends,
Figures 2-5. Variograms have been calculated with using large scale experimental transects
without model fitting of the variogram parameters. This is common in geostatistics, but not
used here as TOS’ variogram approach is not used for kriging but solely for heterogeneity
characterization and interpretation.

Two different behaviors can be observed as displayed by two parameters groupings, the
increasing Min1, LOI and Biomass variograms at the top, versus the reminder of parameters,
which show a strongly similar form and behavior, Figure 7. As the sill levels represent the
maximum parameter variation along the transect, parameters Min1, LOI and Biomass clearly
display the highest transect variability. All variograms are of the increasing type with a
distinct nugget effect. Following (DS3077 2013), the %-age nugget effect in relation to the sill,
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termed RSVi.gim, is an expression of the total measurement uncertainty MU including TSE
(Esbensen and Wagner 2014). In the present study this MUtal quality index ranges from 15%
(Kg, 100) to 75% (Min1). There is thus an appreciable difference concerning the possibility to
measure and characterize soil heterogeneity along the transect, ranging from very good to
very poor. This facility for total measurement uncertainty validation is a powerful TOS
benefit, with a wide carrying-over potential to many other sciences and application fields.
This feature is described in full in (Esbensen and Romanach, 2015;Kardanpour et al. 2015) in
which, by the way, the 1-D transect of the present study appears in the form of a 1-D
industrial process measurement series, illustrating the surprising generality of the variogram
approach - modeling and interpretation and showing the way for application to natural
process in the geo-science and environmental science realms.
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Figure 7. Synoptic variogram of all parameters in the present study comparing nugget effect,
sill and range levels

Applying the multivariate data analysis approach developed in the former studies
(Kardanpour et al. 2014; Kardanpour et al. 2015), i.e. using the variograms as the input (X-
matrix) to a Principal Component Analysis (PCA) with no centering and no scaling (see further
below), the first component is found to represent 99% of the total variogram variance over all
parameters, making it easy to find the average range characterizing the heterogeneity of the
Fladerne transect, ca. 5 meter. Figure 8 shows the loadings for PC components 1 and 2,
displayed in a fashion that mimics a spectrum. As expected the PC-1 loadings delineates a
general variogram shape, in fact presenting the average of all variograms in Figure. 7. The PC-
2 loadings accounts for deviations herefrom, as caused by the individual variograms (mainly
expressing a higher or lower average slope), a general feature, markedly overprinted by
random deviations. This component models the set of different slopes of the individual
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variograms, and it accounts for less than 1% total variance, but never-the-less lends itself
easily to be interpreted as the well-known spectroscopic ‘tilting’ signature, (Martens & Naes
1991).
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Figure 8. PCA (Xvariogram) loading plot for PC-1 (left) and PC-2 (right). The Xvariogram matrix has
not been subjected to pre-treatment before PCA (no centering, no scaling). The range of the
average variogram shape as represented by the PC1 loadings is ca. 5meters.

In our earlier studies, (Kardanpour et al. 2014), can be found a discussion pro et contra pre-
treatment of an X-matrix made up of variograms. When basing variograms on heterogeneity
contributions (a one-to-one transformation of the original analytical concentrations), this
issue becomes moot, as this transformation is already performing what amounts to scaling. In
the present paper we therefore did not apply centering, opting for the easily interpreted and
useful appearance of the average variogram shape, Figure 8 (left).

4. Discussion

Aiming for a general approach to soil heterogeneity characterisation, a set of naturally
occurring organic, anthropogenic and biota parameters were studied at scales from 1 to 60 m
to be compared with other, for example minerogenic parameters (see further below). The first
step is always inspection of the raw data set with respect to potential outliers and/or trends.
In the present study the geochemical parameter transects show no outliers and no strong
trends, Figures 2-5.

The experimental design allows comparison of the small-scale replication variability (classic
statistics) and large-scale variability. All transects can for example be directly compared with
the level and variation at the small-scale experiment (less than 1 meter), by the pertinent
mean *2 SD. In figures 2-5 the variation of the parameters in any selected small scale window
cannot be overestimated to the large scale, indeed it cannot be also obtained from a small
scale replication study deviation estimate. This is just for visual orientation however and not
to be confused with the nugget effect, a much more general characterisation of the small(est)
scale variability pertaining to below lag = 1, summing up and averaging this information for

14



387

388
389
390
391
392
393
394
395
396
397
398

399
400
401
402
403
404
405
406

407
408
409
410
411
412
413
414
415
416

417
418
419
420
421
422
423

424
425

all the sample pairs in the transect.

Any short interval on a transect Figures 2-5 can be considered as a small scale study in its own
right. In this context there is a clear difference between the empirical variability in different
segments along each transect: the local variability does not necessarily extend to larger scales.
This has an important practical conclusion: any local small-scale sample collection cannot be
generalised to larger scales. Unwitting or un-reflected scaling-up of small scale experimental
organic, anthropogenic and biota fate and mineralization results will bring an inflated
uncertainty outside experimental control. The mineralisation parameters which show
different variation behaviour in the different mineralisation steps send an important message
regarding studies concerning time-dependent characterisations. A similar difference is
observed for MCPA sorption with different concentrations, i.e. when studies are concerned
with concentration-dependent phenomena.

The general local variability behaviour is however well captured as the below-range part of
the general variogram loading spectrum for PC1. The variogram is able to generalise the
common local scale behaviour. With TOS, there is synoptic information residing in the range,
sill and nugget effect for each individual parameter. Whenever heterogeneity variograms
display a range, this relates to the ease and risk associated with attempting to secure field
samples with minimum variability: Sampling with smaller inter-increment lag distances than
the range makes it possible to use the inherent auto-correlation between samples in a
beneficial fashion.

From the earlier studies (Kardanpour et al. 2014; Kardanpour et al. 2015) the overall
conclusion was only to employ composite sampling. In the present context this means that,
wherever practically possible, increments should only be collected with a maximum of half
the observed range as a means to avoid unnecessary compositional variability effects due to
the inherent soil scale heterogeneity. It follows that in order to minimize the total sampling
error, increments must be sampled with a maximum lag of 0.5*range, preferentially smaller. In
the present soil variograms a general range of 5 meters is observed for multivariate
variographic approach of the parameters, Figure 8. It is evident that a thorough mixing of the
selected set of increments is mandatory to sample locations with less than 2.5 meters distance
in between,; for other soil types/analytes other numerical magnitudes apply.

The variograms show different behaviour with respect to mineralisation stages. This is
expected from the slower rate of the mineralisation in the latter stages, Figure 6. The later
stages display a flat variogram that only represent little auto-correlation between sample
locations, Figure 7, and the low sill level representing low variation along the transect. As it is
common in environmental studies, results of the mineralisation are mostly reported in terms
of the accumulated mineralisation rate (see Figure 6 as an example), i.e. results that are
mostly affected by the first stages of the mineralisation.

Most of the variograms level off quickly after only a few lags (range ca. 5 meters) followed by
a flat (or slightly increasing) trend, while first step of MCPA mineralisation, biomass and LOI
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show more markedly increasing variograms, Figure 7.

The CFU sill level is lower than natural organic and anthropogenic compounds indicating
lower variability of soil microbiology at the large scale(s). This can be compared with results
from a series of other large-scale studies on different microbial communities for different
anthropogenic and natural compound mineralization, which also showed that microbial
biomass seem to be stable intrinsic parameter of longer periods. (Sgrensen et al. 2003;
Bending et al. 2001; Bending et al. 2003; Walker et al. 2001).

It is always a matter for discussion when theoretically anticipated correlations between the
physiochemical/microbial activities fail to appear in specific real-world case studies. The
more complex compounds have shown a more irregular, patchy fashion of decaying due to
more specific microbial communities (but still generally isotropic in nature). Analysis of soil
parameters rarely gives a clear pattern; this seems to be associated to a number of not-
included or unknown parameters, resulting, in some cases in a high degradation potential, but
low elsewhere (Sgrensen et al. 2003; Rasmussen et al. 2005; Bending et al. 2001; Walker et al.
2001). Upon reflection this is no mystery however, but simply a result of local soil
heterogeneity, which cannot be formulated or predicted based on the physiochemical
biological or microbial correlation of the properties of soil in large scale studies. A
variographic heterogeneity characterization at all scales is thus a beneficial pilot experiment
able to focus on the relevant heterogeneities characterizing individual, or group of parameters
in their proper scale-dependent relationships.

Summing up the results of all measured parameters studied here, for environmental purposes
and objectives related to soil parameters at field scale, it is advantageous to employ a
variographic heterogeneity characterisation as a pilot study. Results here will lead to a
comprehensive understanding of the spatial variability and auto-correlation of the
parameters in the field.

The results from the present study show that for well-mixed sandy soil it is recommended to
sample locations with less than 2.5 meters inter-distance in between, preferentially smaller. It
is necessary to conduct a similar variographic pilot experiment in order to outline the
relevant scale-heterogeneity characteristics for other soil types, which unavoidably will tend
to show more irregular spatial heterogeneity patterns - each principal soil type will in
principle be characterised by a specific range, but there is a further caveat. Each analyte may
in fact display its own, more or less specific range, as witnessed above, as well as by a plethora
of studies in the literature. When controlling the spatial heterogeneity is of the essence, the
logical solution is to design the sampling according the analyte with the smallest range, i.e. the
most heterogeneously distributed analyte - this will by necessity also take care of all other
analytes with higher ranges. If emphasis is on sampling costs (a not totally unlikely alternative
scenario that may, or may not clash with other requirements of which only one really matters
though: representativity) it is a comforting thought that all analytes are measured on the
same final aliquot. By carefully optimising the primary field sampling according to the

principles presented here, all analytes will be measured with the same, optimal relevance,
16
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indeed w.r.t. the same representativity. If sampling is done right from the start, there are no
extra costs - while the opposite is a very different case, as should be abundant clear.

Results from a parallel study on the minerogenic compounds for the same Fladerne field
(Kardanpour et al. 2014) show a similar soil heterogeneity compared to the present
anthropogenic compounds. The nugget effect for most of the minerogenic compounds are of
the same order of magnitude as those for the anthropogenic compounds, i.e. the total
measurement system and procedures (sampling/handling/processing/analysis) pass all the
quality criteria for representative sampling established in the recent sampling standard
(DS3077 2013).

In cases where the next step in studies might be assessment of the main factors driving the
spatial heterogeneity of soil contamination analytes for example, the 1-D (or 2-D X-Y)
approach advocated here, will only serve as a basis for proper selection of experimental
material to be taken to the laboratory - upon which further considerations will focus on, say,
the potential factors involved in contaminant input and transport a.o. Note that these latter
processes manifest themselves primarily in the Z-direction, where it is by no means a given
that application of the same variographic approach (or geostatistical modelling) will
necessary give meaningful results.

5. Conclusions

A pilot experiment aimed at an intrinsic 1-D soil heterogeneity characterization is a critical
success factor for laboratory studies relying on field samples to provide the experimental
pots, which for replicate and comparative study objectives need to be as similar as at all
possible. As a case study the variographic results for sandy soils show that the distance
between two sample spot must be less than 2.5 meters for the present set of organic
compounds and soil type. Specific soil types and/or other analytes will in principle display
different ranges and nugget effects, and hence our call for systematic deployment of the
variographic pilot experiment, from which can be derived all necessary information for
designing an optimal sampling plan e.g. identifying the analyte with the smallest range (for
significantly correlated analytes). For the case of well-mixed soil components, a general PCA-
approach for modelling a whole set of variograms may be useful in addition to individual
analyte consideration.

Without this types of information, experimental fate study work is essentially devoid a valid
basis as regards interpretation, scale-up and scientific generalisation of the experimental
results back to the field scale. A large-scale 1-D transect sampling can reveal the inherent
heterogeneity at all scales from the smallest local sampling equidistance up to the maximum
experimental length scale studied. Variographic analysis was here employed successfully to
soil heterogeneity at scales between 1 and 100 meters, other scenarios may require other
numerical parameters, while the general approach remains identical.

The TOS-guided variogram pilot study approach illustrated here has a substantial carrying-
over potential to geochemistry and environmental science, as well as other application areas.
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It is even applicable to dynamic systems, i.e. to natural or technological processes in these
realms.
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