

1   **Local versus field scale soil heterogeneity characterization - a challenge for**  
2   **representative sampling in pollution studies**

3  
4  
5  
6

7                   Zahra Kardanpour<sup>1,2</sup>, Ole Stig Jacobsen<sup>1</sup>, Kim H. Esbensen<sup>1,2</sup>  
8

9                   1. Geological Survey of Denmark and Greenland (GEUS)  
10                  2. ACABS research group, University of Aalborg, campus Esbjerg (AAUE)  
11

12

13

14

15

16   Abstract

17   This study is a contribution to development of a heterogeneity characterisation facility for  
18   ‘next generation’ soil sampling for example aimed at more realistic and controllable pesticide  
19   variability in laboratory pots in experimental environmental contaminant assessment. The  
20   role of soil heterogeneity on quantification of a set of exemplar parameters is described,  
21   including a brief background on how heterogeneity affects sampling/monitoring procedures  
22   in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis  
23   has been applied to develop a more general fit-for-purpose soil heterogeneity  
24   characterization approach. All parameters were assessed in large-scale transect (1-100 m) vs.  
25   small-scale (0.1 –0.5 m) replication sampling point variability. Variographic profiles of  
26   experimental analytical results from a specific well mixed soil type concludes that it is  
27   essential to sample at locations with less than a 2.5 meter distance interval to benefit from  
28   spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in  
29   experimental pots; this range is an inherent characteristic of the soil heterogeneity and will  
30   differ among other soils types. This study has a significant carrying-over potential for related  
31   research areas e.g. soil science, contamination studies, and environmental monitoring and  
32   environmental chemistry.

33

34   Keywords: Heterogeneity characterisation, soil, variogram, large-scale, representative  
35   sampling, Theory of Sampling (TOS), MCPA, biomass, CFU

36        1. Introduction

37        All parameters for realistic, effective integration of variability over different scales are directly  
38        related to soil heterogeneity. There is a growing need for an integrated understanding of  
39        contaminant behaviour in soil pollution studies (Arias-Estévez et al. 2008; Crespin et al.  
40        2001; Johnsen et al. 2013; Li et al. 2006; Rodriguez-Cruz et al. 2006; Sørensen et al. 2006;  
41        Torstensson and Stark 1975; Rasmussen et al. 2005). In this context there is a missing link in  
42        the form of soil heterogeneity and its effective characterization, a feature often overlooked.  
43        Heterogeneity characterisation is the first, and in some cases the most important step, in soil  
44        contaminant studies, with relationships to various other aspects of environmental research  
45        and monitoring. A result of introducing more valid soil heterogeneity characterisation will be  
46        improved soil sampling procedures (Kardanpour et al. 2014; Kardanpour et al. 2015a,b),  
47        which in turn will contribute towards improved environmental fate study reliability  
48        (Boudreault et al. 2012; Chappell and Viscarra Rossel 2013; de Zorzi et al. 2008; Lin et al.  
49        2013; Mulder et al 2013; Totaro et al. 2013).

50        Even in simple systems, the variability and risk for misinterpretation may have strong effect  
51        on parameterisation of processes relating to compound fate studies. These latter issues are  
52        being increasingly more recognised, as is the lack of appropriate methods to ensure  
53        documented representativity of the experimental batch volumes/masses with respect to the  
54        surrounding geology and biotic/abiotic soil characteristics. There is an urgent need for  
55        scientifically based experimental approaches, scale-up procedures and attendant principles  
56        for parameterisation of variability in these types of natural systems(Kardanpour et al. 2014;  
57        Adamchuk et al. 2011; Chappell and Viscarra Rossel 2013; de Zorzi et al. 2008).

58        Of particular interest will be a newly developed facility for empirical variability  
59        characterisation, which allows heterogeneity to be mapped at problem-dependent scale  
60        hierarchies. Based on this, it is possible to devise optimised sampling strategies that will allow  
61        fit-for-purpose representativity with respect to laboratory experiments depending of similar  
62        (or at least comparable) soil samples (pots). For this purpose the Theory of Sampling (TOS)  
63        delivers benchmarks measures expressing acceptable maximum heterogeneity limits and in  
64        the case of violations/transgressions furthers a complete understanding of how to identify  
65        and eliminate the detrimental sampling errors and provides tools for unambiguous mixing  
66        effectiveness. Combining these tools with specific knowledge on the relevant contaminant  
67        processes and compound properties, it will be possible to address the critical scale-dependent  
68        variability with increased confidence based on more realistic environmental parameter  
69        delineation.

70        We here introduce the variographic approach mainly for the cases of 1-D as a means of  
71        characterising the heterogeneity in one transect direction. Compared to the typical major  
72        variability in the Z-direction of soil depth profiles (soil horizons, layers and geological  
73        formations), the linear (1-D) or 2-D heterogeneity *within* soil horizons is significantly smaller,  
74        although this is exactly the kind of heterogeneity the present study aims at controlling.

75 Contrary to depth profile zonation a.o. the within-horizon 1-D and 2-D heterogeneity complies  
76 with the requirements of both TOS and geostatistics, i.e. spatial heterogeneity can be modelled  
77 variographically w.r.t. a physically meaningful *average level* (the inherent *stationarity*  
78 *assumption* in geostatistics). It is not meaningful to apply variographic characterisation on  
79 measurement series which contain discontinuous shifts, upsets or other disrupt, level  
80 changes, as is the prime characteristicon of soil depth zonations. The geostatistical tradition of  
81 modelling 2-D patterns based on projection onto a 1-D transect is also not free from debatable  
82 issues. The present authors do not wish to reject the 2-D geostatistical tradition with this  
83 statement, but in relation to the present matters this issue is better deferred to another  
84 occasion in which the 2-D modelling issue can be presented and discussed in full - this issue is  
85 a legitimate and interesting area for a fruitful debate. Entering into a 3-D geostatistical  
86 modelling realm, there are also here issues that in need of further discussion, e.g. the required  
87 minimum number of samples (measurements) needed for meaningful, and stable variogram  
88 calculation, The present foray only aims at presenting the power of a simple 1-D variogram  
89 characterisation operator based on TOS, upon which several versions of potential follow-up  
90 generalisations to 2-D and 3-D cases may be entertained. In the present context all *isotropic* 2-  
91 D heterogeneity patterns can be characterised comprehensively by a *randomly selected* 1-D  
92 direction (transect). In all sampling operations there should preferentially always be some  
93 sort of random selection involved, unless compelling geo-science reasons exists for choosing a  
94 direction related to the genesis of the specific heterogeneity met with, e.g. choosing a 1-D  
95 transect either along a dominant plow direction.

96 This study focuses on development of the necessary heterogeneity characterisation for  
97 sampling/monitoring and multi-parameter modelling practices, allowing implementation of  
98 realistic pesticide variability in experimental environmental contaminant assessment studies.  
99 The study has a significant carrying-over potential for related research areas e.g. soil science,  
100 contamination studies, and environmental monitoring.

101 We here focus on characterization of soil heterogeneity in terms of soil moisture, organic  
102 matter (LOI), biomass, microbiology, MCPA sorption and mineralization. The measured  
103 parameters are here used to illustrate effective management of heterogeneity; this particular  
104 location has been studied before in its own right. Following two earlier complementary  
105 studies, the focus below is on the necessary representativity demands when facing compound  
106 fate and mineralization studies (Kardanpour et al. 2014; Kardanpour et al. 2015). Field  
107 observation indicates a very well mixed sandy soil with almost no visual heterogeneity  
108 features. But the main issue is: does this apparent uniformity extend to all fate compounds?  
109 How is it possible to document that small sample masses, as typically used in pot experiments,  
110 are representative of their entire parent field, or to which sub-field scale? In other words, how  
111 can results and conclusions from laboratory experiments be reliably scaled-up and  
112 generalized to larger scales?

113 2. Materials and Methods

114        2.1.     Location and sampling pattern

115        Fladerne Bæk is situated on the Karup peri-glacial outwash plain, Jutland, Denmark (56°N,  
116        9°E) South West of Karup airport. The substratum is an arable sandy soil which has been tilled  
117        and cropped for more than 100 years, mainly supporting barley and potatoes during last 30  
118        years. Thus this is a typical “very well mixed” soil type compared to the much more  
119        heterogeneous glacial clayey soil types treated in (Kardanpour et al. 2014). Soil samples were  
120        collected from the topsoil (A-horizon) in cylindrical cores; the present samples cover depth  
121        interval from 0-15 cm. The 60 m long sampling transect was roughly N-S. Each field sample  
122        included 200-300 grams of fresh soil. At the center of this transect at point 29, seven  
123        additionally samples form a roman grid (3 x 3) replication experiment with 0.3 meter  
124        equidistance.

125        The sampling rationale aimed at variographic fate characterization commensurate with a long  
126        profile at a scale length between 1m and 60 m; the roman square was intended as a basis for  
127        conventional statistical treatment (average and, standard deviation). This central sample  
128        layout serves as a small scale local ‘replication experiment’ compared with the transect  
129        dimensions (Kardanpour et al. 2014). In total 64 samples were collected, 57 samples from the  
130        long profile and nine samples of the small grid (two samples identical to two from the  
131        transect), one in between and three more in each side of transect with the same distance as  
132        the first three in the center of transect. The original fresh soil was kept frozen until use.

133        The primary sampling was specifically intended to correspond to current sampling traditions  
134        in the soil and microbiology communities. In other studies efforts have been made to optimize  
135        each individual field sample, for example with respect to the famous “Gy’s formula”, from  
136        which control over the so-called Fundamental Sampling Error is often sought. However, in the  
137        present study it is a major point to outline how the variographic approach a.o. lead to a  
138        procedure with which to characterize the magnitude of the total sampling-plus-analytical  
139        error and thus to be warned of the need to control (better) all the inherent sampling errors,  
140        see e.g. (DS 3077 2013) for a comprehensive introduction.

141        2.2.     Theory of sampling and variographic analysis

142        The Total Analytical Error (TAE) is most often under acceptable control in the analytical  
143        laboratory as regards to both accuracy and precision. A sampling procedure must be both  
144        *correct* (ensures accuracy) and *reproducible* (ensures precision); TOS defines *representativity*  
145        in a rigid conceptual and mathematical approach. The critical issue is always, even for TOS-  
146        compliant sampling, that analytical results are but an *estimate* of the true (average) analytical  
147        grade of the lot sampled, because the aliquot is based on only a minuscule mass (0.5 – 2.0 g)  
148        compared to the entire field topsoil layer it is supposed to represent (typical mass/mass  
149        sampling ratios range 1:10<sup>3</sup> to 1:10<sup>9</sup>). The full sampling-analysis process and its  
150        characteristics is therefore the only guarantee for the relevance and reliability of the aliquot  
151        brought forth for analysis. The fundamental TOS principles need to be applied to all

152 appropriate scales along the entire 'field-to-aliquot' pathway, not only to the primary  
153 sampling, but in particular also to the successive stages of mass reduction in the laboratory  
154 before the ultimate analytical aliquot extraction. The only change in this multi-stage sampling  
155 chain is the operative scale (TOS principles and unit operations are scale-invariant). A  
156 comprehensive overview of all subsampling issues (laboratory mass reduction) has been  
157 published in (Petersen et al. 2004), which does not include the 'coning-and-quartering'  
158 approach, despite the fact that this approach has enjoyed some popularity e.g. for certain field  
159 applications to soils (Gerlach et al. 2002). However the coning-and-quartering approach has  
160 been severely criticized in the professional TOS literature, e.g. most recently in (Esbensen and  
161 Wagner 2014); from a representativity point of view this mass reduction approach must be  
162 strongly discouraged.

163 On the basis of a correct sampling and mass reduction regimen, it is possible to characterize  
164 the inherent auto-correlation between units of a process/lot or along 1-D transect (or  
165 transect). The *semi-variogram* (in this work referred to simply as the 'variogram') is employed  
166 to describe the variation observed between sample pairs as a function of their internal  
167 distance.

168 To calculate a variogram sufficient number of units (increments/samples) are extracted  
169 equidistantly, spanning the process interval of interest, or the full transect length, as needed.  
170 The variogram is a function of a dimensionless, relative lag parameter,  $j$ , which is this distance  
171 between two units, the analytical results of which are compared. Full details of the  
172 variographic approach are described in (DS3077 2013; Esbensen et al. 2007; Esbensen et al.  
173 2012a; Esbensen et al. 2012b; Gy 1998; Minkkinen et al. 2012; Petersen and Esbensen 2006;  
174 Petersen et al. 2005). Variograms may have apparent different specific appearances, but three  
175 fundamental characterizing features carry all the important information related to sampling  
176 errors and the heterogeneity along the transect in any-and-all variogram: the *sill*, the *range*,  
177 and the y-axis intercept, termed the *nugget effect*. Definitions of these features are given  
178 below.

179 The Sill is the y-axis value at which the variogram levels off and becomes horizontal. The Sill  
180 represents the total variance calculated from all experimental heterogeneity values. The sill  
181 corresponds to the overall maximum variance for the data series if/when calculated *without*  
182 taking their ordering into account.

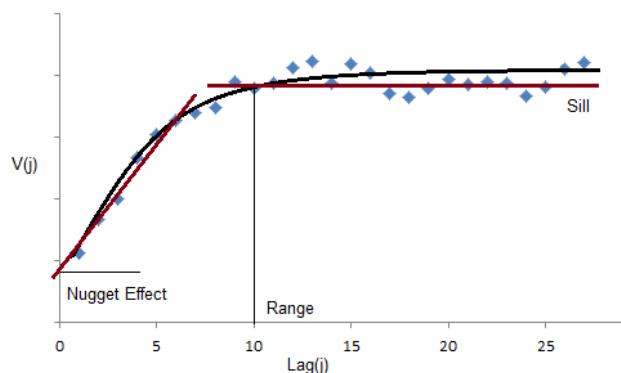
183 The Range is the lag distance beyond which the variogram  $v(j)$  levels off and reaches a stable,  
184 constant Sill. Samples taken at lags below the Range are auto-correlated to a larger and larger  
185 degree as the lags gets smaller and smaller. The range carries critical information as to the  
186 local heterogeneity with respect to the objective of the present method development.

187 The Nugget Effect indicates the amount by which the variance differs from zero when a  
188 variogram is extrapolated backwards so as to correspond to what would have been a lag = 0. A  
189 lag equal to zero has no physical meaning, but it represents the hypothetical case of two  
190 samples extracted at the same time and location (indeed from exactly the same physical

191 volume of the lot). Thus although 'true replicates' from the exact same soil location (volume)  
192 are not physically possible, the nugget effect never-the-less allows to estimate the  
193 corresponding discontinuous variance difference. This can be viewed as a collapse of the 1-D  
194 sampling situation (profile, transect) to a stationary sampling situation (small lots, 2-D and 3-  
195 D lots), see (DS3077 2013; Esbensen et al. 2007, 2012a, 2012b) for further descriptions.

196

197 The nugget effect has a special interest, it contains all sampling, - sample handling/processing  
198 and analytical errors combined, which makes up the total measurement uncertainty. A  
199 variogram with a high nugget effect w.r.t. the sill signifies a measurement system not in  
200 sufficient control (DS3077 2013; Esbensen and Wagner 2014).



201

202 Figure 1. A generic variogram, schematically defining nugget effect, sill, and range. The  
203 illustration depicts an *increasing variogram*, which is the most often occurring type of  
204 variogram in the case of significant auto-correlation (for lags below the range)(Kardanpour et  
205 al. 2014). The nugget effect magnitude relative to the sill in this illustration is significant of an  
206 acceptable total measurement system, < 20%.

207 Variogram calculations are strongly influenced by *outliers* and/or *trends*. A valid variographic  
208 analysis often necessitates outlier deletion after proper recognition and description and  
209 occasionally also de-trending of the raw transects data if/when trends are dominant or  
210 severe. In this study the raw data transect was de-trended using a simple regression slope  
211 subtraction from the data set where needed.

## 212 2.3. Mass reduction/subsampling procedure

213 After the stored samples were thawed and accommodated for 20 °C for a week, before being  
214 processed further, the primary field sample size (200-300 gram) must be reduced to the  
215 analytical sample size (1-2 gram), not at all a trivial mass-handling issue. In order to provide  
216 representative sub-samples, TOS principles were applied scrupulously to all mass reduction  
217 steps. Thus samples were dried and macerated, or ground, where appropriate, and  
218 subsequently deployed in a longitudinal tray, forming a 1-D lot, using the soil-adapted bed-  
219 blending/cross-cut reclaiming technique described in detail in (Petersen et al. 2004) and  
220 (Kardanpour et al. 2015). These pre-blended micro-beds were cut by 10 randomly selected

221 transverse increments along the elongated dimension which were aggregated, resulting in  
222 subsamples of 20-30 gram each. The exact same procedure was repeated in a secondary mass  
223 reduction step further down ending up with the final analytical mass (2 gram) for the wet  
224 samples analyses. This procedure has been applied to provide full representativity in samples  
225 and to exclude all of the post-primary-sampling errors in order better to be able to focus in  
226 the latter and the variogram deployment, *ibid*.

227 The remainders of the secondary sub-samples were air-dried for four days in lab temperature  
228 (20 °C), to be used in parallel sorption experiments. As a further scale-down iteration, a  
229 similar bed-blending/cross-cut reclaiming were used to provide analytical samples of 2 gram,  
230 also based on 10 increments each.

231 (Kardanpour et al. 2015) describe the “from-field-sampling-to-aliquot” pathway in full details,  
232 complete with an exhaustive pictorial exposé.

#### 233 2.4. Analytical experiment methods

##### 234 MCPA Sorption

235 The sorption experiment started in glass vials with Teflon caps containing 1 g of the  
236 respective soils, and 9 ml of Milli-Q water. The vials were kept for 24 hours and then shaken in  
237 a horizontal, angled shaker prior to addition of 1 mL<sup>14</sup>C-MCPA stock solution, with 10,000  
238 dpm in each individual vials. Sorption experiments were performed with two initial  
239 concentrations: 1 and 100 mg MCPA/L. Sorption was determined for MCPA in all off the 64  
240 soil samples, using <sup>14</sup>C-labeled MCPA.

241 After adding the stock solution, the vials were incubated in the shaker for 48 hours and then  
242 placed vertically for another 48 hours, all at 20 °C. Subsequently 2 mL of the solution were  
243 transferred to the 2 mL Eppendorf micro-centrifuge tubes and centrifuged at 14,500x g for 7  
244 min. Radioactivity in 1.5 mL supernatant was determined using a Wallac 1409 Liquid  
245 Scintillation Counter after mixing it with 10 mL OptiPhase Hisafe3 scintillation cocktail.

##### 246 MCPA Mineralization

247 Mineralization experiments were carried out in 100mL glass jar with air tight lid. Two gram  
248 soil (wet weight) was placed in small plastic vials before adding 0.5 mL of <sup>14</sup>C -labeled MCPA  
249 (5 mg MCPA kg<sup>-1</sup> soil) with a radioactivity of 2,000 dpm. In the glass jar a LSC vial was also  
250 placed containing 2 mL 0.2 M of NaOH as a CO<sub>2</sub> trap. The jars were incubated at 20°C for 14  
251 days. Mineralization encountered as %-evolved <sup>14</sup>CO<sub>2</sub> was measured at day 3, 7 and 14. The  
252 CO<sub>2</sub>-traps were changed and replaced with a fresh trap at each sampling date.<sup>14</sup>C in the NaOH  
253 was measured as described in the sorption experiment by Liquid Scintillation Counting.

##### 254 Biomass; substrate induced respiration (SIR)

255 The same set up as used for MCPA was used for the glucose mineralization with adding 0.5  
256 mL<sup>14</sup>C -labeled glucose with 5000dpm to the 2 gram of soil. All other set up details, equipment

257 and experimental design were identical. Alkaline traps were replaced with fresh alkaline traps  
258 and measured after 4 and 24 hours considering the rapid respiration of the glucose and  $^{14}\text{C}$   
259 measured as described in the sorption experiment by Liquid Scintillation Counting.  
260 Conversion into biomass were according to ( Dictor et al 1998; Tate et al. 1988).

261 Microbiology, Bacteria Colony Formation Units (CFU)

262 A suspension was made with 2 gram of soil into 200 mL sterile water and after shaking for 15  
263 minutes, diluted with sterilized water ended in two different dilutions for each sample; with  
264 three and four order of magnitude To measure the soil microbiology, 1 mL of each sample  
265 were placed on a Petrifilm® (3M, Saint Paul, Minnesota, USA) sheet and CFU was counted  
266 after 3 and 7 days of incubation at 20°C.

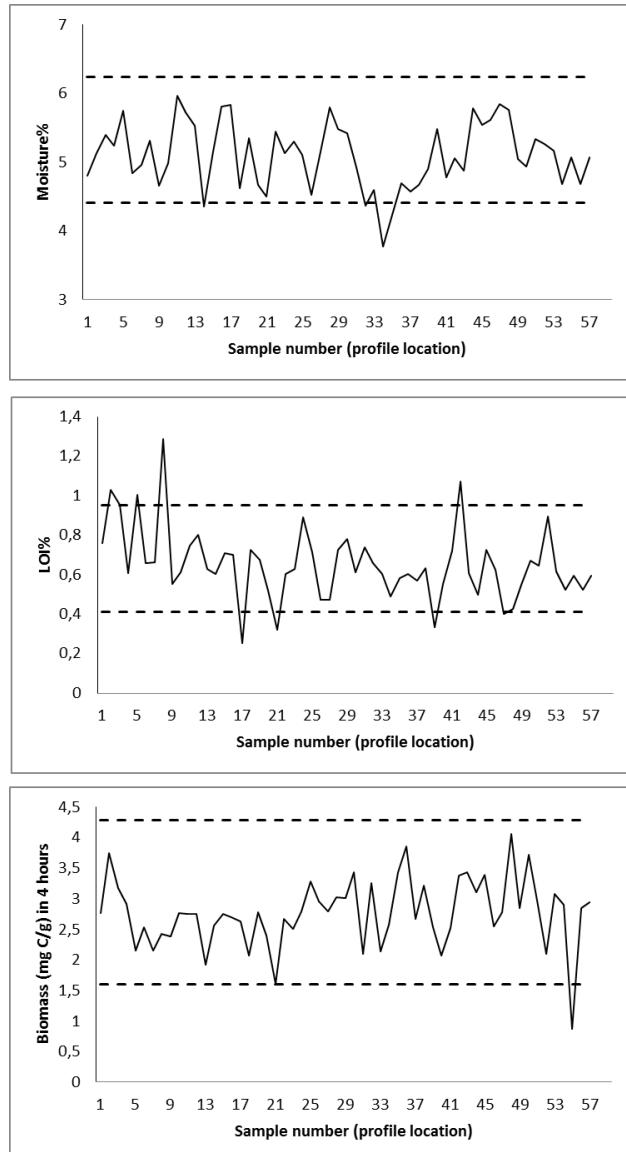
267 3. Result

268 3.1. Geochemical profiling

269 In order to show the natural soil heterogeneity in a comparable format, Figures 2-5 illustrates  
270 the individual large-scale parameter transects; concentration vs location of the samples taken  
271 from the transect in Fladerne field. Also shown is the variation of the central *small-scale*  
272 replication samples is shown as mean concentration  $\pm$  2 SD with dashed horizontal lines in  
273 the figures. The large-scale variation of the soil moisture, loss on ignition (LOI) and the  
274 biomass content are to be compared to the small scale replication result for the same  
275 parameter in each graph, Figure 2.

276 The same comparison graph illustrated for the MCPA sorption in Figure 3 for two different  
277 initial MCPA concentrations, as it is clear, the soil sorption behavior shows different variation  
278 with different concentrations. The results of the MCPA mineralization of the soil in Figure 4  
279 also show different variability in different mineralization steps. The transect of the MCPA  
280 mineralization is illustrated for different mineralization steps: first three days, four to seven  
281 days and eight to fourteen days. The two latter periods shows rather a similar variation  
282 because these two periods are in the final part of the mineralization development, Figure 6.

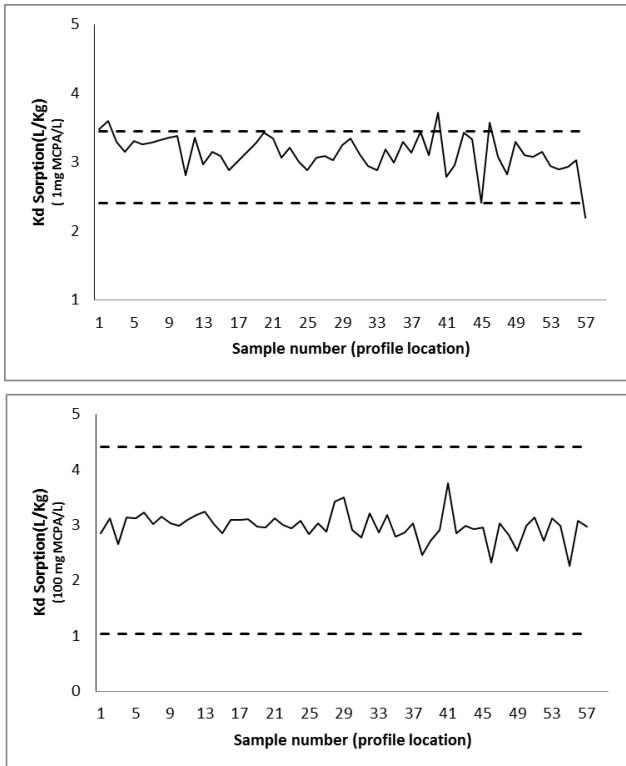
283 The soil microbiology (Log (CFU/g soil)) transect after seven days of incubation is also  
284 illustrated in Figure 5.



285

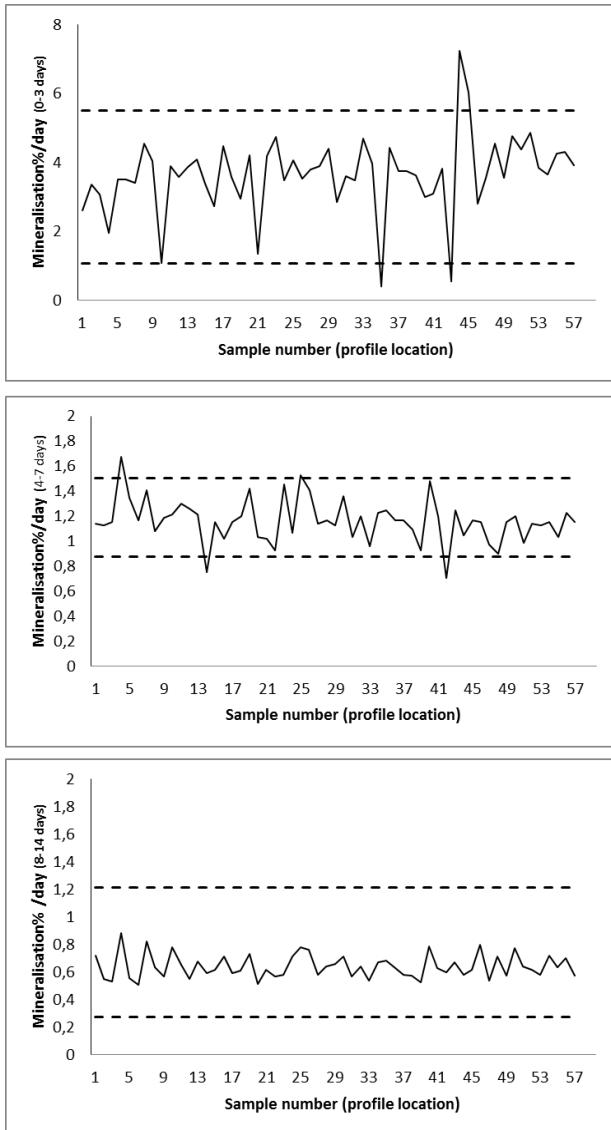
286 Figure 2. Fladerne Bæk, transects of soil moisture (%), LOI, and biomass (mg C/g); soil  
 287 biomass vs. sample number (transect location). Dashed lines represent mean  $\pm$  2 SD of the  
 288 small-scale replication experiment.

289



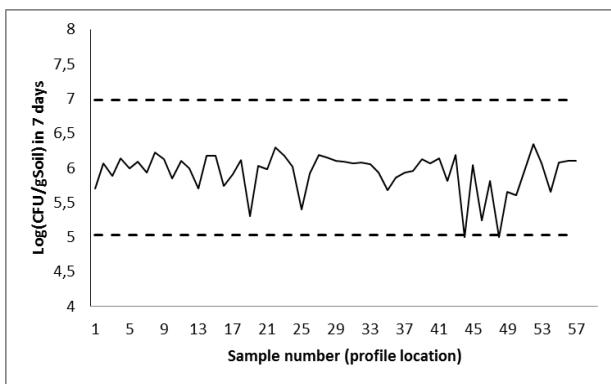
290

291 Figure 3. Fladerne Bæk, transects of  $K_d$  MCPA sorption vs sample number (transect location),  
 292  $K_{d,1}$ : MCPA (1 mg/ L),  $K_{d,100}$ : MCPA (100 mg/ L). Dashed lines represent mean  $\pm$  2 SD of the  
 293 small-scale replication experiment.



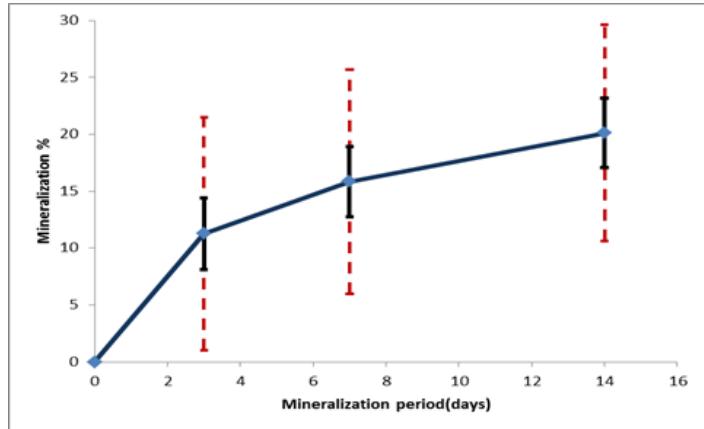
294

295 Figure 4. Fladerne Bæk, transects of MCPA mineralization in three different periods: 0-3days,  
 296 4-7days, 8-14 days vs. sample number (transect location). Dashed lines represent mean  $\pm 2$   
 297 SD of the small-scale replication experiment.



298

299 Figure 5. Fladerne Bæk, transects of log (CFU/g soil) vs sample number (transect location)



300

301 Figure 6. Average mineralisation rate for all 57 samples: Error bars are based on the standard  
 302 deviation (solid bars) and the range of the whole sample set (stippled bars)

303 The Fladerne case represents an inherently very well mixed soil type, which has been under  
 304 the plow for up to 100 years. The consequence of taking care of this, low-heterogeneity end of  
 305 the spectrum, is that there is a limit to the degree of transect heterogeneity to be expected, as  
 306 indeed witnessed in Fig.s 2-5, where concentrations only comparatively rarely deviate outside  
 307 the +/- 2 STD of the central Roman square design employed. This specific soil- and tilling  
 308 history feature must not lead to untoward confusion and illegitimate generalizations however.  
 309 It is the general applicability of the variographic approach which is illustrated here, as it  
 310 happens, on a very well-mixed substratum. Our parallel study showcases the approach on a  
 311 significantly more heterogeneous case, in which the central Roman square does not bracket  
 312 most of the transect concentration manifestations. This case was selected to represent the one  
 313 (almost extreme) end of a spectrum (only little inherent heterogeneity) from which to  
 314 compare a whole spectrum of increasingly more heterogeneous soil types, horizon and  
 315 geological formations. Our own studies went a fair distance in this direction as possible with  
 316 the (Kardanpour et al. 2015), but obviously many, even more heterogeneous cases exist and  
 317 are on record in the literature.

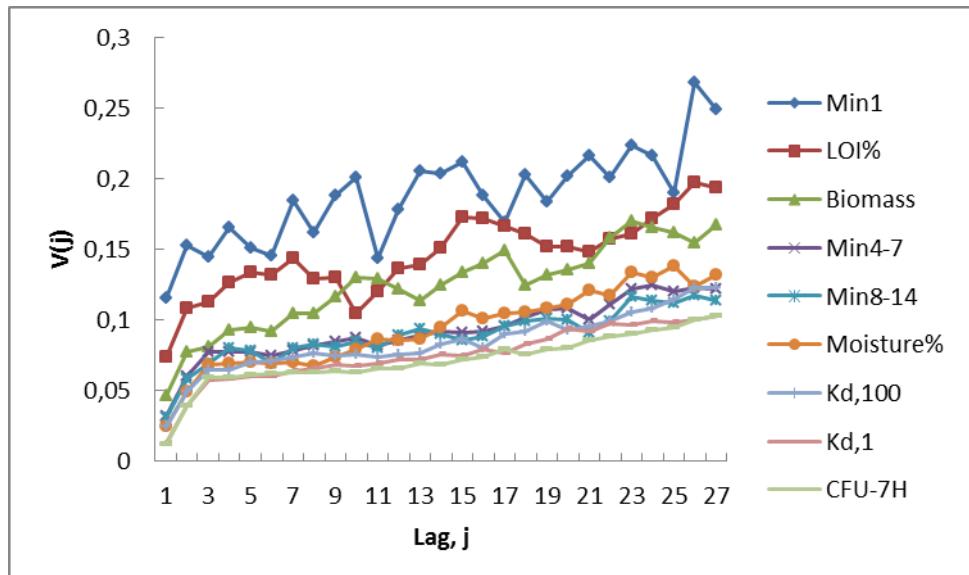
318       3.2.     Experimental variograms

319 Prior to variogram calculation, all parameters have been checked for outliers and trends,  
 320 Figures 2-5. Variograms have been calculated with using large scale experimental transects  
 321 without model fitting of the variogram parameters. This is common in geostatistics, but not  
 322 used here as TOS' variogram approach is not used for kriging but solely for heterogeneity  
 323 characterization and interpretation.

324 Two different behaviors can be observed as displayed by two parameters groupings, the  
 325 increasing Min1, LOI and Biomass variograms at the top, versus the reminder of parameters,  
 326 which show a strongly similar form and behavior, Figure 7. As the sill levels represent the  
 327 maximum parameter variation along the transect, parameters Min1, LOI and Biomass clearly  
 328 display the highest transect variability. All variograms are of the increasing type with a  
 329 distinct nugget effect. Following (DS3077 2013), the %-age nugget effect in relation to the sill,

330 termed  $RSV_{1\text{-dim}}$ , is an expression of the total measurement uncertainty MU including TSE  
 331 (Esbensen and Wagner 2014). In the present study this MU<sub>total</sub> quality index ranges from 15%  
 332 ( $K_d$ , 100) to 75% (Min1). There is thus an appreciable difference concerning the possibility to  
 333 measure and characterize soil heterogeneity along the transect, ranging from very good to  
 334 very poor. This facility for total measurement uncertainty validation is a powerful TOS  
 335 benefit, with a wide carrying-over potential to many other sciences and application fields.  
 336 This feature is described in full in (Esbensen and Romanach, 2015; Kardanpour et al. 2015) in  
 337 which, by the way, the 1-D transect of the present study appears in the form of a 1-D  
 338 industrial process measurement series, illustrating the surprising generality of the variogram  
 339 approach - modeling and interpretation and showing the way for application to natural  
 340 process in the geo-science and environmental science realms.

341



342

343 Figure 7. Synoptic variogram of all parameters in the present study comparing nugget effect,  
 344 sill and range levels

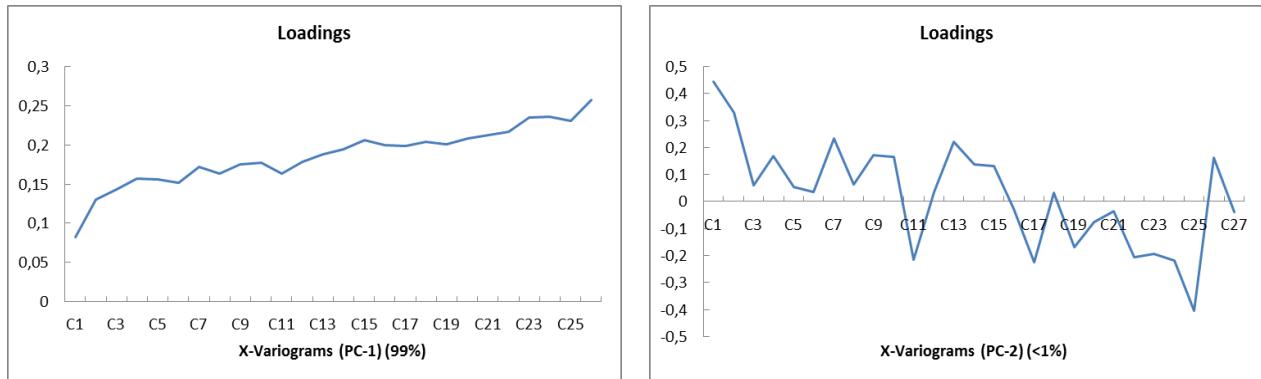
345

346 Applying the multivariate data analysis approach developed in the former studies  
 347 (Kardanpour et al. 2014; Kardanpour et al. 2015), i.e. using the variograms as the input (X-  
 348 matrix) to a Principal Component Analysis (PCA) with no centering and no scaling (see further  
 349 below), the first component is found to represent 99% of the total variogram variance over all  
 350 parameters, making it easy to find the average range characterizing the heterogeneity of the  
 351 Fladerne transect, ca. 5 meter. Figure 8 shows the loadings for PC components 1 and 2,  
 352 displayed in a fashion that mimics a *spectrum*. As expected the PC-1 loadings delineates a  
 353 general variogram shape, in fact presenting the *average* of all variograms in Figure. 7. The PC-  
 354 2 loadings accounts for deviations herefrom, as caused by the individual variograms (mainly  
 355 expressing a higher or lower average slope), a general feature, markedly overprinted by  
 356 random deviations. This component models the set of different slopes of the individual

357 variograms, and it accounts for less than 1% total variance, but never-the-less lends itself  
358 easily to be interpreted as the well-known spectroscopic 'tilting' signature, (Martens & Næs  
359 1991).

360

361



362

363 Figure 8. PCA ( $X_{\text{variogram}}$ ) loading plot for PC-1 (left) and PC-2 (right). The  $X_{\text{variogram}}$  matrix has  
364 not been subjected to pre-treatment before PCA (no centering, no scaling). The range of the  
365 average variogram shape as represented by the PC1 loadings is ca. 5meters.

366 In our earlier studies, (Kardanpour et al. 2014), can be found a discussion *pro et contra* pre-  
367 treatment of an X-matrix made up of variograms. When basing variograms on heterogeneity  
368 contributions (a one-to-one transformation of the original analytical concentrations), this  
369 issue becomes moot, as this transformation is already performing what amounts to scaling. In  
370 the present paper we therefore did not apply centering, opting for the easily interpreted and  
371 useful appearance of the average variogram shape, Figure 8 (left).

#### 372 4. Discussion

373 Aiming for a general approach to soil heterogeneity characterisation, a set of naturally  
374 occurring organic, anthropogenic and biota parameters were studied at scales from 1 to 60 m  
375 to be compared with other, for example mineralogic parameters (see further below). The first  
376 step is always inspection of the raw data set with respect to potential outliers and/or trends.  
377 In the present study the geochemical parameter transects show no outliers and no strong  
378 trends, Figures 2-5.

379 The experimental design allows comparison of the small-scale replication variability (classic  
380 statistics) and large-scale variability. All transects can for example be directly compared with  
381 the level and variation at the small-scale experiment (less than 1 meter), by the pertinent  
382 mean  $\pm 2$  SD. In figures 2-5 the variation of the parameters in any selected small scale window  
383 cannot be overestimated to the large scale, indeed it cannot be also obtained from a small  
384 scale replication study deviation estimate. This is just for visual orientation however and not  
385 to be confused with the nugget effect, a much more general characterisation of the small(est)  
386 scale variability pertaining to below lag = 1, summing up and averaging this information for

387 all the sample pairs in the transect.

388 Any short interval on a transect Figures 2-5 can be considered as a small scale study in its own  
389 right. In this context there is a clear difference between the empirical variability in different  
390 segments *along* each transect: the local variability does not necessarily extend to larger scales.  
391 This has an important practical conclusion: any local small-scale sample collection cannot be  
392 generalised to larger scales. Unwitting or un-reflected scaling-up of small scale experimental  
393 organic, anthropogenic and biota fate and mineralization results will bring an inflated  
394 uncertainty outside experimental control. The mineralisation parameters which show  
395 different variation behaviour in the different mineralisation steps send an important message  
396 regarding studies concerning time-dependent characterisations. A similar difference is  
397 observed for MCPA sorption with different concentrations, i.e. when studies are concerned  
398 with concentration-dependent phenomena.

399 The *general* local variability behaviour is however well captured as the below-range part of  
400 the general variogram loading spectrum for PC1. The variogram is able to generalise the  
401 common local scale behaviour. With TOS, there is synoptic information residing in the range,  
402 sill and nugget effect for each individual parameter. Whenever heterogeneity variograms  
403 display a range, this relates to the ease and risk associated with attempting to secure field  
404 samples with minimum variability: Sampling with smaller inter-increment lag distances than  
405 the range makes it possible to use the inherent auto-correlation between samples in a  
406 beneficial fashion.

407 From the earlier studies (Kardanpour et al. 2014; Kardanpour et al. 2015) the overall  
408 conclusion was only to employ *composite sampling*. In the present context this means that,  
409 wherever practically possible, increments should only be collected with a maximum of half  
410 the observed range as a means to avoid unnecessary compositional variability effects due to  
411 the inherent soil scale heterogeneity. It follows that in order to minimize the total sampling  
412 error, increments must be sampled with a maximum lag of 0.5\*range, *preferentially* smaller. In  
413 the present soil variograms a general range of 5 meters is observed for multivariate  
414 variographic approach of the parameters, Figure 8. It is evident that a thorough mixing of the  
415 selected set of increments is mandatory to sample locations with less than 2.5 meters distance  
416 in between; for other soil types/analytes other numerical magnitudes apply.

417 The variograms show different behaviour with respect to mineralisation stages. This is  
418 expected from the slower rate of the mineralisation in the latter stages, Figure 6. The later  
419 stages display a flat variogram that only represent little auto-correlation between sample  
420 locations, Figure 7, and the low sill level representing low variation along the transect. As it is  
421 common in environmental studies, results of the mineralisation are mostly reported in terms  
422 of the accumulated mineralisation rate (see Figure 6 as an example), i.e. results that are  
423 mostly affected by the first stages of the mineralisation.

424 Most of the variograms level off quickly after only a few lags (range ca. 5 meters) followed by  
425 a flat (or slightly increasing) trend, while first step of MCPA mineralisation, biomass and LOI

426 show more markedly increasing variograms, Figure 7.

427 The CFU sill level is lower than natural organic and anthropogenic compounds indicating  
428 lower variability of soil microbiology at the large scale(s). This can be compared with results  
429 from a series of other large-scale studies on different microbial communities for different  
430 anthropogenic and natural compound mineralization, which also showed that microbial  
431 biomass seem to be stable intrinsic parameter of longer periods. (Sørensen et al. 2003;  
432 Bending et al. 2001; Bending et al. 2003; Walker et al. 2001).

433 It is always a matter for discussion when theoretically anticipated correlations between the  
434 physiochemical/microbial activities fail to appear in specific real-world case studies. The  
435 more complex compounds have shown a more irregular, patchy fashion of decaying due to  
436 more specific microbial communities (but still generally isotropic in nature). Analysis of soil  
437 parameters rarely gives a clear pattern; this seems to be associated to a number of not-  
438 included or unknown parameters, resulting, in some cases in a high degradation potential, but  
439 low elsewhere (Sørensen et al. 2003; Rasmussen et al. 2005; Bending et al. 2001; Walker et al.  
440 2001). Upon reflection this is no mystery however, but simply a result of local soil  
441 heterogeneity, which cannot be formulated or predicted based on the physiochemical  
442 biological or microbial correlation of the properties of soil in large scale studies. A  
443 variographic heterogeneity characterization at all scales is thus a beneficial pilot experiment  
444 able to focus on the relevant heterogeneities characterizing individual, or group of parameters  
445 in their proper scale-dependent relationships.

446 Summing up the results of all measured parameters studied here, for environmental purposes  
447 and objectives related to soil parameters at field scale, it is advantageous to employ a  
448 variographic heterogeneity characterisation as a pilot study. Results here will lead to a  
449 comprehensive understanding of the spatial variability and auto-correlation of the  
450 parameters in the field.

451 The results from the present study show that for well-mixed sandy soil it is recommended to  
452 sample locations with less than 2.5 meters inter-distance in between, preferentially smaller. It  
453 is necessary to conduct a similar variographic pilot experiment in order to outline the  
454 relevant scale-heterogeneity characteristics for other soil types, which unavoidably will tend  
455 to show more irregular spatial heterogeneity patterns – each principal soil type will in  
456 principle be characterised by a specific range, but there is a further caveat. Each analyte may  
457 in fact display its own, more or less specific range, as witnessed above, as well as by a plethora  
458 of studies in the literature. When controlling the spatial heterogeneity is of the essence, the  
459 logical solution is to design the sampling according the analyte with the *smallest* range, i.e. the  
460 most heterogeneously distributed analyte – this will by necessity also take care of all other  
461 analytes with higher ranges. If emphasis is on sampling costs (a not totally unlikely alternative  
462 scenario that may, or may not clash with other requirements of which only one really matters  
463 though: representativity) it is a comforting thought that all analytes are measured on the  
464 same final aliquot. By carefully optimising the primary field sampling according to the  
465 principles presented here, all analytes will be measured with the same, optimal relevance,

466 indeed w.r.t. the same representativity. If sampling is done right from the start, there are no  
467 extra costs – while the opposite is a very different case, as should be abundant clear.

468 Results from a parallel study on the *minerogenic* compounds for the same Fladerne field  
469 (Kardanpour et al. 2014) show a similar soil heterogeneity compared to the present  
470 *anthropogenic* compounds. The nugget effect for most of the minerogenic compounds are of  
471 the same order of magnitude as those for the anthropogenic compounds, i.e. the total  
472 measurement system and procedures (sampling/handling/processing/analysis) pass all the  
473 quality criteria for representative sampling established in the recent sampling standard  
474 (DS3077 2013).

475 In cases where the next step in studies might be assessment of the main factors driving the  
476 spatial heterogeneity of soil contamination analytes for example, the 1-D (or 2-D X-Y)  
477 approach advocated here, will only serve as a basis for proper selection of experimental  
478 material to be taken to the laboratory - upon which further considerations will focus on, say,  
479 the potential factors involved in contaminant input and transport a.o. Note that these latter  
480 processes manifest themselves primarily in the Z-direction, where it is by no means a given  
481 that application of the same variographic approach (or geostatistical modelling) will  
482 necessary give meaningful results.

483       5. Conclusions

484 A pilot experiment aimed at an intrinsic 1-D soil heterogeneity characterization is a critical  
485 success factor for laboratory studies relying on field samples to provide the experimental  
486 pots, which for replicate and comparative study objectives need to be as similar as at all  
487 possible. As a case study the variographic results for sandy soils show that the distance  
488 between two sample spot must be less than 2.5 meters for the present set of organic  
489 compounds and soil type. Specific soil types and/or other analytes will in principle display  
490 different ranges and nugget effects, and hence our call for systematic deployment of the  
491 *variographic pilot experiment*, from which can be derived all necessary information for  
492 designing an optimal sampling plan e.g. identifying the analyte with the smallest range (for  
493 significantly correlated analytes). For the case of well-mixed soil components, a general PCA-  
494 approach for modelling a whole set of variograms may be useful in addition to individual  
495 analyte consideration.

496 Without this types of information, experimental fate study work is essentially devoid a valid  
497 basis as regards interpretation, scale-up and scientific generalisation of the experimental  
498 results back to the field scale. A large-scale 1-D transect sampling can reveal the inherent  
499 heterogeneity at all scales from the smallest local sampling equidistance up to the maximum  
500 experimental length scale studied. Variographic analysis was here employed successfully to  
501 soil heterogeneity at scales between 1 and 100 meters, other scenarios may require other  
502 numerical parameters, while the general approach remains identical.

503 The TOS-guided variogram pilot study approach illustrated here has a substantial carrying-  
504 over potential to geochemistry and environmental science, as well as other application areas.

505 It is even applicable to *dynamic systems*, i.e. to natural or technological processes in these  
506 realms.

507

508 Acknowledgements

509 The authors gratefully acknowledge the Danish Research Council for Ph.D. stipend funding  
510 (Stipend No. 562/06-18-10028(6)) to ZK and valuable laboratory services and assistance  
511 provided by GEUS, Dept. of Geochemistry. The authors are grateful to GEUS' management for a  
512 positive attitude with respect to development and application of TOS' principles of proper  
513 representative sampling, which are not always recognized in geosciences communities to the  
514 extent necessary in general, alas neither at GEUS specifically.

515

516 References:

517 Adamchuk, Viacheslav I., Raphael a. Viscarra Rossel, David B. Marx, and Ashok K. Samal. 2011.  
518 Using Targeted Sampling to Process Multivariate Soil Sensing Data. *Geoderma* 163 (1-2):  
519 63-73. "

520 Arias-Estévez, Manuel, Eugenio López-Periago, Elena Martínez-Carballo, Jesús Simal-Gándara,  
521 Juan-Carlos Mejuto, and Luis García-Río. 2008. The Mobility and Degradation of  
522 Pesticides in Soils and the Pollution of Groundwater Resources. *Agriculture, Ecosystems &*  
523 *Environment* 123 (4): 247-60.

524 Badawi, Nora, Anders R Johnsen, Jan Sørensen, and Jens Aamand. 1999. Centimeter-Scale  
525 Spatial Variability in 2-Methyl-4-Chlorophenoxyacetic Acid Mineralization Increases with  
526 Depth in Agricultural Soil. *Journal of Environmental Quality* 42 (3): 683-89.

527 Bending, Gary D, Suzanne D Lincoln, R Sebastian, J Alun W Morgan, Jens Aamand, Sebastian R  
528 Sørensen, and Allan Walker. 2003. In-Field Spatial Variability in the Degradation of the  
529 Phenyl-Urea Herbicide Isoproturon Is the Result of Interactions between Degradative  
530 Sphingomonas Spp. and Soil pH. *App. Environ. Microbiol.* 69(2): 827-834.

531 Bending, Gary, Eve Shaw, and Allan Walker. 2001. Spatial Heterogeneity in the Metabolism  
532 and Dynamics of Isoproturon Degrading Microbial Communities in Soil. *Biology and*  
533 *Fertility of Soils* 33 (6): 484-89.

534 Boudreault, Jean-Philippe, Jean-Sébastien Dubé, Mirela Sona, and Eric Hardy. 2012. Analysis of  
535 Procedures for Sampling Contaminated Soil Using Gy's Sampling Theory and Practice.  
536 *The Science of the Total Environment* 425: 199-207.

537 Chappell, Adrian, and Raphael a. Viscarra Rossel. 2013. The Importance of Sampling Support  
538 for Explaining Change in Soil Organic Carbon. *Geoderma* 193-194: 323-325.

539 Crespin, M a, M Gallego, M Valcárcel, and J L González. 2001. Study of the Degradation of the  
540 Herbicides 2,4-D and MCPA at Different Depths in Contaminated Agricultural Soil.  
541 *Environmental Science & Technology* 35 (21): 4265-4270.

542 De Zorzi, Paolo, Sabrina Barbizzi, Maria Belli, Ales Fajgelj, Radojko Jacimovic, Zvonka Jeran,  
543 Umberto Sansone, and Marcel van der Perk. 2008. A Soil Sampling Reference Site: The  
544 Challenge in Defining Reference Material for Sampling. *Applied Radiation and Isotopes* :  
545 66 (11): 1588-1591.

546 Dictor Marie- Christine, Laurent Tessier and Guy Soulard. 1998. Reassessment of the K EC  
547 Coefficient of the Fumigation ± Extraction Method in a Soil Profile. *Soil Biology and*  
548 *Biochemistry* 30 (2): 119-127.

549 DS3077. 2013. Representative Sampling/ Horizontal Standard. *Danish Standard Authority*  
550 44:1-38.

551 Esbensen, Kim H., Hans Henrik Friis-Petersen, Lars Petersen, Jens Bo Holm-Nielsen, and Peter  
552 P. Mortensen. 2007. Representative Process Sampling — in Practice: Variographic  
553 Analysis and Estimation of Total Sampling Errors (TSE). *Chemometrics and Intelligent  
554 Laboratory Systems* 88 (1): 41–59.

555 Esbensen, Kim H., Claudia Paoletti, and Pentti Minkkinen. 2012a. “Representative Sampling of  
556 Large Kernel Lots I. Theory of Sampling and Variographic Analysis.” *TrAC Trends in  
557 Analytical Chemistry* 32: 154–164.

558 Esbensen, Kim H., Claudia Paoletti, and Pentti Minkkinen. 2012b. Representative Sampling of  
559 Large Kernel Lots III. General Considerations on Sampling Heterogeneous Foods. *TrAC  
560 Trends in Analytical Chemistry* 32: 178–184.

561 Esbensen, Kim H., and Claas Wagner. 2014. Theory of Sampling (TOS) versus Measurement  
562 Uncertainty (MU) – A Call for Integration. *TrAC Trends in Analytical Chemistry* 57: 93–  
563 106.

564 Esbensen, Kim H., and Rodolfo J. Romanach. (2015) Counteracting soil heterogeneity sampling  
565 for environmental studies (pesticide residues, contaminants transformation) - TOS is  
566 critical. Proceedings 7.th World Conference on Sampling and Blending (WCSB7), p.205-  
567 209.

568 Gerlach, Robert W., David E. Dobb, Gregory a. Raab, and John M. Nocerino. 2002. Gy Sampling  
569 Theory in Environmental Studies. 1. Assessing Soil Splitting Protocols. *Journal of  
570 Chemometrics* 16 (7): 321–328.

571 Ghafoor, Abdul, Nicholas J. Jarvis, Tomas Thierfelder, and J Stenström. 2011. Measurements  
572 and Modeling of Pesticide Persistence in Soil at the Catchment Scale. *The Science of the  
573 Total Environment* 409 (10) 1900-1908.

574 Gy, P. M. 1998. *Sampling for Analytical Purposes*. 1st ed. Chichester, West Sussex, UK: John  
575 Wily & Sons, 172pp, ISBN: 978-0-471-97956-2.

576 Johnsen, Anders R, Philip J Binning, Jens Aamand, Nora Badawi, and Annette E Rosenbom.  
577 2013. The Gompertz Function Can Coherently Describe Microbial Mineralization of  
578 Growth-Sustaining Pesticides. *Environmental Science & Technology* 47 (15): 8508–8514.

579 Johnsen, Anders R, Bjarne Styrihave, and Jens Aamand. 2014. Quantification of Small-Scale  
580 Variation in the Size and Composition of Phenanthrene-Degrader Populations and PAH  
581 Contaminants in Traffic-Impacted Topsoil. *FEMS Microbiology Ecology*, 88: 84-93.

582 Kardanpour, Zahra, Ole S. Jacobsen, and Kim H. Esbensen. 2014. Soil Heterogeneity  
583 Characterization Using PCA (Xvariogram) – Multivariate Analysis of Spatial Signatures for  
584 Optimal Sampling Purposes. *Chemometrics and Intelligent Laboratory Systems* 136:24–35.

585 Kardanpour, Zahra, Ole S. Jacobsen, and Esbensen, Kim.H. 2015 Counteracting soil  
586 heterogeneity sampling for environmental studies (pesticide residues, contaminants

587 transformation) - TOS is critical. Proceedings 7.th World Conference on Sampling and  
588 Blending (WCSB7), p.205-209.

589 Li, B G, J Cao, W X Liu, W R Shen, X J Wang, and S Tao. 2006. Geostatistical Analysis and Kriging  
590 of Hexachlorocyclohexane Residues in Topsoil from Tianjin, China. *Environmental  
591 Pollution* 142 (3): 567–575.

592 Lin, Qinghuo, Hong Li, Wei Luo, Zhaomu Lin, and Baoguo Li. 2013. Optimal Soil-Sampling  
593 Design for Rubber Tree Management Based on Fuzzy Clustering. *Forest Ecology and  
594 Management* 308: 214–222.

595 Martens, Harald, and Tormod Næs. 1991. *Multivariate Calibration*. Edited by John Wiley &  
596 Sons. Chichester, West Sussex, UK, 438p, ISBN: 978-0-471-93047-1.

597 Minkkinen, Pentti, Kim H. Esbensen, and Claudia Paoletti. 2012. Representative Sampling of  
598 Large Kernel Lots II. Application to Soybean Sampling for GMO Control. *TrAC Trends in  
599 Analytical Chemistry* 32: 165–177.

600 Mulder, V.L., S. de Bruin, and M.E. Schaepman. 2013. Representing Major Soil Variability at  
601 Regional Scale by Constrained Latin Hypercube Sampling of Remote Sensing Data.  
602 *International Journal of Applied Earth Observation and Geoinformation* 21: 301–310.

603 Petersen, Lars, Casper K. Dahl, and Kim H. Esbensen. 2004. Representative Mass Reduction in  
604 Sampling—a Critical Survey of Techniques and Hardware. *Chemometrics and Intelligent  
605 Laboratory Systems* 74 (1): 95–114.

606 Petersen, Lars, and Kim H Esbensen. 2006. Representative Process Sampling for Reliable Data  
607 Analysis — a Tutorial. *Journal of Chemometrics* 19: 625–647.

608 Petersen, Lars, Pentti Minkkinen, and Kim H. Esbensen. 2005. Representative Sampling for  
609 Reliable Data Analysis: Theory of Sampling. *Chemometrics and Intelligent Laboratory  
610 Systems* 77 (1-2): 261–277.

611 Rasmussen, Jim, Jens Aamand, Per Rosenberg, Ole S Jacobsen, and Sebastian R Sørensen. 2005.  
612 Spatial Variability in the Mineralisation of the Phenylurea Herbicide Linuron within a  
613 Danish Agricultural Field: Multivariate Correlation to Simple Soil Parameters. *Pest  
614 Management Science* 61 (9): 829–837.

615 Rodriguez-Cruz, M. Sonia, Julie E. Jones, and Gary D. Bending. 2006. Field-Scale Study of the  
616 Variability in Pesticide Biodegradation with Soil Depth and Its Relationship with Soil  
617 Characteristics. *Soil Biology and Biochemistry* 38 (9): 2910–2918.

618 Rosenbom, Annette E, Philip J Binning, Jens Aamand, Arnaud Dechesne, Barth F Smets, and  
619 Anders R Johnsen. 2014. Does Microbial Centimeter-Scale Heterogeneity Impact MCPA  
620 Degradation in and Leaching from a Loamy Agricultural Soil?. *The Science of the Total  
621 Environment* 472:90–98.

622 Sørensen, Sebastian R, Gary D Bending, Carsten S Jacobsen, Allan Walker, and Jens Aamand.  
623 2003. Microbial Degradation of Isoproturon and Related Phenylurea Herbicides in and  
624 below Agricultural Fields. *FEMS Microbiology Ecology* 45 (1): 1-11.

625 Sørensen, Sebastian R, Anne Schultz, Ole S Jacobsen, and Jens Aamand. 2006. Sorption,  
626 Desorption and Mineralisation of the Herbicides Glyphosate and MCPA in Samples from  
627 Two Danish Soil and Subsurface Profiles. *Environmental Pollution* 141 (1): 184-194.

628 Tate K.R., Ross D. J. and Feltham C.W. 1988. A Direct Extraction Method to Estimate Soil  
629 Microbiology C: Effects of Experimental Variables and Some Different Calibration  
630 Procedures. *Soil Biology and Biochemistry* 20: 329-335.

631 Thurman, Elisabeth A Scribner. 2008. A Decade of Measuring , Monitoring , and Studying the  
632 Fate and Transport of Triazine Herbicides and Their Degradation Products in  
633 Groundwater , Surface Water , Reservoirs , and Precipitation by the US Geological Survey.  
634 *The Triazine Herbicides*, 451-475.

635 Torstensson, N T L, and J Stark. 1975. The Effect of Repeated Applications of 2 , 4-D and MCPA  
636 on Their Breakdown in Soil. *Weed Research* 15: 159-164.

637 Totaro, Sara, Paola Coratza, Caterina Durante, Giorgia Foca, Mario Li Vigni, Andrea Marchetti,  
638 Mauro Marchetti, and Marina Cocchi. 2013. Soil Sampling Planning in Traceability Studies  
639 by Means of Experimental Design Approaches. *Chemometrics and Intelligent Laboratory*  
640 *Systems* 124:14-20.

641 Walker, A, M Jurado-Exposito, G D Bending, and V J Smith. 2001. Spatial Variability in the  
642 Degradation Rate of Isoproturon in Soil. *Environmental Pollution* 111 (3): 407-415.

643