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Abstract 11 

The objective of the presented work was to develop a method to acquire Manning’s n by 12 

creating very high resolution surface models with Structure from Motion-methods. As 13 

hydraulic roughness is an essential parameter for physically based erosion models, a practical 14 

measuring technique is valuable during field work. Data acquisition took place during several 15 

field experiments in the Lainbach valley, southern Germany and on agricultural sites in 16 

Saxony, eastern Germany and in central Brazil. Rill and interrill conditions were simulated by 17 

flow experiments. In order to validate our findings stream velocity was measured with colour 18 

tracers. Grain sizes were derived by measuring distances from a best fit line to the 19 

reconstructed soil surface. Several diameters from 𝐷50 to 𝐷90 were tested with 𝐷90 showing 20 

best correlation between tracer experiments and photogrammetrically acquired data. Several 21 

roughness parameters were tested (standard deviation, random roughness, Garbrechts n and 22 

𝐷90). Best agreement in between the grain size and the hydraulic roughness was achieved 23 

with a non-linear sigmoid function and 𝐷90 rather than with the Garbrecht equation or 24 

statistical parameters. 25 

Keywords: hydraulic roughness, Structure from motion, computer vision, surface 26 

reconstruction, erosion modelling, Manning n, Garbrecht, D90, EROSION 3D 27 
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Abbreviations 1 

DEM   - Digital Elevation Model 2 

DoD  - Digital Elevation Model of Difference 3 

DSLR  - Digital Single Lens Reflex Camera 4 

E3D  - Erosion 3D soil erosion model 5 

GIS  -  Geographic Informatic System 6 

GSD  - Ground Sampling Distance 7 

LiDAR - Light Detection and Ranging 8 

LISEM - Limburg Soil Erosion Model 9 

PMP  - Profile Meter Program 10 

RMSEP - Root Mean Squared Error of Prediction  11 

RR  -  Random Roughness 12 

SD  -  Standard Deviation 13 

SfM  - Structure from Motion 14 

WEPP  - Water Erosion Prediction Project 15 

 16 
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1 Introduction 18 

Hydraulic parameters are essential factors in erosion research with surface roughness being a 19 

crucial one. A variety of studies repeatedly analysed roughness from different approaches on 20 

different scales: Borselli & Torri 2010 looked at the interaction between slope, surface 21 

roughness and storage abilities in their storage cup and storage empirical models. Their 22 

experiments showed that best performance was achieved with rather simple statistical 23 

parameters like random roughness or the Abbot-Firestone curve (Abbott and Firestone, 1933) 24 

in comparison to more complex fractal indices or geo-statistical approaches (Borselli and 25 

Torri, 2010). Smith et al. worked on a larger scale with airborne LiDAR and photogrammetry 26 

data to improve the quality of hydrodynamic flow prediction for flooding areas by applying 27 

classified Manning’s n values on the produced DEMs (Smith et al., 2004). A C-Band radar 28 
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evaluation for determining surface roughness was carried out by Rahman et al. using satellite 1 

data from Envisat and validating them with pin meter measurements (Rahman et al., 2008). 2 

Zheng 2012 published a study closely related to our work as they compared soil surface 3 

roughness with a hydraulic roughness coefficient. They derived functions to relate the 4 

Manning’s 𝑛 to the measured surface roughness and could thus achieve good coefficients of 5 

determination (R² = 0.89) for different slope gradients on loessic soils. Nonetheless, the range 6 

of different grain sizes and thus surface roughness is restricted to one soil type and the 7 

measurement was carried out using a pin meter (Zheng et al., 2012). The latter is a useful tool 8 

for random roughness measurements and has also been applied in older studies for 9 

determining surface roughness values. A study by Cremers et al. developed a semi-10 

photographic approach by capturing images of the pins for the PMP which then calculates 11 

surface heights (Cremers et al., 1996). 12 

The interaction between hydrological roughness and slope is of major influence on stream 13 

velocity. Besides the storage capacities of a rough surface this vectored characteristics of flow 14 

play an important role in the initial conditions for soil detachment. Physically based soil 15 

erosion models are reliant on field experiments to generate data for running the model. One 16 

crucial influence factor is stream velocity 𝑣 as it interacts with parameters such as liquid 17 

density or volume flow to calculate further physical values. Shear stress 𝜏 and thus shear rate 18 

𝛾, stream power 𝜔 and the Reynolds number 𝑅𝑒 are affected by stream velocity 𝑣 whereas the 19 

stream velocity is mainly steered by slope and roughness. While there are several possible 20 

methods to acquire information on slope, roughness as function of the hydraulic resistance of 21 

the soil surface represents a tricky parameter when it comes to measuring methods. 22 

Nevertheless, the Manning’s roughness coefficient 𝑛 is a crucial parameter for physically 23 

based soil erosion models such as LISEM (de Roo A. P. J. and Wesseling, 1996), WEPP 24 

(Laflen et al., 1991) and E3D (Schmidt, 1991) and thus is mandatory to be measured in situ. 25 

As a consequence of the high complexity of surfaces in rill and interrill areas a direct 26 

approach to acquiring roughness values is hardly feasible. However, advancing technologies 27 

and decreasing computing times enable new approaches to surface reconstruction. The 28 

presented study applies SfM-algorithms to produce high resolution surface models to derive 29 

information on micro topography, which influences the runoff.  30 

Up to now, the required roughness values were determined in laborious flow experiments as 31 

described in the methods section of this study. These are limited with regard to the covered 32 
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surface and the number of possible runs. Furthermore, the position of the plot is chosen 1 

according to the accessibility and is thus restricted and not free of subjectivity.  Therefore, the 2 

overall aim of this study is to test the relationship between a very high resolution topography 3 

model and the measured hydraulic roughness values. Common roughness coefficients were 4 

tested for their applicability with Garbrechts 𝐷90 showing best correlations. Additionally, the 5 

study provides preliminary results for raster based soil erosion models as new possibilities in 6 

surface reconstruction arise and can be of high value for model application. 7 

2 Methodology 8 

2.1 Research area 9 

It is important to note that the main motivation for the selection of the research areas was not 10 

the presented study itself, as it was not dependent on site-specific differences like climate or 11 

substrate. Instead, the experimental data resulted from adaptations of a larger measuring setup 12 

for rainfall simulations and were thus generated as a by-product. 13 

2.1.1 Lainbach valley, Bavaria, Germany 14 

Being object to many research projects in several geoscientifical disciplines (Banasik, K, 15 

Bley, D., 1994)(Bunza et al., 2004)(Grottenthaler and Laatsch, 1973) (Jong, 1995) (Schmidt, 16 

1994)(Wetzel, 2003) the Lainbach valley in the Northern Limestone Alps (47°40’35” N and 17 

11°27’35” O) was chosen for the field experiments. Altitudes in the 18.4 km² catchment range 18 

from 1801 m at the Benediktenwand to around 700 m at the outlet of the river Lainbach close 19 

to the city of Benediktbeuern. Underlain mainly by Flysch the basin is filled with Pleistocene 20 

glacial moraine deposits which reveal high morphodynamics on unvegetated slopes (Becht, 21 

1989) (Kaiser et al., 2014b). These slopes deliver major quantities of sediment to the river 22 

network especially during heavy rain events. Freeze-thaw cycles trigger mudflows and thus 23 

provide additional material for erosion processes. Neugirg et al. applied a terrestrial LiDAR 24 

monitoring to measure a mean annual denudation rate of 3.4 cm on a slope in the 25 

Melcherreiße, an active slope in the headwaters of the Lainbach valley (Neugirg et al., 2014). 26 

Data for the study at hand were also collected at the Melcherreiße due to reasonable 27 

accessibility and already existing field data from former campaigns including a rainfall 28 

simulation (Kaiser et al., 2014b). An inclination of around 40° at the experimental sites was 29 

found to be appropriate with regard to the typical slope gradient in the active areas of the 30 

Lainbach valley. 31 
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2.1.2 Heidenau and Zwönitz, Saxony, Germany 2 

Two additional experimental sites are located within the federal state of Saxony. Three main 3 

landscapes characterise Saxony: lowlands in the north, hilly uplands in the centre and the 4 

`Erzgebirge´ mountain range in the south. The mean annual rainfall lies between 700 mm in 5 

the lowlands and up to 1000 mm in higher regions. One of the research sites close to the 6 

village of Heidenau is located on ploughed loessic luvisols with remaining stubbles from 7 

previous year’s corn. Soil texture shows a sandy silt opposing to the Zwönitz site with a 8 

higher clay content resulting in a silty loam. While Heidenau (50°57’13” N and 13°52’23” E) 9 

is underlain by glacial deposits from Saalian-Stage the Zwönitz experimental area is situated 10 

on metamorphic bedrock. Comparable to Heidenau the field was also left with corn stubbles. 11 

The soil type was classified as a podzolic cambisol. Different tillage measures were applied to 12 

the test plots: intensive non-invasive mulching, strip-till and no-till.  13 

 14 

2.1.3 Novo Progresso, Pará, Brazil 15 

In Novo Progresso the study areas are located in the Amazonian lowlands with a humid 16 

tropical climate of 2232 mm per year and 25°C mean temperature at 07°07’33” S and 17 

55°25’58” W. Within the corridor around the BR 163 and minor roads forest is intensively 18 

logged, while deforested land is used as pasture. Mostly gleyic, haplic acrisols and fewer 19 

ferralsols are found and dominant in the area. Since pastures are degrading very rapidly, deep 20 

ploughing serves as an appropriate measure to remove soil compaction, as it was applied to 21 

both plots.  22 

 23 

2.2 Discharge experiments 24 

In the experimental setup we used colour tracer to measure flow velocities and thus derive 25 

hydraulic roughness values applying Manning’s equation. The latter was chosen as it is a 26 

widespread formulae and associated with a large quantity of existing data. Furthermore, a 27 

work on overland flow by Emmett states that the Manning’s equation serves adequately to 28 

estimate flow properties of turbulent flow (Emmett, 1970). In a next step these values were 29 

compared to surface roughness data produced with SfM models. Algorithms were designed in 30 

R to approximate both roughness measurements e.g. by considering the flow direction in the 31 
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surface roughness. In a last step the gained data served as model input for the physically 1 

based soil erosion model E3D in order to evaluate the results for modelling applications, 2 

which again supports the usage of Manning’s equation The model output is then compared to 3 

actual detachment acquired from DoDs from the before and after imagery from the 4 

experimental plots. 5 

For data acquisition discharge experiments on a 1*1 m² plot were carried out on steep slopes 6 

in the Lainbach catchment. A 30 litre barrel supplied the plot for around three minutes with 7 

runoff, which was introduced to the soil surface via a distributor to achieve comparable layer 8 

thickness at the upper end of the plot. The chosen amount of water per second corresponded 9 

to a simulated slope length of >10 m in a frequently applied experimental setup (Schindewolf, 10 

2012). Additionally, all runoff was collected through a pipe and measuring cups at the outlet 11 

including sediment samples for determining erosion rates and the soils resistance to erosion. 12 

The latter is a crucial input for the erosion model E3D and is determined as  13 

𝜑𝑐𝑟𝑖𝑡 =
𝑞𝑐𝑟𝑖𝑡 ∗ 𝜌𝑞 ∗ 𝑣𝑞

∆𝑥
  (eq. 1) 

with 𝑞𝑐𝑟𝑖𝑡 being the volume rate of discharge [m³/(m*s)], the fluid density as 𝜌𝑞 [kg/m³], flow 14 

velocity 𝑣𝑞 [m/s] and ∆𝑥 as the slope width [m], which in our case is one meter.  15 

Demonstrated above, flow velocity influences soil detachment and is again dependent on 16 

surface roughness as shown in the following equation after Manning: 17 

𝑣𝑞 =
1

𝑛
𝛿

2
3 ∗ 𝑆

1
2  (eq. 2) 

Hydraulic surface roughness is given by 𝑛 [s/m
1/3

], S is slope [m/m] and 𝛿 the depth of flow 18 

[m]. Eq.2 already is an alteration of the original Manning equation as the hydraulic radius 𝑅 19 

was replaced by the flow depth. The reason for the replacement of the hydraulic radius with 20 

the flow depth lies in predominant sheet flow conditions on our research plots. While the 21 

hydraulic radius is an important factor in channel flow it can be approximated to the flow 22 

depth in the case of our experiments as it is described as the product of flow depth and flow 23 

cross section. In this regard flow depth is a product of the continuity equation as a mean value 24 

for the entire plot. As a function of flow volume 𝑞 and flow velocity 𝑣 it can be described as 25 

follows when inserted in eq. 2: 26 
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𝛿 = (
𝑞 ∗ 𝑛

𝑆
1
2

)
3
5  (eq. 3) 

The hydraulic surface roughness can thus be calculated by solving the Manning equation for 1 

n: 2 

𝑛 = 𝑣𝑞

−
5
3 ∗ 𝑞

2
3 ∗ 𝑆

1
2  (eq. 4) 

 3 

Flow velocity as a variable of eq. 4 was measured in the above described setup by adding 4 

colour tracer (Vitasyn Blue AE 90) to the flow. Due to concentrating flow on the plot a 5 

difference in velocity was evident. To later differentiate between fast and slow flow areas and 6 

to validate flow velocities, two cameras were installed to videotape the discharge experiments 7 

at 60 frames per second from different angles. 8 

[Fig. 1] 9 
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2.3 Structure from Motion and data preparation 11 

The input data for the surface reconstruction consists of a multitude of short range images 12 

from different perspectives of the measured surface. They were acquired before and after the 13 

experiment. Then applied SfM procedures allow for a straightforward workflow and accurate 14 

elevation data (Lowe, 1999) (James and Robson, 2012) (Kaiser et al., 2014a). Image positions 15 

were more or less randomized with a focus on total coverage resulting in around 30 images 16 

per plot. Internal camera parameters were not changed throughout the experiment. The chosen 17 

camera was a Canon EOS 6D full format DSLR with a Tokina 16-28 mm 𝑓/2.8 lens locked at 18 

16 mm and 𝑓/8.0. The lens was picked due to a decent closest focusing distance and high 19 

sharpness. However, a lens calibration due to the wide angle distortion of a full format sensor 20 

without crop factor was carried out in Agisoft Lens to increase precision (Agisoft, 2014a). 21 

Point densities of ≈5700 per cm² allowed for a very accurate surface representation and are a 22 

result of the low GSD of 0.01625 mm if we assume a distance of 40 cm from camera to plot 23 

surface. [Fig. 2] 24 

To achieve correct scaling and orientation of the 3D models we placed four tie points serving 25 

as ground control points at each corner of the plot which were then measured with a Leica 26 

TPS1200/TCRM1205 tachymeter for later xyz-registration. After the referencing to a local 27 
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coordinate system in Agisofts Photoscan (Agisoft, 2014b) all point clouds needed to be 1 

subsampled to achieve similar point densities throughout the plot. Different point distances 2 

from 0.01, 1 and 10 mm were chosen to find an adequate compromise between resolution and 3 

fluent data treatment. Secondly, the point clouds were gridded to a 1 mm DEM for GIS 4 

analysis in SAGA GIS using a point cloud to raster function. The above described procedure 5 

is shown in figure 3 and was carried out for all plots under before and after experiment 6 

conditions. 7 

[Fig. 3] 8 

 9 

2.3 Deriving roughness values 10 

Several approaches were tested before a considerable correlation between measured Manning 11 

𝑛 values and the DEM-based roughness was detected. All of the trials are explained and 12 

evaluated in the discussion section. The here described procedure led to the best relationship 13 

of surface roughness values derived from the DEM and Manning’s 𝑛 measured with flow 14 

experiments. 15 

For obtaining elevation values from the DEMs eight profile lines along the flow direction 16 

were created in SAGA GIS while all further analysis was carried out in R (R Development 17 

Core Team, 2008). These profile lines represent so to say the digital equivalent to the results 18 

of profiler measurements (Jong, 1995) (Nikora V. et al., 1998). A best fit line was plotted 19 

through each profile to collect data on the deviation from profile line to its best fit line as an 20 

approximation of roughness (figure 4).  21 

[Fig. 4] 22 

In a next step basic roughness parameters like the SD and RR were tested. Additionally, the 23 

positive residues above the line were measured perpendicular to the best fit line and the  𝐷90 24 

values across all profile lines were derived for every plot. The 𝐷90 represents the grain size at 25 

which the diameters of 90 % of all particles are finer than. In brief, the resulting values 26 

represent the mean 𝐷90 values from eight profile lines for each plot. These values then serve 27 

as the input for the empirical formula of Garbrecht to determine 𝑛 (Garbrecht, 1961): 28 

𝑛 =
𝐷90

1
6

26
  (eq. 5) 
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with D being the diameter under which a certain percentage (e.g. 90) of all particles is to be 1 

found. These n-values are then compared to the results from eq. 4 respectively the tracer 2 

experiments for measuring flow velocity. One experimental site produced strong rill flow and 3 

thus outliers. These were corrected by extracting the depression line in GIS via flow 4 

accumulation as profile line rather than a random straight line across the plot from top to 5 

bottom. Nevertheless, the latter was suitable for the other plots that showed higher rates of 6 

sheet flow. 7 

 8 

 9 

3 Results 10 

Table 1 gives an overview of the measured values from a total of 21 experiments. In a few 11 

cases slope remains stable as on plot was used for several flow simulations. A resulting 12 

example for a profile line derived from the high resolution surface models is shown in figure 13 

5. Clearly visible are areas of high and low flow resistance respectively of flat and more 14 

complex surface structures. Furthermore, areas with little inclination alternate with steep 15 

sections.  16 

[Fig. 5] 17 

Table 1. Hydrological parameters (n-Manning, flow velocity, slope and discharge) measured 18 

during the experiments for all research sites. Values P1 to P4 were acquired in the Lainbach 19 

Valley, Hn and Zw are the ones from Saxony and Flo1 was measured in Brazil.  20 

 
n-Manning 𝑣 [m/s] S [m/m] Q [ml/s] 

P1_v 

 

0.043 0.13 0.54 0.08 

P1_m 

 

0.046 0.12 0.54 0.08 

P1_n 

 

0.028 0.14 0.54 0.05 

P2_v 

 

0.071 0.09 0.67 0.05 

P2_m 

 

0.056 0.10 0.67 0.05 

P2_n 

 

0.036 0.17 0.67 0.10 

P3_v 

 

0.032 0.19 0.67 0.12 

P3_m 

 

0.022 0.26 0.67 0.12 

P3_n 

 

0.016 0.33 0.67 0.16 

P4_v 

 

0.072 0.12 0.83 0.11 
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P4_m1 

 

0.013 0.34 0.83 0.11 

P4_m2 

 

0.019 0.28 0.83 0.12 

P4_n 

 

0.018 0.30 0.83 0.14 

Hn1 

 

0.011 0.22 0.1 0.13 

Hn2 

 

0.011 0.23 0.1 0.15 

Hn3 0.016 0.17 0.13 0.15 

Hn4 0.011 0.24 0.09 0.15 

Hn5 0.077 0.07 0.12 0.12 

Hn6 0.056 0.08 0.09 0.14 

Zw4 

 

0.025 0.13 0.09 0.14 

Flo1 

 

0.109 0.07 0.07 0.34 

 1 

Table 2 summarizes the comparison of tested correlations between different parameters for 2 

describing roughness. Representing simple statistical analyses, both the roughness SD and RR 3 

perform not as good as the Garbrecht equation in R². Additionally, the root mean square error 4 

of prediction was tested as a more suitable measure in view of the fact that the data serves as 5 

input for a physically based soil erosion model. In both cases (SD and RR) their predictive 6 

power is better than the one of the Garbrecht equation. However, best agreement is found 7 

between 𝐷90 and the Manning hydraulic roughness. Figure 6 explains above explained with 8 

good linear correlation among the values but a variance in slope to the 1:1 line representing 9 

best predictive accuracy. 10 

Table 2. Comparison of different roughness parameters and their coefficients of determination 11 

and RMSEP with Manning’s 𝑛 (hydraulic roughness). 12 

 R² RMSEP 

SD vs. Manning n 0.33 0.0235 

RR vs. Manning n 0.42 0.0191 

Garbrecht n vs. Manning n 0.78 0.0945 

D 90 vs. Manning n 0.89 0.0085 

 13 

[Fig. 6] 14 
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 1 

4 Discussion 2 

Several roughness parameters show an average correlation during curve fitting. Random 3 

roughness e.g. performs adequately with R² = 0.47. Furthermore, an acceptable agreement of 4 

this study (R² = 0.58) and a comparable one by Michael (R² = 0.76) between the Garbrecht 5 

equation (eq. 5) and Manning (eq. 4) prove the applicability of Garbrecht for describing 6 

roughness values (Michael, 2000). Nevertheless, in our value range the predictive accuracy is 7 

not satisfying as can be seen in figure 6, especially as our study is looking at modelling 8 

parameters for a physically based erosion model. The fact that in the study by Michael 9 

particles were collected from the soil surface for later laboratory grain sizes analyses differs 10 

from the here shown photogrammetric approach but does not influence the above explained. 11 

While Garbrecht produces plausible values for channel and stream roughness it seems less 12 

accurate for shallow sheet flow as in the presented study. Comparing only the different grain 13 

sizes from 𝐷50to 𝐷90 lead to the assumption that 𝐷90performs best in a linear correlation with 14 

Manning’s 𝑛 but nevertheless does not correlate satisfyingly (Table 2).  15 

Table 3. Linear regression between different grain sizes and Manning’s 𝑛.  16 

diameter R² 

D50 0,1046 

D60 0,1333 

D70 0,1577 

D80 0,1688 

D90 0,4491 

Consequently, a more suitable description than Garbrecht’s  𝑛 and a linear regression for the 17 

high resolution surface data correlated to hydraulic roughness is required.  Better performance 18 

for the agreement of Manning’s 𝑛 and the 𝐷90 values was achieved with a logistic function 19 

respectively a sigmoid curve (figure 7). This led to the assumption that the behaviour of the 20 

curve at the lower end of Manning 𝑛-values can be described by an overshooting of runoff of 21 

small scaled gaps between particles without causing measureable disturbance respectively 22 

deceleration to the fluid. This is expected to occur on sealed soil surfaces in deposition areas 23 

of clay and fine silt.  24 
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[Fig. 7] 1 

Larger particles produce stronger disturbance to the flow which is represented by a rise of the 2 

graph to a certain level. This level is reached due to a rather low value of layer thickness of 3 

the surface runoff which is accountable for a second turning point in the curve as the 4 

influence of grain sizes decreases. In our experiments with roughly 0.25 l/m*s we do not 5 

exceed a certain flow depth which again is repeatedly exceeded by grain sizes on the plot. In 6 

our case this value lies in the range of approx. 5 cm. The highest flow depths occur on the 7 

lower part of the plot in concentrated rill runoff but still the water flows around the larger 8 

obstacles rather than overflowing them. All grain sizes above this critical level protrude the 9 

water surface and do no longer influence Manning’s 𝑛 which leads to a levelling of the curve 10 

as they increase the 𝐷90 value while Manning remains stable. 11 

[Fig 8.] 12 

Figure 8 shows the sensitivities of the normalized input parameters for Manning’s 𝑛. The 13 

Manning equation was parameterized with the mean values of our measurements. Percentage 14 

changes of the independent variable (input) on the x-axis are plotted against percentage 15 

changes of Manning´s n on the y-axis. The intercept of the grey lines shows the average 16 

values of our measurements. Flow elocity, as the most sensitive parameter of the equation 17 

represented by the blue line, shows a steep decline of high Manning n for low flow velocites 18 

but flattens for high velocities. This shows a rather low sensitivity for higher (and challenging 19 

to measure) discharge velocities, whilst measuring mistakes in the lower region result in 20 

larger discrepancies for 𝑛. The graphs for slope and discharge both show proportional 21 

behaviour: An increase in discharge requires an increase in roughness if velocity and slope 22 

remain stable. Several statistical parameters were tested before achieving above results. 23 

Standard deviation representing surface roughness was calculated by distances from points to 24 

a best fit plane. All points within a certain search radius are analysed concerning their z-25 

values. The standard deviation of all z-values is the roughness value for the point in the center 26 

of the search radius. The analysis was carried out using the module “Surface Roughness” in 27 

SAGA GIS, which works point cloud based. In a different approach we tested all residues 28 

from the best fit line – positive and negative. As described in the methods section only the 29 

positive residues above the best fit line were followed up on. The reason for this is that 30 

correlation with the hydraulic roughness decreased in all cases when including the negative 31 

residues. An explanation could be given by fact that the distances were calculated 32 
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perpendicularly and thus originally flat areas of low flow resistance act as ascent when the 1 

profile is levelled. On the other hand, also a distance measurement profile to best fit line 2 

without a levelling of both did not produce decent results either. 3 

 4 

5 Conclusion and outlook 5 

The results of the comparison between surface roughness data generated with a SfM 6 

workflow showed good agreement with measured hydraulic roughness coefficients. 7 

Nevertheless, for definite statements about the overall correlation and operability of the 8 

suggested method a wider range of data is required. Here presented measurements rather 9 

serve as a preliminary overview of an application of high resolution topography but need to 10 

be statistically strengthened. Especially larger 𝐷90 values in combination with higher flow 11 

depth would reasonably expand the dataset to allow a validation of the sigmoid function. 12 

Another way forward would include unaltered flow depths but significantly rougher surfaces 13 

to test their alignment with the upper plateau of the sigmoid function to prove the hypothesis, 14 

that larger particles cannot be overflown and thus no longer influence Manning’s 𝑛. Further 15 

research should also focus on running a physically based erosion model with both the 16 

roughness values resulting from SfM measurements and the classic approach. This could then 17 

additionally be validated with soil loss data from multi temporal laser scans.  As hydraulic 18 

roughness, also referred to as oriented roughness (Cremers et al., 1996), has a vectored 19 

character which might lead to differences in hydraulic roughness dependent on the flow 20 

direction (e.g. from furrows caused by ploughing), further research should tackle this aspect 21 

by differentiating between obstacles on or a descend of the profile line. 22 

 23 

 24 

Acknowledgements 25 

The present study was only possible due to the financial support of the German Research 26 

Foundation (DFG grant numbers: HA5740/3-1, SCHM1373/8-1). Furthermore, the authors 27 

would like to thank Christian Böhm for his support during field work and parts of the initial 28 

data preparation.  29 

 30 



 14 

6 References 1 

Abbott, E. J. and Firestone, F. A.: Specifying surface quality: a method based on accurate 2 

measurement and comparison, 569–572, 1933. 3 

Agisoft: Lens: http://downloads.agisoft.ru/lens/doc/en/lens.pdf. 4 

Agisoft: PhotoScan: downloads.agisoft.ru/pdf/photoscan-pro_0_9_0_en.pdf, last access: 12 5 

May 2014. 6 

Banasik, K, Bley, D.: An attempt at modelling suspended sediment concentration after storm 7 

events in an Alpine torrent, Lecture Notes in Earth Sciences, 1994. 8 

Becht, M.: Neue Erkenntnisse zur Entstehung pleistozäner Talverfüllungen, Eiszeitalter und 9 
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 1 

Figure 1. Experimental setup including plot, 30 litre barrel, runoff collector, reflectors for 2 

tachymeter registration and measuring stick for scaling purposes 3 

 4 

Figure 2. Detail of the surface model with 57 million points. The rough surface of the metal 5 

plot border results from its flat surface which impedes feature detection for SfM 6 
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 1 

Figure 3. Work flow from image acquisition to roughness values. The dotted branch shows 2 

the possibility to implement depression lines derived from the channel network in SAGA 3 

GIS in case of concentrated rill flow.  4 

 5 

Figure 4. Profile lines across the DEM. Straight lines (left) and channel flow (right) are 6 

chosen in dependency of the prevalent runoff type. 7 
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 1 

Figure 5. Exemplary profile line for a plot in the Lainbach valley showing the derived soil 2 

surface and the inserted best fit line. 3 

 4 

Figure 6. Linear regression of the Garbrecht n values in comparison to the 1:1 line 5 

representing the best prediction for the model parameters 6 
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 1 

Figure 7. Comparison of 𝐷90 values derived from SfM data and the Manning’s 𝑛 resulting 2 

from tracer experiments. A sigmoid function distinctly increases the coefficient of 3 

determination. 4 

 5 



 21 

Figure 8. Sensitivity of three normalized input parameters and their influence on Manning’s n. 1 

 2 


