1 Effects of fresh and aged chars from pyrolysis and # 2 hydrothermal carbonization on nutrient sorption in # 3 agricultural soils - 5 M. Gronwald¹, A. Don¹, B. Tiemeyer¹, M. Helfrich¹ - 6 [1] Thünen-Institute of Climate-Smart Agriculture, Bundesallee 50, 38116 Braunschweig, - 7 Germany 9 Correspondence to: A. Don (axel.don@ti.bund.de); Phone: +49 531 596 2641 - 11 Keywords: Sorption, Pyrochar, Hydrochar, Nitrate, Ammonium, Phosphate, Char Ageing, - 12 Char Washing # 13 Abstract Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with amendments of chars derived from pyrolysis (pyrochars) or hydrothermal carbonization (hydrochars) to the soils. Chars are characterised by a high adsorption capacity, i.e., they may retain nutrients such as nitrate and ammonium. However, the physico-chemical properties of the chars and hence their sorption capacity likely depend on feedstock and the production process. We investigated the nutrient retention capacity of pyrochars and hydrochars from three different feedstocks (digestates, *Miscanthus*, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of char degradation on its nutrient retention capacity using a seven-month in-situ field incubation of pyrochar and hydrochar. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-char mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of - 1 pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from - 2 digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. - 3 Application of hydrochars to agricultural soils caused small, and often not significant, effects - 4 on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients - 5 compared to the non-amended control soil. We found a surprisingly rapid loss of the chars' - 6 adsorption capacity after field application of the chars. For all sites and for hydrochar and - 7 pyrochar, the adsorption capacity was reduced by 60-80% to less or no nitrate and ammonium - 8 adsorption. Thus, our results cast doubt on the efficiency of char applications to temperate - 9 zone soils to minimize nutrient losses via leaching. #### 1 Introduction - 11 Excessive application of mineral fertilizers to agricultural soils is one of the major drivers for - various threats to the environment (Laird et al., 2010; Liang et al., 2006). An excess of - 13 nutrients may induce soil acidification, increase direct and indirect greenhouse gas emissions - 14 (Karaca et al., 2004) and cause eutrophication of the receiving water bodies. However, - 15 mineral fertilization has also been the major driver for increased global agricultural - production during the last decades. Therefore, technologies are required to both decrease - 17 nutrient leaching from soils and enhance nutrient use efficiency with the result that less - 18 fertilizer is needed. Amendment of soils with chars is proposed as one promising option to - retain nutrients and prevent leaching (Lehmann, 2009). - 20 These chars are the solid charcoal product derived from the thermal transformation of a - variety of organic feedstocks such as digestates, sewage sludge, woods and other forestry or - agricultural residues (Hale et al., 2013; Yao et al., 2012). At present, two main processes for - 23 the production of chars that are intended for application to soil are used: the first production - 24 process, slow pyrolysis, is the combustion and conversion of biomass at processing - 25 temperatures above 450°C under oxygen-free conditions. In the following, the solid product - derived from pyrolysis will be termed pyrochar. Pyrochars are characterized by a high degree - of aromaticity (Keiluweit et al., 2010; Lehmann et al., 2006) and recalcitrance against - degradation or mineralization (Glaser et al., 2002). Second, hydrothermal carbonization - 29 (HTC) is a low-temperature production process (temperatures between 180 and 300°C) under - 30 high pressure (2-2.5 MPa) with water for several hours (Funke and Ziegler, 2010; Libra et al., - 31 2011; Wiedner et al., 2013). In the following, we will refer to the solid product from the HTC - 32 as hydrochar. Hydrochars have recently received increasing attention since wet feedstock can - also be carbonized without drying pretreatment (Funke and Ziegler, 2010). Hydrochars are - 2 characterized by a lower degree of carbonization and thus more aliphatic carbon (C) but - 3 smaller amounts of aromatic C and lower specific surface area (SSA) compared to pyrochars - 4 (Eibisch et al., 2013; Titirici et al., 2008). Besides general differences between pyrochar and - 5 hydrochar, their properties differ strongly depending on the feedstock, carbonization - 6 processes parameters, and subsequent thermochemical reactions (Cantrell et al., 2012; Cao et - 7 al., 2011; Eibisch et al., 2013; Eibisch et al., 2015; Yao et al., 2012). - 8 For the past ten years, the application of pyrochar, and later on of hydrochar to agricultural - 9 soils has become a centre of attention as an option to store atmospheric C in soil to mitigate - 10 global warming. Additionally, a variety of positive co-benefits are attributed to pyrochar - amended soils: an increase in water retention capacity (Glaser et al., 2002; Abel et al., 2013), - reduction of greenhouse gas emissions such as nitrous oxide (N₂O) and methane (CH₄), and - an enhanced crop productivity due to the retention of plant available nutrients in the - 14 rhizosphere (Lehmann, 2009), increased soil pH and soil cation exchange capacity (CEC) - 15 (Liang et al., 2006), and preservation of toxic compounds (Chen and Yuan, 2011). - Both, pyrochars and hydrochars contain nutrients which can be released slowly into the - 17 rhizosphere (Eibisch et al., 2013; Spokas et al., 2011; Taghizadeh-Toosi et al., 2011) but more - 18 important is the pyrochars' ability to adsorb nutrients due to its high surface charge density - and CEC. The leaching and adsorption of nitrate (NO_3^-) , ammonium (NH_4^+) , and phosphate - 20 (PO₄³⁻) to various activated C and charcoals has been studied (Bandosz and Petit, 2009; Ding - 21 et al., 2010). However, studies concerning the sorption behavior of pyrochar, and especially - 22 hydrochars, are rare. Previous studies focusing on soil-char mixtures have shown that - 23 leaching of NO₃-, NH₄+, and PO₄³- from soils amended with pyrochar or hydrochar was - 24 frequently reduced due to adsorption on the respective char (Bargmann et al., 2014b; Ding et - 25 al., 2010; Laird et al., 2010; Sarkhot et al., 2012). Laird et al. (2010) applied 20 g kg⁻¹ - 26 pyrochar from hardwood to an agricultural soil, which decreased the leaching of NO₃ from - swine manure by 10%. Yao et al. (2012) reported increased NO₃ adsorption of up to 4%, but - 28 also leaching rates of up to 8% from aqueous solution. Other studies showed that NO₃ - 29 (Castaldi et al., 2011; Hale et al., 2013; Jones et al., 2012), as well as NH₄⁺ leaching was - decreased by 94% due to pyrochar application to a ferralsol in a 37-day soil column leaching - 31 experiment (Lehmann et al., 2003). Furthermore, both NH₄⁺ adsorption by up to 15% from - 32 agueous solution, but also leaching up to 4% in to solution was observed (Yao et al., 2012). Also other nutrients which are not particularly prone to leaching, such as PO₄³⁻, have been 1 reported to be retained by application of pyrochar (Laird et al., 2010; Morales et al., 2013; Xu 2 et al., 2014). For example, Laird et al. (2010) reported up to 70% reduced PO₄³-P leaching in 3 a soil column experiment mixed with 20 g kg⁻¹ pyrochar. In contrast, Yao et al. (2012) 4 observed up to 5% PO₄³-P leaching from aqueous solution for pyrochars from bamboo and 5 hydrochars from peanut-hull. In summary, these studies implicate a strong variation of 6 7 leaching or retention behavior of chars, which seems to depend on feedstock and production 8 process. 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Char application has been promised to be multi-beneficial. However, benefits have been tested mostly for pyrochar-amended tropical soils with few comparative studies for temperate soils or hydrochars. This is one of the main reasons why neither pyrochar nor hydrochar application is considered in agricultural practice in the temperate zone at the moment. Even though chars, especially pyrochars, are relatively stable in soils, an increasing number of studies suggest that biotic and abiotic processes can lead to degradation of char and thus change its surface properties and sorption behavior (Cheng et al., 2008; Hale et al., 2011; Liu et al., 2013; Steinbeiss et al., 2009). The physical structure and chemical properties of hydrochars result in a lower recalcitrance towards microbial degradation compared to pyrochars (Bargmann et al., 2014a; Hale et al., 2011; Steinbeiss et al., 2009). Furthermore, hydrochars release a higher amount of dissolved organic carbon (DOC) which might be easily mineralized. Hence, soil amended with hydrochars increases microbial-biomass production and immobilization of mineral nitrogen (Bargmann et al., 2014a; Lehmann et al., 2011), and an increased nitrification from NH₄⁺ to NO₃⁻ may occur. Over time, slow char aging due to oxidation may lead to carboxylic and phenolic functional groups on the chars' surface and thus negative charges. On the other hand, the atomic C content and positive surface charge on the edge sites of aromatic compounds will be reduced (Cheng et al., 2008; Cheng et al., 2006; Glaser et al., 2000). Furthermore, surface oxidation
increases CEC per unit C and the charge density (Liang et al., 2006), but a higher anion exchange capacity (AEC) has been found for aged pyrochars as well (Mukherjee et al., 2011). At the same time, pyrochars may adsorb organic matter (OM) which blocks char surfaces and reduces their sorption capacity (Mukherjee et al., 2011). However, so far these long-term changes of char properties and consecutive functions have been ignored in most char studies on nutrient retention, which may lead to systematic bias. - In summary, according to the majority of studies (Hale et al., 2013; Knowles et al., 2011; - 2 Lehmann et al., 2003; Morales et al., 2013; Xu et al., 2014), char may be a potential - 3 melioration for soils by decreasing nutrient leaching via improved adsorption properties. - 4 However, there is only little knowledge of the nutrient sorption potential of pyrochars - 5 compared to hydrochars, and the influence of ageing/degradation on nutrient sorption. - 6 The influence of char properties resulting from different carbonization methods and different - 7 feedstock materials on nutrient sorption potential is also insufficiently understood. - 8 Furthermore, no systematic comparison of different feedstock materials on nutrient sorption - 9 has yet been conducted, and the effect of aging of chars on their sorption potential has not yet - been investigated. The objectives of this study are to first determine the nutrient sorption - 11 potential of nine different char-soil mixtures in laboratory batch experiments and to - investigate the influence of i) char type (pyrochar vs. hydrochar), ii) soil type (sandy loam vs. - silty loam), and iii) char feedstock (woodchips, digestate and *Miscanthus*). Secondly, we want - 14 to assess the effect of aged vs. fresh chars (pyrochar and hydrochar from *Miscanthus*) on - nutrient sorption potential in a field experiment. 18 19 # 2 Materials and Methods # 2.1 Production and general properties of pyrochars and hydrochars and their corresponding feedstocks - 20 The nine chars that were used for laboratory batch experiments originated from the same - setup as the chars described in Eibisch et al. (2013, 2015). They derived from HTC and - 22 pyrolysis and were produced from three feedstock materials with different physico-chemical - properties (digestates (99% maize), woodchips (95% poplar, 5% willow), and *Miscanthus*). - 24 The hydrochars were carbonized with water (1:10, w/w) in a batch reactor for 6 h, 2 MPa at - 25 200 (hereafter referred to as Hydro200) and 250°C (hereafter referred to as Hydro250; - 26 SmartCarbon AG, Jettingen, Germany). Pyrochars were produced in a Pyreg reactor (PYREG - 27 GmbH, Dörth) for 0.75 h at 750°C (designated hereafter as Pyro750). Detailed information on - 28 char preparation and methods of analysis (e.g., specific surface area (SSA), pore volume, - average pore size) can be found in Eibisch et al. (2013) and Eibisch et al. (2015). - 30 In order to simulate field ageing, we compared unwashed chars with washed chars in the - 31 laboratory experiment. Washing was assumed to be capable of simulating ageing of the char - as initially bound nutrients or salts would be removed. Washing was carried out by shaking - 2 4.5 g biochar with 1 L deionized water in an overhead-shaker at 9 rpm for 4 h and thereafter - 3 solution was filtered with pleated paper filter (Grade: 3 hw; Diameter: 150 mm; 65 g m⁻²) and - 4 filtrate (pyrochar or hydrochar) was dried for 24 h at 105°C. Washing effects were only - 5 studied in the pyrochar and hydrochar applied to silty loam mixtures, because highest nutrient - 6 leaching or adsorption effects were expected for this soil. # 2.2 Field ageing - 8 Hydrochar and pyrochar produced from *Miscanthus* was used for the field incubation. The - 9 hydrochar was carbonized with water (1:10, w/w) in a tabular reactor (3 m³) for 11 h, 2 MPa - at 200°C by AddLogicLabs / SmartCarbon (Jettingen, Germany). Citric acid was added as - catalyst for the dehydration process and to increase the C content in the solid product (Wang - et al., 2010). Pyrochars were produced in a Pyreg reactor for 0.75 h at 750°C. Analyzes of - 13 general properties of the chars and raw material were carried out by Andrea Kruse (KIT - 14 Karlsruhe). All chars were dried at 40°C and sieved ≤2 mm. Basic characteristics of - 15 feedstocks, pyrochars, and hydrochars for the laboratory batch and field incubation - 16 experiment are listed in Table 1. - 17 For the investigation of the effect of ageing of the chars in the field, chars were incubated in- - situ at three cropland sites in the North German lowland (mean annual temperature 8.8°C. - around 600 mm precipitation). The three sites differ mainly in their soil texture (Table 2) and - are located in Bortfeld (sandy loam (SL); 52°28'N, 10°41'E, 80 m a.s.l.), Volkmarsdorf - 21 (sandy loam (SL); 52°36'N, 10°89'E, 105 m a.s.l.) and Querenhorst (loamy sand (LS); - 52°33'N, 10°96'E, 112 m a.s.l.). All sites were managed according to common regional - practice with conventional tillage and fertilizing. Crop rotations were barley (2012), winter - 24 wheat (cover crop), sugar beet (2013) (Querenhorst); barley (2012), mustard (cover crop), - sugar beet (2013) (Volkmarsdorf); potatoes (2012), sugar beet (2013) (Bortfeld). At all three - sites, mini-plots (plot size: 70×70 cm; plot depth: 25 cm) were dug out in triplicate in March - 27 2013, and the hydrochar and pyrochar were mixed into the soil in a cement mixer in an - amount that aimed to double the soils' C-content (corresponds to around 100 t ha⁻¹ char). The - 29 experimental setup was a randomized plot design carried out in three rows for each site so that - every row consisted of three treatments: (i) control (soil only), (ii) soil + hydrochar, and (iii) - 31 soil + pyrochar. In order to distinguish the soils' C-contents from treated or non-treated soil, - and to quantify any blending or attenuation with the surrounding soil, e.g., due to tillage, 105 - 1 g Zinc as an inert tracer was added to each treatment in the cement mixer (control, pyrochar + - 2 soil, hydrochar + soil). The mini-plots were not fenced off, so the farmers were able to - 3 manage the fields exactly like to the rest of the field. - 4 Sampling was carried out twice: the first set of soil samples was taken in March 2013 right - after mixing the soil with chars (T_0) . After seven months (October 2013) a second sampling - 6 was carried out (T₁). Soil samples were obtained by taking five randomly distributed soil - 7 cores to a depth of 25 cm with a Split-Tube sampler (5 cm diameter) from each mini-plot. - 8 Afterwards, samples were dried at 40°C and sieved ≤ 2 mm. Zinc concentrations at T_0 and T_1 - 9 were used to calculate a correction factor F_Z, which determines the recovery-rate of incubated - 10 biochars in the field study #### 2.3 Batch sorption experiments - 12 Soil-char mixtures used solely in the laboratory were produced by mixing 0.5 g of char with - 13 10 g soil in order to roughly double the soil's C content. Two soils were used for the char-soil - mixtures: a silt loam (Blagodatskaya et al., 2014) from a cropland site at the Thünen-Institute - in Braunschweig, Germany (52°17'N, 10°26'E, 80 m a.s.l.) and a sandy loam from a cropland - site of the University of Göttingen (Reinshof), Germany (51°28'N, 9°58'E, 205 m a.s.l.). The - soil was dried at 105°C to inhibit any microbial activity and sieved ≤ 2 mm. The pH-value of - soils and chars was measured in 0.01M CaCl₂ with a ratio of 1:5 (volume soil / volume - solution). Carbon and N contents were determined using dry combustion with an elemental - analyzer (LECO TrueMac CN LECO Corp., St. Joseph (MI), USA). Soil texture was - 21 determined by the combined sieve and pipette method. - 22 Preliminary sorption kinetic experiments were conducted to determine the sorption - equilibrium by shaking the batches for 4, 8, 12, 24, and 48 h at 9 rpm in an overhead shaker. - 24 Based on the results of the kinetic experiments, shaking time for the determination of the - sorption isotherms was set to 24h. An amount of 10.5 g of soil only (control) and soil-char - 26 mixtures were added to 40 mL of a nutrient solution in a 50 mL plastic centrifuge tube. Six - 27 concentration levels of a nutrient solution containing several nutrients that were chosen in - order to mimic a "typical" agricultural soil solution were used (Table 3). In addition, the pH- - 29 value of the solution was adjusted to 6 by adding HCl. Triplicates were measured for each - 30 concentration level. The pH was measured immediately after shaking in the char/soil-solution - 31 mixtures. Thereafter, suspensions were centrifuged at 4500 rpm for 30 min. The supernatant - 1 was aspirated with a syringe and filtered through 0.45 µm membrane filters (CHROMAFIL - 2 PET-45/25 disposable syringe filters, Macherey-Nagel). The ion-concentrations of the - 3 filtrates were analyzed using ion chromatography (IC) (METROHM 761) for anions (NO₃-, - 4 PO₄³⁻) and inductively coupled plasma chromatography (ICP) (ICS-90 Dionex / Thermo - 5 Fisher Scientific) for cations (NH₄⁺). Moreover, contents of Ca²⁺, Mg²⁺, K⁺, and SO₄²⁻ were - 6 also determined and fitted isotherms can be found in Table S1. The potential CEC of separate - 7 soil-char mixtures was determined after ISO 13536. - 8 Soil-char mixtures from the field experiment were used directly in the batch sorption - 9 experiments (NO₃⁻, NH₄⁺, PO₄³⁻), which were carried out as described above. To calculate the - 10 char adsorption effect relative to the control we used the following equations: - 11 Relative adsorption of the control: 12 $$Q_{Ctrl} = \left(1 - \left(\frac{IC (Ctrl)}{IC (Blind)}\right)\right) \times 100$$ (Eq. 1) 14 Relative adsorption of the char treatment to control: 15 $$Q_{\text{Char}} = \left(1 - \left(\frac{IC (Char)}{IC (Ctrl)}\right)\right) \times F_Z \times 100$$ (Eq. 2) - Whereby F_Z was only used to
calculate relative adsorption for field incubated chars. IC is the - 17 equilibrium ion content of the nutrient solution after shaking for blinds (IC_{Blind}), control - 18 (IC_{Ctrl}) or soil-char mixtures (IC_{Char}). 19 # 20 **2.4 Statistical Analyses** - 21 Adsorption data were fit to Freundlich and linear adsorption isotherms: - Freundlich isotherm: $Q_e = K_F \cdot IC^{1/n}$ (Eq. 3) - 23 Linear isotherm: $Q_e = a \cdot IC + Y_0$ (Eq. 4) - Q_e is the amount of ion adsorbed, while IC is the concentration in the solution after 24 h - 25 equilibration. A positive Qe indicates adsorption of ions in the nutrient solution on an - 26 adsorbent and a negative Q_e desorption from adsorbent to the nutrient solution. - 1 Logarithmized equilibrium-concentration and log adsorbed amount was used to calculate the - 2 Freundlich sorption partitioning coefficients (K_F) and the Freundlich exponents (1/n) - 3 following nonlinear fitting. For linear isotherm, Y_0 is the intercept. - 4 The Akaike information criterion (AIC) was used to select the best fitting isothermal model. - 5 Significance of treatment effects on shape of isotherms was tested using two procedures: - 6 (i) If, for two treatments, the same model type resulted in the best fit, their difference 7 was tested with a likelihood-ratio test. It was tested whether fitting the model to 8 the data separately resulted in a better fit than fitting the model to the combined 9 data. If the separately fitted model resulted in a better fit than the combined model, 10 treatments were different with their corresponding p-value. This test could only be - 11 conducted if it was numerically possible to fit the model to the combined data. - 12 (ii) Generalized additive models (GAM, R package *gam*, (Hastie, 2013)), including 13 and excluding treatment as a predictor, were fitted and compared using analysis of 14 deviance with a χ² statistics. - 15 All p-values were adjusted for multiple testing using the procedure of Benjamini and - Hochberg (1995). All statistical analyses were conducted using R 3.1.1 (RCoreTeam, 2014). - 17 The results of the statistical analyses can be found in the supplement (Table S1, S3, S5, S7 & - 18 S8). Significant differences between washed an unwashed chars were tested with the unpaired - 19 t-test. 21 22 Results 3 # 3.1 Physico-chemical properties of the chars - 23 The pH values of the hydrochars were acidic ranging from 3.8 to 6.2 and 4.2 to 5.7 for - 24 Hydro200 (hydrochars produced at 200°C) and Hydro250 (hydrochars produced at 250°C), - 25 respectively (Table 1). The pH-values of Pyro750 (pyrochars produced at 750°C) were - alkaline (8.7 to 9.8). The ash content increased with increasing carbonization temperature and - was highest for pyrochars from woodchips (24.6 %). Generally, woodchips had the highest C - concentration (48.6% C) as a raw material, but after carbonization, Pyro750 from *Miscanthus* - 29 had the highest C concentrations (Lab: 76.9% C; Field: 81.8% C). The highest amounts of - 30 total N and P were found in Hydro200 and Hydro250 from digestates. After carbonization, - 1 highest SSA was observed for pyrochars and decreased in the order Pyro750 > Hydro200 > - 2 Hydro250 (Table 1). Pyro750 showed the highest pore volume, followed by Hydro200 and - 3 Hydro250. In general, Pyro750 showed smaller average pore size than Hydro200 and 250 by - 4 a factor of 10. # 3.2 Influence of soil, feedstock and carbonization type on nutrient sorption # 6 (Laboratory experiments) - 7 Figures 1, 2, and 3 show the relative change of ion concentrations of the char treatments from - 8 the three feedstocks (triangles = *Miscanthus*, circles = digestates, squares = woodchips) to the - 9 control (0% line) at all applied nutrient concentration levels. Positive values correspond to - adsorption and negative values to leaching. # 3.2.1 Sorption of nitrate - 12 The pure sandy loam (control in Table 3) showed neither NO₃ sorption nor release (all data - points are around 0%). In contrast, the pure silty loam tended to a high NO₃ release of around - 14 60%: at the lowest concentration level of the nutrient solution (Table 3). This release - decreased to 5% with increasing concentrations of the nutrient solution. - 16 Mixing soil with Pyro750 significantly reduced NO₃ leaching, independent of the soil and - 17 feedstock used (Figure 1A, B). The relative amount of adsorbed NO₃ in pyrochar amended - soils was higher in sandy loam than in silty loam. At the lowest concentration level of the - nutrient solution, application of Pyro750 raised NO₃ adsorption between 2-15% (silty loam) - and 7-30% (sandy loam) compared to the respective control soil (Figure 1A, B). The relative - 21 adsorption on Pyro750 decreased with increasing nutrient solution concentration to 5-12%. - 22 For both soil types, the fitted isotherms for Pyro750 were significantly different from the - control (p \leq 0.01) and to both Hydro200 and Hydro250 (p \leq 0.01). Further, isotherms of NO₃ - 24 adsorption by Pyro750 mixed with sandy loam were significantly different to those of silt - loam ($p \le 0.01$). Further, the effects of nutrient retention in Pyro750 mixtures compared to the - 26 control soil depended on the carbonized feedstock ($p \le 0.01$; Figure 1A, B). Adsorption - increased in the order digestates (3-8%) < Miscanthus (10-14%) \le woodchips (10-15%) in - both soil types depending on the nutrient solution concentration. Addition of hydrochar to the - 29 soils had no effect on NO₃ adsorption irrespective of the used carbonization temperature, - feedstock or soil type (Figure 1C, D). # 1 3.2.2 Sorption of ammonium 2 The NH₄⁺ sorption in the soils without char was around 3-4 times higher for the silty loam 3 than the sandy loam (Table 3). The silty loam adsorbed around 55% at the first concentration 4 level, and adsorption decreased to 32% with increasing nutrient concentrations, while the 5 sandy loam adsorbed around 15% at all concentration levels. 6 Comparison of fitted isotherms of both soils mixed with Pyro750 showed significant 7 differences between sandy loam and silty loam ($p \le 0.01$). The effect of feedstock on relative NH_4^+ adsorption was soil-dependent and significant for both soils (Figure 2A, B; p ≤ 0.05). 8 While NH₄⁺ adsorption was enhanced by the application of pyrochar in the sandy loam, 9 pyrochar addition to the silty loam showed no effect or even led to leaching. Further, the 10 11 effect of the feedstock differed between the two soils investigated: When added to sandy 12 loam, pyrochar application increased the adsorption relative to control. Depending on the nutrient solution concentration, the relative adsorption increased in the order Miscanthus 13 $(\sim 0\%)$ < woodchips (2-8%) and digestate (7-17%) (p \leq 0.01; Figure 2A). For the silty loam, 14 the effect of pyrochar addition on the relative NH₄⁺ adsorption was: woodchips (~0%) < 15 16 Miscanthus (0-20%) < digestates (up to -45% at the first two NH₄ concentration levels; Figure 17 2B) only at the first three nutrient concentration levels. 18 Application of hydrochars to either soil type showed no consistent effects. These ranged from 19 leaching to adsorption with relative values between +10 and -20%, respectively (Figure 2C, 20 D). In general, NH₄⁺ adsorption by the control soil was significantly different to that in the 21 soil amended with hydrochars ($p \le 0.01$) for both sandy loam and silty loam. For Hydro200, NH₄⁺ adsorption was close to zero when compared to the control at all concentration levels. A 22 23 significant relative adsorption effect was observed for only some concentration points (Figure 24 2C). Hydro250 showed both NH₄⁺ release at the lowest concentration level and little adsorption of NH₄⁺ at the higher concentration levels reaching up to about 10 % (Figure 2D). The fitted isotherms for Pyro750 are significantly different from those for hydrochars and pure soil (depending on soil type), but there were no differences between Hydro200 and Hydro250. For hydrochars, no effect of feedstock on NH₄⁺ adsorption was observed except for lower adsorption of Hydro200 from digestates compared to *Miscanthus* and woodchips (p < 0.01.). 25 26 # 3.2.3 Sorption of phosphorous - 2 The sandy loam leached PO₄³⁻ at the lowest concentration level, but this changed to 65 % - 3 adsorption at higher levels, while the silt loam adsorbed up to 80 % at all PO₄³⁻ concentration - 4 levels (Figure 3A, B). - 5 Only pyrochars enhanced PO₄³⁻ adsorption. The fitted isotherms for pyrochars were - 6 significantly different from the respective control soil ($p \le 0.01$)), but this effect strongly - 7 depended on feedstock material (digestates (only leaching) < Miscanthus < woodchips) and - 8 soil (silty loam < sandy loam). For Pyro750, there were significant ($p \le 0.01$) differences - 9 between feedstocks: Pyro750 from Miscanthus mixed with the sandy loam resulted in a - relative PO₄³⁻ adsorption of 20-30% (Figure 3A) but 20% less adsorption (leaching) when - mixed with the silty loam (Figure 3B). Woodchip pyrochar was most effective in adsorbing - PO_4^{3-} (15-40% for the silty loam and 60-70% for the sandy loam) during all nutrient solution - concentrations. However, pyrochar from digestates showed strong leaching in both sandy and - silty loam (Figure 3A, B). Adding Pyro750 from digestates enriched the nutrient solution by - up to 1000% (sandy loam) and 1300% (silty loam) at the lowest PO₄³-P concentration level, - and still by 100% at the highest PO₄³-P concentration. Although relative PO₄³- adsorption - 17 was higher in the sandy loam than in the silty loam after addition of Pyro750, these - 18 differences were not significant. - 19 The addition of hydrochar (both Hydro200 and Hydro250) to soil mainly led to leaching of - 20 PO₄³⁻ from chars or had no consistent effect (Figure 3C, D). Fitted isotherms showed - significant differences between Hydro200 and Pyro750 (p \leq 0.01)
but no differences to - 22 control or Hydro250. The adsorption of the soil was lowered by maximum values of around - 40% for the sandy loam and 60% for the silty loam due to PO₄³- leaching. Values depended - on the feedstock used and soil type ($p \le 0.01$). Again, the effect of feedstock (or any effect at - all) was less pronounced for hydrochars than pyrochars: Hydrochars from digestates tended to - 26 reduce the relative PO₄³⁻ adsorption by leaching. Mixing soil with Hydro200 and Hydro250 - from *Miscanthus* and woodchips resulted in no effect on PO₄³⁻ adsorption (Figure 3C). For - 28 both soil types, differences between Hydro200 from digestates to Miscanthus and to - woodchips were significant (p \leq 0.01). For Hydro250 only digestates to *Miscanthus* and to - 30 woodchips were significantly different (p < 0.01) in the sandy loam. # 1 3.3 The effect of char ageing on nutrient sorption (Field experiment) At all three experimental sites NO₃ was leached from pure soil with no char addition (control; 2 data not shown). However, leaching was less pronounced at T_1 than T_0 (p<0.01). Amending 3 4 the soils with char led to adsorption of NO₃ for both pyrochar and hydrochar at all 5 experimental sites (Figure 4A-C). However, adsorption was higher for pyrochars than 6 hydrochars (p \leq 0.01,). Pyrochar reduced NO₃ leaching up to 58% relative to the control soil 7 at the lowest nutrient solution concentration while hydrochar reduced leaching up to 25% 8 (Figure 4A-C). After 7 months of ageing in the field (T₁), adsorption by pyrochars decreased 9 by 60 to 80% often ending up with no nutrient retention relative to control (p<0.01; Figure 4A-C). Slight differences were observed between the three investigated sites but they were 10 11 not significant. The effect of hydrochar addition diminished in a similar way after seven months: relative adsorption decreased by 10 to 100%, ending up with no nutrient retention at 12 13 Bortfeld (Figure 4A) or even nutrient leaching (site Querenhorst and site Volkmarsdorf, 14 Figure 4B-C), as compared to the non-amended control soil. In four of our six cases, sorption 15 effects of both pyrochar and hydrochar were found to be significantly different for the aged biochar-soil mixture as compared to fresh biochars mixed into soils. 16 Highest adsorption of NH₄⁺ was observed for fresh chars (T₀) and adsorption was higher for 17 pyrochar than for hydrochar at two sites (Bortfeld & Volkmarsdorf, $p \le 0.01$,), but was similar 18 19 at the third site (Querenhorst) (Figure 4D-F). For soils amended with fresh pyrochar, adsorption of NH₄⁺ was up to 40% higher than observed for the control soil. After seven 20 months, NH₄⁺ adsorption of pyrochar-soil mixtures was significantly lower at all experimental 21 22 sites than right after the char application (p<0.01). Little relative NH₄⁺ adsorption was found 23 for fresh hydrochar and for aged hydrochar in the field. The relatively low adsorption capacity of hydrochars sometimes even changes to NH₄⁺ leaching. 24 The effect of pyrochar ageing on PO₄³⁻ adoption was different from the other nutrients: 25 Ageing increased the PO₄³-retention capacity of pyrochar soil mixtures at all three sites from 26 leaching or no effect (T_0) to adsorption (T_1) (Figure 4G-I). The effect of hydrochar on PO_4^{3-} 27 was minor. Hydrochar was a source for PO₄³- in most soils with no consistent changes due to 28 29 char ageing. 30 # 3.4 Effects of char preparation (washing) Washing was carried out in order to reduce initial leaching effects from chars, i.e., it was assumed that nutrients and salts were removed from the surface of the chars by washing. Figure 5 shows relative changes of ion concentration to control (0% line; IC_{Blind}: 20.23 mg N L⁻¹; IC_{Ctrl}: 23.37 mg N L⁻¹) at nutrient concentration level P3 (Table 3). Positive values indicate higher, and negative values indicate lower removal of ions from nutrient solution compared to control due to adsorption or leaching, respectively. Washing of both Hydro200 and Hydro250, increased pH of the nutrient solution by 0.1 to 0.2 pH-units and for Pyro750, pH was decreased by 0.2 to 0.4 pH-units due to washing. The sorption behavior of both, pyrochars and hydrochars significantly changed due to washing (Figure 5). Washing increased the potential NO_3^- adsorption of pyrochars by 3-4% (p ≤ 0.05 ; Figure 5A). For hydrochars, a similar effect was only observed for Hydro200 from digestates, turning the soilhydrochar mixture from a NO_3^- source (leaching) into a sink (absorption) (p ≤ 0.05). In the case of NH₄⁺, a decrease in net leaching was observed for all treatments (Figure 5B). For most hydrochars, washing even turned soil-hydrochar mixtures from NH₄⁺ sources (leaching) into net sinks (adsorption (Figure 5B). Strongest reductions in leaching were observed for Pyro750 (-37%) and Hydro200 from digestates (-35%). Washing effects on PO₄³⁻ sorption were inconsistent. Pyro750 showed increased PO₄³⁻ leaching (digestates), decreased adsorption (wood chips) and leaching instead of sorption (Miscanthus) (Figure 5C). In the case of Hydro200 from digestates, PO₄³⁻ leaching was reduced by up to -950%. For all other hydrochar mixtures, washing reduced both PO₄³⁻ leaching and sorption close to zero. Overall, washing seemed to be an effective measure to reduce the ion leaching of those ions that were adsorbed to the surface of fresh chars. 2324 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 # 4 Discussion # 4.1 Char-induced effects on nutrient sorption: effects of carbonization process and feedstock material (laboratory experiments) Pyrochars and hydrochars showed general differences in their sorption behavior. In most cases, pyrochars removed NO₃⁻, NH₄⁺, and PO₄³⁻ from soil solution. This is in line with previous studies (Hale et al., 2013; Sarkhot et al., 2013; Yao et al., 2012). Hydrochars showed marginal or no sorptive effect on NO₃⁻, NH₄⁺, and PO₄³⁻. Similar to our findings, Yao et al. (2012) found no sorptive effect of hydrochar from peanut hulls on NO₃, NH₄⁺, and PO₄³-. 1 Previous studies indicate that increasing carbonization temperature results in higher SSA of 2 the produced char (Cantrell et al., 2012), which in turn leads to higher NO₃ adsorption (Hale 3 4 et al., 2013; Lehmann, 2009; Yao et al., 2012). However, Akaike information criterion (AIC) 5 was used to select the best fitting isothermal model. For NO₃ sorption on pyrochars, AIC prefers the fitted linear model rather than the Freundlich isotherm, which indicates a non-6 7 saturated surface of chars at increasing ion concentration of the nutrient solution. This 8 contradicts previous studies which prefer Freundlich or Langmuir (Hale et al., 2013; Mizuta 9 et al., 2004). In most cases, hydrochars showed no sorptive effect but partly, in particular for hydrochars from digestates, PO₄³⁻ release into aqueous solution was observed. This finding is 10 corroborated by Yao et al. (2012) who also found 4% PO₄³⁻ leaching into aqueous solution in 11 sandy soil mixed with hydrochar from peanut hull. The digestate feedstock and digestate 12 13 carbonized to pyrochar and hydrochar contained 10 times more phosphorous (2.51%, Table 1) than the chars produced from the other two feedstock materials, which explains the high PO₄³-14 15 leaching. 16 Besides carbonization process, the feedstock material had a marked influence on the sorption behavior, which is in accordance with findings from other studies: while NO₃ sorption was 17 observed for pyrochar from Monterey Pine (Knowles et al., 2011), sugarcane bagasse and 18 19 bamboo (Mizuta et al., 2004; Yao et al., 2012), pyrochar from pure washed cacao shell and corn cob without soil led to NO₃ release (Hale et al., 2013). This implies strong adsorption 20 21 capacity variations with carbonized feedstock. The three carbonized feedstocks we tested 22 (Miscanthus, digestates, and woodchips) for pyrochars showed high correlations between NO_3^- adsorption and logarithmized SSA ($R^2 = 0.57$; $p \le 0.05$ for amended loamy soil / 0.64; p 23 \leq 0.01 amended sandy soil), and average pore size ($R^2 = 0.64$ for amended loamy soil / 0.72 24 25 for amended sandy soil; both $p \le 0.01$). We also found strong correlations between H:C (indicates carbonization temperature) and NO_3^- adsorption ($R^2 = 0.65 / 0.75$ for amended 26 loamy and sandy soil respectively; both $p \le 0.01$). The NH₄⁺ sorption is strongly nonlinear 27 28 with increasing solution concentration (Freundlich coefficient n = 1.1 - 1.5), which indicates 29 a limited number of cation exchange sites of char (Hale et al., 2013). For all pyrochars, irrespective of feedstock, pore volume ($R^2 = 0.52$, $p \le 0.01$), and ash content ($R^2 = 0.66$, $p \le 0.01$) 30 0.01) correlated with NH₄⁺ adsorption. No saturation was found for PO₄³⁻, with increasing 31 solution concentration, especially evident for pyrochars from Miscanthus and also from 32 33 woodchips for our used concentration range $(2.5 - 15 \text{ mg P L}^{-1})$. This indicates that pyrochars 2 al. (2013), who tested 2 g pyrolysed hardwood chars (without soil) in 40 mL nutrient solution at higher solution concentrations in comparison to ours (up to 50 mg P L⁻¹). 3 Generally, nutrient retention potential of char is a result of cation or anion exchange 4 5 combined with the large surface area, internal porosity and polar and nonpolar surface sites of 6 functional groups (Hale et al., 2013; Laird et al., 2010; Lehmann, 2009). Additionally, 7 Keiluweit and Kleber (2009) reviewed cyclic aromatic π -systems which showed specific π -8 electron donor-acceptor (EDA) interactions (i.e., cation- π ; hydrogen- π ; π - π EDA; and polar- π interaction) with bonding energies between 4 and 167 kJ mol⁻¹ to nutrients. Thus, chars' 9 surface charge is assumed to be negative, resulting in low anion exchange capacity and 10 repellence
of NO₃⁻ and PO₄³⁻ (Hale et al., 2013; Mukherjee et al., 2011). However, our results 11 12 and results from previous studies showed anion adsorption the processes of which are not yet fully understood. Chun et al. (2004) and Chen et al. (2008) disproved the ability of PO₄³⁻ions 13 14 to bind with negatively charged char surface functional groups like hydroxyls, carbonyls, carboxyls and phenolics. However, Sarkhot et al. (2013) proposed the exchange of surface 15 hydroxyl groups on biochar with PO₄³ inducing a pH controlled anion sorption capacity. 16 Another mechanism is the ability of PO₄³- ions to form bridge bonds using the residual charge 17 18 of electrostatically attracted or ligand-bonded multivalent cations (Ca²⁺, Mg²⁺, Al³⁺, Fe³⁺) (Mukherjee et al., 2011). We could not directly verify this assumption in our study because 19 Ca²⁺ and Mg²⁺ were strongly leached (see supplemental; Table S1), but we suspect residual 20 charge of electrostatically attracted cations to bind PO₄³- in the double layer sheet. Klasson et 21 22 al. (2014) showed that pore blocking ash-content could be reduced by washing chars with 23 rainwater, thereby micropore volume, total pore volume, and SSA increased. Hale et al. (2013) suggests enhanced PO₄³- sorption due to increasing availability of binding sites on 24 could remove more PO₄³⁻ at higher solution concentrations, which is supported by Sarkhot et 1 25 26 27 28 29 # 4.2 Soil induced effect on nutrient sorption (laboratory experiments) surface. Secondly, PO₄³⁻ compounds from the char matrix itself are rinsed. Our results show that pyrochars could remove NO₃ and PO₄ from soil solution when added to different soils (sandy and silty loam). NH₄ was retained only in the sandy loam which confirms the findings of Yao et al. (2012), who also mixed pyrochars to a sandy soil. For char's surface after washing. However, in our lab-experiment we did not find increasing PO₄³- adsorption due to washing for any type of char. We assume that primary bonding agents for PO₄³⁻ (Ca²⁺, Mg²⁺, Al³⁺, Fe³⁺) are leached out, which results in no adsorption to the char 1 pyrochars mixed with loamy soil, we found reduced sorption capacity for NO₃-, NH₄+, and 2 PO₄³⁻, which is corroborated by Hale et al. (2011) who reported a reduction in the sorption 3 capacity of chars mixed with a fine-loamy soil. Hydrochars showed little (silty loam) or no 4 (sandy loam) sorptive effect on NO₃, NH₄, and PO₄³. 7 8 9 10 12 13 14 15 16 17 19 20 21 22 23 24 28 5 The adsorption capacity of chars for nutrients interacts with the amended soil type. Generally, 6 soil's adsorption capacity for NO₃-, NH₄+, and PO₄³- is determined by pH, CEC, AEC, SSA, organic matter content, and soil texture. Hale et al. (2011) suggest a decreased reduction in the sorption capacity of chars caused by blocking of sorption sites by DOC, which could leach out from soil and may adsorb to chars. The solubility of DOC can be increased by increasing negative charge on the DOC due to a raised pH through char application to soils (Alling et al., 11 2014). In our study, application of pyrochars led to a stronger rise in pH in the silty loam than in the sandy loam (Table S2). According to Hale et al. (2011), this could have induced higher DOC solubility in the sandy loam and the leached DOC was adsorbed by pyrochars resulting in blocked binding sites. Further, the soils tested in this study differed strongly in their texture and CEC. The silty loam contained higher amounts of multi-layer clay minerals, which led to higher adsorption competition between char and clay mineral surfaces. Ersahin et al. (2006) report SSA between 46.5 and 90.38 as well as 20.60 and 61.95 m² g⁻¹ for silty loams and loamy sands, respectively. The pyrochars we tested had SSAs between 210 and 448 m² g⁻¹, which are considerably higher than the SSA of the used soils. The difference in SSA between pyrochar and soil was larger for the sandy loam than the silty loam. This resulted in stronger adsorption potential for ions from sandy loam or nutrient solution to the pyrochars. However, the larger SSA of the silty loam enhanced the adsorption competition for ions between loamy sand and pyrochars. In addition, ions from the nutrient solution are more attracted to the silty loam than to the sandy loam or to the pyrochars. Furthermore, soil-bound ions such as NO₃, 25 K⁺, Mg²⁺, Ca²⁺ were leached from the silty loam and were directly adsorbed by pyrochars, suggesting that this direct adsorption may result in occupied binding sites on the pyrochars, which led to no or less adsorption of NO₃, NH₄ and PO₄ from the nutrient solution. # 4.3 Effect of char ageing on nutrient sorption (field- & laboratory experiment) 29 The ability of both pyrochar and hydrochar to adsorb NO₃ and NH₄ from soil solution was 30 stronger for fresh char as compared to aged char (i.e., after seven months field incubation). 31 This was an unexpected behavior and often led to a complete loss of the char's nutrient 32 retention capacity and has rarely been studied to date. Since the overall adsorption capacity of hydrochar observed in our study was small, the ageing effect was also less pronounced compared to pyrochars. For hydrochars, other studies reported the physical structure and chemical properties result in a lower recalcitrance towards microbial degradation compared to pyrochars (Bargmann et al., 2014a; Hale et al., 2011; Steinbeiss et al., 2009). Explanations for the decreasing nitrogen adsorption capacity of pyrochar may include: a) binding sites of both types of char may be blocked with organic matter or mineral particles such as clay, b) binding sites of pyrochar may be reduced by microbial degradation changing the char's surface properties, which in turn leads to a diminished number of negatively charged binding sites (Cheng et al., 2008; Cheng et al., 2006; Glaser et al., 2000). But for our study, we could not explain decreasing adsorption with these mechanisms. Such a trend of decreasing adsorption capacity over time was also reported by Bargmann et Such a trend of decreasing adsorption capacity over time was also reported by Bargmann et al. (2014b) who incubated 2% and 4% hydrochars from beet-root chips with a loamy soil for 8 weeks in the laboratory. A diminished number of negatively charged binding sites may result in higher leaching of positively charged ions (such as NH₄⁺, Ca²⁺, Mg²⁺, K⁺). In our experiment, the adsorption-rate of NH₄⁺ was reduced over time and Ca²⁺ as well as Mg²⁺ showed higher leaching after seven months (Table S5). The chars used in the field experiment had not been pretreated by washing. The increased adsorption capacity of char for PO₄³⁻ may thus be partly a result of initially bound PO₄³⁻ that was leached from fresh chars (T₀), and was leached less after seven months (T₁). However, in our laboratory experiment, washing did not reduce PO₄³⁻leaching but increased the adsorption. Phosphate adsorption on char depends strongly on pH. For our used chars, effect on pH in the nutrient solution was lower for washed than unwashed chars. # 1 5 Conclusion - 2 The nutrient retention potential of chars (i.e., nitrate, ammonium, and phosphate) differs - 3 strongly with nutrient, char type (hydrochar vs. pyrochar), and type of carbonized feedstock, - 4 as well as amended soil type. Among nine different types of chars tested in a laboratory batch - 5 experiment, only pyrochars showed the ability to effectively retain nitrate, ammonium, and - 6 phosphate. Moreover, the nutrient retention effect seems to be of very limited duration. After - seven months in the field, around 60 to 80% of the adsorption capacity of pyrochar was lost. - 8 Underlying mechanisms are poorly understood, but our results cast doubt on the efficiency of - 9 char application to minimize the problems of nutrient leaching from agricultural soils to the - 10 groundwater and adjacent ecosystems. # 11 Acknowledgements - 12 This project was financed by the German Research Foundation (DFG-Research Training - Group 1397 "Regulation of soil organic matter and nutrient turnover in organic agriculture", - 14 University of Kassel; Witzenhausen). The authors want to thank Claudia Wiese and Andrea - 15 Niemeyer for laboratory analyses, as well as Roland Fuß for statistical support. Table 1 General properties of feedstock materials and chars used in the laboratory study ("Lab") and field incubation ("Field"). Data for chars used in the laboratory only derived from Eibisch et al., 2013 & 2015; n.d. = not determined. | Experim ent | Feedstock | Char type | °C | pH (CaCl ₂) | Ash content [%] | C [%] | N [%] | S [%] | O:C | Н:С | P [%] | Ca [%] | Mg
[%] | Na
[%] | K [%] | SSA
[m² g ⁻¹] | Pore volume
[cm³ g ⁻¹] | Averag
e pore
size [Å] | |---------------|------------|-----------|-----|-------------------------|-----------------|-------|-------|-------|------|------|-------|--------|-----------|-----------|-------|------------------------------|---------------------------------------|------------------------------| | <u>Lab</u> | Digestates | raw | - | - | 11.9 | 41.9 | 1.57 | 0.28 | 0.87 | 0.14 | 1.28 | 0.87 | 0.66 | 0.05 | 2.88 | 8.6 | 0.03 | 61 | | | | Hydrochar | 200 | 6.2 | 10.3 | 53.8 | 2.59 | 0.30 | 0.46 | 0.10 | 1.23 | 1.39 | 0.48 | 0.03 | 0.98 | 13 | 0.09 | 192 | | | | Hydrochar | 250 | 5.7 | 13.6 | 61.8 | 2.98 | 0.22 | 0.29 | 0.08 | 1.56 | 1.60 | 0.85 | 0.03 | 1.41 | 2.8 | 0.02 | 167 | | | | Pyrochar | 750 | 9.8 | 46.0 | 69.7 | <1.0 | 0.18 | 0.17 | 0.04 | 2.51 | 2.91 | 1.12 | 0.24 | 8.10 | 448 | 0.28 | 12 | | | Miscanthus | raw | - | - | 2.9 | 45.6 | <1.0 | 0.07 | 0.86 | 0.13 | 0.09 | 0.22 | 0.07 | 0.01 | 0.53 | 1.0 | 0.01 | 154 | | | | Hydrochar | 200 | 4.6 | 3.9 | 58.0 | <1.0 | 0.07 | 0.46 | 0.10 | 0.13 | 0.30 | 0.05 | 0.02 | 0.27 | 5.2 | 0.05 | 180 | | | | Hydrochar | 250 | 4.2 | 4.5 | 69.0 | <1.0 | 0.07 | 0.27 | 0.08 | 0.17 | 0.30 | 0.06 | 0.01 | 0.30 | 5.8 | 0.05 | 179 | | | | Pyrochar | 750 | 9.0 | 15.0 | 76.9 |
<1.0 | 0.12 | 0.10 | 0.02 | 0.41 | 1.14 | 0.30 | 0.18 | 2.12 | 279 | 0.19 | 14 | | | Woodchips | raw | - | - | 4.2 | 48.6 | <1.0 | 0.05 | 0.71 | 0.12 | 0.07 | 0.62 | 0.07 | 0.02 | 0.27 | 1.6 | 0.02 | 206 | | | | Hydrochar | 200 | 4.6 | 5.0 | 59.7 | 1.07 | 0.06 | 0.40 | 0.10 | 0.08 | 0.90 | 0.07 | 0.02 | 0.25 | 10 | 0.09 | 180 | | | | Hydrochar | 250 | 4.8 | 5.4 | 67.7 | 1.22 | 0.06 | 0.27 | 0.08 | 0.11 | 0.59 | 0.06 | 0.03 | 0.21 | 3.5 | 0.04 | 207 | | | | Pyrochar | 750 | 8.7 | 24.6 | 68.4 | <1.0 | 0.13 | 0.10 | 0.02 | 0.35 | 3.43 | 0.29 | 0.12 | 0.87 | 210 | 0.17 | 17 | Field- | Miscanthus | raw | - | - | 2.9 | 46.3 | <1.0 | < 0.1 | 0.28 | 0.13 | 0.09 | 0.11 | 0.09 | 0.01 | 0.52 | n.d. | n.d. | n.d. | | <u>rieiu-</u> | | Hydrochar | 200 | 3.8 | 3.9 | 63.8 | <1.0 | < 0.1 | 0.15 | 0.08 | 0.13 | 0.11 | 0.13 | 0.21 | 0.13 | n.d. | n.d. | n.d. | | 5 | | Pyrochar | 750 | 9.0 | 15.0 | 81.8 | <1.0 | 0.10 | 0.09 | 0.01 | 0.39 | 0.35 | 0.39 | 0.03 | 1.50 | n.d. | n.d. | n.d. | Table 2 General properties of the soils used for the lab and field study. | Experiment | | Site | Soil type | Soil texture class | sand
[%] | silt [%] | clay [%] | C _{org} [%] | N _{tot} [%] | C/N | pH
(CaCl ₂) | CEC [cmol _c kg ⁻¹] | |------------|---|--------------|-----------------|--------------------|-------------|----------|----------|----------------------|----------------------|------|----------------------------|---| | Lab | 1 | Goettingen | haplic Luvisol | Sandy loam | 61.5 | 32.8 | 5.8 | 1.23 | 0.10 | 12.3 | 5.6 | 4.0 | | | 2 | Braunschweig | haplic Cambisol | Silty loam | 15.4 | 67.6 | 17.0 | 1.27 | 0.12 | 10.6 | 5.6 | 10.8 | | Field | 1 | Bortfeld | loamic Cambisol | Sandy loam | 57.0 | 37.1 | 5.9 | 0.93 | 0.13 | 7.3 | 6.4 | n.a. | | | 2 | Querenhorst | arenic Planosol | Loamy sand | 74.7 | 18.0 | 7.3 | 1.13 | 0.13 | 8.8 | 6.8 | n.a. | | | 3 | Volkmarsdorf | cambic Planosol | Sandy loam | 67.1 | 21.7 | 11.2 | 1.16 | 0.12 | 9.9 | 6.5 | n.a. | Table 3 Ion concentrations of the nutrient solution and relative sorption rates of the two control soils (soil without application of char) at the six applied concentration levels. | | Ion | P1 | P2 | Р3 | P4 | P5 | P6 | |-------------------|--|------|-----|-----|-----|-----|----| | Nutrient solution | NO ₃ -N [mg L ⁻¹] | 5 | 10 | 20 | 30 | 40 | 60 | | | $NH_4^+-N \ [mg \ L^{-1}]$ | 5 | 10 | 20 | 30 | 40 | 60 | | | PO ₄ ³⁻ -P [mg L ⁻¹] | 1.25 | 2.5 | 5 | 7.5 | 10 | 15 | | Sandy loam | NO ₃ -N [%] | -6 | 0.1 | 3 | 0 | 0.1 | 0 | | | NH ₄ ⁺ -N [%] | 15 | 15 | 16 | 15 | 16 | 11 | | | PO ₄ ³⁻ -P [%] | -78 | 6 | 50 | 59 | 57 | 65 | | Silty loam | NO ₃ -N [%] | -58 | -28 | -16 | -8 | -9 | -5 | | | NH ₄ ⁺ -N [%] | 54 | 52 | 49 | 39 | 36 | 33 | | | PO ₄ ³⁻ -P [%] | 10 | 45 | 75 | 73 | 69 | 81 | Mean NO_3 -N removal rates in soil-char composites relative to the control [%] (the respective soil with no char added) for pyrochars (Pyro750)(A-B) and hydrochars derived at 200°C (Hydro200) and 250°C (Hydro250)(C-D) from *Miscanthus* (M), woodchips (W), and digestates (D) mixed with the sandy and silty loam soil at the six nutrient-solution levels (n=3). 1 2 3 4 5 6 Mean NH_4^+ -N removal rates in soil-char composites relative to the control [%] (the respective soil with no char added) for pyrochars (Pyro750)(A-B) and hydrochars derived at 200°C (Hydro200) and 250°C (Hydro250)(C-D) from *Miscanthus* (M), woodchips (W), and digestates (D) mixed with the sandy and silty loam soil at the six nutrient-solution levels (n=3). 2 3 4 Mean PO₄³-P removal rates in soil-char composites relative to the control [%] (the respective soil with no char added) for pyrochars (Pyro750)(A-B) and hydrochars derived at 200°C (Hydro200) and 250°C (Hydro250)(C-D) from *Miscanthus* (M), woodchips (W), and digestates (D) mixed with the sandy and silty loam soil at the six nutrient-solution levels (n=3). Mean NO_3 -N (A-C), NH_4^+ -N (D-F), and PO_4^{3-} -P (G-I) removal rate relative to the control for fresh (T_0) and degraded (T_1) pyrochars and hydrochars and relative removal rate of control to blind nutrient solution of the field experiment (For all Treatments n=3). Test statistics can be found in Table S5, S7, and S8. #### Figure 5 (A) NO_3^- , (B) NH_4^+ , and (C) PO_4^{3-} removal rates in soil-char composites relative to the control (silt loam without char) for washed and unwashed pyrochars (Pyro750) and hydrochars derived at 200°C (Hydro200) and 250°C (Hydro250) from *Miscanthus* (M), woodchips (W), and digestates (D). Significant differences between washed and unwashed chars were tested with the unpaired t-test. P-values are indicating by *** <0.01; ** <0.05; *<0.1 (for each treatment n=3, means \pm SE). ### References 2 - 3 Alling, V., Hale, S. E., Martinsen, V., Mulder, J., Smebye, A., Breedveld, G. D., and Cornelissen, G.: The - 4 role of biochar in retaining nutrients in amended tropical soils, J. Plant Nutr. Soil Sci., 177, 671-680, - 5 2014 - 6 Bandosz, T. J. and Petit, C.: On the reactive adsorption of ammonia on activated carbons modified by - 7 impregnation with inorganic compounds, Journal of colloid and interface science, 338, 329-345, - 8 2009. - 9 Bargmann, I., Martens, R., Rillig, M. C., Kruse, A., and Kucke, M.: Hydrochar amendment promotes - microbial immobilization of mineral nitrogen, J. Plant Nutr. Soil Sci., 177, 59-67, 2014a. - Bargmann, I., Rillig, M. C., Kruse, A., Greef, J. M., and Kucke, M.: Effects of hydrochar application on - the dynamics of soluble nitrogen in soils and on plant availability, J. Plant Nutr. Soil Sci., 177, 48-58, - 13 2014b - 14 Benjamini, Y. and Hochberg, Y.: CONTROLLING THE FALSE DISCOVERY RATE A PRACTICAL AND - 15 POWERFUL APPROACH TO MULTIPLE TESTING, J. R. Stat. Soc. Ser. B-Methodol., 57, 289-300, 1995. - Blagodatskaya, E., Blagodatsky, S., Anderson, T. H., and Kuzyakov, Y.: Microbial growth and carbon - use efficiency in the rhizosphere and root-free soil, PloS one, 9, e93282, 2014. - 18 Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., and Ro, K. S.: Impact of pyrolysis temperature - and manure source on physicochemical characteristics of biochar, Bioresource technology, 107, 419- - 20 428, 2012. - 21 Cao, X. Y., Ro, K. S., Chappell, M., Li, Y. A., and Mao, J. D.: Chemical Structures of Swine-Manure Chars - 22 Produced under Different Carbonization Conditions Investigated by Advanced Solid-State C-13 - Nuclear Magnetic Resonance (NMR) Spectroscopy, Energy Fuels, 25, 388-397, 2011. - Castaldi, S., Riondino, M., Baronti, S., Esposito, F. R., Marzaioli, R., Rutigliano, F. A., Vaccari, F. P., and - 25 Miglietta, F.: Impact of biochar application to a Mediterranean wheat crop on soil microbial activity - and greenhouse gas fluxes, Chemosphere, 85, 1464-1471, 2011. - 27 Chen, B. L., Zhou, D. D., and Zhu, L. Z.: Transitional adsorption and partition of nonpolar and polar - aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, - 29 Environmental science & technology, 42, 5137-5143, 2008. - Cheng, C.-H., Lehmann, J., and Engelhard, M. H.: Natural oxidation of black carbon in soils: Changes in - 31 molecular form and surface charge along a climosequence, Geochimica et Cosmochimica Acta, 72, - 32 1598-1610, 2008. - Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D., and Engelhard, M. H.: Oxidation of black carbon - 34 by biotic and abiotic processes, Organic Geochemistry, 37, 1477-1488, 2006. - Chun, Y., Sheng, G. Y., Chiou, C. T., and Xing, B. S.: Compositions and sorptive properties of crop - residue-derived chars, Environmental science & technology, 38, 4649-4655, 2004. - Ding, Y., Liu, Y.-X., Wu, W.-X., Shi, D.-Z., Yang, M., and Zhong, Z.-K.: Evaluation of Biochar Effects on - Nitrogen Retention and Leaching in Multi-Layered Soil Columns N, Water, Air, & Soil Pollution, 213, - 39 47-55, 2010. - 40 Eibisch, N., Helfrich, M., Don, A., Mikutta, R., Kruse, A., Ellerbrock, R., and Flessa, H.: Properties and - 41 degradability of hydrothermal carbonization products, Journal of environmental quality, 42, 1565- - 42 1573, 2013. - Eibisch, N., Schroll, R., Fuß, R., Mikutta, R., Helfrich, M., and Flessa, H.: Pyrochars and hydrochars - 44 differently alter the sorption of the herbicide isoproturon in an agricultural soil, Chemosphere, 119, - 45 155-162, 2015. - 46 Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., and Coban, S.: Estimating specific surface area and cation - 47 exchange capacity in soils using fractal dimension of particle-size distribution, Geoderma, 136, 588- - 48 597, 2006. - 1 Funke, A. and Ziegler, F.: Hydrothermal carbonization of biomass: A summary and discussion of - 2 chemical mechanisms for process engineering, Biofuels, Bioproducts and Biorefining, 4, 160-177, - 3 2010 - 4 Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., and Zech, W.: Black carbon in density - 5 fractions of anthropogenic soils of the Brazilian Amazon region, Organic Geochemistry, 31, 669-678, - 6 2000. - 7 Glaser, B., Lehmann, J., and Zech, W.: Ameliorating physical and chemical properties of highly - 8 weathered soils in the tropics with charcoal a review, Biol. Fertil. Soils, 35, 219-230, 2002. - 9 Hale, S. E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G. D., and Cornelissen, G.: The sorption and - desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars, - 11 Chemosphere, 91, 1612-1619, 2013. - Hale, S. E., Hanley, K., Lehmann, J., Zimmerman, A., and Cornelissen, G.: Effects of chemical, - 13 biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon - and biochar, Environmental science & technology, 45, 10445-10453, 2011. - Hastie, T.: gam: Generalized Additive Models. R package version 1.09.1., 2013. - Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., and Murphy, D. V.: Biochar-mediated
- changes in soil quality and plant growth in a three year field trial, Soil Biology and Biochemistry, 45, - 18 113-124, 2012. - 19 Karaca, S., Gurses, A., Ejder, M., and Acikyildiz, M.: Kinetic modeling of liquid-phase adsorption of - phosphate on dolomite, Journal of colloid and interface science, 277, 257-263, 2004. - 21 Keiluweit, M. and Kleber, M.: Molecular-Level Interactions in Soils and Sediments: The Role of - Aromatic pi-Systems, Environmental science & technology, 43, 3421-3429, 2009. - Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M.: Dynamic Molecular Structure of Plant - Biomass-Derived Black Carbon (Biochar), Environmental science & technology, 44, 1247-1253, 2010. - 25 Klasson, K. T., Uchimiya, M., and Lima, I. M.: Uncovering surface area and micropores in almond shell - biochars by rainwater wash, Chemosphere, 111, 129-134, 2014. - 27 Knowles, O. A., Robinson, B. H., Contangelo, A., and Clucas, L.: Biochar for the mitigation of nitrate - leaching from soil amended with biosolids, The Science of the total environment, 409, 3206-3210, - 29 2011. - 30 Laird, D., Fleming, P., Wang, B., Horton, R., and Karlen, D.: Biochar impact on nutrient leaching from a - 31 Midwestern agricultural soil, Geoderma, 158, 436-442, 2010. - Lehmann, J., da Silva, J. P., Steiner, C., Nehls, T., Zech, W., and Glaser, B.: Nutrient availability and - 33 leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, - manure and charcoal amendments, Plant and Soil, 249, 343-357, 2003. - 35 Lehmann, J., Gaunt, J., and Rondon, M.: Bio-char sequestration in terrestrial ecosystems a review, - Mitigation and Adaptation Strategies for Global Change, 11, 403-427, 2006. - Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley, D.: Biochar effects - on soil biota A review, Soil Biology and Biochemistry, 43, 1812-1836, 2011. - 39 Lehmann, J. J. S.: Biochar for environmental management: science and technology, Earthscan, - 40 London; Sterling, VA, 2009. - Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J. O., Thies, J., - 42 Luizão, F. J., Petersen, J., and Neves, E. G.: Black Carbon Increases Cation Exchange Capacity in Soils, - 43 Soil Science Society of America Journal, 70, 1719, 2006. - Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M. M., Fuhner, C., - Bens, O., Kern, J., and Emmerich, K. H.: Hydrothermal carbonization of biomass residuals: a - comparative review of the chemistry, processes and applications of wet and dry pyrolysis, Biofuels, 2, - 47 71-106, 2011. - 48 Liu, Z., Demisie, W., and Zhang, M.: Simulated degradation of biochar and its potential environmental - 49 implications, Environmental pollution, 179, 146-152, 2013. - Mizuta, K., Matsumoto, T., Hatate, Y., Nishihara, K., and Nakanishi, T.: Removal of nitrate-nitrogen - from drinking water using bamboo powder charcoal, Bioresource technology, 95, 255-257, 2004. - 1 Morales, M. M., Comerford, N., Guerrini, I. A., Falcão, N. P. S., and Reeves, J. B.: Sorption and - 2 desorption of phosphate on biochar and biochar-soil mixtures, Soil Use and Management, 29, 306- - 3 314, 2013. - 4 Mukherjee, A., Zimmerman, A. R., and Harris, W.: Surface chemistry variations among a series of - 5 laboratory-produced biochars, Geoderma, 163, 247-255, 2011. - 6 RCoreTeam: R: A language and environment for statistical computing. R Foundation for Statistical - 7 Computing, Vienna, - 8 Austria., 2014. 2014. - 9 Sarkhot, D. V., Berhe, A. A., and Ghezzehei, T. A.: Impact of Biochar Enriched with Dairy Manure - 10 Effluent on Carbon and Nitrogen Dynamics, Journal of environmental quality, 41, 1107-1114, 2012. - Sarkhot, D. V., Ghezzehei, T. A., and Berhe, A. A.: Effectiveness of Biochar for Sorption of Ammonium - and Phosphate from Dairy Effluent, Journal of environmental quality, 42, 1545-1554, 2013. - 13 Spokas, K. A., Novak, J. M., and Venterea, R. T.: Biochar's role as an alternative N-fertilizer: ammonia - 14 capture NH3, Plant and Soil, 350, 35-42, 2011. - 15 Steinbeiss, S., Gleixner, G., and Antonietti, M.: Effect of biochar amendment on soil carbon balance - and soil microbial activity, Soil Biol. Biochem., 41, 1301-1310, 2009. - 17 Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., and Condron, L. M.: Biochar adsorbed ammonia is - 18 bioavailable, Plant and Soil, 350, 57-69, 2011. - 19 Titirici, M. M., Antonietti, M., and Baccile, N.: Hydrothermal carbon from biomass: a comparison of - the local structure from poly- to monosaccharides and pentoses/hexoses, Green Chem., 10, 1204- - 21 1212, 2008. - 22 Wang, L. L., Guo, Y. P., Zhu, Y. C., Li, Y., Qu, Y. N., Rong, C. G., Ma, X. Y., and Wang, Z. C.: A new route - for preparation of hydrochars from rice husk, Bioresource technology, 101, 9807-9810, 2010. - Wiedner, K., Naisse, C., Rumpel, C., Pozzi, A., Wieczorek, P., and Glaser, B.: Chemical modification of - 25 biomass residues during hydrothermal carbonization What makes the difference, temperature or - feedstock?, Organic Geochemistry, 54, 91-100, 2013. - 27 Xu, G., Sun, J., Shao, H., and Chang, S. X.: Biochar had effects on phosphorus sorption and desorption - in three soils with differing acidity, Ecological Engineering, 62, 54-60, 2014. - 29 Yao, Y., Gao, B., Zhang, M., Inyang, M., and Zimmerman, A. R.: Effect of biochar amendment on - 30 sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil NO3, NH4, PO4, - 31 Chemosphere, 89, 1467-1471, 2012.