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Abstract 9 

The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but 10 

consideration of its role in regional and global issues demands the mapping of large extents. There 11 

are many different strategies for mapping SOC, among which are to model the variables needed to 12 

calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is 13 

to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear 14 

regression models applied at the landscape scale via spatial association. The final products for both 15 

strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with 16 

accompanying maps of estimated error. For the direct modelling approach, the estimated error map 17 

was based on the internal error estimations from the model rules. For the indirect approach, the 18 

estimated error map was produced by spatially combining the error estimates of component models 19 

via standard error propagation equations. We compared these two strategies for mapping SOC 20 

stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of 21 

the estimated error. The direct approach produced a map with less spatial variation than the map 22 

produced by the indirect approach. The increased spatial variation represented by the indirect 23 
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approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a 24 

lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock 25 

(topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct 26 

approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks’ 27 

spatial distribution.  28 

Keywords: digital soil mapping, organic carbon, spatial association, estimated error, uncertainty 29 

 30 

Highlights 31 

1. Spatial association methods for mapping SOC stock directly and indirectly were compared. 32 

2. Data mining produced models that could be interpreted by expert knowledge. 33 

3. The indirect approach map had greater spatial variation and higher R2 values. 34 

4. The direct approach map had less spatial variation and a lower total estimated error.  35 
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1. Introduction 36 

The storage of carbon in soil is a critical point of information for several environmental issues. 37 

Globally, soil carbon, which is about 60% organic carbon, accounts for 3.3 times more carbon than 38 

that found in the atmosphere (Lal, 2004). The high amount of carbon stored in the soil, makes soil 39 

carbon an important factor for understanding the carbon cycle and dynamics influencing global 40 

climate change (Grace, 2004; Johnston et al., 2004; Powlson et al., 2011). In addition, higher 41 

concentrations of soil organic carbon (SOC) are associated with better water storage capacity, 42 

regulation of nutrients, and stabilization of soil aggregates resulting in improved soil structure and 43 

resistance to erosion (Neemann, 1991; Angers and Carter, 1996; Rawls et al., 2003; Snyder and 44 

Vazquez, 2005; Johnston et al., 2009; Kay, 1998; Wilhelm et al., 2004). Each of these factors has 45 

important roles in issues of water management and crop productivity.  46 

Although SOC management has far reaching implications, the distribution of SOC is highly 47 

variable and dynamic at the field-scale (Cambardella et al., 1994; McBratney and Pringle, 1999; 48 

Walter et al., 2003; Kravchenko et al., 2006b; Simbahan et al., 2006). Differing conditions, such as 49 

hydrology or management practices, greatly impact the SOC content (Kravchenko et al., 2006a). The 50 

combination of global implications and high spatial variability make high-resolution maps of SOC for 51 

large extents desirable for both policy decisions and land-owner response. This situation creates the 52 

need to accurately and efficiently assess the spatial distribution of SOC stocks at a high-resolution. 53 

High-resolution mapping captures information essential for assessing field-specific conditions, which 54 

can later be aggregated as need to provide summary information. 55 

Many studies have tested a variety of strategies for predicting the spatial distribution of SOC 56 

(Minasny et al., 2013 and references therein). The various studies on SOC mapping have analyzed 57 

different soil depths, which has large implications for the consideration of the complete SOC stock 58 

(Richter and Markewitz, 1995; Batjes, 1996, Jobbágy and Jackson, 2000; Sombroek et al, 2000; 59 

Schwartz and Namri, 2002; Meersmans et al., 2009). For example, some have focused on spatially 60 

modelling the topsoil to depths of 20-30 cm (e.g. Ungaro et al., 2010; Zhang et al., 2010; Martin et 61 
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al., 2011). Other variations of strategies for digital SOC mapping differ in which variables are 62 

modelled in order to predict SOC. For instance, some studies have modelled the SOC stock (e.g. kg 63 

m-2, T ha-1, kg m-3) directly (Simbahan et al., 2006; Lufafa et al., 2008; Nyssen et al., 2008; Mishra et 64 

al., 2010; Phachomphon et al., 2010; Kempen et al., 2011), while others have separately modelled 65 

the variables needed to calculate the SOC stock and then combined them (Grimm et al., 2008; Khalil 66 

et al., 2013; Lacoste et al., 2014). The usual component variables are total bulk density (BD), particles 67 

> 2 mm (SK), SOC concentration (SOC%), and stock thickness (H), which are then combined by: 68 

          (
    

   
)  (       )  (

      

   
)         (1) 69 

where, SOCstock is in kg m-2, SOC% is in percent, BD in g cm-3, SK in percent, and H in m. 70 

Irrespective of the approach used, an important output of digital soil mapping is a measure of 71 

uncertainty. Orton et al. (2014) compared uncertainties resulting from directly modelling the SOC 72 

stock (direct = calculate-then-model) with modelling component variables for calculating the SOC 73 

stock (indirect = model-then-calculate), based on geostatistical approaches that rely on spatial 74 

autocorrelation. In the present study, we made a similar assessment for rule-based, multiple linear 75 

regression (MLR) models, which rely on spatial association.  76 

With the spatial association (i.e. spatial regression) approach to soil mapping, the empirical 77 

model error can be transferred along with the model itself (Lemercier et al., 2012). For digital soil 78 

mapping, Malone et al. (2011) adapted the Shrestha and Solomatine (2006) approach for empirically 79 

summarizing model error and extending that information to prediction areas. In those previous 80 

studies, areas expected to have similar errors were grouped by cluster analysis. Because similar sites 81 

are already grouped together in rule-based, MLR models, the estimated errors can be applied to the 82 

areas meeting the same rule conditions and thus mapped. The ability to map predictions of soil 83 

properties and the confidence in those predictions via spatial association is important for landscape 84 

to national extents because of the common limitation of sampling density (Martin et al., 2014). 85 
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The purpose of this study was to compare the maps of SOC stocks produced from direct and 86 

indirect modelling approaches, using rule-based MLR. The resulting maps were compared in terms of 87 

their predicted spatial patterns, coefficient of determination (R2), as well as the magnitude and 88 

spatial distribution of the estimated errors. The predictors selected for the models via the data 89 

mining procedure were evaluated in the context of known landscape processes. In addition, the 90 

separate assessment of topsoil and subsoil stocks tested the models’ ability to predict SOC storage at 91 

depths to two meters.  92 

2. Methods 93 

2.1. Study Area and Sampling 94 

A dominantly agricultural area located near Wulfen, Saxony-Anhalt, Germany, which has been 95 

examined by several previous studies (Selige et al., 2006; Brenning et al., 2008; Kühn et al., 2009; 96 

Migdall et al., 2009), was selected for this research. The mapping area extends from 11.86°N, 97 

51.74°E to 11.96°N, 51.90°E (Figure 1), covering a total area of 122 km2. The landscape includes 98 

hummocky till plain, outwash plain, loess, and a broad floodplain (Königlich Preußische Geologische 99 

Landesanstalt, 1913a, b). The study area is dominated by Calcaric Cambisols and Luvic Phaeozems, 100 

while the depressional area in the floodplain is primarily Dystric Gleysols (European Commission, 101 

2014). Between 2005 and 2006, 117 locations were sampled from a variety of landscape positions in 102 

12 different agricultural fields, covering the known feature space for agricultural land in this area. 103 

Because all models were calibrated and validated on these samples, evaluation of the resulting maps 104 

focused on areas with similar land-use (i.e. water bodies and urban areas excluded). Ten of the 105 

sample points, also spread across the feature space, were of repeated locations (within 2 m of 106 

original), which helped to insure that random error was reflected in the assessment of estimated 107 

error. 108 

Soil horizons identified in the field were sampled at each sampling location. To avoid biases from 109 

horizon classifications and to focus on the two major process zones for SOC, the soil profile of two 110 
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meters was divided into topsoil and subsoil stocks. The division was defined by the largest decrease 111 

in SOC%, as determined by lab analysis, between field identified horizons. Not all profiles were able 112 

to be sampled to the full depth of two meters. In those cases, the properties of the sampled subsoil 113 

were assumed to be representative of the remaining depth. Data for the horizons within each stock 114 

were combined using a thickness-weighted mean, as appropriate. Descriptive statistics for these 115 

observation points are provided in Table 1. 116 

2.2. Modelling 117 

Models for each of the target variables were generated using the Cubist 2.08 software (Quinlan 118 

1992, 1993, 1994). Previous studies have demonstrated the utility of this tool for digital soil mapping 119 

(Bui et al. 2006; Minasny and McBratney, 2008; Adhikari et al., 2013; Lacoste et al., 2014). Cubist 120 

uses a data mining algorithm to build two-tiered models. The top level consists of a series of 121 

conditional rules that can utilize both continuous and categorical predictors. For each rule, a MLR 122 

equation is produced for predicting the target variable. Cubist’s process for selecting predictors and 123 

building the models is described in Quinlan (1993) and Holmes et al. (1999) and will not be repeated 124 

here. One advantage of this approach is the interpretability of the produced model, which allows the 125 

modeler to assess relationships between the model and physical processes (Bui et al., 2006). 126 

The results of the data mining process are dependent upon the predictors made available to the 127 

data mining software. For this reason, we used the large predictor pool method described by Miller 128 

et al. (2015) to identify the optimal models for each of the respective target variables. That method 129 

includes a multiple pass test, which reapplies the Cubist algorithms to the limited pool selected by 130 

the previous run. This helps to insure that the selected predictors have been optimally reduced by 131 

the Cubist software, decreasing the concern of overfitting. The predictor pool for this study included 132 

410 base maps covering the full extent of the study area (Table 2). These base maps consisted of a 133 

legacy geologic map, a variety of remote sensing/spectral products, and digital terrain analysis 134 

(DTA). The spectral products ranged from four bands of Ikonos data to a variety of Landsat data 135 
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collected at different times in 2006. DTA was conducted on a 2 m resolution, digital elevation model 136 

(DEM), created from LiDAR data that was also collected in 2006. The DTA base maps included land-137 

surface derivatives based on a wide range of analysis scales (a-scales) and a suite of hydrologic 138 

indicators. Land-surface derivatives were calculated in GRASS 6.4.3 (Geographic Resources Analysis 139 

Support System, grass.osgeo.org) and ArcGIS 10.1 (www.esri.com/software/arcgis). Hydrologic 140 

indicators were calculated using SAGA 2.1.0 (System for Automated Geoscientific Analysis, 141 

http://www.saga-gis.org/en/index.html). 142 

The predictors selected by the Cubist software were then used as base maps to generate maps 143 

of SOCstock. Using the raster calculator in ArcGIS 10.1, the base maps were combined according to the 144 

MLR equations produced by Cubist. When base maps of different resolutions were combined, the 145 

finest resolution was maintained. The respective MLR equations were only applied in the areas that 146 

met the conditions of the Cubist model’s first tier. The first experimental approach used this method 147 

to directly map SOCstock from the SOCstock calculated at each sample point. The second experimental 148 

approach used this method to map each of the component variables. These modelled variables were 149 

then used as base maps to create a SOCstock map. The raster calculator was then again used to 150 

combine the component variables, but this time according to equation 1. For both experimental 151 

approaches, the topsoil and subsoil were mapped separately. After the respective SOCstock maps 152 

were produced, they were added together to create total SOCstock maps. 153 

Within the extent of the study area, there were a few areas with conditions outside the range 154 

observed in the point samples. In these limited cases, extreme predictor values produced model 155 

predictions of target variables either far below or above the ranges observed for the respective 156 

target variables. To address this issue, spatial predictions were limited to be within 10% of the 157 

observed target variable minimum and maximums. 158 

2.3. Propagation of Error 159 

file:///F:/Manuscripts/SOC%20map%20(Wulfen)/grass.osgeo.org
http://www.esri.com/software/arcgis
http://www.saga-gis.org/en/index.html
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For each of the model rules, estimated error was calculated based on the internal fit of the MLR 160 

to the data classified within that rule. This estimation provided a measure for the respective 161 

uncertainty under each rule. The conditions for the respective rules were used to spatially classify 162 

the base maps, thus allowing the estimated errors to be mapped. Measurement error, positional 163 

error, and limitations of the model to predict the target variable were all empirically encapsulated by 164 

the estimated error.   165 

When the target variable was the end product, the uncertainty was simply represented by the 166 

estimated error. However, when multiple variables were modelled and subsequently used to 167 

calculate the final product, the estimated errors of the component variables propagated through the 168 

combination of those variables in the function. In order to map estimated error for the indirect 169 

approach of modelling SOCstock, estimated error maps were produced for each of the component 170 

variables. These error estimation maps were then combined using standard equations for 171 

propagation of error (Mardia et al., 1979; Taylor, 1997; Weisstein, 2014). Although potentially biased 172 

by the approximation to a first-order Taylor series expansion, simplified equations for error 173 

propagation are more practical and are regularly used in engineering and physical science 174 

applications (Goodman, 1960; Ku, 1966). Because covariance between variables has the potential to 175 

impact the estimation of SOCstock (Panda et al., 2008; Goidts et al., 2009), we did not assume the 176 

variables were independent. The observed residual covariance was thus used to modify the 177 

estimated error within the standard equations for propagation of error by multiplication,  178 

   | |√(
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 (

  

 
)
 
  

     

  
       (2) 179 

and by addition, 180 

   √  
    

               (3) 181 

where f is the result of the original function (to convert from relative to estimated error), A and B are 182 

the real variables, with estimated errors σA and σB, and their residuals’ covariance covAB. In order to 183 
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calculate a predicted relative error (e.g. 
  

 
) at unsampled locations, the predicted variable was 184 

assumed to accurately represent the variable’s magnitude. 185 

Locations with small ratios between estimated error and predicted values together with large, 186 

negative covariances had the potential to produce a calculation taking the square root of a negative. 187 

This issue was addressed by not considering the covariance in those limited circumstances. While 188 

this solution may have led to an overestimation of error, it provided a means to mathematically 189 

calculate estimated error without declaring it to be zero. 190 

3. Results 191 

3.1. Models 192 

3.1.1. Model building and fitting performance 193 

Explicit models were obtained for each of the component variables needed to calculate SOCstock 194 

indirectly and for predicting SOCstock directly. Models for predicting component variables used a 195 

higher quantity of predictors for each of the respective models than the direct modelling approach 196 

(Table 3). With the exception of SOC%, the models for component variables included a combination 197 

of DTA and spectral variables. The SOC% models relied solely on DTA predictors for both stocks, but 198 

with additional spatial partitioning by geologic map units for the topsoil model. The models for 199 

directly predicting the SOCstock used only three DTA predictors for the topsoil and only four Landsat 200 

predictors for the subsoil. 201 

Fitting performances for the component variable models were better than the fitting 202 

performances for the direct modelling of SOCstock (Table 4). For the component variables, R2 values of 203 

subsoil models were only slightly less than the topsoil models. SOC% was the exception by having the 204 

lowest fitting performance for the subsoil stock (R2 = 0.55), while the model for the SOC% topsoil was 205 

able to fit observations with an R2 of 0.86. However, it was the aim of this research to examine if the 206 

performance of the models was maintained through the calculation of SOCstock. 207 
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Comparison of the SOCstock predictions by the indirect approach to observed values showed 208 

better performance for the topsoil stock (R2 = 0.73) than for the subsoil stock (R2 = 0.34). Fitting 209 

performance for directly modelling SOCstock showed the same pattern, but was lower than the 210 

indirect approach for both stocks. Analysis of the direct approach’s ability to fit observed values 211 

yielded an R2 of 0.58 for the topsoil and 0.14 19 for the subsoil. 212 

In general, calculated model efficiencies (ME) showed that the respective models reduced the 213 

mean absolute error (MAE) to about half the MAE that would result from simply using the mean of 214 

all points as the prediction. The SOC% model for the topsoil improved upon the mean model more 215 

than the other MLR models with a ME of 0.34. However, an intriguing result is the lack of model 216 

efficiency for the indirect modelling of the subsoil’s SOCstock. Despite the component models all 217 

having MEs well below one, the indirect approach did not improve upon the mean model for 218 

predicting the subsoil SOCstock. Although the ME of the direct model for subsoil SOCstock was also not 219 

as good as the other models, it was still an improvement over the mean model.  220 

3.1.2. Model Robustness 221 

It is common for digital soil mapping models to be evaluated by cross-validation procedures. 222 

However, in the context of this study, the meaning of such an analysis has less utility. Higher sample 223 

density increases the robustness of the model (Minasny et al, 2013); thus the popularity of cross-224 

validation procedures over independent validation procedures in order to maintain more points in 225 

the calibration set. However, the model generated for each cross-validation run is different because 226 

of differences in calibration sets. The performance of each run is dependent on the randomly 227 

selected calibration points’ ability to represent the variation in the remaining validation points. For a 228 

simple data trend, a single outlier would have minimal effect because only the runs in which it is 229 

included in the validation set – and not used in calibrating the model – would have lower 230 

performance values. However, in a complex landscape where similar soil properties can result from 231 

different combinations of factors, the concept of an outlier has many more dimensions (Johnson et 232 
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al., 1990; Phillips, 1998). A point with a similar value can be an outlier by being a product of a 233 

different set of factors. In other words, the problem of induction continues to apply in predictive soil 234 

mapping. Further, in the context of error propagation, the error estimation from the actual model 235 

used seems more appropriate than the mean of error estimations from a series of less robust 236 

models. 237 

Nonetheless, the models in this study were cross-validated using the k-fold method with 10 238 

iterations. The R2 was naturally reduced in the cross-validation analysis, but the mean absolute error 239 

(MAE) was not as severely affected (Table 5). The R2 values for the respective models all decreased 240 

greatly in the cross-validation, except for the topsoil SOC% and the subsoil SOCstock models. The 241 

subsoil SOCstock model already had a low R2 value for the internal fit. In contrast, the MAEs for the 242 

cross-validation of the models were not increased enough to present a practical problem. The 243 

relative stability of the MAEs also suggests that the estimated uncertainties are also robust. For 244 

example, the MAE for both stocks of BD only increased 0.03 g cm-3. Also, the MAE for SOC% only 245 

increased 0.13% and 0.03% for the topsoil and subsoil, respectively. Similarly, the MAE for the direct 246 

SOCstock model increased 0.67 kg m-2 and 0.05 kg m-2 for the topsoil and subsoil, respectively. The 247 

MAE for the models of stock H and SK did increase more in cross-validation. However, they had a 248 

minor impact on the indirect modelling of SOCstock. The increase of 5.9 cm for the topsoil H MAE was 249 

only a shift of the depth estimated by topsoil or subsoil models. The larger MAE for SK was more of 250 

an issue for the subsoil. However, the majority of the samples had SK below 5%, leaving most of the 251 

error due to the difficulty in predicting the limited areas of high SK. While it was possible that a 252 

different sampling design could have improved the R2 values for cross-validation, they are not always 253 

practical for landscape-scale mapping. 254 

3.1.3. Comparison with previous studies 255 

It is difficult to compare results between SOC mapping studies due to differences in study areas 256 

and strategies for defining SOCstock (i.e. map extent and resolution, sampling density, and 257 
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consideration of depth). Further, the differences between and variability within methods for 258 

estimating component variables for calculating SOCstock can have a large impact on results, especially 259 

bulk density (Liebens and VanMolle, 2003; Schrumpf et al., 2011) and SOC% (Lowther et al., 1990; 260 

Soon and Abboud, 1991; Sutherland, 1998; Bowman et al., 2002). Also, because model performance 261 

is dependent upon the provided predictors, results of different studies can vary based on the 262 

predictors available to and derived by the modeller (Miller et al., 2015). However, because the area 263 

in this study has been used for several previous studies, some comparisons between methods can be 264 

made. 265 

Kühn et al. (2009) examined many of the same samples used in this study and found a 266 

correlation coefficient of determination between soil electrical conductivity and soil organic matter 267 

to a 1 m depth (kg m-2) of R2 = 0.59. Although a slightly different calculation, that correlation 268 

coefficient of determination is similar to this study’s direct model of topsoil SOCstock (R
2 = 0.58), 269 

which used three DTA predictors. However, for the topsoil, the indirect approach in this study 270 

produced a SOCstock model with less estimated error and an R2 of 0.73. The Kühn et al. (2009) study 271 

usually included depths that this study defined as subsoil, where the models in this study did not 272 

perform as well (direct R2 = 0.1419, indirect R2 = 0.34). 273 

For the same area as this study, Selige et al. (2006) compared MLR and partial least-square 274 

regression for predicting SOC% from hyperspectral data with a 6 m spatial resolution. Although the 275 

study by Selige et al. (2006) utilized a higher spectral resolution, the MLR models produced by both 276 

that study and the present study had R2 of 0.86 for the topsoil SOC%. In the present study, Cubist was 277 

able to compensate for the limited spectral information by utilizing several DTA predictors that were 278 

available at a high spatial resolution. 279 

3.2. SOCstock maps 280 
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Application of the obtained models and aggregation of the component variable maps by 281 

equation 1 produced maps of predicted SOCstock for the topsoil and subsoil (Figures 2 and 3). The 282 

respective topsoil and subsoil maps were added together to produce a total SOCstock map to a depth 283 

of 2 m (Figure 4). Although some field boundaries were observed, the dominant pattern appeared to 284 

be associated with terrain features. This interpretation was supported by the number of DTA 285 

predictors selected by Cubist for many of the models. However, it would not have been safe to 286 

assume this pattern from the list of selected predictors alone. Certain predictors (i.e. spectral data 287 

reflecting land use patterns) could have dominated calculations without being the most frequently 288 

selected category of predictors. 289 

The map derived from the direct approach for modelling the topsoil SOCstock emphasizes 290 

drainageways. Whereas the map derived by the same approach for the subsoil SOCstock reflects more 291 

patterns of land use, especially in the uplands in the southern part of the study area. The topsoil 292 

SOCstock map based on the indirect approach has similar overall patterns to the direct approach’s 293 

map. However, both the topsoil and subsoil maps produced by the indirect approach display greater 294 

spatial variation. 295 

Patterns in the topsoil SOCstock map, based on the indirect approach, mostly coincide with terrain 296 

features, but do contain some transitions that align with field boundaries. The corresponding map 297 

for the subsoil reflects patterns of microtopography and slope gradient. Larger values for the subsoil 298 

SOCstock are predicted by the indirect approach for local lows in elevation (smaller a-scales). 299 

Predictions of larger subsoil SOCstock on steeper slopes result from the modelling of thinner topsoil 300 

stocks in these areas and the consistent calculation of a 2 m profile. Consequently, the subsoil is 301 

calculated to be thicker in these areas, substantially increasing the subsoil SOCstock prediction 302 

compared to other areas of the subsoil.  303 

Maps derived by both approaches for the total SOCstock primarily reflected patterns from the 304 

topsoil maps because of the higher concentration of SOC that defined the topsoil stock. 305 
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Nonetheless, modelled storage for the subsoil stock contributed about one-third of the prediction of 306 

total SOCstock and recognized additional complexity in the SOC landscape. Despite the greater 307 

variation in the indirect approach’s prediction of SOCstock, the difference between estimates of total 308 

SOCstock by the two approaches were within 5 kg m-2 for the majority of the map area (Figure 5). Also, 309 

the summed SOCstock for the study area was only 6% more for the indirect (1.9 Mt) versus the direct 310 

(1.8 Mt) approach. The mean SOCstock estimate for the study area by the direct approach was 14.7 kg 311 

m-2, whereas the indirect approach estimated 15.7 kg m-2.  312 

These aggregated landscape estimates agreed with those made by the Harmonized World Soil 313 

Database (HWSD; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) for this area. The HWSD estimated several soil 314 

properties from taxonomic pedotransfer functions for static topsoil (0-30 cm) and subsoil (30-100 315 

cm) depth zones. Within the area of the present study, the HWSD has a cell resolution of 316 

approximately 765 m. Calculating SOCstock from that data yielded a mean of 8.8 kg m-2. Assuming the 317 

characteristics of the subsoil to 100 cm extended to 200 cm, the mean SOCstock would be 15.3 kg m-2. 318 

3.3 Error estimations 319 

The mapping of estimated errors based on the conditions of rules generated by Cubist resulted 320 

in a spatial representation of uncertainty (Figure 6). In order to calculate the final estimated errors 321 

for the indirect approach, estimated errors for models of component variables were combined 322 

spatially by equations 3 2 and 43. Due to the known covariance of component variables, the 323 

observed covariance of the residuals was included in the calculation of error propagation through 324 

the calculation of the total SOCstock. Inclusion of covariance reduced relative error estimates in the 325 

topsoil because increases in residuals for BD coincided with decreases in the residuals for percent 326 

fine-earth, increases in fine-earth BD residuals coincided with decreases in SOC% residuals, and 327 

increases in SOC content (kg m-3) residuals coincided with decreases in stock thickness residuals. The 328 

influence of covariance was notmostly the same in the subsoil calculations. The exception was a 329 

positive covariance between the residuals for modelling BD and the percent fine-earth. With the 330 
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exception of the covariance between fine-earth BD and SOC%, which was very small, subsoil 331 

covariances were positive. However, overallNonetheless, the covariances were relatively small with 332 

respect to the estimated errors and therefore had a minimal impact on the final calculation of 333 

estimated error. 334 

The application of error estimates based on the full range of predicted values in a rule zone to 335 

small values in that zone yielded extremely high relative error values. Although the areal extent for 336 

this type of situation was very limited, the issue needed to be addressed in order to maintain the 337 

readability of the attribute scale. Therefore relative error was capped at one for the original relative 338 

error grids, but not thereafter for the calculation of error propagation. 339 

Despite not having as strong of a fitting performance as the indirect approach, the direct 340 

approach had lower estimated errors for greater extents of the study area. The mean estimated 341 

error for the total SOCstock map derived by the direct approach was 2.81 kg m-2, compared to 8.17 kg 342 

m-2 for the indirect approach. This behavior in the models may be explained by the negative 343 

covariance between the residuals for many of the variables influencing the SOCstock. The observed 344 

covariances did reduce the calculation of error through propagation. However, they did not reduce 345 

the estimated error for the indirect approach to as low as the estimated error based on the direct 346 

modelling approach. It is also useful to note that the residuals for modelling SK and SOC% werehad a 347 

negative and positive skewed , respectively, for both stocks (Table 6). However, for theOf the 348 

residuals offor the final prediction of SOCstock, regardless of approach or stock, only the indirect 349 

model for the subsoil had strongly skewed residuals. This suggests that the error for the indirect 350 

model of the subsoil SOCstock may have been overestimated.     351 

The spatial distribution of model rules was an important factor in the resulting maps’ estimated 352 

error. The models for the direct approach used fewer rules than the component variable models, 353 

resulting in less spatial variation of the estimated error. However, variation in predicted values did 354 

introduce additional spatial variation to the mapping of relative error. Nonetheless, the map of 355 
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relative error from the indirect approach was more complex than that resulting from the direct 356 

approach. In addition to using more rules for each model, the combined relative estimated error for 357 

the indirect approach was further tessellated by the unique intersections of the different spatial 358 

distributions of the rules for each component variable model. 359 

4. Discussion 360 

4.1. Predictor selection 361 

4.1.1. Review of relationships between predictors and environmental conditions 362 

Spectral predictors from satellites such as Ikonos and Landsat have most commonly been used 363 

to detect characteristics of land use, vegetation, and soil water content (Bannari et al., 1995; Xie et 364 

al., 2008). However, they have also been used to detect mineralogy on sparsely vegetated areas 365 

(Mulder et al., 2011). Although Ikonos has a finer spatial resolution, it is limited to three bands (band 366 

1 = blue, band 2 = green, and band 3 = red) in the visible spectrum, plus a near infrared band (band 4 367 

= NIR). Landsat provides additional bands in the shortwave infrared (band 5 = SWIR-1; band 7 = 368 

SWIR-2) and thermal infrared (band 6 = TIR). The relative reflectance of a single band can be used to 369 

distinguish landscape conditions. For example, the green band can be used to distinguish different 370 

vegetation from bare soil. However, combinations of bands - particularly including the red and NIR 371 

bands - have been even more useful for distinguishing the spectral signature of different land uses 372 

(Richards, 2006) and the condition of the vegetation (Ashley and Rea, 1975; Myneni et al., 1995; 373 

Rasmussen, 1998; Daughtry, 2001; Hatfield et al., 2008). Additional use of TIR emission would 374 

resemble methods such as the Surface Temperature/Vegetation Index for estimating soil moisture 375 

(Bartholic et al., 1972; Heilman et al., 1976; Carlson et al., 1994; Li et al., 2009; Petropoulus et al., 376 

2009). Similarly, use of SWIR wavelengths in concert with red and infrared red bands would be a way 377 

of compensating for the changing effect of soil reflection in dry to wet conditions (Huete, 1988; 378 

Lobell and Asner, 2002). Relationships between bands in the visible to SWIR range have also been 379 
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used to predict SOC% and its biochemical composition (Bartholomeus et al., 2008; Gomez et al., 380 

2008; Stevens et al., 2010).  381 

Spectral predictors have been used for both classification of discrete phenomenon and 382 

quantification of continuous phenomenon on the landscape. Because of the rule-based MLR 383 

structure of the Cubist models, spectral predictors used for conditional rules were more likely to be 384 

distinguishing discrete features (e.g. vegetation/land use type) than when used within an MLR 385 

equation. Continuous features (e.g. vegetation health) were more likely to be represented in MLR 386 

equations. 387 

DTA predictors in this study were all derived from the LiDAR data for elevation. The land-surface 388 

derivatives (e.g. slope gradient, relative elevation) described the surface geometry with which the 389 

climate interacts. For example, aspect has been shown to influence the amount of solar insolation a 390 

hillslope receives (Hunckler and Schaetzl, 1997; Beaudette and O’Geen, 2009). The surface geometry 391 

is also known to direct water flow, which affects erosion processes and groundwater recharge 392 

(Huggett, 1975; Zevenbergen and Thorne, 1987). Hydrologic predictors (e.g. flow accumulation, 393 

catchment slope) provided additional information about the relative volume and energy that the 394 

water flow may have (Moore et al., 1991; Wilson and Gallant, 2000). 395 

4.1.2. Topsoil model predictors 396 

All of the topsoil models generated by Cubist relied on DTA predictors the most. Of those 397 

predictors, different a-scales of relative elevation, topographic position index (TPI), and aspect were 398 

the most commonly used. With the exception of the direct SOCstock model, every topsoil model also 399 

included one or two predictors indicative of flow accumulation (i.e. flow path length, SAGA wetness 400 

index, or modified catchment area).  401 

Aspect at different a-scales influenced predictions for three of the indirect topsoil models. The 402 

Cubist generated model identified decreasing topsoil SOC% on more north facing slopes (155 m a-403 
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scale), which corresponds with a potential decrease in plant productivity due to less solar insolation. 404 

Aspect (215 m a-scale) was also used to predict higher topsoil BD on south to west facing slopes, 405 

especially on topographic (2000 m a-scale) and micro-topographic (20 m a-scale) highs. Additionally, 406 

aspect at a variety of a-scales was used to predict decreasing topsoil SK for low TPI areas facing 407 

southeast to southwest. Together, these models suggested a pattern of increased erosion and 408 

deposition along the southern sides of hillslopes. This type of pattern has been observed before in 409 

other landscapes and has been attributed to topo-climatic differences such as exposure to storms, 410 

differences in temperature regime, rainfall effectiveness, or vegetation density (Kennedy, 1976; 411 

Churchill, 1981; Cuff, 1985; Weaver, 1991). 412 

Although DTA parameters dominated the topsoil models, their predictions were often modified 413 

by spectral variables. For example, the primary distinction for predicting topsoil H was between low 414 

and high relative elevations. Low relative elevations had a mean topsoil H that was about 20 cm 415 

thicker than high relative elevations (1,100 m a-scale). Within most MLR equations, however, 416 

predictions were increased by less blue and more green reflectance in early July. This combined use 417 

of blue and green bands indicated increasing topsoil H with more productive vegetation on wetter 418 

soils. In summary, the dominant pattern identified by the model was between high-low ground 419 

(Bushnell, 1943; Sommer et al., 2008), but the degree of topsoil thinning or thickening was predicted 420 

by the vegetation’s response to soil conditions. 421 

Cubist selected a much simpler combination of only DTA predictors to directly model the topsoil 422 

SOCstock. In general, the model predicted increasing SOCstock with decreasing vertical distance to 423 

channel. Areas low in relative elevation (1,100 m a-scale) and not far above the channel network 424 

were predicted to have the largest SOCstock.  However, for areas low in relative elevation, but 425 

sufficiently above the DEM based channel network, the model predicted the opposite trend of the 426 

SOCstock decreasing with decreasing vertical distance to channel. This pattern identified by the model 427 

may be explained by a corresponding pattern observed in the model for the topsoil H. In that model, 428 
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areas low in relative elevation (1,100 m a-scale) were predicted to have some of the thickest topsoil 429 

stocks. However, within a few of those zones the modelled topsoil H decreased with decreasing 430 

relative elevation and TPI. This trend in the observed data, as detected by Cubist, was potentially 431 

caused by an eroding out of topsoil sediments closer to the center of drainageways. In which case, 432 

the vertical distance to channel – used in the topsoil SOCstock model - may have been more an 433 

indicator of proximity to the channel than wetness; the threshold was only 0.5 m above the channel 434 

modelled from the DEM. Predictors related to surface flow energy would have been expected to be 435 

better predictors of this kind of process. However, the upslope drainage network for much of the 436 

map area extended beyond the boundaries of the available data. Thus the use of local elevation data 437 

may have been a better proxy in this case, compared to the predictors calculated from truncated 438 

watersheds. 439 

4.1.3. Subsoil model predictors 440 

With the exception of SOC%, the subsoil models all used several predictors from Landsat. 441 

Selection of Landsat predictors for subsoil models suggested that vegetation characteristics or 442 

surface soil moisture at different times of the year indicated subsoil conditions. In contrast, the 443 

subsoil SOC% model’s complete dependence on DTA predictors suggested that soil property was 444 

mostly related to hydrology and that vegetation had little response to or effect on the SOC content 445 

in the subsoil. 446 

An example of spectral predictors detecting vegetation characteristics that likely reflected 447 

subsoil conditions was the subsoil SK model. All of the MLR equations were strongly influenced by 448 

the predictors of stream power, catchment slope, or SAGA wetness index. However, the skeleton SK 449 

predictions were modified by green reflectance in June and additional Landsat predictors collected 450 

at different times of the year that related to the vigor of the vegetation. The weaker or drier the 451 

vegetation appeared, the higher the prediction of SK content in the subsoil. Assuming soil moisture 452 

conditions did not reach detrimental levels that year, these patterns fit known relationships 453 



20 
 

between particle size, soil drainage, and timing to crop maturity (Day and Intalap, 1970; Rawls et al., 454 

1982). 455 

The generated model for subsoil BD most likely utilized a relationship with soil moisture as 456 

detected by spectral predictors. In all areas, the MLR equations decreased predictions of subsoil BD 457 

with increasing reflectance in the blue and SWIR-1 bands along with increasing emission in the TIR 458 

band. Increases in the normalized difference vegetation index (NDVI) were used to slightly increase 459 

predictions of subsoil BD. The use of the NDVI to offset the decreasing BD predicted by the other 460 

Landsat predictors suggested those variables were indicating soil moisture conditions. Locations that 461 

are wetter due to surface runoff would have a greater potential for organic material to be 462 

translocated deeper in the soil profile (Schaetzl, 1986; Schaetzl, 1990). Also, the association of 463 

wetter environments with cooler temperatures and anaerobic conditions would also inhibit 464 

decomposition (Gates, 1942; Krause et al., 1959; Frazier and Lee, 1971). 465 

The subsoil SOC% model was different than the other subsoil models generated. Instead of 466 

selecting spectral predictors, the subsoil SOC% model relied solely on DTA predictors. The model 467 

predicted the highest subsoil SOC% on steeper mid-slopes. The pattern of increasing subsoil SOC% 468 

from the upper to middle slope fit the landscape translocation model proposed by Sommer et al. 469 

(2000). In that study, the SOC% in the Bh horizon increased from the upper slope to the midslope due 470 

to lateral translocation. Different than the pattern identified in the present study, the data in 471 

Sommer et al. (2000) showed a continued increase in the SOC% of Bh horizons in the downslope 472 

position. However, this contradiction may be partially explained by aggradation where the slope 473 

gradient declines and the topsoil stock has been overthickened by developmental upbuilding 474 

(McDonald and Busacca, 1990; Almond and Tonkin, 1999). Also, lateral flow would be expected to 475 

return closer to the surface at downslope positions. In Sommer et al. (2000), while the upslope and 476 

midslope profiles had E horizons separating the Bh from A horizons, the downslope Bh horizons 477 

were exceptionally thick with little to no division between them and the A horizon. In that situation, 478 
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the definition of topsoil used in the present study would have grouped the downslope Bh horizons 479 

into the topsoil stock. Therefore, the Cubist generated model may have been a simplification of the 480 

complex interaction between topography and lateral flow depth and direction.  481 

The rule groups for subsoil SOC% also differentiated for the plan curvature where the slope 482 

gradient was not too high and the stream power index (SPI) was not too low. Concave plan 483 

curvatures (138 m a-scale) were predicted to have increasingly higher and convex plan curvatures 484 

were predicted to have increasingly lower subsoil SOC%. This relationship with plan curvature 485 

matches patterns of water movement identified to be important to soil formation by Huggett (1975), 486 

where convergent footslopes have the highest deposition rates (Pennock and De Jong, 1987). 487 

Assuming the absence of any restrictive layer below, areas with the highest sediment deposition 488 

rates would be expected to also have the highest volume of water infiltration. 489 

The Cubist generated model for predicting the subsoil SOCstock was simpler than any of the 490 

indirect component models. It used only one MLR equation to relate red and infrared predictors to 491 

subsoil SOCstock. This model predicted more SOCstock storage with increasing reflectance in the red 492 

and SWIR-2 bands along with increasing emission in the TIR band – primarily captured on 6 July. Of 493 

these variables, model predictions were dominated by increasing reflectance in the red band 494 

increasing the estimated subsoil SOCstock. This suggested less productive vegetation corresponding 495 

with larger subsoil SOCstock. This trend was counter to the patterns observed in the topsoil models, 496 

but was sensible in the context of how the subsoil stock was defined for this study. Although the 497 

total SOCstock was less in areas with lower plant productivity, the subsoil SOCstock was larger relative 498 

to other subsoil areas due to the inverse relationship between topsoil and subsoil H used in this 499 

study. A thicker topsoil stock would mean a thinner subsoil stock – and vice versa – due to the 2 m 500 

depth limit. Regarding the other predictors in this model, increases in SWIR-2 reflectance could have 501 

indicated more plant productivity. However, its use with the TIR band suggested that together they 502 

were indicators of wetter soil conditions.  503 
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4.2. Unconventional predictor selections 504 

The Cubist software made some intriguing selections in regards to predictors that were 505 

calculated using alternative approaches. One example of this was the selection of alternative types 506 

of aspect predictors. The conversion of aspect to northness and eastness is generally considered to 507 

be the preferred method for addressing the circular problem of using aspect as a predictor. In our 508 

approach of including many different predictors in the available pool, we also experimented with 509 

simply rotating the central angle (position of 0°) to each cardinal direction for creating different 510 

aspect predictors. In the models generated for this study, northness and eastness were only selected 511 

for the topsoil SOC% model. In contrast, rotated versions of aspect were selected for the topsoil 512 

SOC%, topsoil BD, as well as the topsoil and subsoil SK models. 513 

Another example of an intriguing predictor selection by Cubist was the use of bands from the 514 

LandsatLook products. These images were limited to four bands (SWIR-1, NIR, red, and TIR) and 515 

were smoothed by an algorithm to facilitate image selection and visual interpretation. Although the 516 

USGS does not recommend the use of these files for data analysis, the Cubist data mining found 517 

them to be more useful than the data without LandsatLook processing. Most of these selections can 518 

be explained by the greater variety of LandsatLook dates provided in the predictor pool. However, 519 

there were a few instances where Cubist chose LandsatLook data over the unprocessed version of 520 

the same Landsat data. 521 

4.3. Error propagation 522 

Although both the direct and indirect modelling approaches had base maps with a 2 m 523 

resolution available to them, the direct modelling approach produced a more generalized SOCstock 524 

map. In terms of predicted error, the cost of trying to account for the variation in all of the variables 525 

related to the SOCstock appeared to be larger relative errors. The SOCstock model from the direct 526 

approach, on the other hand, did not attempt to predict as many variations occurring at small 527 
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phenomenon scales. Because these very local variations were difficult to predict, the estimated error 528 

for the direct approach was less than for the indirect approach for most of the map area. Therefore, 529 

it may be appropriate to consider the direct modelling approach to be a conservative approach for 530 

estimating the SOCstock for landscapes.  531 

Possible sources of error in the base maps included atmospheric conditions for the satellite data 532 

and the estimation of bare earth elevation under dense vegetation for the DEM. Several spectral 533 

capture dates were made available in the predictor pool to enable Cubist to not only select the 534 

optimal changes in seasonal vegetation characteristics, but to also select the image with minimal 535 

noise from atmospheric effects such as clouds. Fewer options were available for DTA predictors, 536 

because all DTA predictors needed to be derived from the same high-resolution DEM. The effect of 537 

anomalies in the elevation data was more pronounced for larger a-scales. For example, a small forest 538 

plot – located roughly between the two larger cities in the center of the map area – had not been 539 

fully filtered out by the bare-earth algorithm. Any DTA calculation that included this area in its 540 

analysis neighborhood was incorrectly influenced by those elevation values. The impact on this 541 

study’s models was an increased prediction of SOCstock in the surrounding area. 542 

The error propagation method used in this study could not directly account for errors in the base 543 

maps. Instead, it could only quantify the combined model, base map, and target variable error 544 

observed at sample locations. Although none of the sample points were in proximity to the before 545 

mentioned error in the DEM, this phenomenon of elevation error affecting scale-dependent 546 

predictors would have applied universally, even where the error was less obvious. The higher 547 

relative error for both mapping approaches in the area surrounding the known problem in the DEM 548 

suggested this potential source of error was at least partially accounted for. 549 

5. Conclusions 550 

This study demonstrated the use of spatial association to predict the SOCstock and the estimated 551 

error at unsampled locations within a 122 km2 landscape at a high-resolution. The Cubist data 552 
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mining software detected patterns in the observed soil data, which was used to predict soil 553 

properties in the greater map region. The ability of the available base maps to predict the variation 554 

of those soil properties was quantified for each conditional rule of the respective models. The spatial 555 

characteristics of the model rules allowed the uncertainty to be mapped along with the target 556 

variable prediction. 557 

There were two main advantages to using data mining software to produce relatively simple 558 

model structures. First, patterns between the predictors and target variables were objectively 559 

identified. Second, the resulting models were simple enough to be interpreted by the user and 560 

related to known processes in the soil system.  A relationship between selected predictors and 561 

known processes provided confidence that their use in the model was not coincidental.  The 562 

separate modelling of topsoil and subsoil stocks identified a general division between useful 563 

predictors for predicting soil properties at different depths. The data mining in this study suggested 564 

DTA predictors tend to be most useful for topsoil properties, while spectral characteristics of 565 

vegetation and soil moisture tend to be more useful for indicating subsoil properties. 566 

Direct and indirect approaches were tested for predicting the SOCstock with the rule-based, MLR 567 

spatial modelling method. Although the spatial patterns in the two maps were generally similar, the 568 

indirect approach produced a map with more spatial variation. While attempting to account for 569 

more sources of variability resulted in less estimated error for the topsoil (indirect MAE = 1.69, direct 570 

MAE = 2.27), the indirect approach had a higher potential for error in the subsoil (indirect MAE = 571 

2.75, direct MAE = 1.37). Because the direct approach accounts for less variation (topsoil: direct R2 = 572 

0.58, indirect R2 = 0.73; subsoil: direct R2 = 0.14, indirect R2 = 0.34), but also results in a lower total 573 

MAE (direct MAE = 3.64, indirect MAE = 4.44), it should be considered a more conservative 574 

prediction of the SOCstock’s spatial distribution. The choice of which approach is best will likely 575 

depend on a given situation’s need to prioritize the representation of spatial pattern or to minimize 576 

estimated error.  577 
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Figures 887 

 888 
Figure 1. Locations of sample points and study area within Germany. 889 
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 890 
Figure 2. Topsoil SOCstock modelled by a) the direct approach and b) the indirect approach. Overlaid 891 

on a hillshade to show relationship with relief and field boundaries. 892 

 893 
Figure 3. Subsoil SOCstock modelled by a) the direct approach and b) the indirect approach. Overlaid 894 

on a hillshade to show relationship with relief and field boundaries. 895 
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 896 
Figure 4. Total SOCstock (topsoil + subsoil) modelled by a) the direct approach and b) the indirect 897 

approach. Overlaid on a hillshade to show relationship with relief and field boundaries. 898 

 899 
Figure 5. Calculated difference between the direct and indirect approaches of modelling the total 900 

SOCstock. Negative values are where the indirect approach predicted more SOCstock than the direct 901 

approach and positive values are where the indirect approach predicted less. 902 
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 903 
Figure 6. Estimated relative error for the total SOCstock modelled by a) the direct approach and b) the 904 

indirect approach.  905 
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Tables 906 

Table 1. Descriptive statistics for the observed target variables. BD = total bulk density (g cm-3), SK = 907 

particles > 2 mm (%), SOC% = SOC concentration (%), H = stock thickness (cm), and SOCstock = mass of 908 

organic carbon per unit area of soil (kg m-2). 909 

Topsoil BD SK H SOC% SOCstock 

Min. 1.18 0.00 10 0.75 1.80 

Median 1.50 1.30 40 1.46 9.27 

Mean 1.51 3.15 43.61 1.56 9.82 

Max. 1.85 44.70 105 4.03 28.03 

Std. Dev. 0.11 5.50 15.35 0.53 4.49 

Subsoil           

Min. 1.33 0.00 18 0.02 0.07 

Median 1.63 4.07 86 0.23 3.10 

Mean 1.63 8.99 86.66 0.26 3.37 

Max. 1.96 63.36 155 0.71 9.86 

Std. Dev. 0.13 12.28 32.60 0.13 2.04 

  910 
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Table 2. Predictor variables considered in this study. 911 

Predictor Software Analysis Scale 

Elevation (LiDAR, bare-earth) n/a 2 m 

Slope gradient GRASS 6 - 195 m 

Profile curvature GRASS 6 - 195 m 

Plan curvature GRASS 6 - 195 m 

Aspect -west {rotated for N, E, and S} GRASS 6 - 345 m 

Aspect (8 classes) ArcGIS (raster calculator) 6 - 345 m 

Northness transformed from aspect 6 - 345 m 

Eastness transformed from aspect 6 - 345 m 

Longitudinal curvature SAGA 10 m 

Cross-section curvature SAGA 10 m 

Convexity SAGA 10 m 

Relative elevation - rect. neighborhood ArcGIS toolbox 6 - 4000 m 

Relative elevation - circ. neighborhood ArcGIS toolbox 6 - 4000 m 

Topographic position index (TPI) ArcGIS toolbox 6 - 4000 m 

TPI - slope position ArcGIS toolbox multiple 

TPI - landform classification ArcGIS toolbox multiple 

Hillslope position ArcGIS toolbox multiple 

Catchment area SAGA n/a 

Catchment slope SAGA n/a 

Channel network base level SAGA n/a 

Convergence index SAGA n/a 

Flow accumulation SAGA n/a 

Flow path length SAGA n/a 

Length-slope factor SAGA n/a 

Modified catchment area SAGA n/a 

Relative slope position SAGA n/a 

SAGA wetness index SAGA n/a 

Stream power SAGA n/a 

Vertical distance to channel SAGA n/a 

Wetness index SAGA n/a 

Geology (1:25,000 legacy map) n/a 423 ha (mean) 
  912 



40 
 

Table 2 (cont’d). 913 

Predictor Resolution Date 

AVIS - LAI-green leaf area 5m 21 Jun. 2005 

AVIS - LAI-brown leaf area 5m 21 Jun. 2005 

Ikonos 4 m, 4 bands 4 Jul. 2006 

Ikonos - panchromatic 1 m 4 Jul. 2006 

Ikonos - LAI 5m 4 Jul. 2006 

Ikonos - dry matter 5m 4 Jul. 2006 

Landsat 5 NDVI (USGS, 2014) 30m 11 Jun. 2006 

Landsat 5 NDVI (USGS, 2014) 30m 22 Jul. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 20 Jun. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 6 Jul. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 22 Jul. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 15 Sep. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 17 Oct. 2006 

Landsat 5 TM (USGS, 2014) 30m, 6 bands; 60m, 1 band 11 Jun. 2006 

Landsat 5 TM (USGS, 2014) 30m, 6 bands; 60m, 1 band 22 Jul. 2006 

Landsat 5 SR (GLCF, 2014) 30m, 7+2 bands 11 Jun. 2006 

Landsat 5 SR (GLCF, 2014) 30m, 7+2 bands 22 Jul. 2006 
  914 
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Table 3. Relative use (%) of predictors in models derived by Cubist for the topsoil and subsoil stocks. 915 

BD = total bulk density (g cm-3), SK = particles > 2 mm (%), SOC% = SOC concentration (%), H = stock 916 

thickness (cm), and SOCstock = mass of organic carbon per unit area of soil (kg m-2). 917 

Topsoil Subsoil 

Rules MLR Predictor Rules MLR Predictor 

BD BD 

100% 100% Relative elev. - circ. (2000 m) 100% 0% Geology map units 

51% 100% Landsat5 SR, band 7 (6 Jun. 2006) 68% 100% LandsatLook, band 5 (6 Jul. 2006) 

17% 100% Relative elev. - rect. (20 m) 
 

100% Landsat5 NDVI (22 Jul. 2006) 

 
96% LandsatLook, band 5 (17 Oct. 2006) 

 
100% LandsatLook, band 6  (6 Jul. 2006) 

 
87% Relative elev. - rect. (10 m) 

 
100% Landsat5 TM, band 1 (11 Jun. 2006) 

 
87% Aspect, N central angle (215 m)  

 
68% Landsat5 SR, band 7 (22 Jul. 2006) 

 
83% Landsat5 SR, band 2 (6 Jun. 2006) 

 
32% Landsat5 SR, band QA (6 Jun. 2006) 

 
34% SAGA wetness index 

 
32% Landsat5 SR, band 1 (22 Jul. 2006) 

 
13% Relative elev. - circ. (800 m) 

 
32% Landsat5 SR, band 6 (22 Jul. 2006) 

SK SK 

100% 100% TPI (70 m) 100% 3% Stream power 

94% 0% Aspect class (70 m) 76% 76% Landsat5 SR, band 2 (11 Jun. 2006) 

39% 16% Relative elev. - rect. (550 m) 21% 0% Profile Curvature (118 m) 

37% 14% LandsatLook, band 6 (17 Oct. 2006) 15% 79% Landsat5 SR, band 4 (6 Jun. 2006) 

 
94% Relative elev. - rect. (1800 m) 

 
85% Catchment slope 

 
84% Landsat5 NDVI (11 Jun. 2006) 

 
76% LandsatLook, band 3 (20 Jun. 2006) 

 
80% Aspect, N central angle (50 m)  

 
56% Landsat5 NDVI (11 Jun. 2006) 

 
78% Landsat5 TM, band 4 (20 Jun. 2006) 

 
56% LandsatLook, band 4 (20 Jun. 2006) 

 
78% Relative elev. - circ. (3000 m) 

 
56% Aspect, W central angle (70 m)  

 
64% Aspect, N central angle (130 m)  

 
21% SAGA wetness index 

 
64% Aspect, S central angle (345 m)  

   

 
64% Flow path length 

   

 
37% Aspect, N central angle (295 m)  

   H H 

100% 93% Relative elev. - rect. (1100 m) 
   39% 100% LandsatLook, band 5 (15 Sept. 2006) Cubist not used 

34% 34% LandsatLook, band 5 (22 Jul. 2006) (based on 2 m - topsoil thickness) 

25% 93% Ikonos, band 2 (4 Jul. 2006) 
   18% 7% LandsatLook, band 4 (17 Oct. 2006) 
   

 
100% Relative elev. - rect. (1200 m) 

   

 
93% Ikonos, band 1 (4 Jul. 2006) 

   

 
93% Relative elev. - rect. (1300 m) 

   

 
74% LandsatLook, band 4 (15 Sept. 2006) 

   

 
74% TPI (1800 m) 

   

 
74% TPI (2600 m) 

   

 
74% Flow path length 

   

 
28% Relative elev. - circ. (650 m) 

   

 
7% Landsat5 TM, band 6 (11 Jun. 2006) 

     918 
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Table 3 (cont’d). 919 

Topsoil Subsoil 

Rules MLR Predictor Rules MLR Predictor 

SOC% SOC% 

100% 0% Geology map units 100% 100% Slope gradient (98 m) 

49% 39% Relative elev. - rect. (3200 m) 74% 74% Stream power 

39% 69% Relative elev. - rect. (2000 m) 55% 55% Plan curvature (138 m) 

33% 74% Flow path length 
 

74% Slope gradient (90 m) 

21% 62% Northness (155 m) 
 

74% Slope gradient (138 m) 

 
81% TPI (1200 m) 

 
74% Slope gradient (185 m) 

 
80% Relative elev. - rect. (250 m) 

 
74% Relative elev. - rect. (3400 m) 

 
80% Northness (345 m) 

 
55% Plan curvature (90 m) 

 
74% Aspect, W central angle (90 m)  

 
19% TPI (950 m) 

 
69% Relative elev. - circ. (1600 m) 

 
19% Vertical distance to channel 

 
69% TPI (1100 m) 

   

 
62% TPI (550 m) 

   

 
62% Northness (215 m) 

   

 
62% Eastness (345 m) 

   

 
62% Modified catchment area 

   

 
32% Aspect, W central angle (110 m)  

   

 
21% TPI (250 m) 

   

 
21% Aspect, W central angle (175 m)  

   

 
12% Northness (6 m) 

   SOCstock SOCstock 

100% 48% Relative elev. - rect. (1100 m) 
 

100% LandsatLook, band 5 (6 Jul. 2006) 

48% 100% Vertical distance to channel 
 

100% LandsatLook, band 3 (6 Jul. 2006) 

 
80% Channel network base level 

 
100% LandsatLook, band 6 (6 Jul. 2006) 

    
100% Landsat5 TM, band 7 (11 Jun. 2006) 

 920 

 921 

Table 4. Fitting performance for the respective models. The model’s efficiency (ME) is the ratio 922 

between the model’s mean absolute error (MAE) and the MAE that would result from only using the 923 

mean value as the model. Cubist reports the ME as relative error, but it is renamed here to avoid 924 

confusion with the more common definition of relative error. An ME of greater than one indicates 925 

that the model is not performing well. 926 

Topsoil models BD SK H SOC% Indirect - SOCstock Direct - SOCstock 

MAE 0.05 1.36 5.90 0.14 1.69 2.27 

ME 0.52 0.41 0.47 0.34 0.49 0.66 

R
2
 0.69 0.85 0.71 0.86 0.73 0.58 

Subsoil models             

MAE 0.06 3.77 5.90 0.06 2.75 1.37 

ME 0.58 0.42 0.47 0.59 1.67 0.83 

R
2
 0.67 0.79 0.71 0.55 0.34 0.19 

  927 
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Table 5. Cross-validation performance for the respective models. Note that although the R2 was 928 

severely reduced for most models, the MAE was generally only increased a small amount. 929 

Topsoil models BD SK H SOC% Direct - SOCstock 

MAE 0.08 2.70 11.80 0.27 2.94 

ME 0.86 0.82 0.93 0.66 0.85 

R
2
 0.26 0.08 0.12 0.61 0.27 

Subsoil models           

MAE 0.09 7.18 11.80 0.09 1.42 

ME 0.80 0.80 0.93 0.98 0.86 

R
2
 0.36 0.26 0.12 0.05 0.17 

 930 

Table 6. Skewness coefficients for the residuals of each model. 931 

  BD SK H SOC% Indirect - SOCstock Direct - SOCstock 

Topsoil models -0.25 -1.15 0.17 1.04 0.10 0.37 

Subsoil models 0.11 -0.74 -0.17 1.18 -1.61 -0.16 
 932 


