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RESPONSE TO REVIEWER COMMENTS. REVIEWER #1 1 
 2 
We thank the reviewer for their comments, which we have used to clarify the research strategy and 3 
generally improve the manuscript. 4 
 5 
Comment-1: Samples are taken in clusters covering only 12 fields in the study area (containing 6 
presumably a few 102 fields), with rather a poor spatial distribution. This will most probably affect 7 
the distribution of the data in the multi-dimensional space, and hence, do not cover enough the 8 
associated landscape complexity within the study area. These 2 concerns (poor spatial distribution 9 
and poor distribution in multi-dimensional space) are a major problem when the model is used for 10 
extrapolation / predicting pixels elsewhere in study area, i.e. outside the variable range covered by 11 
the calibration dataset. 12 
 13 
Response-1: Although the samples are grouped spatially in fields for logistical reasons, they were 14 
carefully located to capture the distribution of conditions across the feature space of the agricultural 15 
fields. Specifically, the samples include the variety of parent materials in the study area, form 16 
transects across topographic positions, as well as cover regional highs and lows. If the modelling 17 
technique relied on spatial autocorrelation, such as with kriging, the spatial position of these 18 
samples would indeed have been a problem. However, because the modelling method uses spatial 19 
regression, which relies on the principle of spatial association, the important space to cover was the 20 
feature space. Therefore, the samples were taken to encompass the variable range of the agriculture 21 
fields as best could be determined prior to sampling. Notably, only agricultural fields were sampled 22 
and thus non-agricultural areas are masked out of prediction maps because they were outside the 23 
variable range covered by the calibration dataset. Text has been added to emphasize these points. 24 
 25 
Comment-2: As a consequence, it’s quite possible that the differences in SOC stock maps between 26 
the two methods are more the consequence of the fact that the 2 modelling approaches (i.e. direct 27 
versus indirect) are reacting differently on this shortcoming (inappropriate multidimensional data 28 
cover) then it is actually reflecting a real difference in model output just/purely caused by the fact 29 
that 2 different approaches were used. 30 
 31 
Response-2: We understand this concern, but consider the variables used to calculate the SOC stock 32 
(indirect) and the SOC stock itself (direct) to be intertwined due to their definitional relationship. 33 
Because of this relationship, covering the feature space of one approach increases the probability 34 
that the feature space of the other approach is also covered. 35 
 36 
Comment-3: Finally, it’s clear how the authors calculated errors on SOC stocks by using classical 37 
error propagation techniques for individual pixels (i.e. for both the direct and the indirect method 38 
(including error predictions on components)), but it’s not clear if/how spatial autocorrelation was 39 
taken into account when mapping these errors. It’s important to integrate this effect of spatial 40 
autocorrelation in order to make a fair comparison between the error maps obtained by the two 41 
methods. 42 
 43 
Response-3: Spatial autocorrelation was used in the grouping of rule condition zones, on which error 44 
estimations are applied. Spatial autocorrelation minimizes how different unsampled areas within a 45 
condition zone could be from the sampled locations. This closely resembles the approaches of 46 
Shrestha and Solomatine (2006) and Malone et al. (2006) for taking autocorrelation into account 47 
when mapping estimated errors from spatial regression models. 48 
 49 
 50 
  51 
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RESPONSE TO REVIEWER COMMENTS. REVIEWER #2 52 
 53 
We thank the reviewer for their comments and suggestions for improving the paper. The following is 54 
our response to the specific comments. 55 
 56 
Comment-1: I wonder about the effect of the 10 closely-paired samples…in addition to ensuring the 57 
estimated errors capture random variation, could it induce a bias towards these sample points? 58 
 59 
Response-1: The closely-paired samples were spread across the feature space, which should help 60 
them be representative of the random variation across the spectrum of conditions and minimize 61 
emphasis on a particular set of conditions. Some text was added to explain this part of the sampling 62 
strategy. 63 
 64 
The Cubist software does have an option for dealing with data sets that are biased towards a 65 
grouping of target variable values. Our experimentation with this feature did not produce regression 66 
equations or estimated errors that were very different from those produced without that feature 67 
activated. This gives us confidence that the closely-paired samples were distributed in a way to not 68 
bias the models built. 69 
 70 
Comment-2: I am a little bit worried about the large number of potential predictors in the pool 71 
compared to the number of data on the target variable (117). I appreciate that the authors use the 72 
discussion to suggest explanations of why particular predictors were selected, and thus partly 73 
validate their selection, but am still not totally convinced that the same could not be done even with 74 
junk data and this many potential predictors. I wonder if some acknowledgement of the potential of 75 
data-mining software to overfit should be included and commented on. I don’t think Cubist does 76 
anything to deal with the size of predictor pool (in a multiple hypothesis testing kind of way): : :a 77 
comment on this issue could be useful. 78 
 79 
Response-2: Text has been added to provide more detail about how we used Cubist to reduce the 80 
predictor pool. Specifically, multiple passes were used so that the final models were built from 81 
predictor pools equal to the size of the sets used in the models (3-19 predictors divided between 82 
multiple rules). This is explained in greater detail in the referenced paper Miller et al. (2015). 83 
 84 
Comment-3: As you state in the methods section, for the propagation of error in the indirect 85 
approach, the variances and covariances should be those of the residuals from the fitted models, not 86 
of the data themselves. It seems that this is what was done, but lines 5 and 6 of page 770 made me 87 
wonder if the variances and covariances of the raw data had been used. Could you clarify this, as this 88 
could be an alternative explanation of the larger uncertainties resulting from the indirect approach? 89 
 90 
Response-3: The text has been corrected to specify the use of the residual’s covariance. 91 
 92 
Comment-4: Define f in Equations 2 and 3, and explain exactly what |f| is. 93 
 94 
Response-4: |f| is now defined with an explanation for why it is used. Equation 3 was also corrected. 95 
 96 
Comment-5: In the cross validation (Table 5), I am not sure why the results for predictions of SOC 97 
stock by the indirect approach are omitted. I think the table should include these.  98 
 99 
Response-5: Cross-validation was only conducted on the products of the Cubist models themselves. 100 
To cross-validate the SOC stock predictions from the indirect approach would be the cumulative 101 
cross-validations of the component models. We argue that cross-validations only offer a measure of 102 
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the models’ robustness (how much it would change if different points were used), but does not 103 
measure the quality of the best model’s performance. For these reasons, calculating a cross-104 
validation of the SOC stock from cross-validations of the component models would be intensive 105 
without a large gain in information. 106 
 107 
Comment-6: I think it would also be good to provide some validation of the uncertainties…I 108 
appreciate the difficulties of validating with a small, clustered dataset such as this, but I think it 109 
would be worth including some measure of the adequacy of uncertainty assessment in the cross 110 
validation. One possibility is the mean of the theta-statistic, which should be close to 1 (see e.g. Lark, 111 
RM. 2000. A comparison of some robust estimators of the variogram for use in soil survey. European 112 
Journal of Soil Science, 51, 137-157). 113 
 114 
Response-6: We contend that the cross-validation statistics are not really a validation of the model 115 
based on all of the sample points, especially for MLR models of soil systems. For this reason, our 116 
focus in this paper is to compare the results of the two modelling approaches with each other. 117 
Nonetheless, the change in the MAE between the models used (based on all points) and the cross-118 
validation models are compared. Additional text has been added to point out that the stability of the 119 
MAEs suggests that the estimated uncertainties are also robust. 120 
 121 
Comment-7: It is quite interesting that although the ME for all subsoil component variables was <1, 122 
the resulting predictions of SOC stock gave a ME of 1.67. This is worth commenting on in Section 123 
3.1.1. 124 
 125 
Response-7: We agree this is an intriguing result and text has been added to section 3.1.1. to 126 
highlight it. 127 
 128 
Comment-8: I think that the residuals for all variables are assumed normal…however, depending on 129 
the dataset, it may be more appropriate to model log SOC % as normally distributed. Some comment 130 
about this, and about the effect that this could have on predictions and uncertainties in the indirect 131 
approach could be useful. 132 
 133 
Response-8: This is indeed an important point. Text, along with a table of residual skewness 134 
coefficients, has been added to describe the distribution of the residuals and their potential effect 135 
on the results. 136 
 137 
Comment-9: Is a conservative estimate of the spatial distribution the best thing? The most 138 
conservative would be to use the mean across the entire study area, but this would not be very 139 
useful. I am not sure whether the paper is recommending that the more conservative approach 140 
should be used, or just saying that the direct approach is more conservative than the indirect 141 
approach. 142 
 143 
Response-9: Recognizing that different situations will have different needs, we were careful to chose 144 
the term ‘conservative’ to avoid judging which approach may be best for a given set of goals or 145 
purpose. Specifically, sometimes representing variation can be more useful than minimizing the 146 
amount of error, and vice versa. A sentence has been added to the conclusions to emphasize this 147 
point. 148 
 149 
Comment-10: What exactly is meant by the ‘spatial association approach’? 150 
 151 
Response-10: Spatial association is a term parallel to spatial autocorrelation. Like the specific 152 
method of kriging is often described when applying a spatial autocorrelation approach, the term 153 
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spatial regression is a popular method for applying the concept of spatial association. We use the 154 
term spatial association frequently to emphasize the difference between our study and a similar 155 
study that compared different spatial autocorrelation methods. Additional text has been added to 156 
clarify spatial association for those who may not be familiar with the term. 157 
 158 
Comment-11: Were all soil profiles deeper than 2 m? 159 
 160 
Response-11: Thank you for catching this omission. Indeed field logistics prevented the full 2 m from 161 
being sampled for some of the profiles and some assumptions needed to be made. Text explaining 162 
this has been added. 163 
 164 
Comment-12: Page 767, sentence starting on line 27: ‘correlation…of R2 = 0.59’. Correlation should 165 
be measured by r, not R2…reword this sentence. 166 
 167 
Response-12: Wording has been corrected. 168 
 169 
Comment-13: Page 768, line 6: direct R2 = 0.14, but in Table 4 is 0.19…is this correct? 170 
 171 
Response-13: The typographical error has been fixed. 172 
 173 
Comment-14: Figures 2, 3 and 4: I am not sure that the hillshade effect helps. I found it difficult to 174 
distinguish between the effect of the hillshade and the SOC stock differences. I would suggest 175 
removing this effect. 176 
 177 
Response-14: Agreed. The hillshade effect has been removed from the respective figures. 178 
  179 
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 188 

Abstract 189 

The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but 190 

consideration of its role in regional and global issues demands the mapping of large extents. There 191 

are many different strategies for mapping SOC, among which are to model the variables needed to 192 

calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is 193 

to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear 194 

regression models applied at the landscape scale via spatial association. The final products for both 195 

strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with 196 

accompanying maps of estimated error. For the direct modelling approach, the estimated error map 197 

was based on the internal error estimations from the model rules. For the indirect approach, the 198 

estimated error map was produced by spatially combining the error estimates of component models 199 

via standard error propagation equations. We compared these two strategies for mapping SOC 200 

stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of 201 

the estimated error. The direct approach produced a map with less spatial variation than the map 202 
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produced by the indirect approach. The increased spatial variation represented by the indirect 203 

approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a 204 

lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock 205 

(topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct 206 

approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks’ 207 

spatial distribution.  208 

Keywords: digital soil mapping, organic carbon, spatial association, estimated error, uncertainty 209 

 210 

Highlights 211 

1. Spatial association methods for mapping SOC stock directly and indirectly were compared. 212 

2. Data mining produced models that could be interpreted by expert knowledge. 213 

3. The indirect approach map had greater spatial variation and higher R2 values. 214 

4. The direct approach map had less spatial variation and a lower total estimated error.  215 
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1. Introduction 216 

The storage of carbon in soil is a critical point of information for several environmental issues. 217 

Globally, soil carbon, which is about 60% organic carbon, accounts for 3.3 times more carbon than 218 

that found in the atmosphere (Lal, 2004). The high amount of carbon stored in the soil, makes soil 219 

carbon an important factor for understanding the carbon cycle and dynamics influencing global 220 

climate change (Grace, 2004; Johnston et al., 2004; Powlson et al., 2011). In addition, higher 221 

concentrations of soil organic carbon (SOC) are associated with better water storage capacity, 222 

regulation of nutrients, and stabilization of soil aggregates resulting in improved soil structure and 223 

resistance to erosion (Neemann, 1991; Angers and Carter, 1996; Rawls et al., 2003; Snyder and 224 

Vazquez, 2005; Johnston et al., 2009; Kay, 1998; Wilhelm et al., 2004). Each of these factors has 225 

important roles in issues of water management and crop productivity.  226 

Although SOC management has far reaching implications, the distribution of SOC is highly 227 

variable and dynamic at the field-scale (Cambardella et al., 1994; McBratney and Pringle, 1999; 228 

Walter et al., 2003; Kravchenko et al., 2006b; Simbahan et al., 2006). Differing conditions, such as 229 

hydrology or management practices, greatly impact the SOC content (Kravchenko et al., 2006a). The 230 

combination of global implications and high spatial variability make high-resolution maps of SOC for 231 

large extents desirable for both policy decisions and land-owner response. This situation creates the 232 

need to accurately and efficiently assess the spatial distribution of SOC stocks at a high-resolution. 233 

High-resolution mapping captures information essential for assessing field-specific conditions, which 234 

can later be aggregated as need to provide summary information. 235 

Many studies have tested a variety of strategies for predicting the spatial distribution of SOC 236 

(Minasny et al., 2013 and references therein). The various studies on SOC mapping have analyzed 237 

different soil depths, which has large implications for the consideration of the complete SOC stock 238 

(Richter and Markewitz, 1995; Batjes, 1996, Jobbágy and Jackson, 2000; Sombroek et al, 2000; 239 

Schwartz and Namri, 2002; Meersmans et al., 2009). For example, some have focused on spatially 240 

modelling the topsoil to depths of 20-30 cm (e.g. Ungaro et al., 2010; Zhang et al., 2010; Martin et 241 
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al., 2011). Other variations of strategies for digital SOC mapping differ in which variables are 242 

modelled in order to predict SOC. For instance, some studies have modelled the SOC stock (e.g. kg 243 

m-2, T ha-1, kg m-3) directly (Simbahan et al., 2006; Lufafa et al., 2008; Nyssen et al., 2008; Mishra et 244 

al., 2010; Phachomphon et al., 2010; Kempen et al., 2011), while others have separately modelled 245 

the variables needed to calculate the SOC stock and then combined them (Grimm et al., 2008; Khalil 246 

et al., 2013; Lacoste et al., 2014). The usual component variables are total bulk density (BD), particles 247 

> 2 mm (SK), SOC concentration (SOC%), and stock thickness (H), which are then combined by: 248 

           
    

   
             

      

   
         (1) 249 

where, SOCstock is in kg m-2, SOC% is in percent, BD in g cm-3, SK in percent, and H in m. 250 

Irrespective of the approach used, an important output of digital soil mapping is a measure of 251 

uncertainty. Orton et al. (2014) compared uncertainties resulting from directly modelling the SOC 252 

stock (direct = calculate-then-model) with modelling component variables for calculating the SOC 253 

stock (indirect = model-then-calculate), based on geostatistical approaches that rely on spatial 254 

autocorrelation. In the present study, we made a similar assessment for rule-based, multiple linear 255 

regression (MLR) models, which rely on spatial association.  256 

With the spatial association (i.e. spatial regression) approach to soil mapping, the empirical 257 

model error can be transferred along with the model itself (Lemercier et al., 2012). For digital soil 258 

mapping, Malone et al. (2011) adapted the Shrestha and Solomatine (2006) approach for empirically 259 

summarizing model error and extending that information to prediction areas. In those previous 260 

studies, areas expected to have similar errors were grouped by cluster analysis. Because similar sites 261 

are already grouped together in rule-based, MLR models, the estimated errors can be applied to the 262 

areas meeting the same rule conditions and thus mapped. The ability to map predictions of soil 263 

properties and the confidence in those predictions via spatial association is important for landscape 264 

to national extents because of the common limitation of sampling density (Martin et al., 2014). 265 
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The purpose of this study was to compare the maps of SOC stocks produced from direct and 266 

indirect modelling approaches, using rule-based MLR. The resulting maps were compared in terms of 267 

their predicted spatial patterns, coefficient of determination (R2), as well as the magnitude and 268 

spatial distribution of the estimated errors. The predictors selected for the models via the data 269 

mining procedure were evaluated in the context of known landscape processes. In addition, the 270 

separate assessment of topsoil and subsoil stocks tested the models’ ability to predict SOC storage at 271 

depths to two meters.  272 

2. Methods 273 

2.1. Study Area and Sampling 274 

A dominantly agricultural area located near Wulfen, Saxony-Anhalt, Germany, which has been 275 

examined by several previous studies (Selige et al., 2006; Brenning et al., 2008; Kühn et al., 2009; 276 

Migdall et al., 2009), was selected for this research. The mapping area extends from 11.86°N, 277 

51.74°E to 11.96°N, 51.90°E (Figure 1), covering a total area of 122 km2. The landscape includes 278 

hummocky till plain, outwash plain, loess, and a broad floodplain (Königlich Preußische Geologische 279 

Landesanstalt, 1913a, b). The study area is dominated by Calcaric Cambisols and Luvic Phaeozems, 280 

while the depressional area in the floodplain is primarily Dystric Gleysols (European Commission, 281 

2014). Between 2005 and 2006, 117 locations were sampled from a variety of landscape positions in 282 

12 different agricultural fields, covering the known feature space for agricultural land in this area. 283 

Because all models were calibrated and validated on these samples, evaluation of the resulting maps 284 

focused on areas with similar land-use (i.e. water bodies and urban areas excluded). Ten of the 285 

sample points, also spread across the feature space, were of repeated locations (within 2 m of 286 

original), which helped to insure that random error was reflected in the assessment of estimated 287 

error. 288 

Soil horizons identified in the field were sampled at each sampling location. To avoid biases from 289 

horizon classifications and to focus on the two major process zones for SOC, the soil profile of two 290 
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meters was divided into topsoil and subsoil stocks. The division was defined by the largest decrease 291 

in SOC%, as determined by lab analysis, between field identified horizons. Not all profiles were able 292 

to be sampled to the full depth of two meters. In those cases, the properties of the sampled subsoil 293 

were assumed to be representative of the remaining depth. Data for the horizons within each stock 294 

were combined using a thickness-weighted mean, as appropriate. Descriptive statistics for these 295 

observation points are provided in Table 1. 296 

2.2. Modelling 297 

Models for each of the target variables were generated using the Cubist 2.08 software (Quinlan 298 

1992, 1993, 1994). Previous studies have demonstrated the utility of this tool for digital soil mapping 299 

(Bui et al. 2006; Minasny and McBratney, 2008; Adhikari et al., 2013; Lacoste et al., 2014). Cubist 300 

uses a data mining algorithm to build two-tiered models. The top level consists of a series of 301 

conditional rules that can utilize both continuous and categorical predictors. For each rule, a MLR 302 

equation is produced for predicting the target variable. Cubist’s process for selecting predictors and 303 

building the models is described in Quinlan (1993) and Holmes et al. (1999) and will not be repeated 304 

here. One advantage of this approach is the interpretability of the produced model, which allows the 305 

modeler to assess relationships between the model and physical processes (Bui et al., 2006). 306 

The results of the data mining process are dependent upon the predictors made available to the 307 

data mining software. For this reason, we used the large predictor pool method described by Miller 308 

et al. (2015) to identify the optimal models for each of the respective target variables. That method 309 

includes a multiple pass test, which reapplies the Cubist algorithms to the limited pool selected by 310 

the previous run. This helps to insure that the selected predictors have been optimally reduced by 311 

the Cubist software, decreasing the concern of overfitting. The predictor pool for this study included 312 

410 base maps covering the full extent of the study area (Table 2). These base maps consisted of a 313 

legacy geologic map, a variety of remote sensing/spectral products, and digital terrain analysis 314 

(DTA). The spectral products ranged from four bands of Ikonos data to a variety of Landsat data 315 
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collected at different times in 2006. DTA was conducted on a 2 m resolution, digital elevation model 316 

(DEM), created from LiDAR data that was also collected in 2006. The DTA base maps included land-317 

surface derivatives based on a wide range of analysis scales (a-scales) and a suite of hydrologic 318 

indicators. Land-surface derivatives were calculated in GRASS 6.4.3 (Geographic Resources Analysis 319 

Support System, grass.osgeo.org) and ArcGIS 10.1 (www.esri.com/software/arcgis). Hydrologic 320 

indicators were calculated using SAGA 2.1.0 (System for Automated Geoscientific Analysis, 321 

http://www.saga-gis.org/en/index.html). 322 

The predictors selected by the Cubist software were then used as base maps to generate maps 323 

of SOCstock. Using the raster calculator in ArcGIS 10.1, the base maps were combined according to the 324 

MLR equations produced by Cubist. When base maps of different resolutions were combined, the 325 

finest resolution was maintained. The respective MLR equations were only applied in the areas that 326 

met the conditions of the Cubist model’s first tier. The first experimental approach used this method 327 

to directly map SOCstock from the SOCstock calculated at each sample point. The second experimental 328 

approach used this method to map each of the component variables. These modelled variables were 329 

then used as base maps to create a SOCstock map. The raster calculator was then again used to 330 

combine the component variables, but this time according to equation 1. For both experimental 331 

approaches, the topsoil and subsoil were mapped separately. After the respective SOCstock maps 332 

were produced, they were added together to create total SOCstock maps. 333 

Within the extent of the study area, there were a few areas with conditions outside the range 334 

observed in the point samples. In these limited cases, extreme predictor values produced model 335 

predictions of target variables either far below or above the ranges observed for the respective 336 

target variables. To address this issue, spatial predictions were limited to be within 10% of the 337 

observed target variable minimum and maximums. 338 

2.3. Propagation of Error 339 

file:///F:/Manuscripts/SOC%20map%20(Wulfen)/grass.osgeo.org
http://www.esri.com/software/arcgis
http://www.saga-gis.org/en/index.html
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For each of the model rules, estimated error was calculated based on the internal fit of the MLR 340 

to the data classified within that rule. This estimation provided a measure for the respective 341 

uncertainty under each rule. The conditions for the respective rules were used to spatially classify 342 

the base maps, thus allowing the estimated errors to be mapped. Measurement error, positional 343 

error, and limitations of the model to predict the target variable were all empirically encapsulated by 344 

the estimated error.   345 

When the target variable was the end product, the uncertainty was simply represented by the 346 

estimated error. However, when multiple variables were modelled and subsequently used to 347 

calculate the final product, the estimated errors of the component variables propagated through the 348 

combination of those variables in the function. In order to map estimated error for the indirect 349 

approach of modelling SOCstock, estimated error maps were produced for each of the component 350 

variables. These error estimation maps were then combined using standard equations for 351 

propagation of error (Mardia et al., 1979; Taylor, 1997; Weisstein, 2014). Although potentially biased 352 

by the approximation to a first-order Taylor series expansion, simplified equations for error 353 

propagation are more practical and are regularly used in engineering and physical science 354 

applications (Goodman, 1960; Ku, 1966). Because covariance between variables has the potential to 355 

impact the estimation of SOCstock (Panda et al., 2008; Goidts et al., 2009), we did not assume the 356 

variables were independent. The observed residual covariance was thus used to modify the 357 

estimated error within the standard equations for propagation of error by multiplication,  358 

        
  

 
 
 
  

  

 
 
 
  

     

  
       (2) 359 

and by addition, 360 

      
    

               (3) 361 

where f is the result of the original function (to convert from relative to estimated error), A and B are 362 

the real variables, with estimated errors σA and σB, and their residuals’ covariance covAB. In order to 363 
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calculate a predicted relative error (e.g. 
  

 
) at unsampled locations, the predicted variable was 364 

assumed to accurately represent the variable’s magnitude. 365 

Locations with small ratios between estimated error and predicted values together with large, 366 

negative covariances had the potential to produce a calculation taking the square root of a negative. 367 

This issue was addressed by not considering the covariance in those limited circumstances. While 368 

this solution may have led to an overestimation of error, it provided a means to mathematically 369 

calculate estimated error without declaring it to be zero. 370 

3. Results 371 

3.1. Models 372 

3.1.1. Model building and fitting performance 373 

Explicit models were obtained for each of the component variables needed to calculate SOCstock 374 

indirectly and for predicting SOCstock directly. Models for predicting component variables used a 375 

higher quantity of predictors for each of the respective models than the direct modelling approach 376 

(Table 3). With the exception of SOC%, the models for component variables included a combination 377 

of DTA and spectral variables. The SOC% models relied solely on DTA predictors for both stocks, but 378 

with additional spatial partitioning by geologic map units for the topsoil model. The models for 379 

directly predicting the SOCstock used only three DTA predictors for the topsoil and only four Landsat 380 

predictors for the subsoil. 381 

Fitting performances for the component variable models were better than the fitting 382 

performances for the direct modelling of SOCstock (Table 4). For the component variables, R2 values of 383 

subsoil models were only slightly less than the topsoil models. SOC% was the exception by having the 384 

lowest fitting performance for the subsoil stock (R2 = 0.55), while the model for the SOC% topsoil was 385 

able to fit observations with an R2 of 0.86. However, it was the aim of this research to examine if the 386 

performance of the models was maintained through the calculation of SOCstock. 387 
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Comparison of the SOCstock predictions by the indirect approach to observed values showed 388 

better performance for the topsoil stock (R2 = 0.73) than for the subsoil stock (R2 = 0.34). Fitting 389 

performance for directly modelling SOCstock showed the same pattern, but was lower than the 390 

indirect approach for both stocks. Analysis of the direct approach’s ability to fit observed values 391 

yielded an R2 of 0.58 for the topsoil and 0.14 19 for the subsoil. 392 

In general, calculated model efficiencies (ME) showed that the respective models reduced the 393 

mean absolute error (MAE) to about half the MAE that would result from simply using the mean of 394 

all points as the prediction. The SOC% model for the topsoil improved upon the mean model more 395 

than the other MLR models with a ME of 0.34. However, an intriguing result is the lack of model 396 

efficiency for the indirect modelling of the subsoil’s SOCstock. Despite the component models all 397 

having MEs well below one, the indirect approach did not improve upon the mean model for 398 

predicting the subsoil SOCstock. Although the ME of the direct model for subsoil SOCstock was also not 399 

as good as the other models, it was still an improvement over the mean model.  400 

3.1.2. Model Robustness 401 

It is common for digital soil mapping models to be evaluated by cross-validation procedures. 402 

However, in the context of this study, the meaning of such an analysis has less utility. Higher sample 403 

density increases the robustness of the model (Minasny et al, 2013); thus the popularity of cross-404 

validation procedures over independent validation procedures in order to maintain more points in 405 

the calibration set. However, the model generated for each cross-validation run is different because 406 

of differences in calibration sets. The performance of each run is dependent on the randomly 407 

selected calibration points’ ability to represent the variation in the remaining validation points. For a 408 

simple data trend, a single outlier would have minimal effect because only the runs in which it is 409 

included in the validation set – and not used in calibrating the model – would have lower 410 

performance values. However, in a complex landscape where similar soil properties can result from 411 

different combinations of factors, the concept of an outlier has many more dimensions (Johnson et 412 
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al., 1990; Phillips, 1998). A point with a similar value can be an outlier by being a product of a 413 

different set of factors. In other words, the problem of induction continues to apply in predictive soil 414 

mapping. Further, in the context of error propagation, the error estimation from the actual model 415 

used seems more appropriate than the mean of error estimations from a series of less robust 416 

models. 417 

Nonetheless, the models in this study were cross-validated using the k-fold method with 10 418 

iterations. The R2 was naturally reduced in the cross-validation analysis, but the mean absolute error 419 

(MAE) was not as severely affected (Table 5). The R2 values for the respective models all decreased 420 

greatly in the cross-validation, except for the topsoil SOC% and the subsoil SOCstock models. The 421 

subsoil SOCstock model already had a low R2 value for the internal fit. In contrast, the MAEs for the 422 

cross-validation of the models were not increased enough to present a practical problem. The 423 

relative stability of the MAEs also suggests that the estimated uncertainties are also robust. For 424 

example, the MAE for both stocks of BD only increased 0.03 g cm-3. Also, the MAE for SOC% only 425 

increased 0.13% and 0.03% for the topsoil and subsoil, respectively. Similarly, the MAE for the direct 426 

SOCstock model increased 0.67 kg m-2 and 0.05 kg m-2 for the topsoil and subsoil, respectively. The 427 

MAE for the models of stock H and SK did increase more in cross-validation. However, they had a 428 

minor impact on the indirect modelling of SOCstock. The increase of 5.9 cm for the topsoil H MAE was 429 

only a shift of the depth estimated by topsoil or subsoil models. The larger MAE for SK was more of 430 

an issue for the subsoil. However, the majority of the samples had SK below 5%, leaving most of the 431 

error due to the difficulty in predicting the limited areas of high SK. While it was possible that a 432 

different sampling design could have improved the R2 values for cross-validation, they are not always 433 

practical for landscape-scale mapping. 434 

3.1.3. Comparison with previous studies 435 

It is difficult to compare results between SOC mapping studies due to differences in study areas 436 

and strategies for defining SOCstock (i.e. map extent and resolution, sampling density, and 437 
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consideration of depth). Further, the differences between and variability within methods for 438 

estimating component variables for calculating SOCstock can have a large impact on results, especially 439 

bulk density (Liebens and VanMolle, 2003; Schrumpf et al., 2011) and SOC% (Lowther et al., 1990; 440 

Soon and Abboud, 1991; Sutherland, 1998; Bowman et al., 2002). Also, because model performance 441 

is dependent upon the provided predictors, results of different studies can vary based on the 442 

predictors available to and derived by the modeller (Miller et al., 2015). However, because the area 443 

in this study has been used for several previous studies, some comparisons between methods can be 444 

made. 445 

Kühn et al. (2009) examined many of the same samples used in this study and found a 446 

correlation coefficient of determination between soil electrical conductivity and soil organic matter 447 

to a 1 m depth (kg m-2) of R2 = 0.59. Although a slightly different calculation, that correlation 448 

coefficient of determination is similar to this study’s direct model of topsoil SOCstock (R
2 = 0.58), 449 

which used three DTA predictors. However, for the topsoil, the indirect approach in this study 450 

produced a SOCstock model with less estimated error and an R2 of 0.73. The Kühn et al. (2009) study 451 

usually included depths that this study defined as subsoil, where the models in this study did not 452 

perform as well (direct R2 = 0.1419, indirect R2 = 0.34). 453 

For the same area as this study, Selige et al. (2006) compared MLR and partial least-square 454 

regression for predicting SOC% from hyperspectral data with a 6 m spatial resolution. Although the 455 

study by Selige et al. (2006) utilized a higher spectral resolution, the MLR models produced by both 456 

that study and the present study had R2 of 0.86 for the topsoil SOC%. In the present study, Cubist was 457 

able to compensate for the limited spectral information by utilizing several DTA predictors that were 458 

available at a high spatial resolution. 459 

3.2. SOCstock maps 460 
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Application of the obtained models and aggregation of the component variable maps by 461 

equation 1 produced maps of predicted SOCstock for the topsoil and subsoil (Figures 2 and 3). The 462 

respective topsoil and subsoil maps were added together to produce a total SOCstock map to a depth 463 

of 2 m (Figure 4). Although some field boundaries were observed, the dominant pattern appeared to 464 

be associated with terrain features. This interpretation was supported by the number of DTA 465 

predictors selected by Cubist for many of the models. However, it would not have been safe to 466 

assume this pattern from the list of selected predictors alone. Certain predictors (i.e. spectral data 467 

reflecting land use patterns) could have dominated calculations without being the most frequently 468 

selected category of predictors. 469 

The map derived from the direct approach for modelling the topsoil SOCstock emphasizes 470 

drainageways. Whereas the map derived by the same approach for the subsoil SOCstock reflects more 471 

patterns of land use, especially in the uplands in the southern part of the study area. The topsoil 472 

SOCstock map based on the indirect approach has similar overall patterns to the direct approach’s 473 

map. However, both the topsoil and subsoil maps produced by the indirect approach display greater 474 

spatial variation. 475 

Patterns in the topsoil SOCstock map, based on the indirect approach, mostly coincide with terrain 476 

features, but do contain some transitions that align with field boundaries. The corresponding map 477 

for the subsoil reflects patterns of microtopography and slope gradient. Larger values for the subsoil 478 

SOCstock are predicted by the indirect approach for local lows in elevation (smaller a-scales). 479 

Predictions of larger subsoil SOCstock on steeper slopes result from the modelling of thinner topsoil 480 

stocks in these areas and the consistent calculation of a 2 m profile. Consequently, the subsoil is 481 

calculated to be thicker in these areas, substantially increasing the subsoil SOCstock prediction 482 

compared to other areas of the subsoil.  483 

Maps derived by both approaches for the total SOCstock primarily reflected patterns from the 484 

topsoil maps because of the higher concentration of SOC that defined the topsoil stock. 485 
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Nonetheless, modelled storage for the subsoil stock contributed about one-third of the prediction of 486 

total SOCstock and recognized additional complexity in the SOC landscape. Despite the greater 487 

variation in the indirect approach’s prediction of SOCstock, the difference between estimates of total 488 

SOCstock by the two approaches were within 5 kg m-2 for the majority of the map area (Figure 5). Also, 489 

the summed SOCstock for the study area was only 6% more for the indirect (1.9 Mt) versus the direct 490 

(1.8 Mt) approach. The mean SOCstock estimate for the study area by the direct approach was 14.7 kg 491 

m-2, whereas the indirect approach estimated 15.7 kg m-2.  492 

These aggregated landscape estimates agreed with those made by the Harmonized World Soil 493 

Database (HWSD; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) for this area. The HWSD estimated several soil 494 

properties from taxonomic pedotransfer functions for static topsoil (0-30 cm) and subsoil (30-100 495 

cm) depth zones. Within the area of the present study, the HWSD has a cell resolution of 496 

approximately 765 m. Calculating SOCstock from that data yielded a mean of 8.8 kg m-2. Assuming the 497 

characteristics of the subsoil to 100 cm extended to 200 cm, the mean SOCstock would be 15.3 kg m-2. 498 

3.3 Error estimations 499 

The mapping of estimated errors based on the conditions of rules generated by Cubist resulted 500 

in a spatial representation of uncertainty (Figure 6). In order to calculate the final estimated errors 501 

for the indirect approach, estimated errors for models of component variables were combined 502 

spatially by equations 3 2 and 43. Due to the known covariance of component variables, the 503 

observed covariance of the residuals was included in the calculation of error propagation through 504 

the calculation of the total SOCstock. Inclusion of covariance reduced relative error estimates in the 505 

topsoil because increases in residuals for BD coincided with decreases in the residuals for percent 506 

fine-earth, increases in fine-earth BD residuals coincided with decreases in SOC% residuals, and 507 

increases in SOC content (kg m-3) residuals coincided with decreases in stock thickness residuals. The 508 

influence of covariance was notmostly the same in the subsoil calculations. The exception was a 509 

positive covariance between the residuals for modelling BD and the percent fine-earth. With the 510 
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exception of the covariance between fine-earth BD and SOC%, which was very small, subsoil 511 

covariances were positive. However, overallNonetheless, the covariances were relatively small with 512 

respect to the estimated errors and therefore had a minimal impact on the final calculation of 513 

estimated error. 514 

The application of error estimates based on the full range of predicted values in a rule zone to 515 

small values in that zone yielded extremely high relative error values. Although the areal extent for 516 

this type of situation was very limited, the issue needed to be addressed in order to maintain the 517 

readability of the attribute scale. Therefore relative error was capped at one for the original relative 518 

error grids, but not thereafter for the calculation of error propagation. 519 

Despite not having as strong of a fitting performance as the indirect approach, the direct 520 

approach had lower estimated errors for greater extents of the study area. The mean estimated 521 

error for the total SOCstock map derived by the direct approach was 2.81 kg m-2, compared to 8.17 kg 522 

m-2 for the indirect approach. This behavior in the models may be explained by the negative 523 

covariance between the residuals for many of the variables influencing the SOCstock. The observed 524 

covariances did reduce the calculation of error through propagation. However, they did not reduce 525 

the estimated error for the indirect approach to as low as the estimated error based on the direct 526 

modelling approach. It is also useful to note that the residuals for modelling SK and SOC% werehad a 527 

negative and positive skewed , respectively, for both stocks (Table 6). However, for theOf the 528 

residuals offor the final prediction of SOCstock, regardless of approach or stock, only the indirect 529 

model for the subsoil had strongly skewed residuals. This suggests that the error for the indirect 530 

model of the subsoil SOCstock may have been overestimated.     531 

The spatial distribution of model rules was an important factor in the resulting maps’ estimated 532 

error. The models for the direct approach used fewer rules than the component variable models, 533 

resulting in less spatial variation of the estimated error. However, variation in predicted values did 534 

introduce additional spatial variation to the mapping of relative error. Nonetheless, the map of 535 
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relative error from the indirect approach was more complex than that resulting from the direct 536 

approach. In addition to using more rules for each model, the combined relative estimated error for 537 

the indirect approach was further tessellated by the unique intersections of the different spatial 538 

distributions of the rules for each component variable model. 539 

4. Discussion 540 

4.1. Predictor selection 541 

4.1.1. Review of relationships between predictors and environmental conditions 542 

Spectral predictors from satellites such as Ikonos and Landsat have most commonly been used 543 

to detect characteristics of land use, vegetation, and soil water content (Bannari et al., 1995; Xie et 544 

al., 2008). However, they have also been used to detect mineralogy on sparsely vegetated areas 545 

(Mulder et al., 2011). Although Ikonos has a finer spatial resolution, it is limited to three bands (band 546 

1 = blue, band 2 = green, and band 3 = red) in the visible spectrum, plus a near infrared band (band 4 547 

= NIR). Landsat provides additional bands in the shortwave infrared (band 5 = SWIR-1; band 7 = 548 

SWIR-2) and thermal infrared (band 6 = TIR). The relative reflectance of a single band can be used to 549 

distinguish landscape conditions. For example, the green band can be used to distinguish different 550 

vegetation from bare soil. However, combinations of bands - particularly including the red and NIR 551 

bands - have been even more useful for distinguishing the spectral signature of different land uses 552 

(Richards, 2006) and the condition of the vegetation (Ashley and Rea, 1975; Myneni et al., 1995; 553 

Rasmussen, 1998; Daughtry, 2001; Hatfield et al., 2008). Additional use of TIR emission would 554 

resemble methods such as the Surface Temperature/Vegetation Index for estimating soil moisture 555 

(Bartholic et al., 1972; Heilman et al., 1976; Carlson et al., 1994; Li et al., 2009; Petropoulus et al., 556 

2009). Similarly, use of SWIR wavelengths in concert with red and infrared red bands would be a way 557 

of compensating for the changing effect of soil reflection in dry to wet conditions (Huete, 1988; 558 

Lobell and Asner, 2002). Relationships between bands in the visible to SWIR range have also been 559 
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used to predict SOC% and its biochemical composition (Bartholomeus et al., 2008; Gomez et al., 560 

2008; Stevens et al., 2010).  561 

Spectral predictors have been used for both classification of discrete phenomenon and 562 

quantification of continuous phenomenon on the landscape. Because of the rule-based MLR 563 

structure of the Cubist models, spectral predictors used for conditional rules were more likely to be 564 

distinguishing discrete features (e.g. vegetation/land use type) than when used within an MLR 565 

equation. Continuous features (e.g. vegetation health) were more likely to be represented in MLR 566 

equations. 567 

DTA predictors in this study were all derived from the LiDAR data for elevation. The land-surface 568 

derivatives (e.g. slope gradient, relative elevation) described the surface geometry with which the 569 

climate interacts. For example, aspect has been shown to influence the amount of solar insolation a 570 

hillslope receives (Hunckler and Schaetzl, 1997; Beaudette and O’Geen, 2009). The surface geometry 571 

is also known to direct water flow, which affects erosion processes and groundwater recharge 572 

(Huggett, 1975; Zevenbergen and Thorne, 1987). Hydrologic predictors (e.g. flow accumulation, 573 

catchment slope) provided additional information about the relative volume and energy that the 574 

water flow may have (Moore et al., 1991; Wilson and Gallant, 2000). 575 

4.1.2. Topsoil model predictors 576 

All of the topsoil models generated by Cubist relied on DTA predictors the most. Of those 577 

predictors, different a-scales of relative elevation, topographic position index (TPI), and aspect were 578 

the most commonly used. With the exception of the direct SOCstock model, every topsoil model also 579 

included one or two predictors indicative of flow accumulation (i.e. flow path length, SAGA wetness 580 

index, or modified catchment area).  581 

Aspect at different a-scales influenced predictions for three of the indirect topsoil models. The 582 

Cubist generated model identified decreasing topsoil SOC% on more north facing slopes (155 m a-583 
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scale), which corresponds with a potential decrease in plant productivity due to less solar insolation. 584 

Aspect (215 m a-scale) was also used to predict higher topsoil BD on south to west facing slopes, 585 

especially on topographic (2000 m a-scale) and micro-topographic (20 m a-scale) highs. Additionally, 586 

aspect at a variety of a-scales was used to predict decreasing topsoil SK for low TPI areas facing 587 

southeast to southwest. Together, these models suggested a pattern of increased erosion and 588 

deposition along the southern sides of hillslopes. This type of pattern has been observed before in 589 

other landscapes and has been attributed to topo-climatic differences such as exposure to storms, 590 

differences in temperature regime, rainfall effectiveness, or vegetation density (Kennedy, 1976; 591 

Churchill, 1981; Cuff, 1985; Weaver, 1991). 592 

Although DTA parameters dominated the topsoil models, their predictions were often modified 593 

by spectral variables. For example, the primary distinction for predicting topsoil H was between low 594 

and high relative elevations. Low relative elevations had a mean topsoil H that was about 20 cm 595 

thicker than high relative elevations (1,100 m a-scale). Within most MLR equations, however, 596 

predictions were increased by less blue and more green reflectance in early July. This combined use 597 

of blue and green bands indicated increasing topsoil H with more productive vegetation on wetter 598 

soils. In summary, the dominant pattern identified by the model was between high-low ground 599 

(Bushnell, 1943; Sommer et al., 2008), but the degree of topsoil thinning or thickening was predicted 600 

by the vegetation’s response to soil conditions. 601 

Cubist selected a much simpler combination of only DTA predictors to directly model the topsoil 602 

SOCstock. In general, the model predicted increasing SOCstock with decreasing vertical distance to 603 

channel. Areas low in relative elevation (1,100 m a-scale) and not far above the channel network 604 

were predicted to have the largest SOCstock.  However, for areas low in relative elevation, but 605 

sufficiently above the DEM based channel network, the model predicted the opposite trend of the 606 

SOCstock decreasing with decreasing vertical distance to channel. This pattern identified by the model 607 

may be explained by a corresponding pattern observed in the model for the topsoil H. In that model, 608 
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areas low in relative elevation (1,100 m a-scale) were predicted to have some of the thickest topsoil 609 

stocks. However, within a few of those zones the modelled topsoil H decreased with decreasing 610 

relative elevation and TPI. This trend in the observed data, as detected by Cubist, was potentially 611 

caused by an eroding out of topsoil sediments closer to the center of drainageways. In which case, 612 

the vertical distance to channel – used in the topsoil SOCstock model - may have been more an 613 

indicator of proximity to the channel than wetness; the threshold was only 0.5 m above the channel 614 

modelled from the DEM. Predictors related to surface flow energy would have been expected to be 615 

better predictors of this kind of process. However, the upslope drainage network for much of the 616 

map area extended beyond the boundaries of the available data. Thus the use of local elevation data 617 

may have been a better proxy in this case, compared to the predictors calculated from truncated 618 

watersheds. 619 

4.1.3. Subsoil model predictors 620 

With the exception of SOC%, the subsoil models all used several predictors from Landsat. 621 

Selection of Landsat predictors for subsoil models suggested that vegetation characteristics or 622 

surface soil moisture at different times of the year indicated subsoil conditions. In contrast, the 623 

subsoil SOC% model’s complete dependence on DTA predictors suggested that soil property was 624 

mostly related to hydrology and that vegetation had little response to or effect on the SOC content 625 

in the subsoil. 626 

An example of spectral predictors detecting vegetation characteristics that likely reflected 627 

subsoil conditions was the subsoil SK model. All of the MLR equations were strongly influenced by 628 

the predictors of stream power, catchment slope, or SAGA wetness index. However, the skeleton SK 629 

predictions were modified by green reflectance in June and additional Landsat predictors collected 630 

at different times of the year that related to the vigor of the vegetation. The weaker or drier the 631 

vegetation appeared, the higher the prediction of SK content in the subsoil. Assuming soil moisture 632 

conditions did not reach detrimental levels that year, these patterns fit known relationships 633 
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between particle size, soil drainage, and timing to crop maturity (Day and Intalap, 1970; Rawls et al., 634 

1982). 635 

The generated model for subsoil BD most likely utilized a relationship with soil moisture as 636 

detected by spectral predictors. In all areas, the MLR equations decreased predictions of subsoil BD 637 

with increasing reflectance in the blue and SWIR-1 bands along with increasing emission in the TIR 638 

band. Increases in the normalized difference vegetation index (NDVI) were used to slightly increase 639 

predictions of subsoil BD. The use of the NDVI to offset the decreasing BD predicted by the other 640 

Landsat predictors suggested those variables were indicating soil moisture conditions. Locations that 641 

are wetter due to surface runoff would have a greater potential for organic material to be 642 

translocated deeper in the soil profile (Schaetzl, 1986; Schaetzl, 1990). Also, the association of 643 

wetter environments with cooler temperatures and anaerobic conditions would also inhibit 644 

decomposition (Gates, 1942; Krause et al., 1959; Frazier and Lee, 1971). 645 

The subsoil SOC% model was different than the other subsoil models generated. Instead of 646 

selecting spectral predictors, the subsoil SOC% model relied solely on DTA predictors. The model 647 

predicted the highest subsoil SOC% on steeper mid-slopes. The pattern of increasing subsoil SOC% 648 

from the upper to middle slope fit the landscape translocation model proposed by Sommer et al. 649 

(2000). In that study, the SOC% in the Bh horizon increased from the upper slope to the midslope due 650 

to lateral translocation. Different than the pattern identified in the present study, the data in 651 

Sommer et al. (2000) showed a continued increase in the SOC% of Bh horizons in the downslope 652 

position. However, this contradiction may be partially explained by aggradation where the slope 653 

gradient declines and the topsoil stock has been overthickened by developmental upbuilding 654 

(McDonald and Busacca, 1990; Almond and Tonkin, 1999). Also, lateral flow would be expected to 655 

return closer to the surface at downslope positions. In Sommer et al. (2000), while the upslope and 656 

midslope profiles had E horizons separating the Bh from A horizons, the downslope Bh horizons 657 

were exceptionally thick with little to no division between them and the A horizon. In that situation, 658 
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the definition of topsoil used in the present study would have grouped the downslope Bh horizons 659 

into the topsoil stock. Therefore, the Cubist generated model may have been a simplification of the 660 

complex interaction between topography and lateral flow depth and direction.  661 

The rule groups for subsoil SOC% also differentiated for the plan curvature where the slope 662 

gradient was not too high and the stream power index (SPI) was not too low. Concave plan 663 

curvatures (138 m a-scale) were predicted to have increasingly higher and convex plan curvatures 664 

were predicted to have increasingly lower subsoil SOC%. This relationship with plan curvature 665 

matches patterns of water movement identified to be important to soil formation by Huggett (1975), 666 

where convergent footslopes have the highest deposition rates (Pennock and De Jong, 1987). 667 

Assuming the absence of any restrictive layer below, areas with the highest sediment deposition 668 

rates would be expected to also have the highest volume of water infiltration. 669 

The Cubist generated model for predicting the subsoil SOCstock was simpler than any of the 670 

indirect component models. It used only one MLR equation to relate red and infrared predictors to 671 

subsoil SOCstock. This model predicted more SOCstock storage with increasing reflectance in the red 672 

and SWIR-2 bands along with increasing emission in the TIR band – primarily captured on 6 July. Of 673 

these variables, model predictions were dominated by increasing reflectance in the red band 674 

increasing the estimated subsoil SOCstock. This suggested less productive vegetation corresponding 675 

with larger subsoil SOCstock. This trend was counter to the patterns observed in the topsoil models, 676 

but was sensible in the context of how the subsoil stock was defined for this study. Although the 677 

total SOCstock was less in areas with lower plant productivity, the subsoil SOCstock was larger relative 678 

to other subsoil areas due to the inverse relationship between topsoil and subsoil H used in this 679 

study. A thicker topsoil stock would mean a thinner subsoil stock – and vice versa – due to the 2 m 680 

depth limit. Regarding the other predictors in this model, increases in SWIR-2 reflectance could have 681 

indicated more plant productivity. However, its use with the TIR band suggested that together they 682 

were indicators of wetter soil conditions.  683 
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4.2. Unconventional predictor selections 684 

The Cubist software made some intriguing selections in regards to predictors that were 685 

calculated using alternative approaches. One example of this was the selection of alternative types 686 

of aspect predictors. The conversion of aspect to northness and eastness is generally considered to 687 

be the preferred method for addressing the circular problem of using aspect as a predictor. In our 688 

approach of including many different predictors in the available pool, we also experimented with 689 

simply rotating the central angle (position of 0°) to each cardinal direction for creating different 690 

aspect predictors. In the models generated for this study, northness and eastness were only selected 691 

for the topsoil SOC% model. In contrast, rotated versions of aspect were selected for the topsoil 692 

SOC%, topsoil BD, as well as the topsoil and subsoil SK models. 693 

Another example of an intriguing predictor selection by Cubist was the use of bands from the 694 

LandsatLook products. These images were limited to four bands (SWIR-1, NIR, red, and TIR) and 695 

were smoothed by an algorithm to facilitate image selection and visual interpretation. Although the 696 

USGS does not recommend the use of these files for data analysis, the Cubist data mining found 697 

them to be more useful than the data without LandsatLook processing. Most of these selections can 698 

be explained by the greater variety of LandsatLook dates provided in the predictor pool. However, 699 

there were a few instances where Cubist chose LandsatLook data over the unprocessed version of 700 

the same Landsat data. 701 

4.3. Error propagation 702 

Although both the direct and indirect modelling approaches had base maps with a 2 m 703 

resolution available to them, the direct modelling approach produced a more generalized SOCstock 704 

map. In terms of predicted error, the cost of trying to account for the variation in all of the variables 705 

related to the SOCstock appeared to be larger relative errors. The SOCstock model from the direct 706 

approach, on the other hand, did not attempt to predict as many variations occurring at small 707 
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phenomenon scales. Because these very local variations were difficult to predict, the estimated error 708 

for the direct approach was less than for the indirect approach for most of the map area. Therefore, 709 

it may be appropriate to consider the direct modelling approach to be a conservative approach for 710 

estimating the SOCstock for landscapes.  711 

Possible sources of error in the base maps included atmospheric conditions for the satellite data 712 

and the estimation of bare earth elevation under dense vegetation for the DEM. Several spectral 713 

capture dates were made available in the predictor pool to enable Cubist to not only select the 714 

optimal changes in seasonal vegetation characteristics, but to also select the image with minimal 715 

noise from atmospheric effects such as clouds. Fewer options were available for DTA predictors, 716 

because all DTA predictors needed to be derived from the same high-resolution DEM. The effect of 717 

anomalies in the elevation data was more pronounced for larger a-scales. For example, a small forest 718 

plot – located roughly between the two larger cities in the center of the map area – had not been 719 

fully filtered out by the bare-earth algorithm. Any DTA calculation that included this area in its 720 

analysis neighborhood was incorrectly influenced by those elevation values. The impact on this 721 

study’s models was an increased prediction of SOCstock in the surrounding area. 722 

The error propagation method used in this study could not directly account for errors in the base 723 

maps. Instead, it could only quantify the combined model, base map, and target variable error 724 

observed at sample locations. Although none of the sample points were in proximity to the before 725 

mentioned error in the DEM, this phenomenon of elevation error affecting scale-dependent 726 

predictors would have applied universally, even where the error was less obvious. The higher 727 

relative error for both mapping approaches in the area surrounding the known problem in the DEM 728 

suggested this potential source of error was at least partially accounted for. 729 

5. Conclusions 730 

This study demonstrated the use of spatial association to predict the SOCstock and the estimated 731 

error at unsampled locations within a 122 km2 landscape at a high-resolution. The Cubist data 732 



28 
 

mining software detected patterns in the observed soil data, which was used to predict soil 733 

properties in the greater map region. The ability of the available base maps to predict the variation 734 

of those soil properties was quantified for each conditional rule of the respective models. The spatial 735 

characteristics of the model rules allowed the uncertainty to be mapped along with the target 736 

variable prediction. 737 

There were two main advantages to using data mining software to produce relatively simple 738 

model structures. First, patterns between the predictors and target variables were objectively 739 

identified. Second, the resulting models were simple enough to be interpreted by the user and 740 

related to known processes in the soil system.  A relationship between selected predictors and 741 

known processes provided confidence that their use in the model was not coincidental.  The 742 

separate modelling of topsoil and subsoil stocks identified a general division between useful 743 

predictors for predicting soil properties at different depths. The data mining in this study suggested 744 

DTA predictors tend to be most useful for topsoil properties, while spectral characteristics of 745 

vegetation and soil moisture tend to be more useful for indicating subsoil properties. 746 

Direct and indirect approaches were tested for predicting the SOCstock with the rule-based, MLR 747 

spatial modelling method. Although the spatial patterns in the two maps were generally similar, the 748 

indirect approach produced a map with more spatial variation. While attempting to account for 749 

more sources of variability resulted in less estimated error for the topsoil (indirect MAE = 1.69, direct 750 

MAE = 2.27), the indirect approach had a higher potential for error in the subsoil (indirect MAE = 751 

2.75, direct MAE = 1.37). Because the direct approach accounts for less variation (topsoil: direct R2 = 752 

0.58, indirect R2 = 0.73; subsoil: direct R2 = 0.14, indirect R2 = 0.34), but also results in a lower total 753 

MAE (direct MAE = 3.64, indirect MAE = 4.44), it should be considered a more conservative 754 

prediction of the SOCstock’s spatial distribution. The choice of which approach is best will likely 755 

depend on a given situation’s need to prioritize the representation of spatial pattern or to minimize 756 

estimated error.  757 
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Figures 1067 

 1068 
Figure 1. Locations of sample points and study area within Germany. 1069 
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 1070 
Figure 2. Topsoil SOCstock modelled by a) the direct approach and b) the indirect approach. Overlaid 1071 

on a hillshade to show relationship with relief and field boundaries. 1072 

 1073 
Figure 3. Subsoil SOCstock modelled by a) the direct approach and b) the indirect approach. Overlaid 1074 

on a hillshade to show relationship with relief and field boundaries. 1075 
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 1076 
Figure 4. Total SOCstock (topsoil + subsoil) modelled by a) the direct approach and b) the indirect 1077 

approach. Overlaid on a hillshade to show relationship with relief and field boundaries. 1078 

 1079 
Figure 5. Calculated difference between the direct and indirect approaches of modelling the total 1080 

SOCstock. Negative values are where the indirect approach predicted more SOCstock than the direct 1081 

approach and positive values are where the indirect approach predicted less. 1082 
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 1083 
Figure 6. Estimated relative error for the total SOCstock modelled by a) the direct approach and b) the 1084 

indirect approach.  1085 
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Tables 1086 

Table 1. Descriptive statistics for the observed target variables. BD = total bulk density (g cm-3), SK = 1087 

particles > 2 mm (%), SOC% = SOC concentration (%), H = stock thickness (cm), and SOCstock = mass of 1088 

organic carbon per unit area of soil (kg m-2). 1089 

Topsoil BD SK H SOC% SOCstock 

Min. 1.18 0.00 10 0.75 1.80 

Median 1.50 1.30 40 1.46 9.27 

Mean 1.51 3.15 43.61 1.56 9.82 

Max. 1.85 44.70 105 4.03 28.03 

Std. Dev. 0.11 5.50 15.35 0.53 4.49 

Subsoil           

Min. 1.33 0.00 18 0.02 0.07 

Median 1.63 4.07 86 0.23 3.10 

Mean 1.63 8.99 86.66 0.26 3.37 

Max. 1.96 63.36 155 0.71 9.86 

Std. Dev. 0.13 12.28 32.60 0.13 2.04 

  1090 
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Table 2. Predictor variables considered in this study. 1091 

Predictor Software Analysis Scale 

Elevation (LiDAR, bare-earth) n/a 2 m 

Slope gradient GRASS 6 - 195 m 

Profile curvature GRASS 6 - 195 m 

Plan curvature GRASS 6 - 195 m 

Aspect -west {rotated for N, E, and S} GRASS 6 - 345 m 

Aspect (8 classes) ArcGIS (raster calculator) 6 - 345 m 

Northness transformed from aspect 6 - 345 m 

Eastness transformed from aspect 6 - 345 m 

Longitudinal curvature SAGA 10 m 

Cross-section curvature SAGA 10 m 

Convexity SAGA 10 m 

Relative elevation - rect. neighborhood ArcGIS toolbox 6 - 4000 m 

Relative elevation - circ. neighborhood ArcGIS toolbox 6 - 4000 m 

Topographic position index (TPI) ArcGIS toolbox 6 - 4000 m 

TPI - slope position ArcGIS toolbox multiple 

TPI - landform classification ArcGIS toolbox multiple 

Hillslope position ArcGIS toolbox multiple 

Catchment area SAGA n/a 

Catchment slope SAGA n/a 

Channel network base level SAGA n/a 

Convergence index SAGA n/a 

Flow accumulation SAGA n/a 

Flow path length SAGA n/a 

Length-slope factor SAGA n/a 

Modified catchment area SAGA n/a 

Relative slope position SAGA n/a 

SAGA wetness index SAGA n/a 

Stream power SAGA n/a 

Vertical distance to channel SAGA n/a 

Wetness index SAGA n/a 

Geology (1:25,000 legacy map) n/a 423 ha (mean) 
  1092 
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Table 2 (cont’d). 1093 

Predictor Resolution Date 

AVIS - LAI-green leaf area 5m 21 Jun. 2005 

AVIS - LAI-brown leaf area 5m 21 Jun. 2005 

Ikonos 4 m, 4 bands 4 Jul. 2006 

Ikonos - panchromatic 1 m 4 Jul. 2006 

Ikonos - LAI 5m 4 Jul. 2006 

Ikonos - dry matter 5m 4 Jul. 2006 

Landsat 5 NDVI (USGS, 2014) 30m 11 Jun. 2006 

Landsat 5 NDVI (USGS, 2014) 30m 22 Jul. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 20 Jun. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 6 Jul. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 22 Jul. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 15 Sep. 2006 

Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 17 Oct. 2006 

Landsat 5 TM (USGS, 2014) 30m, 6 bands; 60m, 1 band 11 Jun. 2006 

Landsat 5 TM (USGS, 2014) 30m, 6 bands; 60m, 1 band 22 Jul. 2006 

Landsat 5 SR (GLCF, 2014) 30m, 7+2 bands 11 Jun. 2006 

Landsat 5 SR (GLCF, 2014) 30m, 7+2 bands 22 Jul. 2006 
  1094 



45 
 

Table 3. Relative use (%) of predictors in models derived by Cubist for the topsoil and subsoil stocks. 1095 

BD = total bulk density (g cm-3), SK = particles > 2 mm (%), SOC% = SOC concentration (%), H = stock 1096 

thickness (cm), and SOCstock = mass of organic carbon per unit area of soil (kg m-2). 1097 

Topsoil Subsoil 

Rules MLR Predictor Rules MLR Predictor 

BD BD 

100% 100% Relative elev. - circ. (2000 m) 100% 0% Geology map units 

51% 100% Landsat5 SR, band 7 (6 Jun. 2006) 68% 100% LandsatLook, band 5 (6 Jul. 2006) 

17% 100% Relative elev. - rect. (20 m) 
 

100% Landsat5 NDVI (22 Jul. 2006) 

 
96% LandsatLook, band 5 (17 Oct. 2006) 

 
100% LandsatLook, band 6  (6 Jul. 2006) 

 
87% Relative elev. - rect. (10 m) 

 
100% Landsat5 TM, band 1 (11 Jun. 2006) 

 
87% Aspect, N central angle (215 m)  

 
68% Landsat5 SR, band 7 (22 Jul. 2006) 

 
83% Landsat5 SR, band 2 (6 Jun. 2006) 

 
32% Landsat5 SR, band QA (6 Jun. 2006) 

 
34% SAGA wetness index 

 
32% Landsat5 SR, band 1 (22 Jul. 2006) 

 
13% Relative elev. - circ. (800 m) 

 
32% Landsat5 SR, band 6 (22 Jul. 2006) 

SK SK 

100% 100% TPI (70 m) 100% 3% Stream power 

94% 0% Aspect class (70 m) 76% 76% Landsat5 SR, band 2 (11 Jun. 2006) 

39% 16% Relative elev. - rect. (550 m) 21% 0% Profile Curvature (118 m) 

37% 14% LandsatLook, band 6 (17 Oct. 2006) 15% 79% Landsat5 SR, band 4 (6 Jun. 2006) 

 
94% Relative elev. - rect. (1800 m) 

 
85% Catchment slope 

 
84% Landsat5 NDVI (11 Jun. 2006) 

 
76% LandsatLook, band 3 (20 Jun. 2006) 

 
80% Aspect, N central angle (50 m)  

 
56% Landsat5 NDVI (11 Jun. 2006) 

 
78% Landsat5 TM, band 4 (20 Jun. 2006) 

 
56% LandsatLook, band 4 (20 Jun. 2006) 

 
78% Relative elev. - circ. (3000 m) 

 
56% Aspect, W central angle (70 m)  

 
64% Aspect, N central angle (130 m)  

 
21% SAGA wetness index 

 
64% Aspect, S central angle (345 m)  

   

 
64% Flow path length 

   

 
37% Aspect, N central angle (295 m)  

   H H 

100% 93% Relative elev. - rect. (1100 m) 
   39% 100% LandsatLook, band 5 (15 Sept. 2006) Cubist not used 

34% 34% LandsatLook, band 5 (22 Jul. 2006) (based on 2 m - topsoil thickness) 

25% 93% Ikonos, band 2 (4 Jul. 2006) 
   18% 7% LandsatLook, band 4 (17 Oct. 2006) 
   

 
100% Relative elev. - rect. (1200 m) 

   

 
93% Ikonos, band 1 (4 Jul. 2006) 

   

 
93% Relative elev. - rect. (1300 m) 

   

 
74% LandsatLook, band 4 (15 Sept. 2006) 

   

 
74% TPI (1800 m) 

   

 
74% TPI (2600 m) 

   

 
74% Flow path length 

   

 
28% Relative elev. - circ. (650 m) 

   

 
7% Landsat5 TM, band 6 (11 Jun. 2006) 

     1098 
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Table 3 (cont’d). 1099 

Topsoil Subsoil 

Rules MLR Predictor Rules MLR Predictor 

SOC% SOC% 

100% 0% Geology map units 100% 100% Slope gradient (98 m) 

49% 39% Relative elev. - rect. (3200 m) 74% 74% Stream power 

39% 69% Relative elev. - rect. (2000 m) 55% 55% Plan curvature (138 m) 

33% 74% Flow path length 
 

74% Slope gradient (90 m) 

21% 62% Northness (155 m) 
 

74% Slope gradient (138 m) 

 
81% TPI (1200 m) 

 
74% Slope gradient (185 m) 

 
80% Relative elev. - rect. (250 m) 

 
74% Relative elev. - rect. (3400 m) 

 
80% Northness (345 m) 

 
55% Plan curvature (90 m) 

 
74% Aspect, W central angle (90 m)  

 
19% TPI (950 m) 

 
69% Relative elev. - circ. (1600 m) 

 
19% Vertical distance to channel 

 
69% TPI (1100 m) 

   

 
62% TPI (550 m) 

   

 
62% Northness (215 m) 

   

 
62% Eastness (345 m) 

   

 
62% Modified catchment area 

   

 
32% Aspect, W central angle (110 m)  

   

 
21% TPI (250 m) 

   

 
21% Aspect, W central angle (175 m)  

   

 
12% Northness (6 m) 

   SOCstock SOCstock 

100% 48% Relative elev. - rect. (1100 m) 
 

100% LandsatLook, band 5 (6 Jul. 2006) 

48% 100% Vertical distance to channel 
 

100% LandsatLook, band 3 (6 Jul. 2006) 

 
80% Channel network base level 

 
100% LandsatLook, band 6 (6 Jul. 2006) 

    
100% Landsat5 TM, band 7 (11 Jun. 2006) 

 1100 

 1101 

Table 4. Fitting performance for the respective models. The model’s efficiency (ME) is the ratio 1102 

between the model’s mean absolute error (MAE) and the MAE that would result from only using the 1103 

mean value as the model. Cubist reports the ME as relative error, but it is renamed here to avoid 1104 

confusion with the more common definition of relative error. An ME of greater than one indicates 1105 

that the model is not performing well. 1106 

Topsoil models BD SK H SOC% Indirect - SOCstock Direct - SOCstock 

MAE 0.05 1.36 5.90 0.14 1.69 2.27 

ME 0.52 0.41 0.47 0.34 0.49 0.66 

R
2
 0.69 0.85 0.71 0.86 0.73 0.58 

Subsoil models             

MAE 0.06 3.77 5.90 0.06 2.75 1.37 

ME 0.58 0.42 0.47 0.59 1.67 0.83 

R
2
 0.67 0.79 0.71 0.55 0.34 0.19 

  1107 
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Table 5. Cross-validation performance for the respective models. Note that although the R2 was 1108 

severely reduced for most models, the MAE was generally only increased a small amount. 1109 

Topsoil models BD SK H SOC% Direct - SOCstock 

MAE 0.08 2.70 11.80 0.27 2.94 

ME 0.86 0.82 0.93 0.66 0.85 

R
2
 0.26 0.08 0.12 0.61 0.27 

Subsoil models           

MAE 0.09 7.18 11.80 0.09 1.42 

ME 0.80 0.80 0.93 0.98 0.86 

R
2
 0.36 0.26 0.12 0.05 0.17 

 1110 

Table 6. Skewness coefficients for the residuals of each model. 1111 

  BD SK H SOC% Indirect - SOCstock Direct - SOCstock 

Topsoil models -0.25 -1.15 0.17 1.04 0.10 0.37 

Subsoil models 0.11 -0.74 -0.17 1.18 -1.61 -0.16 
 1112 


