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RESPONSE TO REVIEWER COMMENTS. REVIEWER #1

We thank the reviewer for their comments, which we have used to clarify the research strategy and
generally improve the manuscript.

Comment-1: Samples are taken in clusters covering only 12 fields in the study area (containing
presumably a few 102 fields), with rather a poor spatial distribution. This will most probably affect
the distribution of the data in the multi-dimensional space, and hence, do not cover enough the
associated landscape complexity within the study area. These 2 concerns (poor spatial distribution
and poor distribution in multi-dimensional space) are a major problem when the model is used for
extrapolation / predicting pixels elsewhere in study area, i.e. outside the variable range covered by
the calibration dataset.

Response-1: Although the samples are grouped spatially in fields for logistical reasons, they were
carefully located to capture the distribution of conditions across the feature space of the agricultural
fields. Specifically, the samples include the variety of parent materials in the study area, form
transects across topographic positions, as well as cover regional highs and lows. If the modelling
technique relied on spatial autocorrelation, such as with kriging, the spatial position of these
samples would indeed have been a problem. However, because the modelling method uses spatial
regression, which relies on the principle of spatial association, the important space to cover was the
feature space. Therefore, the samples were taken to encompass the variable range of the agriculture
fields as best could be determined prior to sampling. Notably, only agricultural fields were sampled
and thus non-agricultural areas are masked out of prediction maps because they were outside the
variable range covered by the calibration dataset. Text has been added to emphasize these points.

Comment-2: As a consequence, it’s quite possible that the differences in SOC stock maps between
the two methods are more the consequence of the fact that the 2 modelling approaches (i.e. direct
versus indirect) are reacting differently on this shortcoming (inappropriate multidimensional data
cover) then it is actually reflecting a real difference in model output just/purely caused by the fact
that 2 different approaches were used.

Response-2: We understand this concern, but consider the variables used to calculate the SOC stock
(indirect) and the SOC stock itself (direct) to be intertwined due to their definitional relationship.
Because of this relationship, covering the feature space of one approach increases the probability
that the feature space of the other approach is also covered.

Comment-3: Finally, it’s clear how the authors calculated errors on SOC stocks by using classical
error propagation techniques for individual pixels (i.e. for both the direct and the indirect method
(including error predictions on components)), but it’s not clear if/how spatial autocorrelation was
taken into account when mapping these errors. It’s important to integrate this effect of spatial
autocorrelation in order to make a fair comparison between the error maps obtained by the two
methods.

Response-3: Spatial autocorrelation was used in the grouping of rule condition zones, on which error
estimations are applied. Spatial autocorrelation minimizes how different unsampled areas within a
condition zone could be from the sampled locations. This closely resembles the approaches of
Shrestha and Solomatine (2006) and Malone et al. (2006) for taking autocorrelation into account
when mapping estimated errors from spatial regression models.
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RESPONSE TO REVIEWER COMMENTS. REVIEWER #2

We thank the reviewer for their comments and suggestions for improving the paper. The following is
our response to the specific comments.

Comment-1: | wonder about the effect of the 10 closely-paired samples...in addition to ensuring the
estimated errors capture random variation, could it induce a bias towards these sample points?

Response-1: The closely-paired samples were spread across the feature space, which should help
them be representative of the random variation across the spectrum of conditions and minimize
emphasis on a particular set of conditions. Some text was added to explain this part of the sampling
strategy.

The Cubist software does have an option for dealing with data sets that are biased towards a
grouping of target variable values. Our experimentation with this feature did not produce regression
equations or estimated errors that were very different from those produced without that feature
activated. This gives us confidence that the closely-paired samples were distributed in a way to not
bias the models built.

Comment-2: | am a little bit worried about the large number of potential predictors in the pool
compared to the number of data on the target variable (117). | appreciate that the authors use the
discussion to suggest explanations of why particular predictors were selected, and thus partly
validate their selection, but am still not totally convinced that the same could not be done even with
junk data and this many potential predictors. | wonder if some acknowledgement of the potential of
data-mining software to overfit should be included and commented on. | don’t think Cubist does
anything to deal with the size of predictor pool (in a multiple hypothesis testing kind of way): : :a
comment on this issue could be useful.

Response-2: Text has been added to provide more detail about how we used Cubist to reduce the
predictor pool. Specifically, multiple passes were used so that the final models were built from
predictor pools equal to the size of the sets used in the models (3-19 predictors divided between
multiple rules). This is explained in greater detail in the referenced paper Miller et al. (2015).

Comment-3: As you state in the methods section, for the propagation of error in the indirect
approach, the variances and covariances should be those of the residuals from the fitted models, not
of the data themselves. It seems that this is what was done, but lines 5 and 6 of page 770 made me
wonder if the variances and covariances of the raw data had been used. Could you clarify this, as this
could be an alternative explanation of the larger uncertainties resulting from the indirect approach?

Response-3: The text has been corrected to specify the use of the residual’s covariance.
Comment-4: Define f in Equations 2 and 3, and explain exactly what |f] is.
Response-4: |f| is now defined with an explanation for why it is used. Equation 3 was also corrected.

Comment-5: In the cross validation (Table 5), | am not sure why the results for predictions of SOC
stock by the indirect approach are omitted. | think the table should include these.

Response-5: Cross-validation was only conducted on the products of the Cubist models themselves.
To cross-validate the SOC stock predictions from the indirect approach would be the cumulative
cross-validations of the component models. We argue that cross-validations only offer a measure of
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the models’ robustness (how much it would change if different points were used), but does not
measure the quality of the best model’s performance. For these reasons, calculating a cross-
validation of the SOC stock from cross-validations of the component models would be intensive
without a large gain in information.

Comment-6: | think it would also be good to provide some validation of the uncertainties...|
appreciate the difficulties of validating with a small, clustered dataset such as this, but | think it
would be worth including some measure of the adequacy of uncertainty assessment in the cross
validation. One possibility is the mean of the theta-statistic, which should be close to 1 (see e.g. Lark,
RM. 2000. A comparison of some robust estimators of the variogram for use in soil survey. European
Journal of Soil Science, 51, 137-157).

Response-6: We contend that the cross-validation statistics are not really a validation of the model
based on all of the sample points, especially for MLR models of soil systems. For this reason, our
focus in this paper is to compare the results of the two modelling approaches with each other.
Nonetheless, the change in the MAE between the models used (based on all points) and the cross-
validation models are compared. Additional text has been added to point out that the stability of the
MAEs suggests that the estimated uncertainties are also robust.

Comment-7: It is quite interesting that although the ME for all subsoil component variables was <1,
the resulting predictions of SOC stock gave a ME of 1.67. This is worth commenting on in Section
3.1.1.

Response-7: We agree this is an intriguing result and text has been added to section 3.1.1. to
highlight it.

Comment-8: | think that the residuals for all variables are assumed normal...however, depending on
the dataset, it may be more appropriate to model log SOC % as normally distributed. Some comment
about this, and about the effect that this could have on predictions and uncertainties in the indirect
approach could be useful.

Response-8: This is indeed an important point. Text, along with a table of residual skewness
coefficients, has been added to describe the distribution of the residuals and their potential effect
on the results.

Comment-9: Is a conservative estimate of the spatial distribution the best thing? The most
conservative would be to use the mean across the entire study area, but this would not be very
useful. | am not sure whether the paper is recommending that the more conservative approach
should be used, or just saying that the direct approach is more conservative than the indirect
approach.

Response-9: Recognizing that different situations will have different needs, we were careful to chose
the term ‘conservative’ to avoid judging which approach may be best for a given set of goals or
purpose. Specifically, sometimes representing variation can be more useful than minimizing the
amount of error, and vice versa. A sentence has been added to the conclusions to emphasize this
point.

Comment-10: What exactly is meant by the ‘spatial association approach’?

Response-10: Spatial association is a term parallel to spatial autocorrelation. Like the specific
method of kriging is often described when applying a spatial autocorrelation approach, the term
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spatial regression is a popular method for applying the concept of spatial association. We use the
term spatial association frequently to emphasize the difference between our study and a similar
study that compared different spatial autocorrelation methods. Additional text has been added to
clarify spatial association for those who may not be familiar with the term.

Comment-11: Were all soil profiles deeper than 2 m?

Response-11: Thank you for catching this omission. Indeed field logistics prevented the full 2 m from
being sampled for some of the profiles and some assumptions needed to be made. Text explaining

this has been added.

Comment-12: Page 767, sentence starting on line 27: ‘correlation...of R2 = 0.59’. Correlation should
be measured by r, not R2...reword this sentence.

Response-12: Wording has been corrected.

Comment-13: Page 768, line 6: direct R2 = 0.14, but in Table 4 is 0.19...is this correct?
Response-13: The typographical error has been fixed.

Comment-14: Figures 2, 3 and 4: | am not sure that the hillshade effect helps. | found it difficult to
distinguish between the effect of the hillshade and the SOC stock differences. | would suggest

removing this effect.

Response-14: Agreed. The hillshade effect has been removed from the respective figures.
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Abstract

The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but
consideration of its role in regional and global issues demands the mapping of large extents. There
are many different strategies for mapping SOC, among which are to model the variables needed to
calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is
to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear
regression models applied at the landscape scale via spatial association. The final products for both
strategies are high-resolution maps of SOC stocks (kg m™), covering an area of 122 km?, with
accompanying maps of estimated error. For the direct modelling approach, the estimated error map
was based on the internal error estimations from the model rules. For the indirect approach, the
estimated error map was produced by spatially combining the error estimates of component models
via standard error propagation equations. We compared these two strategies for mapping SOC
stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of

the estimated error. The direct approach produced a map with less spatial variation than the map
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produced by the indirect approach. The increased spatial variation represented by the indirect
approach improved R? values for the topsoil and subsoil stocks. Although the indirect approach had a
lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock
(topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct
approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks’

spatial distribution.

Keywords: digital soil mapping, organic carbon, spatial association, estimated error, uncertainty

Highlights

1. Spatial association methods for mapping SOC stock directly and indirectly were compared.
2. Data mining produced models that could be interpreted by expert knowledge.
3. The indirect approach map had greater spatial variation and higher R? values.

4. The direct approach map had less spatial variation and a lower total estimated error.
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1. Introduction

The storage of carbon in soil is a critical point of information for several environmental issues.
Globally, soil carbon, which is about 60% organic carbon, accounts for 3.3 times more carbon than
that found in the atmosphere (Lal, 2004). The high amount of carbon stored in the soil; makes soil
carbon an important factor for understanding the carbon cycle and dynamics influencing global
climate change (Grace, 2004; Johnston et al., 2004; Powlson et al., 2011). In addition, higher
concentrations of soil organic carbon (SOC) are associated with better water storage capacity,
regulation of nutrients, and stabilization of soil aggregates resulting in improved soil structure and
resistance to erosion (Neemann, 1991; Angers and Carter, 1996; Rawls et al., 2003; Snyder and
Vazquez, 2005; Johnston et al., 2009; Kay, 1998; Wilhelm et al., 2004). Each of these factors has
important roles in issues of water management and crop productivity.

Although SOC management has far reaching implications, the distribution of SOC is highly
variable and dynamic at the field-scale (Cambardella et al., 1994; McBratney and Pringle, 1999;
Walter et al., 2003; Kravchenko et al., 2006b; Simbahan et al., 2006). Differing conditions, such as
hydrology or management practices, greatly impact the SOC content (Kravchenko et al., 2006a). The
combination of global implications and high spatial variability make high-resolution maps of SOC for
large extents desirable for both policy decisions and land-owner response. This situation creates the
need to accurately and efficiently assess the spatial distribution of SOC stocks at a high-resolution.
High-resolution mapping captures information essential for assessing field-specific conditions, which
can later be aggregated as need to provide summary information.

Many studies have tested a variety of strategies for predicting the spatial distribution of SOC
(Minasny et al., 2013 and references therein). The various studies on SOC mapping have analyzed
different soil depths, which has large implications for the consideration of the complete SOC stock
(Richter and Markewitz, 1995; Batjes, 1996, Jobbagy and Jackson, 2000; Sombroek et al, 2000;
Schwartz and Namri, 2002; Meersmans et al., 2009). For example, some have focused on spatially

modelling the topsoil to depths of 20-30 cm (e.g. Ungaro et al., 2010; Zhang et al., 2010; Martin et
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al., 2011). Other variations of strategies for digital SOC mapping differ in which variables are
modelled in order to predict SOC. For instance, some studies have modelled the SOC stock (e.g. kg
m? T ha?, kg m?) directly (Simbahan et al., 2006; Lufafa et al., 2008; Nyssen et al., 2008; Mishra et
al., 2010; Phachomphon et al., 2010; Kempen et al., 2011), while others have separately modelled
the variables needed to calculate the SOC stock and then combined them (Grimm et al., 2008; Khalil
et al., 2013; Lacoste et al., 2014). The usual component variables are total bulk density (BD), particles

> 2 mm (SK), SOC concentration (SOCy), and stock thickness (H), which are then combined by:

SOCy, 100-SK
50ue = (229 (5D +1000) (“55) 1 »

where, SOCgoq is in kg m?, SOCy is in percent,BDing cm? SKin percent, and Hin m.

Irrespective of the approach used, an important output of digital soil mapping is a measure of
uncertainty. Orton et al. (2014) compared uncertainties resulting from directly modelling the SOC
stock (direct = calculate-then-model) with modelling component variables for calculating the SOC

stock (indirect = model-then-calculate), based on geostatistical approaches that rely on spatial

autocorrelation. In the present study, we made a similar assessment for rule-based, multiple linear

regression (MLR) models, which rely on spatial association.

With the spatial association (i.e. spatial regression) approach to soil mapping, the empirical

model error can be transferred along with the model itself (Lemercier et al., 2012). For digital soil
mapping, Malone et al. (2011) adapted the Shrestha and Solomatine (2006) approach for empirically
summarizing model error and extending that information to prediction areas. In those previous
studies, areas expected to have similar errors were grouped by cluster analysis. Because similar sites
are already grouped together in rule-based, MLR models, the estimated errors can be applied to the
areas meeting the same rule conditions and thus mapped. The ability to map predictions of soil
properties and the confidence in those predictions via spatial association is important for landscape

to national extents because of the common limitation of sampling density (Martin et al., 2014).
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The purpose of this study was to compare the maps of SOC stocks produced from direct and
indirect modelling approaches, using rule-based MLR. The resulting maps were compared in terms of
their predicted spatial patterns, coefficient of determination (R?), as well as the magnitude and
spatial distribution of the estimated errors. The predictors selected for the models via the data
mining procedure were evaluated in the context of known landscape processes. In addition, the
separate assessment of topsoil and subsoil stocks tested the models’ ability to predict SOC storage at
depths to two meters.

2. Methods

2.1. Study Area and Sampling

A dominantly agricultural area located near Wulfen, Saxony-Anhalt, Germany, which has been
examined by several previous studies (Selige et al., 2006; Brenning et al., 2008; Kiihn et al., 2009;
Migdall et al., 2009), was selected for this research. The mapping area extends from 11.86°N,
51.74°E to 11.96°N, 51.90°E (Figure 1), covering a total area of 122 km”. The landscape includes
hummocky till plain, outwash plain, loess, and a broad floodplain (Kéniglich PreuRische Geologische
Landesanstalt, 1913a, b). The study area is dominated by Calcaric Cambisols and Luvic Phaeozems,
while the depressional area in the floodplain is primarily Dystric Gleysols (European Commission,
2014). Between 2005 and 2006, 117 locations were sampled from a variety of landscape positions in

12 different agricultural fields, covering the known feature space for agricultural land in this area.

Because all models were calibrated and validated on these samples, evaluation of the resulting maps
focused on areas with similar land-use (i.e. water bodies and urban areas excluded). Ten of the

sample points, also spread across the feature space, were of repeated locations (within 2 m of

original), which helped to insure that random error was reflected in the assessment of estimated

error.

Soil horizons identified in the field were sampled at each sampling location. To avoid biases from

horizon classifications and to focus on the two major process zones for SOC, the soil profile of two
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meters was divided into topsoil and subsoil stocks. The division was defined by the largest decrease

in SOCy, as determined by lab analysis, between field identified horizons. Not all profiles were able

to be sampled to the full depth of two meters. In those cases, the properties of the sampled subsoil

were assumed to be representative of the remaining depth. Data for the horizons within each stock

were combined using a thickness-weighted mean, as appropriate. Descriptive statistics for these

observation points are provided in Table 1.

2.2. Modelling

Models for each of the target variables were generated using the Cubist 2.08 software (Quinlan
1992, 1993, 1994). Previous studies have demonstrated the utility of this tool for digital soil mapping
(Bui et al. 2006; Minasny and McBratney, 2008; Adhikari et al., 2013; Lacoste et al., 2014). Cubist
uses a data mining algorithm to build two-tiered models. The top level consists of a series of
conditional rules that can utilize both continuous and categorical predictors. For each rule, a MLR
equation is produced for predicting the target variable. Cubist’s process for selecting predictors and
building the models is described in Quinlan (1993) and Holmes et al. (1999) and will not be repeated
here. One advantage of this approach is the interpretability of the produced model, which allows the

modeler to assess relationships between the model and physical processes (Bui et al., 2006).

The results of the data mining process are dependent upon the predictors made available to the
data mining software. For this reason, we used the large predictor pool method described by Miller
et al. (2015) to identify the optimal models for each of the respective target variables. That method

includes a multiple pass test, which reapplies the Cubist algorithms to the limited pool selected by

the previous run. This helps to insure that the selected predictors have been optimally reduced by

the Cubist software, decreasing the concern of overfitting. The predictor pool for this study included

410 base maps covering the full extent of the study area (Table 2). These base maps consisted of a
legacy geologic map, a variety of remote sensing/spectral products, and digital terrain analysis

(DTA). The spectral products ranged from four bands of Ikonos data to a variety of Landsat data

10
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collected at different times in 2006. DTA was conducted on a 2 m resolution, digital elevation model
(DEM), created from LiDAR data that was also collected in 2006. The DTA base maps included land-
surface derivatives based on a wide range of analysis scales (a-scales) and a suite of hydrologic
indicators. Land-surface derivatives were calculated in GRASS 6.4.3 (Geographic Resources Analysis

Support System, grass.osgeo.org) and ArcGIS 10.1 (www.esri.com/software/arcgis). Hydrologic

indicators were calculated using SAGA 2.1.0 (System for Automated Geoscientific Analysis,

http://www.saga-gis.org/en/index.html).

The predictors selected by the Cubist software were then used as base maps to generate maps
of SOCqc- Using the raster calculator in ArcGIS 10.1, the base maps were combined according to the
MLR equations produced by Cubist. When base maps of different resolutions were combined, the
finest resolution was maintained. The respective MLR equations were only applied in the areas that
met the conditions of the Cubist model’s first tier. The first experimental approach used this method
to directly map SOC;;o from the SOC,, calculated at each sample point. The second experimental
approach used this method to map each of the component variables. These modelled variables were
then used as base maps to create a SOCg,x map. The raster calculator was then again used to
combine the component variables, but this time according to equation 1. For both experimental
approaches, the topsoil and subsoil were mapped separately. After the respective SOCgox maps

were produced, they were added together to create total SOCgo maps.

Within the extent of the study area, there were a few areas with conditions outside the range
observed in the point samples. In these limited cases, extreme predictor values produced model
predictions of target variables either far below or above the ranges observed for the respective
target variables. To address this issue, spatial predictions were limited to be within 10% of the

observed target variable minimum and maximums.

2.3. Propagation of Error

11
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For each of the model rules, estimated error was calculated based on the internal fit of the MLR
to the data classified within that rule. This estimation provided a measure for the respective
uncertainty under each rule. The conditions for the respective rules were used to spatially classify
the base maps, thus allowing the estimated errors to be mapped. Measurement error, positional
error, and limitations of the model to predict the target variable were all empirically encapsulated by

the estimated error.

When the target variable was the end product, the uncertainty was simply represented by the
estimated error. However, when multiple variables were modelled and subsequently used to
calculate the final product, the estimated errors of the component variables propagated through the
combination of those variables in the function. In order to map estimated error for the indirect
approach of modelling SOC;., estimated error maps were produced for each of the component
variables. These error estimation maps were then combined using standard equations for
propagation of error (Mardia et al., 1979; Taylor, 1997; Weisstein, 2014). Although potentially biased
by the approximation to a first-order Taylor series expansion, simplified equations for error
propagation are more practical and are regularly used in engineering and physical science
applications (Goodman, 1960; Ku, 1966). Because covariance between variables has the potential to
impact the estimation of SOCy,« (Panda et al., 2008; Goidts et al., 2009), we did not assume the
variables were independent. The observed residual covariance was thus used to modify the

estimated error within the standard equations for propagation of error by multiplication,

o ~I71(2) + (2) + 2202 @

and by addition,

oF = V042 + 052 + 2covp (3)

where fis the result of the original function (to convert from relative to estimated error), A and B are

the real variables, with estimated errors o, and og, and their residuals’ covariance cov,g. In order to

12
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calculate a predicted relative error (e.g. %) at unsampled locations, the predicted variable was

assumed to accurately represent the variable’s magnitude.

Locations with small ratios between estimated error and predicted values together with large,
negative covariances had the potential to produce a calculation taking the square root of a negative.
This issue was addressed by not considering the covariance in those limited circumstances. While
this solution may have led to an overestimation of error, it provided a means to mathematically

calculate estimated error without declaring it to be zero.
3. Results

3.1. Models

3.1.1. Model building and fitting performance

Explicit models were obtained for each of the component variables needed to calculate SOC;;o«
indirectly and for predicting SOC,,« directly. Models for predicting component variables used a
higher quantity of predictors for each of the respective models than the direct modelling approach
(Table 3). With the exception of SOCq, the models for component variables included a combination
of DTA and spectral variables. The SOCy, models relied solely on DTA predictors for both stocks, but
with additional spatial partitioning by geologic map units for the topsoil model. The models for
directly predicting the SOC,, used only three DTA predictors for the topsoil and only four Landsat

predictors for the subsoil.

Fitting performances for the component variable models were better than the fitting
performances for the direct modelling of SOCs. (Table 4). For the component variables, R? values of
subsoil models were only slightly less than the topsoil models. SOCy, was the exception by having the
lowest fitting performance for the subsoil stock (R* = 0.55), while the model for the SOCy, topsoil was
able to fit observations with an R? of 0.86. However, it was the aim of this research to examine if the

performance of the models was maintained through the calculation of SOCg.

13
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Comparison of the SOC,« predictions by the indirect approach to observed values showed
better performance for the topsoil stock (R* = 0.73) than for the subsoil stock (R? = 0.34). Fitting
performance for directly modelling SOC..« showed the same pattern, but was lower than the
indirect approach for both stocks. Analysis of the direct approach’s ability to fit observed values

yielded an R? of 0.58 for the topsoil and 0.24-19 for the subsoil.

In general, calculated model efficiencies (ME) showed that the respective models reduced the

mean absolute error (MAE) to about half the MAE that would result from simply using the mean of

all points as the prediction. The SOCy, model for the topsoil improved upon the mean model more

than the other MLR models with a ME of 0.34. However, an intriguing result is the lack of model

efficiency for the indirect modelling of the subsoil’s SOC.;..«. Despite the component models all

having MEs well below one, the indirect approach did not improve upon the mean model for

predicting the subsoil SOC.... Although the ME of the direct model for subsoil SOC..« Was also not

as good as the other models, it was still an improvement over the mean model.

3.1.2. Model Robustness

It is common for digital soil mapping models to be evaluated by cross-validation procedures.
However, in the context of this study, the meaning of such an analysis has less utility. Higher sample
density increases the robustness of the model (Minasny et al, 2013); thus the popularity of cross-
validation procedures over independent validation procedures in order to maintain more points in
the calibration set. However, the model generated for each cross-validation run is different because
of differences in calibration sets. The performance of each run is dependent on the randomly
selected calibration points’ ability to represent the variation in the remaining validation points. For a
simple data trend, a single outlier would have minimal effect because only the runs in which it is
included in the validation set — and not used in calibrating the model — would have lower
performance values. However, in a complex landscape where similar soil properties can result from

different combinations of factors, the concept of an outlier has many more dimensions (Johnson et
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al., 1990; Phillips, 1998). A point with a similar value can be an outlier by being a product of a
different set of factors. In other words, the problem of induction continues to apply in predictive soil
mapping. Further, in the context of error propagation, the error estimation from the actual model
used seems more appropriate than the mean of error estimations from a series of less robust

models.

Nonetheless, the models in this study were cross-validated using the k-fold method with 10
iterations. The R* was naturally reduced in the cross-validation analysis, but the mean-abseluteerror
{MAE} was not as severely affected (Table 5). The R* values for the respective models all decreased
greatly in the cross-validation, except for the topsoil SOCy, and the subsoil SOC,,,« models. The
subsoil SOC,,x model already had a low R? value for the internal fit. In contrast, the MAEs for the
cross-validation of the models were not increased enough to present a practical problem. The

relative stability of the MAEs also suggests that the estimated uncertainties are also robust. For

example, the MAE for both stocks of BD only increased 0.03 g cm™. Also, the MAE for SOCy, only
increased 0.13% and 0.03% for the topsoil and subsoil, respectively. Similarly, the MAE for the direct
SOC 0k model increased 0.67 kg m and 0.05 kg m™ for the topsoil and subsoil, respectively. The
MAE for the models of stock H and SK did increase more in cross-validation. However, they had a
minor impact on the indirect modelling of SOC,;,«. The increase of 5.9 cm for the topsoil H MAE was
only a shift of the depth estimated by topsoil or subsoil models. The larger MAE for SK was more of
an issue for the subsoil. However, the majority of the samples had SK below 5%, leaving most of the
error due to the difficulty in predicting the limited areas of high SK. While it was possible that a
different sampling design could have improved the R? values for cross-validation, they are not always

practical for landscape-scale mapping.

3.1.3. Comparison with previous studies

It is difficult to compare results between SOC mapping studies due to differences in study areas

and strategies for defining SOC, (i.e. map extent and resolution, sampling density, and
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consideration of depth). Further, the differences between and variability within methods for
estimating component variables for calculating SOC,, can have a large impact on results, especially
bulk density (Liebens and VanMolle, 2003; Schrumpf et al., 2011) and SOCy, (Lowther et al., 1990;
Soon and Abboud, 1991; Sutherland, 1998; Bowman et al., 2002). Also, because model performance
is dependent upon the provided predictors, results of different studies can vary based on the
predictors available to and derived by the modeller (Miller et al., 2015). However, because the area
in this study has been used for several previous studies, some comparisons between methods can be

made.

Kihn et al. (2009) examined many of the same samples used in this study and found a

eorrelation-coefficient of determination between soil electrical conductivity and soil organic matter

to a 1 m depth (kg m™) of R? = 0.59. Although a slightly different calculation, that eerrelation

coefficient of determination is similar to this study’s direct model of topsoil SOC« (R2 =0.58),

which used three DTA predictors. However, for the topsoil, the indirect approach in this study
produced a SOCy,x model with less estimated error and an R” of 0.73. The Kiihn et al. (2009) study
usually included depths that this study defined as subsoil, where the models in this study did not

perform as well (direct R” = 0.1419, indirect R* = 0.34).

For the same area as this study, Selige et al. (2006) compared MLR and partial least-square
regression for predicting SOCy, from hyperspectral data with a 6 m spatial resolution. Although the
study by Selige et al. (2006) utilized a higher spectral resolution, the MLR models produced by both
that study and the present study had R? of 0.86 for the topsoil SOCs. In the present study, Cubist was
able to compensate for the limited spectral information by utilizing several DTA predictors that were

available at a high spatial resolution.

3.2. SOCyiock maps
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Application of the obtained models and aggregation of the component variable maps by
equation 1 produced maps of predicted SOC. for the topsoil and subsoil (Figures 2 and 3). The
respective topsoil and subsoil maps were added together to produce a total SOC;,x map to a depth
of 2 m (Figure 4). Although some field boundaries were observed, the dominant pattern appeared to
be associated with terrain features. This interpretation was supported by the number of DTA
predictors selected by Cubist for many of the models. However, it would not have been safe to
assume this pattern from the list of selected predictors alone. Certain predictors (i.e. spectral data
reflecting land use patterns) could have dominated calculations without being the most frequently

selected category of predictors.

The map derived from the direct approach for modelling the topsoil SOC,,..x emphasizes
drainageways. Whereas the map derived by the same approach for the subsoil SOC, reflects more
patterns of land use, especially in the uplands in the southern part of the study area. The topsoil
SOCcx map based on the indirect approach has similar overall patterns to the direct approach’s
map. However, both the topsoil and subsoil maps produced by the indirect approach display greater

spatial variation.

Patterns in the topsoil SOCy,« map, based on the indirect approach, mostly coincide with terrain
features, but do contain some transitions that align with field boundaries. The corresponding map
for the subsoil reflects patterns of microtopography and slope gradient. Larger values for the subsoil
SOC,c« are predicted by the indirect approach for local lows in elevation (smaller a-scales).
Predictions of larger subsoil SOC,, on steeper slopes result from the modelling of thinner topsoil
stocks in these areas and the consistent calculation of a 2 m profile. Consequently, the subsoil is
calculated to be thicker in these areas, substantially increasing the subsoil SOCg, prediction

compared to other areas of the subsoil.

Maps derived by both approaches for the total SOC;« primarily reflected patterns from the

topsoil maps because of the higher concentration of SOC that defined the topsoil stock.
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Nonetheless, modelled storage for the subsoil stock contributed about one-third of the prediction of
total SOC;« and recognized additional complexity in the SOC landscape. Despite the greater
variation in the indirect approach’s prediction of SOC,., the difference between estimates of total
SOCqck by the two approaches were within 5 kg m™ for the majority of the map area (Figure 5). Also,
the summed SOC,,. for the study area was only 6% more for the indirect (1.9 Mt) versus the direct
(1.8 Mt) approach. The mean SOC, estimate for the study area by the direct approach was 14.7 kg

m?, whereas the indirect approach estimated 15.7 kg m™.

These aggregated landscape estimates agreed with those made by the Harmonized World Soil
Database (HWSD; FAO/IIASA/ISRIC/ISSCAS/IRC, 2012) for this area. The HWSD estimated several soil
properties from taxonomic pedotransfer functions for static topsoil (0-30 cm) and subsoil (30-100
cm) depth zones. Within the area of the present study, the HWSD has a cell resolution of
approximately 765 m. Calculating SOCqoc« from that data yielded a mean of 8.8 kg m™. Assuming the

characteristics of the subsoil to 100 cm extended to 200 cm, the mean SOC. Would be 15.3 kg m™.

3.3 Error estimations

The mapping of estimated errors based on the conditions of rules generated by Cubist resulted
in a spatial representation of uncertainty (Figure 6). In order to calculate the final estimated errors
for the indirect approach, estimated errors for models of component variables were combined
spatially by equations 3-2 and 43. Due to the known covariance of component variables, the
observed covariance of the residuals was included in the calculation of error propagation through
the calculation of the total SOC,.. Inclusion of covariance reduced relative error estimates in the

topsoil because increases in residuals for BD coincided with decreases in the residuals for percent

fine-earth, increases in fine-earth BD residuals coincided with decreases in SOCy, residuals, and
increases in SOC content (kg m™) residuals coincided with decreases in stock thickness residuals. The

influence of covariance was retmostly the same in the subsoil calculations. The exception was a

positive covariance between the residuals for modelling BD and the percent fine-earth.-\With-the

18



511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

. ¢ . | : B0 SO, whi 1 iy
covariances-werepositive: HowevereveraliNonetheless, the covariances were relatively small with
respect to the estimated errors and therefore had a minimal impact on the final calculation of

estimated error.

The application of error estimates based on the full range of predicted values in a rule zone to
small values in that zone yielded extremely high relative error values. Although the areal extent for
this type of situation was very limited, the issue needed to be addressed in order to maintain the
readability of the attribute scale. Therefore relative error was capped at one for the original relative

error grids, but not thereafter for the calculation of error propagation.

Despite not having as strong of a fitting performance as the indirect approach, the direct
approach had lower estimated errors for greater extents of the study area. The mean estimated
error for the total SOC. map derived by the direct approach was 2.81 kg m™, compared to 8.17 kg
m? for the indirect approach. This behavior in the models may be explained by the negative

covariance between the residuals for many of the variables influencing the SOCg.. The observed

covariances did reduce the calculation of error through propagation. However, they did not reduce
the estimated error for the indirect approach to as low as the estimated error based on the direct

modelling approach. It is also useful to note that the residuals for modelling SK and SOC,, werehad a

negative and positive skewed-, respectively, for both stocks (Table 6). HoeweverfortheOf the

residuals effor the final prediction of SOC:.., regardless of approach or stock, only the indirect

model for the subsoil had strongly skewed residuals. This suggests that the-error for the indirect

model of the subsoil SOC,c may have been overestimated.

The spatial distribution of model rules was an important factor in the resulting maps’ estimated
error. The models for the direct approach used fewer rules than the component variable models,
resulting in less spatial variation of the estimated error. However, variation in predicted values did

introduce additional spatial variation to the mapping of relative error. Nonetheless, the map of
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relative error from the indirect approach was more complex than that resulting from the direct
approach. In addition to using more rules for each model, the combined relative estimated error for
the indirect approach was further tessellated by the unique intersections of the different spatial

distributions of the rules for each component variable model.

4. Discussion

4.1. Predictor selection

4.1.1. Review of relationships between predictors and environmental conditions

Spectral predictors from satellites such as lkonos and Landsat have most commonly been used
to detect characteristics of land use, vegetation, and soil water content (Bannari et al., 1995; Xie et
al., 2008). However, they have also been used to detect mineralogy on sparsely vegetated areas
(Mulder et al., 2011). Although lkonos has a finer spatial resolution, it is limited to three bands (band
1 = blue, band 2 = green, and band 3 = red) in the visible spectrum, plus a near infrared band (band 4
= NIR). Landsat provides additional bands in the shortwave infrared (band 5 = SWIR-1; band 7 =
SWIR-2) and thermal infrared (band 6 = TIR). The relative reflectance of a single band can be used to
distinguish landscape conditions. For example, the green band can be used to distinguish different
vegetation from bare soil. However, combinations of bands - particularly including the red and NIR
bands - have been even more useful for distinguishing the spectral signature of different land uses
(Richards, 2006) and the condition of the vegetation (Ashley and Rea, 1975; Myneni et al., 1995;
Rasmussen, 1998; Daughtry, 2001; Hatfield et al., 2008). Additional use of TIR emission would
resemble methods such as the Surface Temperature/Vegetation Index for estimating soil moisture
(Bartholic et al., 1972; Heilman et al., 1976; Carlson et al., 1994; Li et al., 2009; Petropoulus et al.,
2009). Similarly, use of SWIR wavelengths in concert with red and infrared red-bands would be a way
of compensating for the changing effect of soil reflection in dry to wet conditions (Huete, 1988;

Lobell and Asner, 2002). Relationships between bands in the visible to SWIR range have also been
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used to predict SOCy and its biochemical composition (Bartholomeus et al., 2008; Gomez et al.,

2008; Stevens et al., 2010).

Spectral predictors have been used for both classification of discrete phenomenon and
guantification of continuous phenomenon on the landscape. Because of the rule-based MLR
structure of the Cubist models, spectral predictors used for conditional rules were more likely to be
distinguishing discrete features (e.g. vegetation/land use type) than when used within an MLR
equation. Continuous features (e.g. vegetation health) were more likely to be represented in MLR

equations.

DTA predictors in this study were all derived from the LiDAR data for elevation. The land-surface
derivatives (e.g. slope gradient, relative elevation) described the surface geometry with which the
climate interacts. For example, aspect has been shown to influence the amount of solar insolation a
hillslope receives (Hunckler and Schaetzl, 1997; Beaudette and O’Geen, 2009). The surface geometry
is also known to direct water flow, which affects erosion processes and groundwater recharge
(Huggett, 1975; Zevenbergen and Thorne, 1987). Hydrologic predictors (e.g. flow accumulation,
catchment slope) provided additional information about the relative volume and energy that the

water flow may have (Moore et al., 1991; Wilson and Gallant, 2000).

4.1.2. Topsoil model predictors

All of the topsoil models generated by Cubist relied on DTA predictors the most. Of those
predictors, different a-scales of relative elevation, topographic position index (TPI), and aspect were
the most commonly used. With the exception of the direct SOC,,.« model, every topsoil model also
included one or two predictors indicative of flow accumulation (i.e. flow path length, SAGA wetness

index, or modified catchment area).

Aspect at different a-scales influenced predictions for three of the indirect topsoil models. The

Cubist generated model identified decreasing topsoil SOCy, on more north facing slopes (155 m a-
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scale), which corresponds with a potential decrease in plant productivity due to less solar insolation.
Aspect (215 m a-scale) was also used to predict higher topsoil BD on south to west facing slopes,
especially on topographic (2000 m a-scale) and micro-topographic (20 m a-scale) highs. Additionally,
aspect at a variety of a-scales was used to predict decreasing topsoil SK for low TPI areas facing
southeast to southwest. Together, these models suggested a pattern of increased erosion and
deposition along the southern sides of hillslopes. This type of pattern has been observed before in
other landscapes and has been attributed to topo-climatic differences such as exposure to storms,
differences in temperature regime, rainfall effectiveness, or vegetation density (Kennedy, 1976;

Churchill, 1981; Cuff, 1985; Weaver, 1991).

Although DTA parameters dominated the topsoil models, their predictions were often modified
by spectral variables. For example, the primary distinction for predicting topsoil H was between low
and high relative elevations. Low relative elevations had a mean topsoil H that was about 20 cm
thicker than high relative elevations (1,100 m a-scale). Within most MLR equations, however,
predictions were increased by less blue and more green reflectance in early July. This combined use
of blue and green bands indicated increasing topsoil H with more productive vegetation on wetter
soils. In summary, the dominant pattern identified by the model was between high-low ground
(Bushnell, 1943; Sommer et al., 2008), but the degree of topsoil thinning or thickening was predicted

by the vegetation’s response to soil conditions.

Cubist selected a much simpler combination of only DTA predictors to directly model the topsoil
SOCsou- In general, the model predicted increasing SOCq;« With decreasing vertical distance to
channel. Areas low in relative elevation (1,100 m a-scale) and not far above the channel network
were predicted to have the largest SOC;.«. However, for areas low in relative elevation, but
sufficiently above the DEM based channel network, the model predicted the opposite trend of the
SOC.c decreasing with decreasing vertical distance to channel. This pattern identified by the model

may be explained by a corresponding pattern observed in the model for the topsoil H. In that model,
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areas low in relative elevation (1,100 m a-scale) were predicted to have some of the thickest topsoil
stocks. However, within a few of those zones the modelled topsoil H decreased with decreasing
relative elevation and TPI. This trend in the observed data, as detected by Cubist, was potentially
caused by an eroding out of topsoil sediments closer to the center of drainageways. In which case,
the vertical distance to channel — used in the topsoil SOC;,.x model - may have been more an
indicator of proximity to the channel than wetness; the threshold was only 0.5 m above the channel
modelled from the DEM. Predictors related to surface flow energy would have been expected to be
better predictors of this kind of process. However, the upslope drainage network for much of the
map area extended beyond the boundaries of the available data. Thus the use of local elevation data
may have been a better proxy in this case, compared to the predictors calculated from truncated

watersheds.

4.1.3. Subsoil model predictors

With the exception of SOCy, the subsoil models all used several predictors from Landsat.
Selection of Landsat predictors for subsoil models suggested that vegetation characteristics or
surface soil moisture at different times of the year indicated subsoil conditions. In contrast, the
subsoil SOCy, model’s complete dependence on DTA predictors suggested that soil property was
mostly related to hydrology and that vegetation had little response to or effect on the SOC content

in the subsaoil.

An example of spectral predictors detecting vegetation characteristics that likely reflected
subsoil conditions was the subsoil SK model. All of the MLR equations were strongly influenced by
the predictors of stream power, catchment slope, or SAGA wetness index. However, the skeleten-SK
predictions were modified by green reflectance in June and additional Landsat predictors collected
at different times of the year that related to the vigor of the vegetation. The weaker or drier the
vegetation appeared, the higher the prediction of SK content in the subsoil. Assuming soil moisture

conditions did not reach detrimental levels that year, these patterns fit known relationships
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between particle size, soil drainage, and timing to crop maturity (Day and Intalap, 1970; Rawls et al.,

1982).

The generated model for subsoil BD most likely utilized a relationship with soil moisture as
detected by spectral predictors. In all areas, the MLR equations decreased predictions of subsoil BD
with increasing reflectance in the blue and SWIR-1 bands along with increasing emission in the TIR
band. Increases in the normalized difference vegetation index (NDVI) were used to slightly increase
predictions of subsoil BD. The use of the NDVI to offset the decreasing BD predicted by the other
Landsat predictors suggested those variables were indicating soil moisture conditions. Locations that
are wetter due to surface runoff would have a greater potential for organic material to be
translocated deeper in the soil profile (Schaetzl, 1986; Schaetzl, 1990). Also, the association of
wetter environments with cooler temperatures and anaerobic conditions would also inhibit

decomposition (Gates, 1942; Krause et al., 1959; Frazier and Lee, 1971).

The subsoil SOCy, model was different than the other subsoil models generated. Instead of
selecting spectral predictors, the subsoil SOCy, model relied solely on DTA predictors. The model
predicted the highest subsoil SOCy on steeper mid-slopes. The pattern of increasing subsoil SOCy,
from the upper to middle slope fit the landscape translocation model proposed by Sommer et al.
(2000). In that study, the SOCy in the Bh horizon increased from the upper slope to the midslope due
to lateral translocation. Different than the pattern identified in the present study, the data in
Sommer et al. (2000) showed a continued increase in the SOCy, of Bh horizons in the downslope
position. However, this contradiction may be partially explained by aggradation where the slope
gradient declines and the topsoil stock has been overthickened by developmental upbuilding
(McDonald and Busacca, 1990; Almond and Tonkin, 1999). Also, lateral flow would be expected to
return closer to the surface at downslope positions. In Sommer et al. (2000), while the upslope and
midslope profiles had E horizons separating the Bh from A horizons, the downslope Bh horizons

were exceptionally thick with little to no division between them and the A horizon. In that situation,
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the definition of topsoil used in the present study would have grouped the downslope Bh horizons
into the topsoil stock. Therefore, the Cubist generated model may have been a simplification of the

complex interaction between topography and lateral flow depth and direction.

The rule groups for subsoil SOCy also differentiated for the plan curvature where the slope
gradient was not too high and the stream power index (SPI) was not too low. Concave plan
curvatures (138 m a-scale) were predicted to have increasingly higher and convex plan curvatures
were predicted to have increasingly lower subsoil SOCy,. This relationship with plan curvature
matches patterns of water movement identified to be important to soil formation by Huggett (1975),
where convergent footslopes have the highest deposition rates (Pennock and De Jong, 1987).
Assuming the absence of any restrictive layer below, areas with the highest sediment deposition

rates would be expected to also have the highest volume of water infiltration.

The Cubist generated model for predicting the subsoil SOC,;. Was simpler than any of the
indirect component models. It used only one MLR equation to relate red and infrared predictors to
subsoil SOCck. This model predicted more SOCq,. storage with increasing reflectance in the red
and SWIR-2 bands along with increasing emission in the TIR band — primarily captured on 6 July. Of
these variables, model predictions were dominated by increasing reflectance in the red band
increasing the estimated subsoil SOC,,. This suggested less productive vegetation corresponding
with larger subsoil SOC,.. This trend was counter to the patterns observed in the topsoil models,
but was sensible in the context of how the subsoil stock was defined for this study. Although the
total SOC,,, Was less in areas with lower plant productivity, the subsoil SOCq Was larger relative
to other subsoil areas due to the inverse relationship between topsoil and subsoil H used in this
study. A thicker topsoil stock would mean a thinner subsoil stock — and vice versa — due to the 2 m
depth limit. Regarding the other predictors in this model, increases in SWIR-2 reflectance could have
indicated more plant productivity. However, its use with the TIR band suggested that together they

were indicators of wetter soil conditions.
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4.2. Unconventional predictor selections

The Cubist software made some intriguing selections in regards to predictors that were
calculated using alternative approaches. One example of this was the selection of alternative types
of aspect predictors. The conversion of aspect to northness and eastness is generally considered to
be the preferred method for addressing the circular problem of using aspect as a predictor. In our
approach of including many different predictors in the available pool, we also experimented with
simply rotating the central angle (position of 0°) to each cardinal direction for creating different
aspect predictors. In the models generated for this study, northness and eastness were only selected
for the topsoil SOCy, model. In contrast, rotated versions of aspect were selected for the topsoil

SOC,, topsoil BD, as well as the topsoil and subsoil SK models.

Another example of an intriguing predictor selection by Cubist was the use of bands from the
LandsatLook products. These images were limited to four bands (SWIR-1, NIR, red, and TIR) and
were smoothed by an algorithm to facilitate image selection and visual interpretation. Although the
USGS does not recommend the use of these files for data analysis, the Cubist data mining found
them to be more useful than the data without LandsatLook processing. Most of these selections can
be explained by the greater variety of LandsatLook dates provided in the predictor pool. However,
there were a few instances where Cubist chose LandsatLook data over the unprocessed version of

the same Landsat data.

4.3. Error propagation

Although both the direct and indirect modelling approaches had base maps witha 2 m
resolution available to them, the direct modelling approach produced a more generalized SOCq;ock
map. In terms of predicted error, the cost of trying to account for the variation in all of the variables
related to the SOC,, appeared to be larger relative errors. The SOC;;,x« model from the direct

approach, on the other hand, did not attempt to predict as many variations occurring at small
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phenomenon scales. Because these very local variations were difficult to predict, the estimated error
for the direct approach was less than for the indirect approach for most of the map area. Therefore,
it may be appropriate to consider the direct modelling approach to be a conservative approach for

estimating the SOC; for landscapes.

Possible sources of error in the base maps included atmospheric conditions for the satellite data
and the estimation of bare earth elevation under dense vegetation for the DEM. Several spectral
capture dates were made available in the predictor pool to enable Cubist to not only select the
optimal changes in seasonal vegetation characteristics, but to also select the image with minimal
noise from atmospheric effects such as clouds. Fewer options were available for DTA predictors,
because all DTA predictors needed to be derived from the same high-resolution DEM. The effect of
anomalies in the elevation data was more pronounced for larger a-scales. For example, a small forest
plot — located roughly between the two larger cities in the center of the map area — had not been
fully filtered out by the bare-earth algorithm. Any DTA calculation that included this area in its
analysis neighborhood was incorrectly influenced by those elevation values. The impact on this

study’s models was an increased prediction of SOC in the surrounding area.

The error propagation method used in this study could not directly account for errors in the base
maps. Instead, it could only quantify the combined model, base map, and target variable error
observed at sample locations. Although none of the sample points were in proximity to the before
mentioned error in the DEM, this phenomenon of elevation error affecting scale-dependent
predictors would have applied universally, even where the error was less obvious. The higher
relative error for both mapping approaches in the area surrounding the known problem in the DEM

suggested this potential source of error was at least partially accounted for.

5. Conclusions
This study demonstrated the use of spatial association to predict the SOCy.« and the estimated

error at unsampled locations within a 122 km? landscape at a high-resolution. The Cubist data
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mining software detected patterns in the observed soil data, which was used to predict soil
properties in the greater map region. The ability of the available base maps to predict the variation
of those soil properties was quantified for each conditional rule of the respective models. The spatial
characteristics of the model rules allowed the uncertainty to be mapped along with the target
variable prediction.

There were two main advantages to using data mining software to produce relatively simple
model structures. First, patterns between the predictors and target variables were objectively
identified. Second, the resulting models were simple enough to be interpreted by the user and
related to known processes in the soil system. A relationship between selected predictors and
known processes provided confidence that their use in the model was not coincidental. The
separate modelling of topsoil and subsoil stocks identified a general division between useful
predictors for predicting soil properties at different depths. The data mining in this study suggested
DTA predictors tend to be most useful for topsoil properties, while spectral characteristics of
vegetation and soil moisture tend to be more useful for indicating subsoil properties.

Direct and indirect approaches were tested for predicting the SOC, With the rule-based, MLR
spatial modelling method. Although the spatial patterns in the two maps were generally similar, the
indirect approach produced a map with more spatial variation. While attempting to account for
more sources of variability resulted in less estimated error for the topsoil (indirect MAE = 1.69, direct
MAE = 2.27), the indirect approach had a higher potential for error in the subsoil (indirect MAE =
2.75, direct MAE = 1.37). Because the direct approach accounts for less variation (topsoil: direct R* =
0.58, indirect R* = 0.73; subsoil: direct R* = 0.14, indirect R* = 0.34), but also results in a lower total
MAE (direct MAE = 3.64, indirect MAE = 4.44), it should be considered a more conservative

prediction of the SOCg.’s spatial distribution. The choice of which approach is best will likely

depend on a given situation’s need to prioritize the representation of spatial pattern or to minimize

estimated error.
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Figure 1. Locations of sample points and study area within Germany.
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Figure 2. Topsoil SOCgx modelled by a) the direct approach and b) the indirect approach. Overlaid
on a hillshade to show relationship with relief and field boundaries.
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Figure 3. Subsoil SOC,,« modelled by a) the direct approach and b) the indirect approach. Overlaid
on a hillshade to show relationship with relief and field boundaries.

39



SOC
kg/m?
[ Jo-10
[ ]10-15
15-20
B 20-25
B 25 - 30
B 0-35
[ RSV
l:l Urban/Water

1076 a b ‘ ¢ Kbt sl m——tn| N
1077 Figure 4. Total SOC;. (topsoil + subsoil) modelled by a) the direct approach and b) the indirect
1078  approach. Overlaid on a hillshade to show relationship with relief and field boundaries.

Difference
kg/m?

B s0--15

|:| Urban/Water

1079 [l :
1080  Figure 5. Calculated difference between the direct and indirect approaches of modelling the total

1081  SOC,« Negative values are where the indirect approach predicted more SOC;,.« than the direct
1082  approach and positive values are where the indirect approach predicted less.



1083
1084

1085

indirect approach.

Relative Error

B0
B o2-04
I lo4-06
| Jo6-08
I 0s8-1.0
B o-12
Bl 214
|:| Urban/Water

41



1086

1087
1088
1089

1090

Tables

Table 1. Descriptive statistics for the observed target variables. BD = total bulk density (g cm™), SK =
particles > 2 mm (%), SOCy, = SOC concentration (%), H = stock thickness (cm), and SOCg; = mass of

organic carbon per unit area of soil (kg m™).

Topsoil BD SK H SOC,, SOCq;0ck
Min. 1.18 0.00 10 0.75 1.80
Median 1.50 1.30 40 1.46 9.27
Mean 1.51 3.15 43.61 1.56 9.82
Max. 1.85 44.70 105 4.03 28.03
Std. Dev. 0.11 5.50 15.35 0.53 4.49

Subsoil
Min. 1.33 0.00 18 0.02 0.07
Median 1.63 4.07 86 0.23 3.10
Mean 1.63 8.99 86.66 0.26 3.37
Max. 1.96 63.36 155 0.71 9.86
Std. Dev. 0.13 12.28 32.60 0.13 2.04
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Table 2. Predictor variables considered in this study.

Predictor Software Analysis Scale
Elevation (LiDAR, bare-earth) n/a 2m

Slope gradient GRASS 6-195m
Profile curvature GRASS 6-195m
Plan curvature GRASS 6-195m
Aspect -west {rotated for N, E, and S} GRASS 6-345m
Aspect (8 classes) ArcGIS (raster calculator) 6-345m
Northness transformed from aspect 6-345m
Eastness transformed from aspect 6-345m
Longitudinal curvature SAGA 10m
Cross-section curvature SAGA 10 m
Convexity SAGA 10m
Relative elevation - rect. neighborhood ArcGIS toolbox 6-4000 m
Relative elevation - circ. neighborhood ArcGIS toolbox 6-4000 m
Topographic position index (TPI) ArcGIS toolbox 6-4000 m
TPI - slope position ArcGIS toolbox multiple
TPI - landform classification ArcGIS toolbox multiple
Hillslope position ArcGIS toolbox multiple
Catchment area SAGA n/a
Catchment slope SAGA n/a
Channel network base level SAGA n/a
Convergence index SAGA n/a

Flow accumulation SAGA n/a

Flow path length SAGA n/a
Length-slope factor SAGA n/a
Modified catchment area SAGA n/a
Relative slope position SAGA n/a

SAGA wetness index SAGA n/a
Stream power SAGA n/a
Vertical distance to channel SAGA n/a
Wetness index SAGA n/a
Geology (1:25,000 legacy map) n/a 423 ha (mean)
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Table 2 (cont’d).

Predictor Resolution Date

AVIS - LAl-green leaf area 5m 21 Jun. 2005
AVIS - LAl-brown leaf area 5m 21 Jun. 2005
Ikonos 4 m, 4 bands 4 Jul. 2006
Ikonos - panchromatic Im 4 Jul. 2006
Ikonos - LAI 5m 4 Jul. 2006
Ikonos - dry matter 5m 4 Jul. 2006
Landsat 5 NDVI (USGS, 2014) 30m 11 Jun. 2006
Landsat 5 NDVI (USGS, 2014) 30m 22 Jul. 2006
Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 20 Jun. 2006
Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 6 Jul. 2006
Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 22 Jul. 2006
Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 15 Sep. 2006
Landsat 5 LandsatLook (USGS, 2014) 30m, 3+1 band 17 Oct. 2006
Landsat 5 TM (USGS, 2014) 30m, 6 bands; 60m, 1 band 11 Jun. 2006
Landsat 5 TM (USGS, 2014) 30m, 6 bands; 60m, 1 band 22 Jul. 2006
Landsat 5 SR (GLCF, 2014) 30m, 7+2 bands 11 Jun. 2006
Landsat 5 SR (GLCF, 2014) 30m, 7+2 bands 22 Jul. 2006
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1095 Table 3. Relative use (%) of predictors in models derived by Cubist for the topsoil and subsoil stocks.
1096 BD = total bulk density (g cm™), SK = particles > 2 mm (%), SOCy = SOC concentration (%), H = stock
1097 thickness (cm), and SOC;,.« = mass of organic carbon per unit area of soil (kg m?).
Topsoil Subsaoil
Rules MLR  Predictor Rules MLR  Predictor
BD BD
100% 100% Relative elev. - circ. (2000 m) 100% 0% Geology map units
51%  100% Landsat5 SR, band 7 (6 Jun. 2006) 68%  100% LandsatLook, band 5 (6 Jul. 2006)
17%  100% Relative elev. - rect. (20 m) 100% Landsat5 NDVI (22 Jul. 2006)
96%  LandsatLook, band 5 (17 Oct. 2006) 100% LandsatLook, band 6 (6 Jul. 2006)
87% Relative elev. - rect. (10 m) 100% Landsat5 TM, band 1 (11 Jun. 2006)
87%  Aspect, N central angle (215 m) 68%  Landsat5 SR, band 7 (22 Jul. 2006)
83%  Landsat5 SR, band 2 (6 Jun. 2006) 32%  Landsat5 SR, band QA (6 Jun. 2006)
34%  SAGA wetness index 32%  Landsat5 SR, band 1 (22 Jul. 2006)
13%  Relative elev. - circ. (800 m) 32%  Landsat5 SR, band 6 (22 Jul. 2006)
SK SK
100% 100% TPl (70 m) 100% 3% Stream power
94% 0% Aspect class (70 m) 76%  76%  Landsat5 SR, band 2 (11 Jun. 2006)
39% 16%  Relative elev. - rect. (550 m) 21% 0% Profile Curvature (118 m)
37%  14%  LandsatLook, band 6 (17 Oct. 2006) 15% 79%  Landsat5 SR, band 4 (6 Jun. 2006)
94%  Relative elev. - rect. (1800 m) 85%  Catchment slope
84%  Landsat5 NDVI (11 Jun. 2006) 76%  LandsatLook, band 3 (20 Jun. 2006)
80%  Aspect, N central angle (50 m) 56%  Landsat5 NDVI (11 Jun. 2006)
78%  Landsat5 TM, band 4 (20 Jun. 2006) 56%  LandsatLook, band 4 (20 Jun. 2006)
78%  Relative elev. - circ. (3000 m) 56%  Aspect, W central angle (70 m)
64%  Aspect, N central angle (130 m) 21%  SAGA wetness index
64%  Aspect, S central angle (345 m)
64% Flow path length
37%  Aspect, N central angle (295 m)
H H
100% 93%  Relative elev. - rect. (1100 m)
39%  100% LandsatLook, band 5 (15 Sept. 2006) Cubist not used
34% 34% LandsatLook, band 5 (22 Jul. 2006) (based on 2 m - topsoil thickness)
25% 93%  lkonos, band 2 (4 Jul. 2006)
18% 7% LandsatLook, band 4 (17 Oct. 2006)
100% Relative elev. - rect. (1200 m)
93% lkonos, band 1 (4 Jul. 2006)
93%  Relative elev. - rect. (1300 m)
74% LandsatLook, band 4 (15 Sept. 2006)
74%  TPI (1800 m)
74% TPI (2600 m)
74% Flow path length
28% Relative elev. - circ. (650 m)
7% Landsat5 TM, band 6 (11 Jun. 2006)
1098
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Table 3 (cont’d).

Topsoil Subsoil
Rules MLR  Predictor Rules MLR  Predictor
SOC,, SOCy,
100% 0% Geology map units 100% 100% Slope gradient (98 m)
49%  39%  Relative elev. - rect. (3200 m) 74%  74%  Stream power
39% 69%  Relative elev. - rect. (2000 m) 55% 55%  Plan curvature (138 m)
33% 74%  Flow path length 74%  Slope gradient (90 m)
21%  62%  Northness (155 m) 74%  Slope gradient (138 m)
81%  TPI (1200 m) 74%  Slope gradient (185 m)
80%  Relative elev. - rect. (250 m) 74%  Relative elev. - rect. (3400 m)
80%  Northness (345 m) 55%  Plan curvature (90 m)
74%  Aspect, W central angle (90 m) 19%  TPI (950 m)
69%  Relative elev. - circ. (1600 m) 19%  Vertical distance to channel
69% TPI (1100 m)
62%  TPI (550 m)
62%  Northness (215 m)
62%  Eastness (345 m)
62%  Modified catchment area
32%  Aspect, W central angle (110 m)
21% TPI (250 m)
21%  Aspect, W central angle (175 m)
12%  Northness (6 m)
SOCstock SOCstock
100% 48%  Relative elev. - rect. (1100 m) 100% LandsatLook, band 5 (6 Jul. 2006)
48%  100% Vertical distance to channel 100% LandsatLook, band 3 (6 Jul. 2006)
80%  Channel network base level 100% LandsatLook, band 6 (6 Jul. 2006)
100% Landsat5 TM, band 7 (11 Jun. 2006)

Table 4. Fitting performance for the respective models. The model’s efficiency (ME) is the ratio
between the model’s mean absolute error (MAE) and the MAE that would result from only using the
mean value as the model. Cubist reports the ME as relative error, but it is renamed here to avoid

confusion with the more common definition of relative error. An ME of greater than one indicates

that the model is not performing well.

Topsoil models BD SK H SOC,,

Indirect - SOC;;oci

Direct - SOCock

MAE 005 1.36 590 0.14 1.69 2.27

ME 052 0.41 047 0.34 0.49 0.66

R? 069 0.85 071 0.86 0.73 0.58
Subsoil models

MAE 006 3.77 590 0.06 2.75 1.37

ME 0.58 0.42 047 0.59 1.67 0.83

R? 067 0.79 071 0.55 0.34 0.19
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Table 5. Cross-validation performance for the respective models. Note that although the R* was
severely reduced for most models, the MAE was generally only increased a small amount.

Topsoil models BD SK H SOC,, Direct - SOCock
MAE 0.08 2.70 11.80 0.27 2.94
ME 0.86 0.82 093 0.66 0.85
R? 0.26 0.08 0.12 0.61 0.27
Subsoil models
MAE 0.09 7.18 11.80 0.09 1.42
ME 0.80 0.80 0.93 0.98 0.86
R? 036 026 012 0.05 0.17

Table 6. Skewness coefficients for the residuals of each model.

BD SK H SOC;, Indirect - SOCo« Direct - SOCg;0c
Topsoil models -0.25 -1.15 0.17 1.04 0.10 0.37
Subsoil models  0.11 -0.74 -0.17 1.18 -1.61 -0.16
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