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Abstract

Heat and water movement in variably saturated freezing soils is a strongly coupled
phenomenon. The coupling is a result of the effects of sub-zero temperature on soil water
potential, heat carried by water moving under pressure gradients, and dependency of soil
thermal and hydraulic properties on soil water content. This makes water and heat movement
in variably saturated soils a highly non-linear coupled process. This study presents a one-
dimensional cellular automata (direct solving) model to simulate coupled heat and water
transport with phase change in variably saturated soils. The model is based on first order mass
and energy conservation principles. The water and energy fluxes are calculated using first
order empirical forms of Buckingham-Darcy’s law and Fourier’s heat law respectively. The
water-ice phase change is handled by integrating along experimentally determined soil
freezing curve (unfrozen water content and temperature relationship) obviating the use of
apparent heat capacity term. This approach highlights a further subtle form of coupling one in
which heat carried by water perturbs the water content — temperature equilibrium and
exchange energy flux is used to maintain the equilibrium rather than affect temperature
change. The model is successfully tested against analytical and experimental solutions.
Setting up a highly non-linear coupled soil physics problem with a physically based approach

provides intuitive insights into an otherwise complex phenomenon.
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1 Introduction

Variably saturated soils in northern latitudes undergo repeated freeze-thaw cycles. Freezing
reduces soil water potential considerably because soil retains unfrozen water (Dash et al.,
1995). Resulting steep hydraulic gradients move considerable amounts of water upward from
deeper warmer soil layers that accumulates behind the freeezing front. The resulting
redistribution of water alters soil thermal and hydraulic properties, and transports heat from
one soil zone to another. As water freezes to ice, the latent heat maintains soil temepratures
close to 0°C for long periods of time. The water and energy redistribution has significant
implications for regional hydrology, infrastructure and agriculture. Understanding the physics
behind this complex coupling remains an active area of research. Field studies have been
widely used to better understand the mechanism of these thermo-hydraulic cycles (e.g.,
Hayashi et al., 2007). Innovative column studies under controlled laboratory settings have
allowed further insights by isolating the effects of factors that drive soil freezing and thawing,
a separation impossible to achieve in the field (e.g., Nagare et al., 2012). Mathematical
models, describing the mechanism of water and heat movement in variably saturated freezing
soils, have been developed to complement these observational studies. Analytical solutions of
freezing and thawing front movement have been developed and applied (e.g. Stefan, 1889;
Hayashi et al., 2007) and numerical models have replicated the freezing induced water
redistribution with reasonable success (e.g., Hansson et al., 2004). Optimization of existing
numerical modelling approaches also remains an active area of research. For example,
improvements to numerical solving techniques to address sharp changes in soil properties,
especially behind freezing and thawing fronts, and during special conditions such as
infiltration into frozen soils have been reported recently (e.g. Dall’ Amico et al., 2011).

Although the coupling of heat and water movement in variably saturated freezing soils is
complex, fundamental laws of heat and water movement coupled with principles of energy
and mass conservation are able to explain the physics to a larger extent. There is a paradigm
shift in modelling of water movement in variably saturated soils using physically based
approaches. For example, HydroGeoSphere and Parflow (Brunner and Simmons, 2012; Kollet
and Maxwell, 2006) are examples of codes that explicitly use Richard’s equation to model
subsurface flow. Thus, use of derived terms such as specific yield is not required. Mendicino
et al. (2006) reported a three dimensional CA (direct solving) model to simulate moisture

transfer in unsaturated zone. Cervarolo et al. (2010) extended the application of this CA
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model by coupling it with a surface-vegetation-atmosphere-transfer scheme to simulate water
and energy flow dynamics. Direct solving allows for unstructured grids while describing the
coupled processes based on first order equations. Use of discrete first order formulations
allow one to relax the smoothness requirements for the numerical solutions being sought. This
has advantanges, particularly in large scale models, wherein use of relatively coarse spatial
discretization maybe feasible. Therefore, it is important to expand application of direct
solving to further complicated unsaturated soil processes.

This study presents a coupled CA model to simulate heat and water transfer in variably
saturated freezing soils. The system is modelled in terms of the empirically observed heat and
mass balance equations (Fourier’s heat law and Buckingham-Darcy equation) and using
energy and mass conservation principles. The water-ice phase change is handled with a total
energy balance including sensible and latent heat components. In a two-step approach similar
to that of Engelmark and Svensson (1993), the phase change is brought about by the residual
energy after sensible heat removal has dropped the temperature of the system below freezing
point. Knowing the amount of water that can freeze, the change in soil temperature is then
modelled by integrating along the soil freezing curve. To our knowledge, coupled cellular
automata have not yet been used to explore simultaneous heat and water transport in frozen
variably saturated porous media. The model was validated against the analytical solutions of
(1) heat conduction problem (Churchill, 1972), (2) steady state convective and conductive
heat transport in unfrozen soils (Stallman, 1965), (3) unilateral freezing of a semi-infinite
region (Lunardini, 1985), and (4) the experimental results of freezing induced water

redistribution in soils (Mizoguchi, 1990).

2 Cellular Automata

Cellular automata were first described by von Neumann (1948) (see von Neumann and Burks,
1966). The CA describe the global evolution of a system in space and time based on a
predefined set of local rules (transition rules). Cellular automata are able to capture the
essential features of complex self-organizing cooperative behaviour observed in real systems
(Hachinski, 2001). The basic premise involved in CA modelling of natural systems is the
assumption that any heterogeneity in the material properties of a physical system is scale
dependent and there exists a length scale for any system at which material properties become
homogeneous (Hutt and Neff, 2001). This length scale characterizes the construction of the

3
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spatial grid cells (elementary cells) or units of the system. There is no restriction on the shape
or size of the cell with the only requirement being internal homogeneity in material properties
in each cell. One can then recreate the spatial description of the entire system by simple
repetitions of the elementary cells. The local transition rules are results of empirical
observations and are not dependant on the scale of homogeneity in space and time. The basic
assumption in traditional differential equation solutions is of continuity in space and time. The
discretization in models based on traditional numerical methods needs to be over grid spacing
much smaller than the smallest length scale of the heterogeneous properties making solutions
computationally very expensive. The CA approach is not limited by this requirement and is
better suited to simulate spatially large systems at any resolution, if the homogeneity criteria
at elementary cell level are satisfied (Ilachinski, 2001; Parsons and Fonstad, 2007). In fact, in
many highly non-linear physical systems such as those describing critical phase transitions in
thermodynamics and statistical mechanical theory of ferromagnetism, discrete schemes such

as cellular automata are the only simulation procedures (Hoekstra et al., 2010).

On the flip side, explicit schemes like CA are not unconditionally convergent and hence given
a fixed space discretization, the time discretization cannot be arbitrarily chosen. Another
limitation of the CA approach was thought to be the need for synchronous updating of all
cells for accurate simulations. However, CA models can be made asynchronous and can be
more robust and error resistant than a synchronous equivalent (Hoekstra et al., 2010).

The following section (2.1) describes a 1D CA in simplified, but precise mathematical terms.
It is then explained with an example of heat flow (without phase change) in a hypothetical soil

column subjected to a time varying temperature boundary condition.

2.1 Mathematical Description

Let Sit be a discrete state variable which describes the state of the i cell at time step t. If one
assumes that an order of N elementary repetitions of the unit cell describe the system

spatially, then the complete macroscopic state of the system is described by the ordered

Cartesian product S; ®S; ®..®S; ®..®S;, at time t. Let a local transition rule ¢ be

defined on a neighbourhood of spatial indicial radius », ¢ : S/, ®S/,,®..®S/

i—r+l i+r

— S
where i € [1+r, N-r]. The global state of the system is defined by some global mapping, y:
S, ®S,®...®S/ ®..®S), —G" where G' is the global state variable of the system defining

the physical state of the system at time t. Given this algebra of the system, G'*1is given by
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G = y{glo} )@ g} )®...® g} )®...® g(), )) (1)

where o' =S, ®S! , ®..®S! . The quantity r is generally called the radius of interaction

i—r+l

and defines the spatial extent on which interactions occur on the local scale. In the case of the
1D CA, the only choice of neighbourhood which is physically viable is the standard von
Neumann neighbourhood (Fig. 1).

2.2 Physical description based on heat flow problem in a hypothetical soil

column

Let us consider the CA simulation of heat flow in a soil column of length L. and a constant
cross sectional area. The temperature change in the column is driven by a time varying
temperature boundary condition applied at the top. It is assumed that no physical variation in
the soil properties exist in the column at length intervals smaller than Ax. Each cell in the 1D
CA model can therefore be assumed to be of length Ax. Therefore, the column can be
discretized using Lc/Ax elementary cells. To simulate the spatio-temporal evolution of soil
temperature in the column, an initial temperature for each elementary cell has to be set. To
study the behaviour of the soil column under external driving (time varying temperature), a
fictitious cell is introduced at the top and/or the bottom of the soil column and subjected to
time varying temperatures. The transition rules need to be defined now. Once the transition
rules of heat exchange between neighbours are defined, the fictitious boundary cells interact
with the top and/or bottom cells of the soil column as any other internal cell based on the
prescribed rules and the predefined temperature time series. Although the same set of rules
govern interaction among all cells of the column, heat exchange cannot affect the temperature
of the fictitious cells as that would corrupt the boundary conditions. This is handled by
assigning infinite specific heats to the fictitious cells. This allows evolution of the internal
cells and the boundary cells according to the same mathematical rules / empirical equations.
The preceding mathematical description of the CA algebra is based on the assumption that the
state variable defining each cell is discrete in space and time. But soil temperatures are
considered to be continuous in space and time. The continuous description of the soil
temperature can be adapted to the CA scheme by considering small time intervals over which
the temperature variations are not of interest and hence for all practical purposes can be
assumed constant. Conditions for convergence of the numerical temperature profile set an

upper limit on the size of this time interval for a given value of Ax. Therefore, once the length
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scale of homogeneity Ax in the system and the local update rules have been ascertained, the
CA is ready for simulation under the given initial and boundary conditions. Eq. (2) and Eg.
(3) [section 3], applied sequentially, would be the local update rules for this simple case of
heat flow in a soil column (without phase change) driven by time varying temperatures at the

top.

The meaning of the terms used in the mathematical description of CA can now be explained
with respect to the heat flow simulation for the hypothetical soil column: S!is the temperature

of the i cell at time t, r=1, ¢ is a sequential application of Eq. (2) and Eq. (3) describing heat
loss/gain by a cell due to temperature gradients with its two nearest neighbours and

temperature change due to the heat loss/gain, respectively, and y is the identity mapping.

3 Coupled heat and water transport in variably saturated soils

The algorithm developed for this study simultaneously solves the heat and water mass
conservation in the same time step. The implementation is based on the assumption of nearest
neighbour interactions, i.e. r=1. The one-dimensional conductive heat transport in variably
saturated soils can be given by the heat balance equation

i+1 Tg“ _'|'i

Q, = Z li,g ’ |
£=i-1 i

, §#d, @)

where subscripts i and ( refer to the cell and its active neighbours, gn is the net heat flux
(Js'tm2) for the i cell, T is cell temperature (°C), Ji is average effective thermal conductivity
of the region between the i and the ¢ cells (Js*m™°C), and i is the distance between the
centres of the i and the ¢™ cells (m). Effective thermal conductivity can be calculated using
one of the popular mixing models (e.g., Johansen, 1975; Campbell, 1985). The empirical
relationship between heat flux from Eq. (2) and resulting change in cell temperature
(ATi = T2 TiY) is given as

Qh,i = th—At =G, -AT;, 3)
where |; is the length of the cell (m) and Ci (Jm2°C™?) is the effective volumetric heat capacity
of the cell such that

C,=C,0,+C.0,.+C.0,+C.0,, (4)

ice “ice
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where 6 is volumetric fraction (m®m) and subscripts w, ice, s, and a represent water, ice, soil

solids and air fractions.

The mass conservation equation in 1D can be written as

A® q
0 -——+ P, ._W+0 S :o’ 5
w At w I w S ( )

®:6W+@6ice’ (6)
p is density (kgm=3), @ is the total volumetric water content (m3m), qu is the Buckingham-

Darcy flux (ms™?), and S; is sink/source term. In unfrozen soils, fice= 0 and @ = 6.

Buckingham-Darcy’s equation is used to describe the flow of water under hydraulic head
gradients wherein it is recognized that the soil matric potential () and hydraulic conductivity
(k) are functions of liquid water content (6w). The dependency of w and k on 6y can be
expressed as a constitutive relationship. The constitutive relationships proposed by Mualem-
van Genuchten (van Genuchten, 1980) defining y(6w) and k(@) are used in this study

w(0,) = M ) (7)

k@,) =K, -(S,)* -[1—(1—(se)mjm} : (8)

S — res , (9)

where res (M®m3) is the residual liquid water content,  (m®m=) is total porosity, Ks (ms™?) is
the saturated hydraulic conductivity, and a (m™), n and m are equation constants such that
m=1-1/n. For an elementary cell in a 1D CA model, the Buckingham-Darcy flux in its

simplest form can be written as

L v+z), —\y+12)
0= Sk, bkl
g=i-1 i

, C#1, (10)

where all subscripts have the same meaning as introduced so far, z is the cell elevation and k

represents the average hydraulic conductivity of the region between the it and the ¢ cells. In
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this study, phase change and associated temperature change is brought about by integrating
along a soil freezing curve (SFC). SFCs can be defined because the liquid water content in
frozen soils must have a fixed value for each temperature at which the liquid and ice phases
are in equilibrium, regardless of the amount of ice present (Low et al., 1968). Soil freezing
curves for different types of soils developed from field and laboratory observations between
liquid water content and soil temperature have been widely reported (e.g., Anderson and
Morgenstern, 1973; Shahli and Stadler, 1996). Van Genuchten’s model can be used to define
a SFC (Eq. 7), wherein y(6y) is replaced with T(6), and n, m and o« (°C) are equation

constants.

4 The coupled CA model

Fig. 2 shows a flow chart describing the algorithm driving the coupled CA code. The code
was written in MATLAB®. Let the superscript t denote the present time step and subscript i
be the spatial index across the grid where each node represents centres of the cell. The thermal
conduction and hydraulic conduction modules represent two different algorithms that
calculate the net heat (qn,i) and water (qw,i) fluxes respectively across the i cell. In essence,
the thermal conduction and hydraulic conduction codes run simultaneously and are not
affected by each other in the same time step. However, the processes are not independent and
are coupled through updating of model parameters and state variables at end of each time
step. Hydraulic conduction is achieved by applying Eq. (10) to each elementary cell using the
hydraulic gradients between it and its immediate neighbours (r=1). Similarly, Eq. (2) is used
to calculate the heat flux between each elementary cell and its immediate neighbours using
the corresponding thermal gradients. The change in mass due to the flux qw, is used to obtain
change in pressure head (Ayi = wit™ - ') from w(6w) relationship. The updated value of total
water content is then used to update the volumetric heat capacity Ci (Eq. 4). The updated
value of C; is used as an input to the energy balance module along with computed heat flux
On,i- This represents the first stage of coupling between hydraulic and thermal processes. The
energy balance module computes the total change in ice and water content due to phase
change, and the total temperature change (ATi) due to a combination of thermal conduction

and phase change.

The energy balance module is explained using an example of a system wherein the soil
temperature is dropping and phase change may take place if cell temperature drops below
8
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freezing point of pure water (Trw = 0 °C). Inside the energy balance module, the change in
temperature (ATi) is calculated using Eq. (3) and values of Ci and Qn,i assuming that only
thermal conduction takes place. If the computed AT; for a given cell is such that T;*"2t > Ty,
then water cannot freeze; cell temperatures are updated without phase change and the code
moves into the next time step. In the approach of this study, phase change and associated
temperature change can occur if and only if the present cell temperature (Ti) and water content
(6w,i) represent a point on the SFC. This point along the SFC (Fig. 3) is defined here as the
critical state point (Terit, Owerit). If ATi gives Ti "4t < Ty for any cell, then freezing point
depression along the SFC accounts for change in temperature due to freeze-thaw. The
freezing point depression or Terit is defined for the cell by comparing the cell 6w, with the
SFC. However, the coupled nature of heat and water transport in soils perturbs the critical
state from time to time, e.g., when freezing induces water movement towards the freezing
front or infiltration into frozen soil leads to accumulation or removal of extra water from any
cell. In such a case, Qn,i needs to be used to bring the cell to the critical state. This may require
thermal conduction without phase change (Tcrit > Ti) or freezing of water without temperature
change (Terit < Ti). This process gives us an additional change in temperature or water content
which is purely due to the fact that the additional water accumulation disturbs the critical
state. This is another and a subtle form of coupling between heat and water flow. Because of
the above consideration to perturbation of critical state caused by additional water
added/removed from a cell, infiltration into frozen soils during the over-winter or spring melt

events need no further modifications to the process of water and heat balance.

If Qn,i is such that a cell can reach critical state and still additional heat needs to be removed,
then this additional heat (Qres,i)) removal leads to freezing of water. Freezing of water leads to

change in the temperature of the cell such that

H Qres,i T
mm(@wyi,L—J = TJ.dewj : (11)

f

crit

where L is the latent heat of fusion (334000 Jkg?) and Tnew,i is the new temperature of the cell
(Fig. 3). If the change in water content due to freezing is such that Ow,i = Ores, then no further
freezing of water can take place and Qres,i is used to decrease the temperature of the cell using
Eqg. (3) and the updated value of C; (i.e., after accounting for change in C;i due to phase
change). The soil thawing case is exactly similar as described above; the only dissimilarity is

that a different SFC may be used if hysteric effects are observed in SFC paths as observed in

9
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studies by Quinton and Hayashi (2008), and Smerdon and Mendoza (2010). If the cell
temperature is above freezing, then the matric potential is calculated using Eq. (7). For cell
temperatures below freezing point, the water pressure (matric potential) can be determined by

the generalized Clausis-Clapeyron equation by assuming zero ice gauge pressure

Lf-ﬂ%-;‘&w:g.&{'i, (12)
where g is acceleration due to gravity (9.81 ms?). At the end of the energy balance
calculations, temperatures of all the cells are updated using the ATi computed in energy
balance module. Water content for each cell is updated by considering the change due to
freeze/thaw inside the energy balance module and qw,. Hydraulic conductivity of each cell is
updated (Eg. 8) using the final updated values of water content. Pressure and total heads in
each cell are updated considering water movement (Eg. 7) and freezing/thawing (Eq. 12). The
volumetric heat capacity of each cell is updated one more time (Eq. 4) to incorporate the
changes due to freeze/thaw inside the energy balance module. Thermal conductivity of each
cell is updated using a mixing model (e.g., Johansen, 1975). This completes all the necessary

updates and the model is ready for computations of the next time step.

The CA scheme described here is not unconditionally convergent. Hence, the size of the time
step cannot be arbitrarily chosen. In our implementation of the CA model, adaptive time

stepping has been achieved following the convergence analysis reported in Appendix A.

5 Comparison with analytical solutions

5.1 Heat transfer by pure conduction

The ability of the CA model to simulate pure conduction under hydrostatic conditions was
tested by comparison to the analytical solution of one-dimensional heat conduction in a finite
domain given by Churchill (1972). A soil column with total length (L¢) of 4 m was assumed to
have different initial temperatures in its upper (Tu = 10 °C) and lower (T) = 20 °C) halves
(Fig. 4). The system is hydrostatic at all times and there is no flow. At the interface, heat
conduction due to the temperature gradient will occur until the entire domain reaches an
average steady state temperature of 15°C. The analytical solution given by Churchill (1972)

can be expressed as

10
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The parameters used in analytical examples for Churchill (1972), and CA code are given in

Table 1. There is excellent agreement between the analytical solution and the CA simulation
(Fig. 4).

5.2 Heat transfer by conduction and convection

Stallman’s analytical solution (1965) to the subsurface temperature profile in a semi-infinite
porous medium in response to a sinusoidal surface temperature provides a test of the CA
model’s ability to simulate one dimensional heat convection and conduction in response to a

time varying Dirichlet boundary.

Given the temperature variation at the ground surface described by

T(z,t) =T, +A.sin(2'”'tj, (14)
T

the temperature variation with depth is given by

T(z,t)=Aea‘z-sin(z'”'t—b-zJ+Tm, (15)
T
0.5
_ 5 4—0.5 2
aCp) 1(4:C,p, 1(a:Cupu a;CuPy
a={l[ZL] += + - , (16)
Ar 4 22 2\ 22 22
0.5
(oY 1(q.Cop Y 1 1(a.Cop. Y
f= (_pj + 2| AwwPu 42| AwwPu , (17)
Ar 4\ 22 20 22

11
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where A is the amplitude of temperature variation (°C), Tsur is the average surface
temperature over a period of 7 (S), T is the initial temperature of soil column and temperature
at infinite depth, and g is the specific flux through the column top.

The parameters used in analytical examples for Stallman (1965), and CA code are given in
Table 2. The coupled CA code is able to simulate the temperature evolution due to conductive

and convective heat transfer as seen from the excellent agreement with the analytical solution
(Fig. 5).

5.3 Heat transfer with phase change

Lunardini (1985) presented an exact analytical solution for propagation of subfreezing
temperatures in a semi-infinite, initially unfrozen soil column with time t. The soil column is
divided into three zones (Fig. 6a) where zone 1 is fully frozen with no unfrozen water; zone 2
is ‘mushy’ with both ice and water; and zone 3 is fully thawed. The Lunardini (1985) solution

as described by McKenzie et al. (2007) and is given by following set of equations:

T =00,-T) " (e{f(z(l;/)_)j T, )
| gm0
erf (y erf( \/Z ] (19)

)
erf [7/ \/% j , (20)

where T, T, and T3 are the temperatures at distance x from the temperature boundary for

Tz = (Tf _Tm)

Ts :(To _Tf)'

zones 1, 2, and 3 respectively; To, Tm, Tt, and Ts are the temperatures of the initial conditions,
the solidus, the liquidus, and the boundary respectively; D; and Ds are the thermal
diffusivities for zones 1 and 3, defined as 41/C1 and 43/Cz where Cyand Cs, and A1 and 14 are

the volumetric bulk-heat capacities (Jm= °C™?) and bulk thermal conductivities (Js*m™ °C?)

12
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respectively of the two zones. The thermal diffusivity of zone 2 is assumed to be constant

across the transition region, and the thermal diffusivity with latent heat, D4, is defined as:

A
D, = 2
C, + yaLiAS , (21)
Tf _Tm

where yq is the dry unit density of soil solids, and A& = & — & where & and & are the ratio of
unfrozen water to soil solids in zones 1 and 3 respectively. For a time t in the region from 0 <

X < Xa(t) the temperature is T1 and Xu(t) is given by:

X, (t) = 29,/Dt

(22)
and from Xi(t) < x < X(t) the temperature is T> where X(t) is given by:
X(t)=2y,/D,t
’ (23)

and for x > X(t) the temperature is Ts. The unknowns, $ and y, are obtained from solution of

the following two simultaneous equations

A, D
1 “2erf(9) | %
S D,

Tn =T erf (y)—erf(g % ] (24)

A, B D,
(r,-T, )/11. D%D _e‘yz(l‘gij ) erf (y) erf(&l\/;J
To =Ty * erfc(y\/%j , (25)

The verification example based on Lunardini (1985) analytical solution used in this study is

the same as used by McKenzie et al. (2007). Lunardini (1985) assumed the bulk-volumetric
heat capacities of the three zones, and thermal conductivities in each zone to be constant. It
was also assumed for the sake of the analytical solution that the unfrozen water varies linearly
with temperature. As stated by Lunardini (1985), if unfrozen water varies linearly with
temperature then an exact solution may be found for a three zone problem. Although this will

be a poor representation of a real soil system, it will constitute a valuable check for

13
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approximate solution methods. The linear freezing function used in this study is shown in Fig.
6b and the parameters used in Lunardini’s analytical solution are given in Table 3. The
excellent agreement between the analytical solution and coupled CA model simulations (Fig.
7a and Fig. 7b) for two different cases of Tm shows that the model is able to perfectly simulate

the process of heat conduction with phase change.

6 Comparison with experimental data

Hansson et al. (2004) describe laboratory experiments of Mizoguchi (1990) in which freezing
induced water redistribution in 20 cm long Kanagawa sandy loam columns was observed. The
coupled CA code was used to model the experiment as a validation test for simulation of frost
induced water redistribution in unsaturated soils. Four identical cylinders, 8 cm in diameter
and 20 cm long, were packed to a bulk density of 1300 kgm resulting into total porosity of
0.535 m®m3. The columns were thermally insulated from all sides except the tops and brought
to uniform temperature (6.7 °C) and volumetric water content (0.33 m3m=3). The tops of three
cylinders were exposed to a circulating fluid at —6 °C. One cylinder at a time was removed
from the freezing apparatus and sliced into 1 cm thick slices after 12, 24, and 50 hours. Each
slice was oven dried to obtain total water content (liquid water + ice). The fourth cylinder was
used to precisely determine the initial condition. The freezing induced water redistribution
observed in these experiments was simulated using the coupled CA code. Parameters used
were: saturated hydraulic conductivity of 3.2x107° ms™ and van Genuchten parameters a =
1.11 m?, n = 1.48. The hydraulic conductivity of the cells with ice was reduced using an
impedance factor of 2. Thermal conductivity formulation of Campbell (1985) as modified and
applied by Hansson et al. (2004) was used. In their simulations of the Mizoguchi (1990)
experiments, Hansson et al. (2004) calibrated the model using a heat flux boundary at the top
and bottom of the columns. The heat flux at the surface and bottom was controlled by heat
conductance terms multiplied by the difference between the surface and ambient, and bottom
and ambient temperatures, respectively. Similar boundary conditions were used in the CA
simulations. The value of heat conductance at the surface was allowed to decrease nonlinearly
as a function of the surface temperature squared using the values reported by Hansson et al.
(2004). The heat conductance coefficient of 1.5 Js'm? °C? was used to simulate heat loss
through the bottom. Hansson and Lundin (2006) observed that the four soil cores used in the

experiment performed by Mizoguchi (1990) were quite similar in terms of saturated hydraulic
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conductivity, but probably less so in terms of the water holding properties where more
significant differences were to be expected. Such differences in water holding capacity would
result in significant differences in unsaturated hydraulic conductivities of the columns at
different times during the freezing experiments. The simulated values of total water content
agree very well with the experimental values (Fig. 8). The region with sharp drop in the water
content indicates the position of the freezing front. There is clear freezing induced water
redistribution, which is one of the principal phenomena for freezing porous media and is well
represented in the coupled CA simulations. Mizoguchi’s experiments have been used by
number of researcher for validation of numerical codes (e.g., Hansson et al., 2004; Painter,
2011; Daanen et al., 2007). The CA simulation shows comparable or improved simulation for
total water content as well as for the sharp transition at the freezing front.

7 Conclusions

The study provides an example of application of direct solving to simulate highly non-linear
processes in variably saturated soils. The modelling used a one dimensional cellular automata
(CA) structure wherein two cellular automata models simulate water and heat flow separately
and are coupled through an energy balance module. First order empirical laws in conjunction
with energy and mass conservation principles are shown to be succesful in describing the
tightly coupled nature of the heat and water transfer. In addition, use of an observed soil
freezing curve (SFC) is shown to obliviate use of non-physical terms such as apparent heat
capacity and provide insights into a further subtle mode of coupling. This approach of
coupling and use of SFC is easy to understand and follow from physical point of view and
straight forward to implement in a code. The results were successfully verified against
analytical solutions of heat flow due to pure conduction, conduction with convection, and
conduction with phase change using analytical solutions. In addition, freezing induced water

redistribution was successfully verified with experimental data.

Appendix A: Convergence analysis

The CA scheme described in this paper is not unconditionally convergent. Hence, the size of
the time step cannot be arbitrarily chosen. In this section we present a detailed evaluation of

the convergence criteria of our code to address the choice of the time step.
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The heat and flow convergence criteria are derived one after another. We start with the heat
balance portion. The local energy balance is the basic principle used in our approach. This is
imposed by ensuring flux continuity of heat. The local heat balance is described by Eq. (1)
and (2) and freeze-thaw effect. For a 1D CA application, assuming r=1, this can be written as
e ae-g, T

Cl 0y p L | 2w —Zwi_ g i
it At pw fhi At ii+l I

T T, -T! (A1)
where lj is the uniform cell size and Jii+1 and i1 are average effective thermal conductivity
of the region between the i", and the i+1Mand i-1" cells respectively. The second term on the
left hand side of equation is the contribution of freeze-thaw to the thermal energy
conservation. Tt = Ti' + eit is some approximation of the exact solution for temperature Ti' at
time t and cell index i given an approximation error e. Similarly, fui' = Ot + €7 is an
approximation, subject to the discretization error e, of the exact solution for the volumetric
fraction of water Oui'. It is useful to rewrite equation in the following simpler form in order to

decouple the thermal and hydraulic processes in terms of known parameters

TtHAt Tt At t+At T t Tt Tt _Tt
o T (pWLf Ou™ — O Jl.T T, TasT L TR )
At LAt —T

At ML
The quantity in parentheses in the second term in equation can be approximated as
puLidOuldT |r=1i' where d./dT|r=1i' is the slope of the soil freezing curve at T = Ti', a known
guantity. Finally, we introduce the term, Ci' = Ci+ puwLd6/dT|r=1i' as apparent heat capacity,
and rewrite eq. (Al) as
-I'-“;tmt _-'r“it Tt

cr i =N, Ta-T o, TL-T "
i At i,i+l | i,i-1 ( )

Rearranging the terms, we obtain

A A At A, At
ot = ;[1—?;2?} el + e
i i i i i i (A4)
/1I |+1At T,Erl //lI; 1At -I-t T 1— ﬂ’ At -I-t+At
12C] 12C] 12C]

where A =4, +4

i+l "

Replacing all the error terms by maximum absolute error term,

defined as E: = max{|ei'[}, we obtain
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At < I‘_Ci (A5)
A

All coefficients of error terms on the right hand side of equation (A4) are either positive or
zero. Given this, the upper bound on the error at time ¢+4¢, defined as E¢* = max{|ei" "},

must be

EXM <E'+max{f(T,A)}=E'+F (A6)
where f(T,4) is the term in squared brackets in Eq. (A4) and F = max{f(T,2). Therefore as long
as Eqg. (A5) is satisfied, the error always has an upper bound controlled solely by the
discretization error. This is the condition for stability. But, because Ci'is a function of time, an
adaptive time stepping scheme would be well suited to solve the problem. The adaptive time

stepper would need to satisfy Eq. (A5) at each time step.

As long as the thermal energy balance component of our CA algorithm obeys the time
stepping-spatial discretization relationship in Eq. (A5) it remains stable. For such time-step
control, using the Lax-Richtmeyer equivalence theorem, one only needs to show that the
thermal module represents a consistent numerical approximation to the full diffusion equation
(including Ci' to account for the freeze-thaw effect) in order to prove convergence of our

method. To do this we note the following recurrence relations

E" <E'+F<E"™ +2F <E°+(n+1F, t=nAt (A7)
It is worthwhile to note that here we have assumed a constant value of F through all time
steps. We argue below that this does not affect the generality of the convergence analysis that

follows next.

Clearly, if the only source of error in our approximate solution is discretization of a

continuous process, then our initial values must be error free i.e. E® = 0. Therefore,
E"* <(n+1)F (A8)

Now from definition of f(7,4) we have

t .t .t _ .t ‘ .t+At _ .t
f (T,ﬂ,) = |:|1(Z«i]i+l Ti+l T| N ﬂ,i‘i_l T|—l T| J_ C TI TI :|A_1I: (Ag)

| | ! At C.

For lim At, i — 0, we have the cluster of terms within the square brackets converge to the

expression
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As T is an exact solution of the above diffusion equation form, we must have the terms within
square bracket converge to 0 as lim At, li — 0. This argument for the boundedness of F as
At, I — 0 holds at each time step and, hence, would have led to the same conclusion if we
would have used a time variable maximum value of f(7,4) in equation (A8). Therefore, in
general, at any time t

lim E' -0 (A11)

At,l; >0

This formally shows that our numerical algorithm, with time stepping satisfying Eq. (A5), is

consistent and hence follows the convergence of the thermal module.

We can construct a similar convergence analysis for the hydraulic module. But we will
approach this problem from the continuum version of the modified Richard's equation for
variably saturated flow for the sake of brevity. The modified Richard's equation for variably

saturated flow can be written as (in the absence of a source term)

O, Px e _ ﬁ[k(z)a—Hj (A12)
ot p, ot @ oz

The left hand side of Eq. (A12) follows from the continuum version of the first term on the
left hand side of Eq. (5) where Eq. (6) has been used to eliminate @. The term on the right
hand side is the Darcy flux, introduced as the continuum version of Eq. (10) where the total
head H = y + z. The effect of freeze-thaw on the total head can be accounted for as a Clausis-
Clapeyron process as given in Eg. (12). To make this clear, we rewrite Eq. (A12) as follows

aew +pice aelce aT aH ( (_J (A13)
oH  p, oT oH ) ot @z

We can make use of the following relations to eliminate the gradients within the parentheses
on the left hand side of Eq. (A13)

] L
% N 90, (A14)
oT gT oH
or _gt (Al5)
oH L,

18



~N o o1~ W

10
11
12
13

14

15

16

17

18

19

20
21
22
23
24
25
26

Therefore, we can rewrite Eq. (A12) finally as

Plice oH _2 a_H
(1— > JCW = (k(z) > j (A16)

where Cw = 06w/O0H|n=H(y IS the local slope of the soil retention curve which can be derived
from Eq. (7). Eq. (A16) now has the same form as the expression in Eqg. (A10). It is
immediately clear that, if one would have followed the full formal arguments as outlined for
the thermal module, the condition for stability of the variably saturated flow dynamics part of
our algorithm is of the form

2
Ar< - wi (A17)

O_

where Cw' = Cuw (L-pice/ pw) and k; =k;;, +k; ;.. We refer the reader to Mendicino et al.

i+l
(2006) for a rigorous proof that, as long as this stability condition is satisfied, guarantees a
consistent solution to the water flow. The formal argument is exactly equivalent to that
presented by us for the heat flow problem. Combining Eqg. (A5) Eq. (Al7), the following

condition gives stability and convergence conditions for the overall CA problem

2" 2~
At < min[Ii EWi ,I‘_C‘j (A18)
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Table 1 Simulation parameters for heat conduction problem. Analytical solution for this

example is given by Eq. (13) as per Churchill (1972).

Symbol Parameter Value

n Porosity 0.35

yi bulk thermal conductivity 2.0JstmteCt
Cw volumetric heat capacity of water 4174000 Jm3°C?
Cs volumetric heat capacity of soil solids 2104000 Jm3°Ct
Pw density of water 1000 kgm3

s density of soil solids 2630 kgm

I length of cell 0.01m

t length of time step in CA solution 1 second
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Table 2 Simulation parameters for predicting subsurface temperature profile in a semi-infinite
porous medium in response to a sinusoidal surface temperature. The analytical solution to this
one dimensional heat convection and conduction problem in response to a time varying
Dirichlet boundary is given by Eq. (14)-(17) as per Stallman (1965).

Symbol Parameter Value
n Porosity 0.40
yi bulk thermal conductivity 2.0Jstmtect
Cw volumetric heat capacity of water 4174000 Jm3°C?
Cs volumetric heat capacity of soil solids 2104000 Jm3°Ct
pw density of water 1000 kgm3
s density of soil solids 2630 kgm
I length of cell 0.01m
t length of time step in CA solution 1 second
ol specific flux 4x1077 ms* downward
T period of oscillation of temperature at the ground surface 24 hours
A amplitude of the temperature variation at the ground 5°C
surface
Tsurf average ambient temperature at the ground surface 20 °C
T ambient temperature at depth 20 °C
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Table 3 Simulation parameters for predicting subsurface temperature profile with phase

change in a three zone semi-infinite porous medium. The analytical solution to this one

dimensional problem with sensible and latent heat zones is given by Eq. (18)-(25) as per
Lundardini (1985).

Symbol Parameter Value

n Porosity 0.20

A bulk thermal conductivity of frozen zone 3.464352 Jstmteoct
A2 bulk thermal conductivity of mushy zone 2.941352 JstmtoCct
A3 bulk thermal conductivity of unfrozen zone 2.418352 Jsimteoct
C1 bulk-volumetric heat capacity of frozen zone 690360 Jm3°C?

C bulk-volumetric heat capacity of mushy zone 690360 Jm3°C?

Cs bulk-volumetric heat capacity of unfrozen zone 690360 Jm=3°C?

& fraction of liquid water to soil solids in frozen zone 0.0782

& fraction of liquid water to soil solids in unfrozen zone 0.2

I length of cell 0.01 m

t length of time step in CA solution 1 second

Lt Latent heat of fusion 334720 Jkg*

Vd dry unit density of soil solids 1680 kgm3

Ts surface temperature at the cold end -6°C

Tm temperature at the boundary of frozen and mushy zones -1 °C, -4 °C

y equation parameter estimated using Eq. (24) and (25) 1.395, 2.062

g equation parameter estimated using Eq. (24) and (25) 0.0617, 0.1375

To initial temperature of the soil column 4°C

* values taken from McKenzie et al. (2007).
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Figure 1 One dimensional cellular automata grids based on von Neumann neighbourhood
concept. How many neighbours (grey cells) interact with an active cell (black) is controlled

by indicial radius (r).
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Figure 2 Flow chart describing the algorithm driving the coupled CA code. Subscripts TC,
HC and FT refer to changes in physical quantities due to thermal conduction, hydraulic
conduction and freeze-thaw processes respectively. Hydraulic conduction and thermal
conduction are two different CA codes coupled through updating of volumetric heat capacity
and the freeze-thaw module to simulate the simultaneous heat and water movement in soils.
Corresponding equations or sections containing module description are shown in red text in

squared brackets.
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Figure 3 Graphical description of the phase change approach used in this study. The curve is

a soil freezing curve for a hypothetical soil. The change in water content (dw) due to Qres,i is

used to determine Tnew by integrating along the SFC (Equation 11).
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Figure 4 Comparison between the analytical solution given by Churchill (1972) and coupled
cellular automata model simulation for a perfectly thermally insulated 4 m long soil column.
Lines represent the analytical solution and symbols represent the CA solution for time points

as shown in the legend. The initial temperature distribution is shown on the right.
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Figure 5 Comparison between analytical (Stallman, 1965) and coupled CA model steady
state solutions for conductive and convective heat transfer. The soil column in this example is
infinitely long, initially at 20 °C, and upper surface is subjected to a sinusoidal temperature

with amplitude of 5 °C and period of 24 hours.
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Figure 6 (a) Diagram showing the setting of Lunardini (1985) three zone problem. Equations
18, 19, and 20 are used to predict temperatures in completely frozen zone (no phase change
and sensible heat only), mushy zone (phase change and latent heat + sensible heat), and
unfrozen zone (sensible heat only) respectively. (b) Linear freezing function used to predict

unfrozen water contents for two cases used in this study (Tm =-1°C and Tm = -4°C).
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Figure 7 Comparison between analytical solution of heat flow with phase change (Lunardini,
1985) and coupled CA model solutions for heat transfer with phase change. Lunardini (1985)
solution is shown and compared with CA simulation for two cases (a) Tm =-1°C and (b) Tm =

-4°C (Table 3, Figure 6).

32



e® Experimental (Mizoguchi, 1990) Simulated
0 AR DL I " LN LS "L L L "N
| (@) - (b) @ 1 1 © ]
4k J | 4 _ J
i 1 L o
. -
2 sl I 1L ]
N ]
=
3 ] 1 T )
2 12} 1 T 1 ¢ i
16 | 1 t " 1 ¢ .
= . — — —
I ] I ° ]
20 TR B e W T U PR SRR MR | ..n N B S P S i YT S S W I T S W
02 03 04 05 02 03 04 05 02 03 04 05
Water content (m’m”) Water content (m’m”) Water content (m’m”)

Figure 8 Comparison of total water content (ice + water) between experimental (Mizoguchi,
1990 as cited by Hansson, 2004) and coupled CA model results: (a) 12 hours, (b) 24 hours,

and (c) 50 hours.
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