

1 **Analysis and definition of potential new areas for viticulture in the Azores**
2 **(Portugal)**

3 **J. Madruga¹, E. B. Azevedo^{1,2}, J. F. Sampaio¹, F. Fernandes², F. Reis², and J. Pinheiro¹**

4 ¹CITA_A, Research Center of Agrarian Sciences of the University of the Azores. 9700-042 Angra do Heroísmo,
5 Portugal

6 ²CCMMG, Research Center for Climate, Meteorology and Global Change, University of the Azores. 9700-042
7 Angra do Heroísmo, Portugal

8 **Abstract**

9 Vineyards in the Azores have been traditionally settled on lava field “terroirs” but the practical
10 limitations of mechanization and high demand on man labor imposed by the typical micro parcel
11 structure of these vineyards contradict the sustainability of these areas for wine production, except
12 under government policies of heavy financial support. Besides the traditional vineyards there are
13 significant areas in some of the islands whose soils, climate and physiographic characteristics
14 suggest a potential for wine production that deserves to be object of an assessment, with a view to
15 the development of new vineyard areas offering conditions for a better management and
16 sustainability.

17 The landscape zoning approach for the present study was based in a Geographic Information
18 System (GIS) analysis incorporating factors related to climate, topography and soils. Three thermal
19 intervals referred to climate maturity groups were defined and combined with a single slope interval
20 of 0–15% to exclude the landscape units above this limit. Over this resulting composite grid, the soils
21 were then selectively cartographed through the exclusion of the soil units not fulfilling the suitability
22 criteria.

23 The results show that the thermal interval of warmer conditions, well represented in the traditional
24 “terroir” of Pico island, has practically no expression in the other islands. However, for the
25 intermediate and the cooler classes, we could map areas of 5611 and 18115 ha respectively, fulfilling
26 the defined soils and slope criteria, indicating thus the existence of some landscapes in the studied
27 islands revealing adequate potential for future development of viticulture, although certainly
28 demanding a good judgment on the better grape varieties to be adapted to those climatic conditions.

29 **1 Introduction**

30 Under the holistic concept of “terroir”, which deals with the influence of environmental factors on vine
31 behavior and grape ripening, climate is recognized as the factor that exerts one of the most
32 significant effect on the ability of a region to produce quality grapes (Jones, 2006).

33 It is also well accepted that geology and the particular soil conditions are of great importance in
34 defining the characteristics and qualities of the wine as the final product (Mackenzie, 2005), in spite
35 of the recognized difficulty of establishing and interpreting this relationship clearly.

36 Moreover, although it is known that the vine is adaptable to a wide diversity of soil types, it appears
37 also that many of the world’s most famous vineyards are installed in poor, shallow or rocky terrain
38 (Leeuwen and Seguin, 2006) where no other crop would be grown in favorable conditions. Such is
39 the case, almost extreme, of the vines implanted in the lands of “biscoito” and “lagido”, the traditional
40 names in the archipelago of the Azores to the cracked surfaces of basaltic lava fields of
41 heterogeneous size ranging from gravel to blocks, an harsh environment for all forms of agriculture
42 except for grape vines where the plants still manage to survive and produce. This is mostly
43 expressed in the landscape of the Pico island vineyard culture, recently classified as a UNESCO
44 World Heritage Site (987 ha).

45 Due to the financial support measures implemented by the regional government of the Azores, the
46 maintenance and recovery of abandoned areas of traditional vineyards within the limits of the
47 classified area recently have gained a renewed interest by the land owners and wine producers.
48 However, outside of these limits, there are vast areas with similar conditions where the ancient
49 vineyards are abandoned since long time without any perspective of recovery, being presently
50 colonized by invasive trees and shrubs species, predominantly the Pittosporum undulatum Vent. In
51 fact, the practical limitations of mechanization and high demand on man labor imposed by the micro
52 parcel structure of the vineyards aggravated by the absence of financial subsidies outside of the

53 classified area make it impossible to admit the recovery of these areas for the wine production in
54 present times.

55 Besides Pico island, where the costal landscape is dominated by lava fields of abandoned vineyards
56 with the exception of the classified area, a few small spots also exist in some of the other islands of
57 the archipelago, where in most cases the production has been partially abandoned as well.

58 Apart from this traditional Azorean model of “terroir” of recognized cultural value and where a few
59 interesting wines have been produced, there are significant areas in some of the islands whose soils,
60 climate and physiographic characteristics suggest a potential for wine production that deserves to be
61 object of an assessment, with a view to the development of new vineyard areas offering conditions
62 for a better management and sustainability. We refer specifically to landscape units of the lower area
63 of some islands, in many cases presently devoted to pasture where productivity tends to be marginal
64 because strongly affected by water stress during the summer. Such areas, presenting gentle to
65 moderate slopes and providing conditions to the mechanization of farming operations, comprise
66 some well drained soils of the Andisol Order (Soil Survey Staff, 2014).

67 In this preliminary study climatic, pedological and topographical characteristics of the landscape are
68 considered based on GIS tools, in order to define the distribution of the most representative
69 landscape units with the greatest apparent potential for wine production in some islands of the
70 Azores. It is not our objective to produce a detailed cartographic definition of vineyard suitability
71 classes but rather to establish some basic criteria for prediction and identification of new areas from
72 which representative sites can be depicted for experimental studies in a subsequent phase.

73 **2 Data and methodology**

74 The landscape zoning approach for the present study [is that of the so-called “natural terroir units”](#)
75 ([Laville, 1993](#); [Priori et al, 2014](#)) and was based on a Geographic Information System (GIS) analysis
76 incorporating factors of climate and topography which was then combined with the soil mapping units
77 fulfilling the suitable criteria concerning the soil properties taken as the most relevant for viticulture
78 ([Van Leeuwen et al., 2004](#); [Deloire et al., 2005](#); [Jones et al., 2006](#); [Dutt et al., 1985](#)).

79 In this work, the spatial climatic differentiation for viticulture is based on climate/maturity classes
80 defined from the sum of the daily average temperatures that exceeds a base temperature of 10°C
81 along the growing season, as expressed in growing degree-days (GrDDs) concept and representing
82 the potential for the region to ripen given varieties based upon heat accumulation.

83 A first cartographic approach has been attempted (Fig. 1) using the full Winkler scale (Amerine and
84 Winkler, 1944; Winkler et al., 1974) for the traditional April-October Period, allowing for comparisons
85 with other wine regions of the northern hemisphere. However, those results when compared with the
86 cartography of the geographical distribution of the traditional vineyards of the Azores Islands
87 ([Madruga et al., 2011](#)), denoted an evident lack of resolution. The temperature range of 278°C in
88 each maturity grouping of the Winkler index was apparently excessive for the representation of the
89 variability degree observed in the field at the lower altitudes of the islands where grapevines can be
90 grown in the Azores. Additionally, in the cartographic output of Fig. 1 the lower GDD maturity
91 groupings of the Winkler scale (cool and temperate) were represented at altitudes where the general
92 climatic conditions other than temperature, such as relative humidity, winds and cloudiness, are
93 globally adverse to the grapevine growth and fruit maturation.

94 From this evidences, we implemented an alternative GDD criteria based in only three thermal
95 classes, being the temperature range of the maturity groupings narrowed to 200°C, defined however
96 for the same April-October period as the Winkler index.

97 For the establishment of these three classes, the thermal conditions found in the traditional vineyards
98 mainly of Pico and Terceira islands, were taken as the baseline reference and from those the
99 accumulating growing degree-days were defined in the following intervals: I:1600-1800; II:1800-2000;
100 III:2000-2200. These temperature intervals for the classes being narrower than those defined in the
101 Winkler criteria, allow for a better discrimination of the thermal variability within short distances as it
102 occurs in the Azores islands where cloudiness and humidity degree can show significant differences
103 in relatively short distances affecting local energy balance, being the altitude the factor that mostly
104 defines its differentiation.

105 The three thermal intervals referred to climate maturity groupings were combined with a single slope
106 interval of 0–15% to exclude the landscape units above this limit. The resulting composite grid for

107 each island was finally combined with the respective digitized soil map to select and incorporate the
108 cartographic units of Hapludands, Udivitrands **and Eutrudepts**, whose average parameters of drainage,
109 water holding capacity, depth to bedrock and pH, fall within the adequacy limits for grapevine growth
110 and production, as depicted from the soil survey database and reports.

111 **2.1 Climate**

112 The Azores Archipelago, located in the middle of the Atlantic Ocean basin, north of the predominant
113 influence of the trade winds and on the influence of the subtropical high-pressure belt, sits in an area
114 of transition and confrontation between air masses from the tropics and colder air masses coming
115 from North. Sufficiently far apart from the continental coasts, the air masses that hit the Azores
116 islands reveal a strong increment in properties associated with their maritime route. In this
117 geographic context, the climate of the Azores islands depends, quite evidently, on their geographical
118 setting and relationship with the surrounding sea. Normal climatology and sequential water balance
119 for the lower altitudes (<100m) of the Azorean islands is presented in Fig. 2.

120 A strong climatic differentiation can be observed in altitude, as well as significant climatic
121 asymmetries inland of each island. The spatial expression of the climatic elements is related in each
122 island with its dimension and orography, the topographical orientation, the superficial geologic
123 structure, the top soils and the vegetation. In some cases the climate of one island is affected by the
124 "shadow" effect from its neighboring islands (Azevedo, 1996).

125 Locally, important subscale characteristics and mechanisms have a prominent role in the climatic
126 spatial differentiation. Advectional transport of air and the consequent adiabatic cooling due to the
127 orographic obstacle is determinant in the configuration of the temperature and humidity fields. The
128 same mechanism is in the origin of the orographic clouds generation that, besides the direct role as
129 water source by the reinforcement of precipitation, have an indirect but important interference on the
130 local water balance since they act like a filter to direct solar radiation and as a source of long-wave
131 radiation affecting the local balance of energy. Also, the saturation (or near saturation) conditions that
132 they provide constitute a barrier to water vapor diffusion in the mechanisms of evapotranspiration
133 (Azevedo et al., 1998).

134 The annual average air temperature on the coast of Pico Island (the one that presents the greatest
135 climatic diversity of the whole archipelago) is around 18.0 °C, with average minima of 10.5 °C in
136 February and maxima over 26.0 °C in August. The annual average diurnal amplitude is low, around
137 6.0 °C. As the altitude increases, the temperature decreases regularly approximately at a ratio of 0.9
138 °C per 100m (dry adiabatic lapse rate) until the dew point temperature is reached at an average
139 altitude of about 600m. From that point on, until the top of islands under the orographic cloud cover,
140 the temperature decreases at a slower rate, at an average of 0.5°C per 100 meters, due to the effect
141 of energy transfer to the atmosphere by the condensation process.

142 Particular aspects of the climate of the islands can also be explained locally by its singular geology
143 as is the case of the unevolved lava fields in many cases traditionally occupied by vineyards. In these
144 situations, the mild climate felt on the littoral of the islands is now a result of the conjugated effect of
145 the ocean's proximity and the high thermal accumulation capacity of the black basalt lava flows,
146 situation that also affects inversely the relative humidity of the air (Azevedo, 2014).

147 The wind is a constant of the Azorean climate. Throughout the year the wind blows regularly, more
148 moderately in the summer months, and more vigorously in the winter. The wind speed increases
149 from Islands of the Oriental Group to the ones on the Occidental Group. Generally, in winter, the
150 syncopated evolution of the low pressure systems north of the Archipelago leads to the winds
151 circumventing the islands by north and from the west to the east. During the summer, with the rise in
152 latitude of the high pressure systems, the islands are besieged by winds from the southwest. The
153 wind speed increases with altitude and as the atmospheric circulation releases itself gradually from
154 the friction of the planetary boundary layer, all the while assuming greater regularity on its orientation.
155 On the coast of the islands the annual average wind speed is around 17 km/h. In the winter months
156 the average velocity approaches 20 km/h, although gusts reaching 100 km/h are felt almost every
157 year. In the summer months, on the contrary, the wind velocity decrease to values under 10 km/h. It
158 is also in this period that, due to the diminishing influence of the higher predominance systems, we
159 can observe the formation of coastal breezes on the larger Islands of the Azores (Azevedo, 2014).

160

161 According to the Köppen-Geiger climate classification (Essenwanger, 2001; Peel *et al.* 2007), the
162 littoral climate of the Azores archipelago is included in the temperate climates category (group C),
163 characterized by having a summer and a winter and an average temperature of the colder month
164 below 18 °C but above -3 °C. However, the diagonal distribution of the islands across **an extension** of
165 about 700 km, leads to its climate being classified from east to west as a transition between the Cs
166 and Cf subgroups, respectively, **evolving** from temperate rainy climate with dry summer (eastern
167 islands) to temperate rainy climate, humid on all seasons (western islands). Still according to the
168 same classification system, the mildness of the island's climate can be emphasized by combining the
169 letter *b* with these two codes, becoming, both of them, Csb and Cfb, meaning that the average
170 temperature of the warmest month is on average below 22 °C. The oceanic characteristics of the
171 archipelago **is stressed in the western islands of Flores and Corvo where the oceanic conditions are**
172 **mostly accentuated.**

173 In this work CIELO model (Azevedo, 1996; Azevedo *et al.*, 1998, 1999), acronym for "*Clima Insular à*
174 *Escala Local*" has been used to set up spatial climatic differentiation based on climate/maturity
175 classes. The CIELO is a physically based model that simulates **numerically** the transformations of the
176 climatic variables in an island using data from a synoptic reference weather station or downscaling
177 from a lower resolution climatic model. The model reproduces **through finite difference methods** the
178 thermodynamic transformations experienced by an air mass crossing the island, and simulates the
179 evolution of the air parcel's properties starting from the sea level **that justify the values observed in**
180 **the reference weather station.** The domain of computation is based on the digital elevation models of
181 the islands (DEM).

182 The model consists of two main sub-models. One, relative to the advective component simulation,
183 assumes the Foehn effect to reproduce the dynamic and thermodynamic processes. This makes
184 possible to simulate **the fields of** the air temperature, air humidity, cloudiness and precipitation as
185 influenced by the orography along its trajectory. The second concerns the radiative component as
186 affected by the clouds of orographic origin and by the shadow produced by the relief.

187 The CIELO model has been successfully applied for modeling species distributions (e.g. Hortal *et al.*,
188 2010; Jiménez-Valverde *et al.*, 2009; Aranda *et al.*, 2011; Boieiro *et al.*, 2013; Florencio *et al.*, 2013;
189 Guerreiro *et al.*, 2014) and patterns of species richness (e.g. Borges *et al.*, 2006) in the
190 Macaronesian Islands.

191 **2.2 Topography**

192 The topography influences grapevine growth and quality thru elevation, slope, exposure and
193 morphology of the proximate landscape which may also define the occurrence of microclimatic zones
194 (Leeuwen and Seguin, 2006).

195 In this work the topography was analyzed based on the tridimensional models of the islands in GIS.
196 Instead of various slope classes we considered only one global interval in the 0–15% range as the
197 suitability limit to include the best slopes for the mechanization of the vineyard cultural operations
198 (Jones *et al.*, 2004).

199 **2.3 Soils**

200 Soils of the Azores archipelago are originated from modern volcanic materials that have evolved
201 under humid and moderate Atlantic climate. In general they accomplish the criteria to be classified in
202 the the Andisol Order (Soil Survey Staff, 2014).

203 The typical parent material of Andisols is tephra, a general term for all airborne volcanic ejecta,
204 regardless of morphology, size, and composition, being often quite porous with a large active specific
205 surface. It is also difficult to determine the mineralogy of tephra because of microcrystallinity and/or
206 non-crystalline nature of the materials (Dahlgren *et al.*, 1993).

207 Andisols present unique soil properties resulting from the weathering of volcanic materials and in
208 particular of their tephra glassy products which show a very low resistance to chemical weathering,
209 suffering a rapid evolution to the formation of large amounts of non-crystalline products, usually
210 referred in literature as "short range-order materials" (SROM). The noncrystalline materials consist
211 primarily of allophane, imogolite and ferrhydrite (Parfitt and Kimble, 1989). In the Azores, at the
212 lower altitudes where climatic conditions can be marked by a dry spell in the summer, the Andisols
213 show an evolutionary tendency to other soil categories mainly of the Inceptisol Order, especially in
214 the more stable and older geological areas of the islands (Pinheiro, 1990). Andisols may have AC,

215 ABC, or multisequa of these horizon sequences, as the soil environment is characterized by
216 deposition of parent materials, gradually or repeatedly being buried under new fresh vitric materials.
217 **Vitrands** formed from thick pumice or scoria tephras show the AC profile while intermittent tephra
218 deposition and subsequent soil formation result in the development of other Andisols with a
219 multisequum profile (Shoji *et al.*, 1993).

220 Soils of the Azores Archipelago have been studied in detail, and their characteristics and
221 classification have been discussed in several papers (Auxtero *et al.*, 2004; Pinheiro *et al.*, 2004,
222 2001; Madeira *et al.*, 2003, 2002, 1980; Pinheiro, 1999, 1990; Madruga, 1995; Medina and Grilo,
223 1981; Ricardo *et al.*, 1977).

224 For the present study soils were analyzed based on data and soil map units as defined in the soil
225 surveys of the Azores archipelago (ongoing project by the soils group of the University of the
226 Azores). **As presented in the maps of Figure 3, Hapludands and Udivitrands great groups of the
227 Andisol as well as Eutrudepts (Inceptisols) (Soil Survey Staff, 2014) where the andic character is only
228 weakly expressed, were selected as the taxonomic soil categories mostly represented in the lower
229 surfaces of the islands and where grapevine growth can be admitted. Table 1 shows some analytical
230 data of representative pedons of the major cartographed soil units, mostly selected as significant soil
231 properties for viticulture. As the present study attempts to define and map landscape units in
232 alternative to the traditional lava field based “terroir”, this one was not included in the selected areas
233 with apparent potential for viticulture in the Azores.**

234 The soil conditions of the delineated new areas are hardly comparable to the traditional vineyards of
235 the Azores since these ones have been settled over cracked lava fields where even the hydric and
236 nutrient plant nourishment processes are frequently difficult to access and to explain. Additionally to
237 the stony condition of the terrain, the micro parcel structure of the vineyards drastically limits the
238 workability and trafficability of the traditional vineyards, making them highly costly and dependent on
239 man labor for almost every management practices. Figure 4 show the distribution of the existing
240 traditional vineyard areas and DOC limits.

241 The soil properties taken as the most relevant for **the analysis and definition of the potential vineyard
242 areas** where: drainage, water holding capacity, depth to bed-rock and pH. **From these parameters, soil
243 suitability classes were defined (Table 2) based on the concept and criteria as adapted from Bucelli and
244 Costantini (2009). Table 3 show the areas of the soil suitability classes for each island, based on the
245 soil parameters as established in Table 2.**

246 Soil drainage, being dependent on various soil characteristics such as texture, structure depth and
247 slope, affects crop health and management conditions. Soil depth, not only defines the soil volume
248 for root development and mineral nutrition as it defines and limits the available soil water capacity.
249 Soil pH, being a regulator of chemical and biological processes, gives an indication of the potential
250 for nutrient availability. The neutral to slightly acid reaction is the best pH condition for nutrient fertility
251 and balance in the soil. However, it is well recognized that the nutritive fertility for grapevines should
252 be only moderate, as an high nutritional condition leads to excessive vegetative growth and induces
253 in the wine an overall lowering of the quality parameters.

254 Different water level in the soil affects grape quality and reflects in wine quality (Conradie *et al.*,
255 2002). Andisols can retain a large amount of water primary due to their large volume of mesopores
256 and micropores produced within the stable soil aggregates.

257 Formation of these aggregates is greatly enhanced by noncrystalline materials and soil organic
258 matter (Maeda *et al.*, 1977).

259 High water permeability is a distinctive physical property of volcanic ash soils under both saturated
260 and unsaturated conditions. Under unsaturated conditions, Andisols have greater hydraulic
261 conductivity than other mineral soils such as clayed alluvial soils (Nanzyo *et al.*, 1993). Both,
262 Hapludands and Udivitrands of the considered areas generally present average to good drainage
263 conditions without impeding layers. Even the finer textured Hapludands, found in the older geological
264 areas of the islands Terceira (Pinheiro, 1999) and Graciosa (Medina and Grilo, 1981) showing an
265 eutric character, have no drainage constrains.

266 In these soils the available water-holding capacity (AWC) is relatively high, varying between 0.20 and
267 0.25 cm³ of water per 1cm³ of soil. The Udivitrands, which predominate in the islands of S. Miguel
268 (Ricardo *et al.*, 1977) and Faial (Madeira *et al.*, 2002), have in general coarse textures with
269 significant fractions of pomice and cinders fragments from sand to gravel dimensions. Under these

270 textural conditions the waterholding capacity may be somewhat limited. As in these soils the internal
271 drainage is frequently very high, these combined factors may increase the risk of draught periods
272 during the growing season and the average interval of AWC variation lowers to 0.10–0.15 cm³ of
273 water per cubic centimeter of soil in the Udivitrand. Nevertheless, it has been observed that a
274 certain lack of water during the ripening period is favorable to the organoleptic wine quality (Galet,
275 1993; Riou *et al.*, 1994; Huglin and Schneider, 1998).

276 In volcanic landscapes the profile characteristics concerning horizon sequence and thickness can be
277 quite variable even within short distances. Depth to bed rock of the Hapludands in the selected areas
278 averages 60 cm with no less than 40 cm and the Udivitrand are in general more than 1m deep.

279 The soil reaction found in the considered altitudes for both soil categories is in general slightly acid to
280 neutral, being the *pH* range of 5.6 to 6.5. From a soil standpoint, highquality wines are made from
281 grapes grown in many different types of soils with no single type considered ideal (Wilson, 1998).
282 Grapevines will tolerate a wide range of soils, but yield and variation in vine vigour commonly match
283 changes in local soil properties, which in turn can influence grape characteristics (Bramley 2001,
284 2005; Reynolds *et al.* 2007). In spite of the relative variability in both physical and chemical
285 parameters as generally described above, the soils here considered reflect an overall suitability for
286 the viticulture expansion in the Azores.

287 **3 Results and conclusions**

288 Along the last half-century the agricultural activity in the Azores has been progressively concentrated to
289 the milk industry, representing the wine production presently a very small part of the economy, around
290 0.3% of the agricultural product as referred in the new program of rural development of the Azores -
291 Prorural 2014-2020. However, the ongoing abolishment of milk quotas in EU and the increased risk on
292 milk price volatility is expected to affect negatively the economical behavior of the dairy industry in the
293 Azores.

294 This research provides a definition of the environmental characteristics of potential new areas of higher
295 yielding vineyards under technically adequate mechanization conditions, allowing an efficient management
296 of the crop and improvement of the wine industry in the Azores, contributing thus to the diversification and
297 development of the agricultural sector as a whole.

298 Here, we attempt to define and map landscape areas with apparent potential for grapevine growing
299 in the Azores islands of S. Miguel, Terceira, Faial and Graciosa, as an alternative to the traditional
300 "terroir". The lava field "terroir" was not included in the potential areas here defined because the
301 management costs imposed by the peculiarities of these vineyards, established over a micro parcel
302 and stony structure, deny their economical sustainability and maintenance in the Azores, except
303 under significant government funding as it is the case of the UNESCO protected vineyard area in
304 Pico island.

305 Under the specificity of the Azorean environmental conditions, white wines produced from several
306 adapted winegrape varieties (e.g., Verdelho, Arinto and Terrantês), which started to be introduced in
307 the Archipelago since the fifteenth century in the advent of the colonization of the islands and
308 probably originated from Cyprus and Madeira islands (Duarte Jr., 2001), have been more successful
309 than red wines most probably due the generally lower heat demand for maturation of the white grape
310 varieties. The more recognized and typical white wines of the Azores have been produced in the
311 lavafield terroirs of Pico, both table and licourous wines. Biscoitos, a small village of stony volcanic
312 cover in Terceira island, is also recognized by its white wines in spite of the reduced overall
313 production. There are very few studies of chemical characterization of wines from the Azores. Lima
314 *et al.* (2004) found that the concentrations of iron, copper manganese and zinc in Azorean wines
315 correspond with the mean values observed for other regions in Europe. Batista *et al.* (2001)
316 presented a comparison study of polyphenols and aroma in red wines from Portuguese mainland
317 versus Azores islands.

318 The spatial potential for viticulture of each island is presented in the maps of **Fig. 5**, with the area
319 distribution depicted by climate maturity groups. The cartographic representation of these landscape
320 areas resulted from a GIS supported spatial analysis of climate, soils and topography based on the
321 combination of the selected criteria for each of these three factors. Three thermal classes defined as
322 climate/maturity groupings were established from a baseline reference (vineyards area of Pico
323 island), and then combined with the soils fulfilling the most advantageous characteristics of moderate
324 to good drainage, adequate soil depth, fair to good water-holding capacity and near neutral *pH*, and
325 being distributed within a slope interval of 0 to 15% taken as the most adequate to the vineyard
326 cultural operations.

327 The calculated surfaces (ha) of the cartographic areas with potential for grapevine production, as
328 defined for each island and thermal class are presented in [Table 4](#). The warmer conditions of thermal
329 class III, well represented in the traditional “terroir” of Pico island, has practically no expression in the
330 other islands. However, for the intermediate class II and the cooler class I, we could map significant
331 areas – 5611 and 18115 ha respectively – fulfilling the defined soils and slope criteria. These results
332 indicate that landscape units exist across the climate maturity classes II and I of the studied islands
333 revealing adequate potential for future development of viticulture, although certainly demanding a
334 good judgment on the better grape varieties to be adapted to those climatic conditions.

335 The defined thermal classes, based in the degree-day concept for a base temperature of 10 °C
336 (Amerine and Winkler 1944), that we used as climatic indicators for viticultural zoning in the Azores,
337 may be broadly compared to the bioclimatic index (Catl) which incorporates the most relevant
338 characteristics of a given region, as defined for Portugal mainland (Fraga *et al.*, 2013). The Azores
339 climate has been characterized as humid and the average daily temperatures in the lower areas are
340 moderate with low thermal amplitudes and warm nights (above 14 °C) along the growing season, due
341 to the maritime regulatory influence. The littoral of the islands covered by the three considered
342 classes falls in the categories of “temperate nights” (September average $T_{min} > 14^{\circ}\text{C} - 18^{\circ}\text{C} <$) and
343 “warm nights” (September average $T_{min} > 18^{\circ}\text{C}$) as it is defined by the Cool Night Index (CI)
344 (Tonietto and Carboneau, 2004), [Figure 6](#). The Growing season accumulated precipitation varies
345 from 400 mm to 800 mm, [Figure 7](#). Consequently, the thermal classes I and II defined in this study
346 can be broadly compared to the category 8 of the Catl bioclimatic index which is described as
347 temperate, humid with warm nights, while the thermal class III would be better comparable to the
348 category 12 which represent the warmer conditions found in the lava field grapevines of Pico island,
349 where average temperatures are amplified by the heat capacity of the basaltic stones where the
350 grapevines are laying.

351 The present study, through the use of [overlay GIS](#) spatial analysis based on climate, soils and slope,
352 conducted at an intermediate scale level, provides an overall perspective and understanding of the
353 potential for expansion of viticulture in the Azores. Additionally, the results presented should serve as
354 a decision support tool in the site selection process for new vineyards establishment. However, there
355 are limitations and further issues to be addressed before developing any individual site. In fact, the
356 resolution limits of the landscape analysis, related to elevation and slope data as well as to soils
357 variability, request a detailed site specific assessment to be conducted prior to any final decision on a
358 new vineyard establishment. The expansion of the viticulture onto new soil types will also affect resulting
359 grape and wine characteristics and will imply an additional effort of experimental study and research on the
360 adaptation of traditional and new varietals to the alternative environmental conditions here defined.
361 Furthermore, future research activities on viticultural and oenological results are needed to check the
362 wine suitability of the delineated new areas of potential natural terroir units.

363

364 Author contributions:

365 E. B. Azevedo developed the climatic analysis and with F. Reis and F. Fernandes they adapted the GIS
366 model. J. Madruga and J. Sampaio selected the background soils data and analysis. J. Pinheiro
367 participated in soil analysis and prepared the manuscript with contributions from all co-authors.

368 Acknowledgements:

369 The climatic CIELO model simulations for this work were done under the framework of the project
370 ESTRAMAR (FEDER – MAC/3/C177) from the Program MAC 2007– 2013, Transnational Cooperation.

371 References:

372 Amerine, M. A. and Winkler, A. J.: Composition and quality of must and wines of California grapes,
373 *Hilgardia*, 15, 493–675, 1944.

374 Aranda, S. C., Gabriel, R., Borges, P., Azevedo, E. B., and Lobo, J. M.: Designing a survey protocol
375 to overcome the Wallacean shortfall: a working guide using bryophyte distribution data on Terceira
376 Island (Azores), *Bryologist*, 114, 611–624, 2011.

377 Auxtero, E., Madeira, M., and Sousa, E.: Variable charge characteristics of selected Andisols from
378 the Azores, Portugal, *Catena*, 56, 111–125, 2004.

379 Azevedo, E. B.: Modelação do Clima Insular à Escala Local. Modelo CIELO aplicado à ilha Terceira,
380 Ph.D. thesis, University of the Azores, Portugal, 247 pp., 1996.

381 Azevedo, E. B.: Climate Overview, in: Pico Island Natural History Handbook, Observatório
382 Vulcanológico e Geotérmico dos Açores, 2014.

383 Azevedo, E. B., Pereira, L. S., and Itier, B.: Modeling the Local Climate in Islands Environments,
384 Orographic Clouds Cover, in: First International Conference on Fog and Fog Collection, IDRC,
385 Ottawa, Canada, 433–436, 1998.

386 Azevedo, E. B., Pereira, L. S., and Itier, B.: Modelling the local climate in island environments: water
387 balance applications, *Agr. Water Manage.*, 40, 393–403, 1999.

388 Baptista, J.A.B., Tavares, J. F., Carvalho, R.C.B.: Comparison of polyphenols and aroma in red
389 wines from Portuguese mainland versus Azores Islands, *Food Research International*, 34, 345-355,
390 2001.

391 Blakemore, L.C., Searle, P.L., Daly, B.K.: *Soil bureau laboratory methods: a method for*
392 *chemical analysis of soils*. New Zealand: Soil Bureau Scientific Report 80, 1987.

393 Boieiro, M., Carvalho, J. C., Cardoso, P., Aguiar, C. S., Rego C., Silva I. F., Amorim, I. R., Pereira,
394 F., Azevedo, E. B., Borges, P. B., and Serrano, A. M.: Spatial Factors Play a Major Role as
395 Determinants of Endemic Ground Beetle Beta Diversity of Madeira Island Laurisilva, *PLoS ONE*, 8,
396 e64591, doi:10.1371/journal.pone.0064591, 2013.

397 Borges, P. A. V., Lobo, J. M., Azevedo, E. B., Gaspar, C., Melo, C., and Nunes, L. V.: Invasibility and
398 species richness of island endemic arthropods: a general model of endemic vs. exotic species, *J.*
399 *Biogeogr.*, 33, 169–187, 2006.

400 Bramley, R.G.V.: Progress in the development of precision viticulture variation in yield, quality and
401 soil properties in contrasting Australian vineyards, in Currie, L.D. and Loganathan, P., eds., *Precision*
402 *Tools for Improving Land Management: Occasional Report No. 14*, Fertilizer and Lime Research
403 Centre, Massey University: Palmerston North, New Zealand, 25-43, 2001.

404 Bramley, R.G.V.: Understanding variability in wine grape production systems 2. Within vineyard
405 variation in quality over several vintages: *Australian Journal of Grape and Wine Research*, 11, 33-42,
406 2005.

407 Bucelli, P., Costantini, E.A.C.: *Wine Grape and Vine zoning. Manual of methods for soil and land*
408 *evaluation*. Costantini, E.A.C. (Ed.), Science Publishers, Enfield (NH), (USA), 353-400, 2009.

409 Conradie, W.J., Carey, V.A., Bonnardot, V., Saayman, D., Schoor van, L.H.: Effect of different
410 environmental factors on the performance of Sauvignon blanc grapevines in the
411 Stellenbosch/Durbanville districts of South Africa. I. geology, soil, climate, phenology and grape
412 composition. *South African J. Enol. Vitic.* 23 (2), 79-91, 2002.

413 Dahlgren, R., Shoji, S., and Nanzyo, M.: Mineralogical characteristics of volcanic ash soils, in:
414 *Volcanic Ash Soils. Genesis, Properties and Utilization*, edited by: Shoji, S., Nanzyo, M., and
415 Dahlgren, R. A., *Developments in Soil Science* 21, Amsterdam: Elsevier, 101–143, 1993.

416 Deloire, A., Vaudour, E., Carey, V., Bonnardot, V., and van Leeuwen, C.: Grapevine responses to
417 terroir: A global approach, *J. Int. Sci. Vigne Vin*, 39, 149–162, 2005.

418 Dutt, G., Mielke, E. A., and Wolfe, W. H.: The use of soils for the delineation of viticultural zones in
419 the four corners region, *Am. J. Enol. Viticult.*, 32, 290–296, 1985.

420 Essenwanger, O. M.: Classification of climates, *World Survey of Climatology, General Climatology*,
421 Elsevier, Amsterdam, 102 pp., 2001.

422 Florencio, M., Cardoso, P., Lobo, J. M., Azevedo, E. B., and Borges, P. A. V.: Arthropod assemblage
423 homogenization in oceanic islands: the role of indigenous and exotic species under landscape
424 disturbance, *Divers. Distrib.*, 19, 1450–1460, 2013.

425 Fraga, H.; Malheiro, A. C; Moutinho-Pereira, J.; Jones, G. V; Alves, F.; Pinto, J. G; Santos, J. A.:
426 Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios,
427 *Regional Environmental Change* 14, 1: 295–306, 2013.

428 Galet, P.: *Précis de viticulture*. Montpellier, Déhan, 582 pp, 1993.

429 Guerreiro, O., Cardoso, P., Ferreira, J. M., Ferreira, M. T., and Borges, P. A. V.: Potential Distribu-
430 tion and Cost Estimation of the Damage Caused by *Cryptotermes brevis* (Isoptera: Kalotermitidae) in
431 the Azores, *J. Econ. Entomol.*, 107, 1554–1562, 2014.

432 Hortal, J., Borges, P. A. V., Jiménez-Valverde, A., Azevedo, E. B., and Silva, L.: Assessing the areas
433 under risk of invasion within islands through potential distribution modelling: the case of *Pittosporum*
434 *undulatum* in São Miguel, Azores, *J. Nat. Conserv.*, 18, 247–257, 2010.

435 Jiménez-Valverde, A., Diniz, F., Azevedo, E. B., and Borges, P. A. V.: Species distribution models do
436 not account for abundance: the case of arthropods in Terceira Island, *Ann. Zool. Fenn.*, 46, 451–464,
437 2009.

438 Jones, G. J., Snead, N., and Nelson, P.: Geology and Wine 8. Modeling viticultural landscapes: A
439 GIS analysis of the terroir potential in the Umpqua valley of Oregon: *Geoscience Canada*, 31, 167–
440 178, 2004.

441 Jones, G. V.: Climate and terroir: Impacts of climate variability and change on wine, in: *Fine Wine*
442 and *Terroir – The Geoscience Perspective*, edited by: Macqueen, R. W. and Meinert, L. D.,
443 *Geoscience Canada Reprint Series* 9, Geological Association of Canada, 203–216, 2006.

444 Laville, P.: *Unite's de terroir naturel et terroir. Une distinction nécessaire pour redonner plus*
445 *de cohérence au système d'appellation d'origine*. *Bull. O.I.V.*, 745–746, 227–251, 1993.

446 Madeira, M.: *Esboço Pedológico da Ilha da Santa Maria (Açores)*, Instituto Nacional de Investigações
447 Científicas, Lisboa, 68 pp., 1980.

448 Madeira, M., Pinheiro, J., Monteiro, F., Fonseca, M., and Medina, J.: Características físicas,
449 químicas e mineralógicas dos solos da Ilha do Faial (Arquipélago dos Açores), *Revista de Ciências*
450 *Agrárias*, 25, 53–66, 2002.

451 Madeira, M., Auxtero, E. and Sousa, E.: Cation and anion exchange properties of Andisols from the
452 Azores, Portugal, as determined by the compulsive exchange and the ammonium acetate method,
453 *Geoderma*, 117, 225–241, 2003.

454 Madruga, J., Azevedo E.B., J. Sampaio, J., Fernandes G., Pinheiro J. e Madeira M.: Caracterização
455 de Novas áreas Edafoclimáticas com Potencial para a Cultura da Vinha nos Açores. Congresso “A
456 Vinha nas Regiões Mediterrâneas”, Madalena (Pico), 2011.

457 Mackenzie, D.E., Christy A.G.: the Role of soil chemistry in wine grape quality and sustainable soil
458 management in vineyards. *Water Science and Technology* 51:27-37, 2005.

459 Madruga, J. S.: Características e Génese do Horizonte Plácico em Solos Vulcânicos do Arquipélago
460 dos Açores, Tese de Doutoramento. Universidade dos Açores, Angra do Heroísmo, 1995.

461 Maeda, T., Takenaka, H., and Warkentin, B. P.: Physical properties of allophane soils, *Adv. Agron.*,
462 29, 229–264, 1977.

463 Medina, J. M. B. and Grilo, J. T.: *Esboço Pedológico da Ilha Graciosa (Açores)*, Instituto Nacional de
464 Investigações Científicas & Universidade dos Açores, Lisboa, 1981.

465 Nanzio, M., Shoji, S., and Dahlgren, R.: Physical characteristics of volcanic ash soils, in: *Volcanic*
466 *Ash Soils, Genesis, Properties and Utilization*, edited by: Shoji, S., Nanzio, M., and Dahlgren, R. A.,
467 *Developments in Soil Science* 21, Amsterdam: Elsevier, 189–207, 1993.

468 Parfitt, R.L.: *Towards understanding soil mineralogy: Part III. Notes on allophanes*. New Zealand,
469 *Soil Bureau Laboratory Report* 10A, 1986.

470 Parfitt, R. L. and Kimble, J.: Conditions for formation of allophane in soils, *Soil Sci. Am. J.*, 53, 971–
471 977, 1989.

472 Peel, M.C., Finlayson, B.L. and McMahon, T.A.: Updated world map of the Koppen-Geiger climate
473 classification, *Hydrology and Earth System Sciences*, 11, 1633–1644, 2007.

474 Pinheiro, J.: Estudo dos principais tipos de solos da ilha Terceira (Açores), Ph.D. thesis. University of
475 the Azores, Portugal, 212 pp., 1990.

476 Pinheiro, J.: Caracterização geral dos solos da Ilha Terceira que se enquadram na Ordem Andisols,
477 *Anais do Instituto Superior de Agronomia*, 47, 99–117, 1999.

478 Pinheiro, J., Madeira, M., Monteiro, F., and Medina, J.: Características e classificação dos
479 Andossolos da Ilha do Pico (Arquipélago dos Açores), *Revista de Ciências Agrárias*, 24, 48–60,
480 2001.

481 Pinheiro, J., Rodriguez, A., and Salguero, M. T.: Genesis of placic horizon in Andisols from Terceira
482 Island (Azores-Portugal), *Catena*, 56, 85–94, 2004.

483 [Priori, S., Barbetti, R., L'Abate, G., Bucelli, P., Storchi, P., and Costantini, E. A. C.: Natural terroir
484 units, Siena province, Tuscany, Journal Maps, 10, 466–477, 2014.](#)

485 Reynolds, A.G., Senchuk, I.V., van der Reest, C., and de Savigny, C.: Use of GPS and GIS for
486 elucidation of the basis for terroir: Spatial variation in an Ontario Riesling vineyard, *American Journal
487 of Enology and Viticulture*, 58, 145–162, 2007.

488 Ribeiro de Lima, M.T., Kelly, M., Cabanis, M. Cassanas, G., Matos, L., Pinheiro, J. and Blaise, A.:
489 Determination of iron, copper, manganese, and zinc in the soils, grapes and wines of the Azores, *J.
490 Int. Sci. Vigne Vin*, 38, 109–118, 2004.

491 Ricardo, R. P., Madeira, M., Medina, J. M. B., Marques, M. M., and Furtado, A. F. S.: Esboço
492 pedológico da ilha de S. Miguel (Açores), *Anais do Instituto Superior de Agronomia*, 37, 275–385,
493 1977.

494 Riou, Ch., Becker, N., Sotes Ruiz, V., Gomez-Miguel, V., Carbonneau, A., Panagiotou, M., Calo, A.,
495 Costacurta, A., Castro de, R., Pinto, A., Lopes, C., Carneiro, L., Climaco, P.: Le déterminisme
496 climatique de la maturation du raisin: application au zonage de la teneur em sucre dans la
497 communauté européenne. *Office des Publications Officielles des Communautés Européennes*,
498 Luxembourg, 322 pp, 1994.

499 Shoji, S., Dahlgren, R., and Nanzyo, M.: Genesis of Volcanic Ash Soils, in: *Volcanic Ash Soils –
500 Genesis, Properties and Utilization*, Elsevier, Amsterdam – New York – Tokyo, 37–72, 1993.

501 Soil Survey Staff: *Keys to Soil Taxonomy*, 12th Edn., USDA-Natural Resources Conservation
502 Service, Washington, DC, 2014.

503 Tomaz Duarte Jr.: *O Vinho do Pico*, Coingra Lda, 301pp, 2001. Tonietto J., Carbonneau A., A
504 multicriteria climatic classification system for grape-growing regions worldwide, *Agriculture and
505 Forest Meteorology*, Vol.124, No.1-2, 81-97, 2004.

506 Van Leeuwen, Gerard Seguin: The Concept of Terroir in Viticulture, *Journal of Wine Research*, 17, 1,
507 1–10, 2006.

508 Van Leeuwen, C., Friant, P., Chone, X., Tregot, O., Koundouras, S., and Dubourdieu, D.: Influence
509 of climate, soil, and cultivar on terroir, *Am. J. Enol. Viticult.*, 55, 207–217, 2004.

510 Wilson, J. E.: *Terroir: The role of geology, climate, and culture in the making of French wines*,
511 University of California Press, Berkeley, 336 pp., 1998.

512 Winkler, A. J., Cook, A. J., Kliewer, W. M., and Lider, L. A.: *General Viticulture*, 2nd Edn., Univ. of
513 California Press, California, 710 pp., 1974.

Table 1. Pedological properties of three soils representative of the potential new areas for viticulture in the Azores.

Soil horizons	Depth ^a (cm)	Bulk density (g cm ⁻³)	Water retention		pH (H ₂ O)	Organic carbon (g.kg ⁻¹)	Exchangeable bases ^b (cmol(+) kg ⁻¹)					Allophane ^c (%)	Textural class ^d	Coarse fraction >2mm (vol. %)
			300 kPa cm ³ cm ⁻³	1500 kPa (H ₂ O)			Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Σ			
<i>Andic Eutrudepts (pedon Vila-Nova)</i>														
Ap	0-27	1.1	0.27	0.15	5.8	24	2.7	0.8	0.9	0.7	5.1	nd	L	6.8
Bw 1	27-60	1.0	0.35	0.17	6.0	19	3.6	0.7	0.6	0.5	5.4	nd	SCL	4.3
Bw 2	60-76	0.9	0.54	0.29	5.9	15	5.0	1.1	0.4	1.0	7.5	3	SCL	3.1
2Bw b	76-120	0.9	0.50	0.36	5.9	7	5.0	1.2	1.0	1.6	8.8	5	CL	0
3Bw b	120-160+	0.8	0.58	0.33	6.4	7	7.9	1.7	0.1	0.7	10.4	6	CL	0
<i>Eutric Hapludands (pedon Altares)</i>														
Ap	0-38	0.8	0.46	0.19	5.6	5.8	6.5	3.3	0.2	1.2	11.2	7	SL	7.6
Bw 1	38-87	0.7	0.44	0.25	5.7	4.2	2.5	1.0	0.2	0.6	4.3	15	SCL	3.2
Bw 2	87-155	0.7	0.79	0.32	6.6	3.1	10.7	4.0	0.1	3.1	17.9	24	CL	1.7
2Bw b	155-200+	0.8	0.35	0.21	7.3	0.4	9.0	3.7	0.2	1.9	14.8	10	SCL	10.4
<i>Typic Udivirands (pedon FA 11)</i>														
Ap	0-40	0.8	0.34	0.18	5.4	4.6	3.7	1.5	0.3	1.2	6.7	5	SL	18,5 ^f
BC1	40-70	0.9	0.31	0.13	5.6	2.9	1.2	0.7	0.4	0.8	3.1	7	LS	45,6 ^f
BC2	70-90	ed ^a	0.24	0.09	6.0	0.3	1.1	0.3	0.1	0.8	2.3	2	LS	48,5 ^f
C	90-160+	nd	0.15	0.09	6.3	0.2	0.5	0.2	0.1	0.8	1.6	1	nd	76,8 ^f

^a depth to bedrock indetermined within the limits of the pedon.^b determined by the ammonium acetate method at pH 7.^c estimated according to Parfitt (1986) and based on Si and Al ratio extracted by acid ammonium oxalate (Blakmore et al., 1987).^d LS - loamy sand; SL - sandy loam; L - loam; SCL - sandy clay loam; CL - clay loam^e not determined.^f pomic

514

Table 2. Functional soil parameters and suitability classes of the potential new areas for viticulture in the Azores

Soil parameters	Suitability class		
	S1	S2	S3
Drainage class ^a	Well drained	somewhat excessively drained, or moderately well drained	excessively drained, or somewhat poorly drained
AWC (cm ³ cm ⁻³)	>0.20	0.15-0.20	0.15-0.10
Rooting depth (cm)	>100	50-100	25-50
pH (H ₂ O)	6.5-7.5	5.5-6.5	4.8-5.5

^aSoil Survey Manual

515

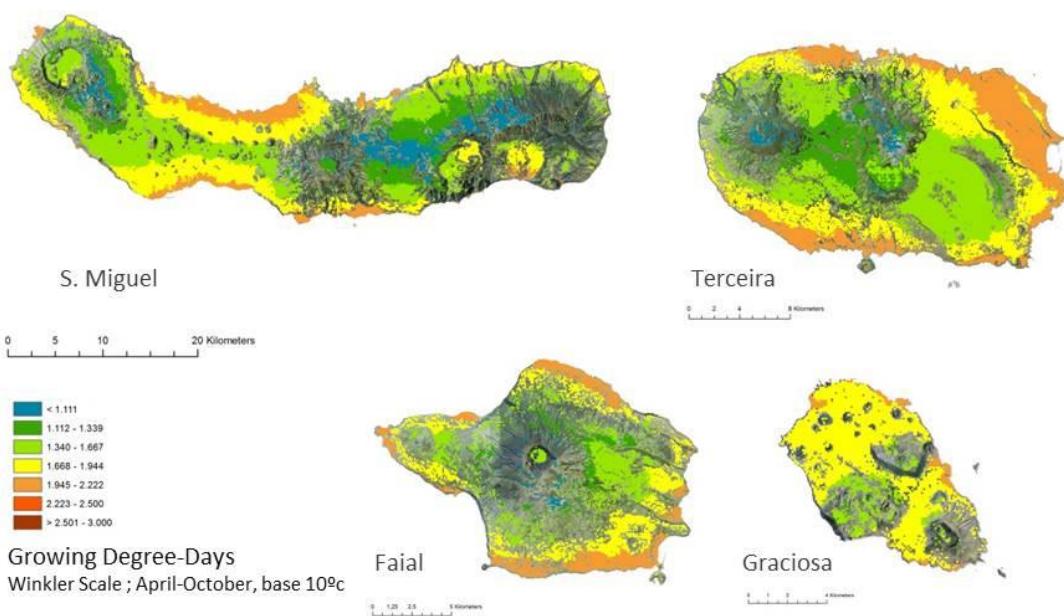
Table 3. Areas (ha) of the suitability classes for viticulture in the Azores islands

Island	Suitability class (ha)		
	S1	S2	S3
S. Miguel	4052	4421	1794
Terceira	9116	0	0
Faial	1401	1502	0
Graciosa	1483	0	0

516

Table 4. Areas (ha) with potential for grapevine production for each island and climate maturity class

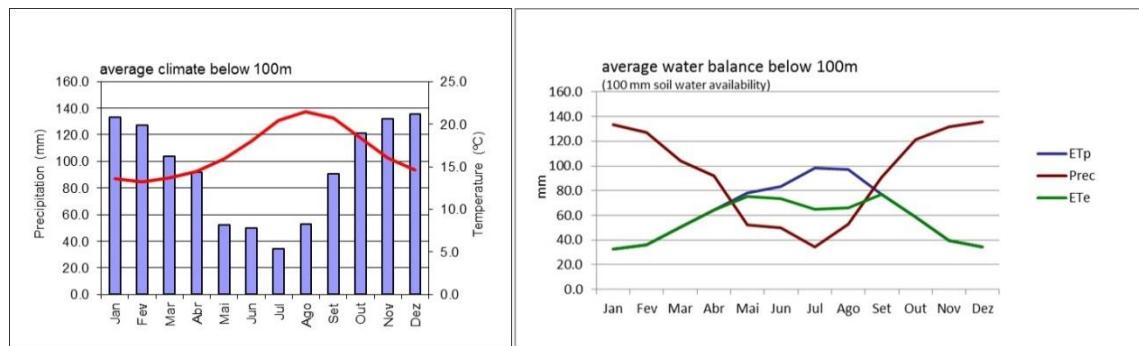
Island	Climate Maturity Class (ha)		
	I	II	III
S. Miguel	8696	1541	30
Terceira	6088	3028	0
Faial	1848	1042	13
Graciosa	1483	0	0
Total	18115	5611	43


517

518

519

520


521

522

523 Figure 1. Winkler scale distribution for S. Miguel, Terceira, Faial and Graciosa islands of the Azores.

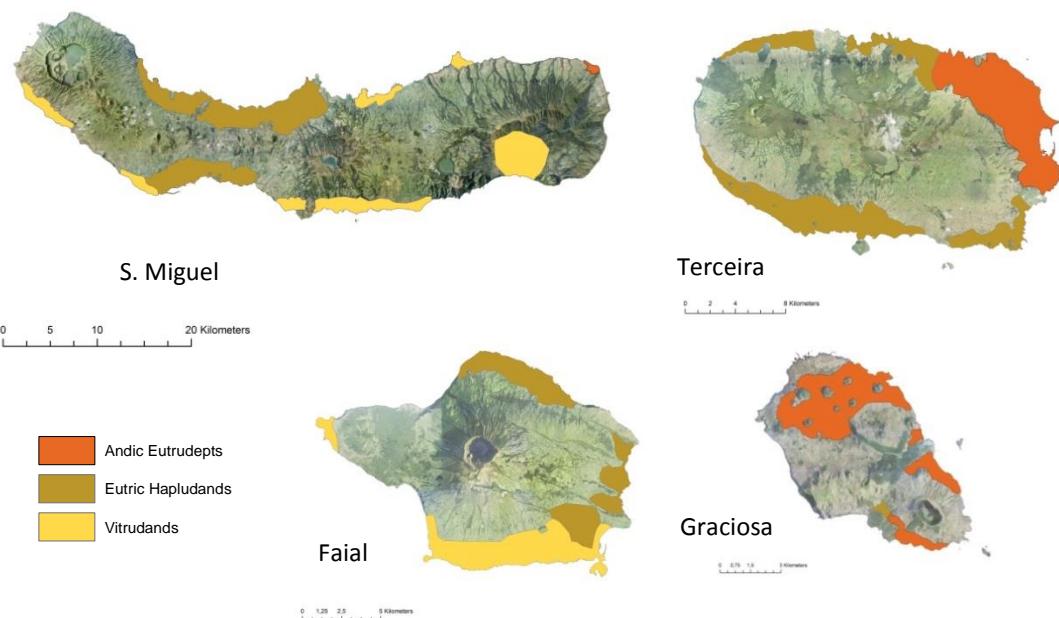
524

525

526 Figure 2. Normal climate and a typical sequential water balance at the littoral of the Azorean Islands.

527

528

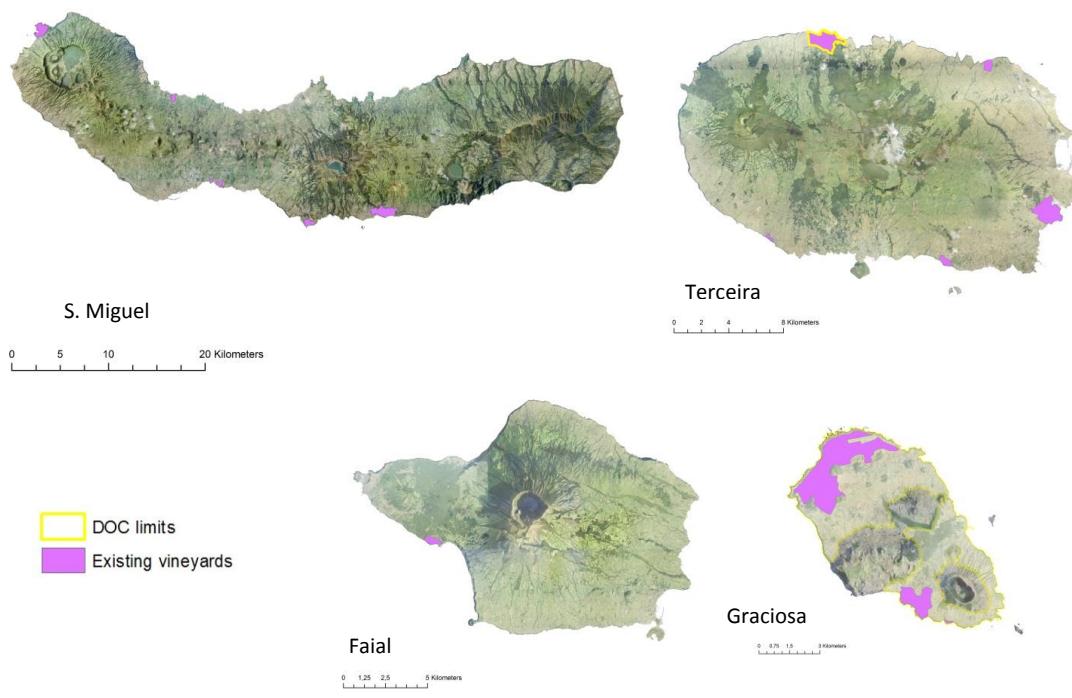

529

530

531

532

533

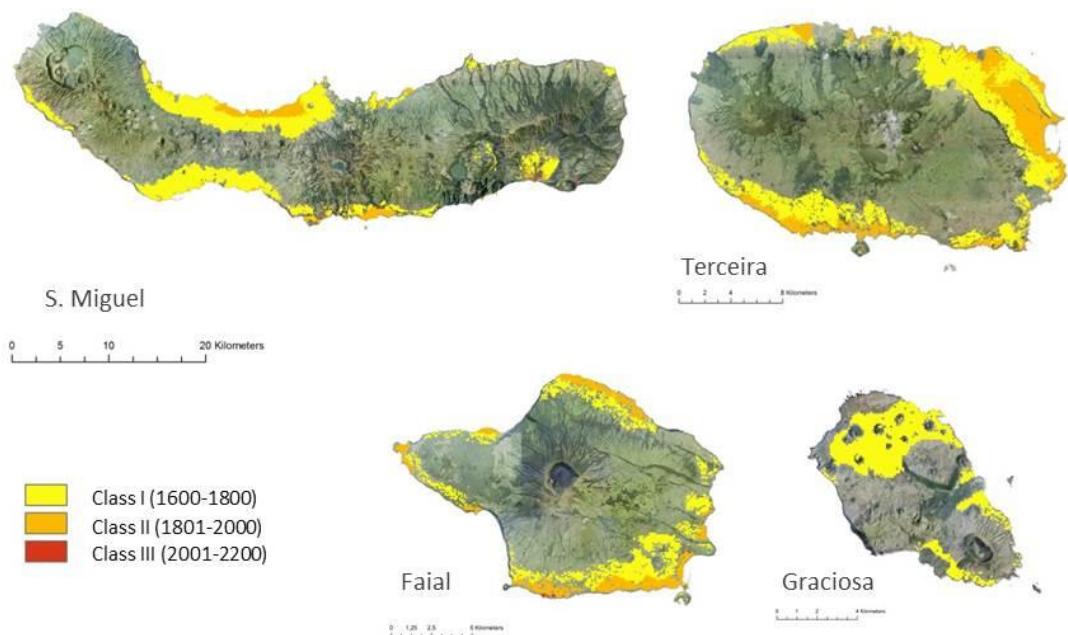

534

535

536

537 Figure 3 - Major soil categories represented in potential new areas for viticulture in S. Miguel,
538 Terceira, Faial and Graciosa islands of the Azores

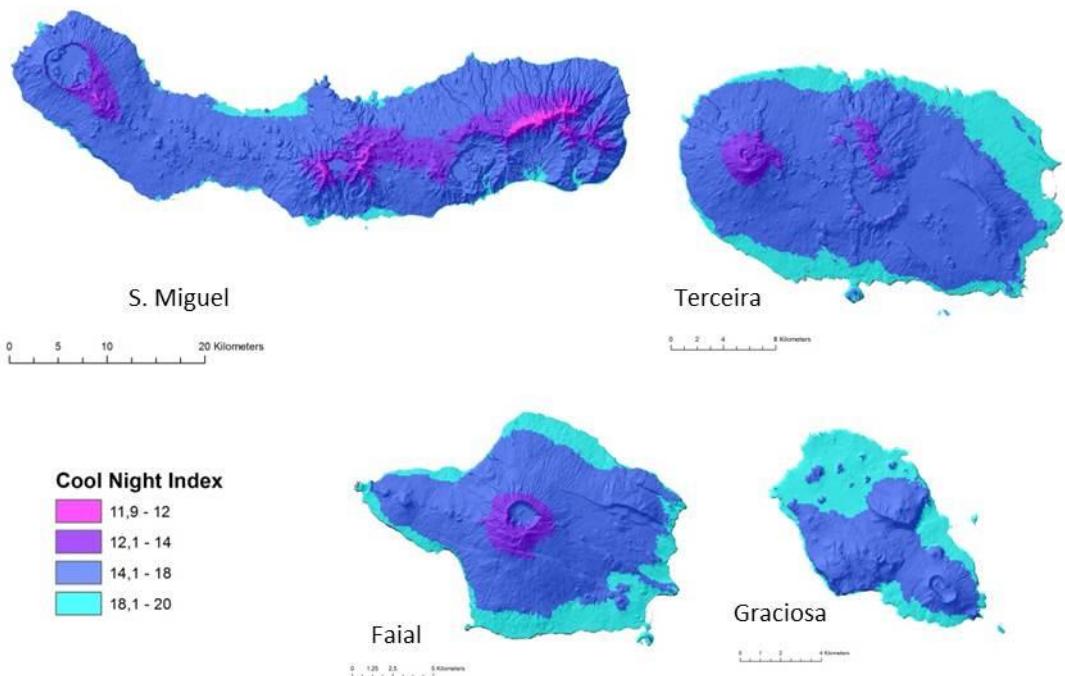
539



540

541

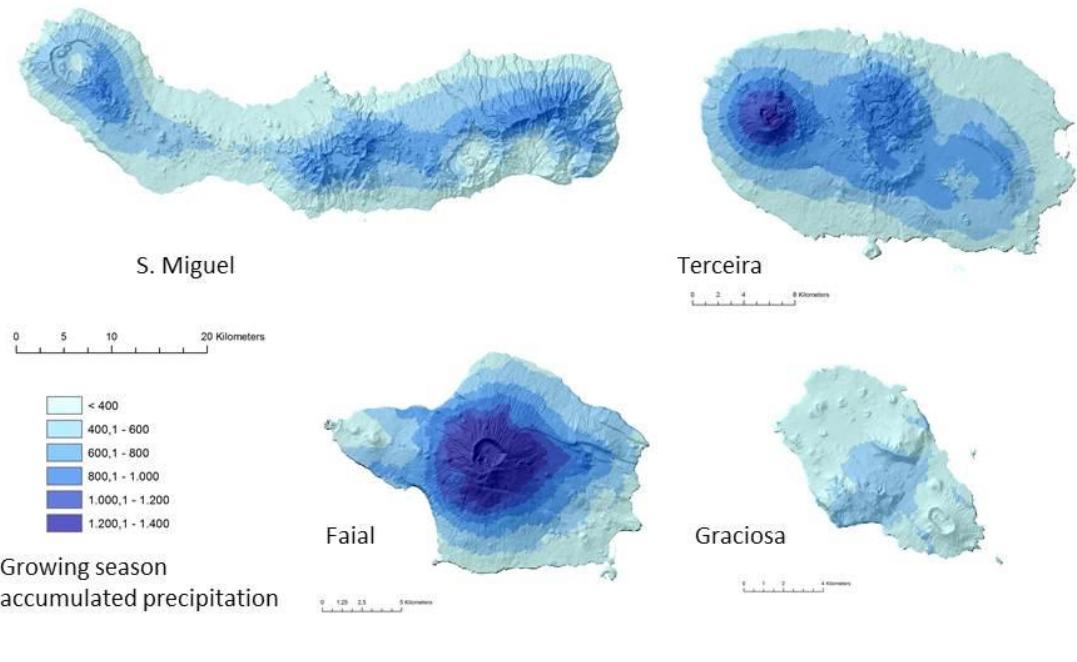
542 Figure 4. Distribution of the existing traditional vineyard areas and DOC limits in the Azores islands.


543

544

545 Figure 5. Composite landscape units with potential for viticulture in each island with distribution
546 depicted by climate maturity groups.

547



548

549 Figure 6 – Cool Night Index (September average minimum temperature)

550

551

552

553 Figure 7 – Growing season accumulated precipitation in millimeters (April-October)

554

555