

Supplement of

Organic and inorganic nitrogen amendments reduce biodegradation of biodegradable plastic mulch films

Sreejata Bandopadhyay et al.

Correspondence to: Jennifer M. DeBruyn (jdebruyn@utk.edu)

The copyright of individual parts of the supplement might differ from the article licence.

		Target substrate in		
		natural	Substrate used in	Indicator of
Abbreviation	Enzyme name	environment	experiment	microbial activity
			4-MUB-β-D-	
BG	β-glucosidase	sugar	glucopyranoside	Carbon cycling
	N-acetyl β-			Carbon and
NAG	glucosaminidase	chitin	4-MUB-N-acetyl-	nitrogen cycling
			β-D-glucosaminide	
	β-D		4-MUB-β-D-	
CB	cellubiosidase	cellulose	cellobioside	Carbon cycling

Table S1: Enzymes assayed before and after 16-week incubation.

MUB = 4-methylumbelliferone; MUC = 7-amino-4-methylcoumarin

Factor	CO2-C (µg C g ⁻¹ dry soil)	NH4 (μg NH4 g ⁻ ¹ dry soil)	NO3 (µg NO3 g ⁻¹ dry soil)	%C	%N	C:N	Log (amoA gene copies g ⁻¹ dry soil)	Log (fungal gene copies g ⁻¹ dry soil)	Log (bacterial gene copies g ⁻¹ dry soil)
Location	39.95***	643.26***	5.01*	1223.33***	834.61***	141.59***	489.92***	120.31***	18.08***
Nitrogen	39.49***	133130***	119.57***	7.78***	16.35***	6.91**	3.31*	14.82***	12.43***
Plastic	461.34***	9.52E-01	2.57	0.04	1.36	1.88	10.06**	3.22	13.63***
Location:Nitrogen	6.09**	542.63***	3.61*	4.48**	2.47	2.48	6.45**	1.42	14.25***
Location:Plastic	31.71***	3.05E-01	0.39	4.11	5.95*	0.03	2.49	1.50	0.85
Nitrogen:Plastic	11.81***	1.46E+00	0.07	3.47*	2.64	0.80	3.30*	5.60**	12.20***
Location:Nitrogen:Plastic	4.68**	8.13E-01	0.21	0.77	0.31	0.62	3.87*	2.07	15.67***

Table S2: F values from three-way ANOVAs showing effects of location, nitrogen and plastic treatment on soil chemical and biological characteristics. Significant differences are in bold; *p < 0.05; **p < 0.01; ***p < 0.001.

Location	Mulch	Nitrogen	C:N ratio	%C	%N
TN TO			9.43 ± 0.01	0.75 ± 0.01	$\boldsymbol{0.08 \pm 0.001}$
TN	no	Amino acid	8.33 ± 0.08	0.69 ± 0.02	0.08 ± 0.001
TN	no	Ammonium nitrate	8.02 ± 0.06	0.65 ± 0.02	0.08 ± 0.002
TN	no	No nitrogen	8.84 ± 0.14	0.70 ± 0.03	0.08 ± 0.003
TN	no	Urea	8.25 ± 0.26	0.72 ± 0.02	0.09 ± 0.001
TN	yes	Amino acid	8.46 ± 0.13	0.72 ± 0.01	0.09 ± 0.002
TN	yes	Ammonium nitrate	8.12 ± 0.12	0.68 ± 0.02	0.08 ± 0.002
TN	yes	No nitrogen	8.93 ± 0.16	0.73 ± 0.03	0.08 ± 0.002
TN	yes	Urea	8.25 ± 0.15	0.70 ± 0.00	0.09 ± 0.001
WA TO			10.69 ± 0.31	1.23 ± 0.06	$\boldsymbol{0.12\pm0.003}$
WA	no	Amino acid	9.23 ± 0.05	1.11 ± 0.01	0.12 ± 0.001
WA	no	Ammonium nitrate	9.52 ± 0.08	1.14 ± 0.01	0.12 ± 0.001
WA	no	No nitrogen	9.70 ± 0.13	1.09 ± 0.01	0.11 ± 0.002
WA	no	Urea	9.37 ± 0.11	1.22 ± 0.03	0.13 ± 0.004
WA	yes	Amino acid	9.40 ± 0.03	1.12 ± 0.02	0.12 ± 0.001
WA	yes	Ammonium nitrate	9.39 ± 0.02	1.12 ± 0.01	0.12 ± 0.001
WA	yes	No nitrogen	10.06 ± 0.17	1.11 ± 0.02	0.11 ± 0.001
WA	yes	Urea	9.37 ± 0.17	1.13 ± 0.02	0.12 ± 0.001

Table S3: C:N ratios, %C and %N of soil before (T0) and after 16-week incubation. TN: Tennessee, WA: Washington. T0: initial soils, prior to experimental amendments. Mean $(n=3) \pm standard error of the mean (SE)$.

Treatment	Location	Theoretical mulch CO ₂ -	Theoretical
		C released	
		(μ g mulch-C g ⁻¹ dry	(%)
		soil)	
Urea	TN	49	4
Amino acid	TN	83	6
Ammonium nitrate	TN	74	6
No Nitrogen	TN	132	10
Urea	WA	47	4
Amino acid	WA	46	4
Ammonium nitrate	WA	41	3
No Nitrogen	WA	63	5

Table S4: Percent biodegradation of BioAgri mulch after 16 weeks. TN: Tennessee, WA: Washington.

Total amount of carbon added in the form of plastic at t=0 was 1309 μ g C g⁻¹ dry soil for TN jars and 1317 μ g C g⁻¹ dry soil for WA jars.

Table S5. Thermogravimetric analysis (TGA)	heating stage temperatures and	% mass remaining of	BioAgri mulch at
600°C. TN: Tennessee, WA: Washington.			

Treatment		Temp (°C)				Mass	
						Remaining	
	То,А, °С	T _{max,A} , °C	Т₀,в, ⁰С	T _{max,B} , ⁰C	T _{f,B} , ⁰C	(%)	
Control *	292.58	331.47	389.75	411.36	433.17	10.48	
Amino acid, TN	297.05	331.21	390.42	412.57	431.69	19.94	
Amino acid, WA	293.19	327.42	384.03	406.11	429.19	36.81	
Ammonium Nitrate, TN	291.96	331.01	387.22	408.12	429.99	32.64	
Ammonium Nitrate, WA	296.23	328.75	390.76	410.69	430.48	17.29	
No Nitrogen, TN	296.81	333.28	388.39	410.88	430.88	32.02	
No Nitrogen, WA	290.55	327.39	391.33	410.92	432.10	22.05	
Urea, TN	295.50	329.18	385.76	404.45	429.97	27.96	
Urea, WA	295.42	327.86	392.36	410.88	431.87	17.77	

Subscripts for $Ti_i j: 0$ = onset temperature max = maximum (most rapid weight loss) temperature, f= final temperature for heating stage i (A=starch and B=PBAT). % Mass remaining = % inorganics present (e.g., binders: CaCO₃ or nanoclays) or gels. One would expect that as biodegradation (of the polymers) occurs, the measured mass loss will decrease; i.e., the % of inorganics would increase. *Agriculturally-weathered BioAgri: Taken from Hayes et al. (2017).

		Locati	on	
N Amendment	7	ſN	WA	
=	M _w , kDa	PDI	M _w , kDa	PDI
Control*	189 + 12	2.51 ± 0.06	189 + 12	2.51 + 0.06
No nitrogen	161 + 2	4.34 + 0.36	151 + 5	2.83 ± 0.39
Urea	151 + 3	2.76 ± 0.07	215 + 1	2.09 ± 0.12
Amino acid	151 + 2	2.64 ± 0.19	157 + 2	2.29 ± 0.32
Ammonium nitrate	152 + 2	2.51 ± 0.13	169 + 2	2.13 ± 0.04

 Table S6. Change in molecular weight-related properties of BioAgri mulch during incubation as per gel permeation chromatographic (GPC) analysis. TN: Tennessee, WA: Washington.

 M_w = weight-averaged molecular weight (in kDa), PDI = polydispersity index; error bars represent standard deviation; values are based on 2 replicates. *Agriculturally-weathered BioAgri: Taken from Hayes et al. (2017).

Table S7. Peak	assignments for	FTIR analysis	for BioAgri mulch	(Haves et al.,	2017).
				· · · · · · · · · · · · · · · · · · ·	· · /·

Wavenumber (cm ⁻¹)	Contribution
2956, 2920, 2876, 2846	C-H stretch
1712	C=O stretch (polyester)
1646	C=O stretch (polysaccharide)
1456, 1410, 1390	-CH ₂ - bend
1268, 1252, 1166, 1118, 1102, 1082	C-O stretch (polyester) C=C for PBAT
1076-1000	(via environmental weathering)
874	C-H stretch
728	(CH ₂) ₄ bend

Figure S1: Cumulative CO₂-C released over 16 weeks. Each data point represents a mean of 3 replicate microcosms. TN: Tennessee, WA: Washington. AA: amino acid, AN: ammonium nitrate.

Figure S2: Visualization of plastic pieces after 16 weeks incubation (raw images). All images were taken from mulches from the first replicate microcosm for each treatment. TN: Tennessee, WA: Washington.

Figure S3: Scanning electron microscopy (SEM) images of plastic mulches after incubation of 16 weeks. All images were taken from mulches from the first replicate microcosm for each treatment. TN: Tennessee, WA: Washington.

Figure S4: Percent biodegradation values as estimated by calculating the remaining surface area of mulch pieces after 16week incubation. Only one rep was visualized per nitrogen treatment. Calculations for surface area done using ImageJ. TN: Tennessee, WA: Washington.

Figure S5. Starch and PBAT components for BioAgri after 16 weeks of incubation. Mulch component (%) was determined 20°C lower before the onset of degradation process (T₀, Table S6) and 20°C higher after the rapid degradation process (T_{max}, Table S6) of each mulch treatment. TN: Tennessee, WA: Washington. Bar plot represents mulch component (%) and error bars reflect standard deviation (where n=2). *Control* refers to agriculturally-weathered BioAgri plastic mulch samples in TN, taken from Hayes et al. (2017).

Figure S6: Changes in (a) bacterial and (b) fungal gene abundances over 16 weeks. All gene abundances were log transformed, then abundances in initial soils subtracted from final (16 week) samples. Each bar represents a mean of 3 replicate microcosms and error bars are standard error. Lowercase letters indicate interaction effects at $\alpha \le 0.05$ for bacterial abundance in TN and WA and fungal abundance in TN. Uppercase letters for fungal abundance in WA along x-axis indicate a significant main effect of nitrogen treatment at $\alpha \le 0.05$. Uppercase letters above bars for fungal gene abundance in WA indicate a significant main effect of plastic at $\alpha \le 0.05$. Asterisks indicate significant increase or decrease in gene abundance from t = 0 as per a *t*-test. * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$. TN: Tennessee, WA: Washington.

Figure S7: Changes in enzyme activities of β - glucosidase (BG), cellubiosidase (CB), and N-acetyl β -D- glucosaminidase (NAG) after 16 weeks. Each bar represents a mean of 3 replicate microcosms and error bars are standard error. Lowercase letters indicate a significant interaction effect at $\alpha \le 0.05$. Boxed uppercase letters indicate a significant main effect of nitrogen at $\alpha \le 0.05$. Unboxed uppercase letters indicate a significant main effect of plastic at $\alpha \le 0.05$. Asterisks indicate significant increase or decrease in enzyme activity from t = 0 based on a *t*-test. * p ≤ 0.05 , ** p ≤ 0.01 , *** p ≤ 0.001 . TN: Tennessee, WA: Washington.

References

Hayes, D. G., Wadsworth, L. C., Sintim, H. Y., Flury, M., English, M., Schaeffer, S., and Saxton, A. M.: Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches, Polymer Testing, 62, 454-467, <u>https://doi.org/10.1016/j.polymertesting.2017.07.027</u>, 2017.