

Supplement of

Network complexity of rubber plantations is lower than tropical forests for soil bacteria but not for fungi

Guoyu Lan et al.

Correspondence to: Guoyu Lan (langyrri@163.com)

The copyright of individual parts of the supplement might differ from the article licence.

11	Figure S1 Rainforest (solid blue hexagons) and rubber plantation (solid red triangles)
12	study sites on Hainan Island.

Figure S2 Relationship between network properties and OTU abundance of rubber plantations and tropical rainforest sites across season. The size of the node indicates the OTU abundance.

16 **Figure S3** Z_i . P_i plot showing the topological distribution of OTUs in the bacterial

17 networks. Each point represents a fungal OTU. Threshold values of Z_i and Pi for the

18 classification are 2.5 and 0.62, respectively. The size of the node indicates the OTU

19 abundance.

Figure S4 Z_i - P_i plot showing the topological distribution of OTUs in the fungal

21 networks. Each point represents a fungal OTU. Threshold values of Z_i and Pi for the

classification are 2.5 and 0.62, respectively. The size of the node indicates the OTU

23 abundance.

Figure S5 Two ways correlation network of top 500 most abundant bacterial (A) and fungal (B) OTUs and environmental factors. The size of the node indicates the OTU abundance. A red line indicates positive correlation between species/functions, and green indicates negative correlation. Absolute value of correlation coefficient > 0.5, P< 0.01.

Figure S6 Relationship between abundance of phylum (bacteria: A-E, I-M; fungi: F-H,
N-P) and soil properties (Soil pH: A-H; AK (available potassium) concentration: I-P)
Figure S7 Network degree of soil bacterial and fungal community of rubber plantations
(blue) and tropical rainforest (red) in the dry and rainy seasons (A: bacteria in dry

33	season, B: bacteria in rainy season, C: fungal in dry season, D: fungal in rainy season)
34	Figure S8 Phylum composition of the soil fungal community of rubber plantations and
35	tropical rainforest sites across seasons.
36	Figure S9 Phylum composition of the soil bacterial community of rubber plantations
37	and tropical rainforest sites across seasons.
38	
39	Table S1 Site characteristics for rubber plantation and tropical rainforest sites.
40	Table S2 Soil properties and environmental factors for study rubber plantation and
41	tropical rainforest sites on Hainan Island.
42	Table S3 Keystone bacterial taxa in the overall network. Keystones were selected on
43	the basis of high degree, high closeness centrality and low betweenness centrality (for
44	dry season: cut-off: degree > 45 and CC >0.42 and BC <0.030, for rainy season: cut-
45	off: degree >72 and CC >0.45 and BC <0.020) according to Berry and Widder (2014).
46	Table S4 Keystone fungal taxa in the overall network. Keystones were selected on the
47	basis of high degree, high closeness centrality and low betweenness centrality (for dry
48	season: cut-off: degree >25 and CC >0.25 and BC < 0.06, for rainy season: cut-off:
49	degree >30 and CC >0.32 and BC <0.040) according to Berry and Widder (2014).
50	

Forest type	Site	Longitude	Latitude	Elevation (m)	Mean annual precipitation (mm)	Mean annual temperature (℃)
Rubber plantation	Danzhou (DZ)	109.5789	19.5628	112	1831.53	23.60
Rubber plantation	Qiongzhong (QZ)	109.7387	19.2633	156	2067.33	23.45
Rubber plantation	Ledong (LD)	109.2231	18.7534	170	1661.26	24.46
Rubber plantation	Wanning (WN)	110.132	18.6749	51	1786.46	24.7
Rubber plantation	Haikou (HK)	110.5723	19.6977	102	1863.38	24.16
Rainforest	Diaoluo (DL)	109.864	18.7277	958	1921.27	24.17
Rainforest	Jianfeng (JF)	108.8834	18.7273	950	1392.34	24.69
Rainforest	Bawang (BW)	109.1277	19.0842	575	1602.12	24.31
Rainforest	Yingge (YG)	109.5598	19.0467	620	2067.77	23.55
Rainforest	Wuzhi (WZ)	109.6812	18.9059	820	2173.82	23.42

Table S1 Site characteristics for rubber plantation and tropical rainforest sites.

Table S2 Soil properties and environmental factors for rubber plantation and tropical rainforest study sites on Hainan Island.

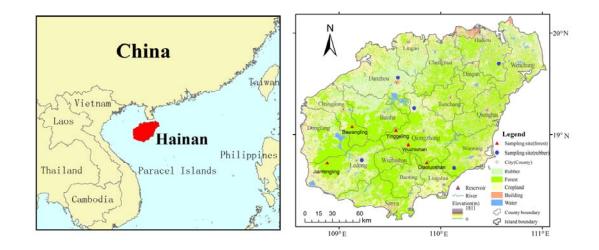
	1 1					1		1					
1	WC	SOM	6 . H H	AN	NN	AP	AK	TN	ТР	ТК	Elevation	Rainfall	Temperature
	(%)	(%)	Soil pH	(mg/kg)	(mg/kg)	(mg/kg)	(g/kg)	(g/kg)	(g/kg)	(g/kg)	(m)	(mm)	(°C)
Rubber plantation	29.20±9.77 1	1.56+0.88	4.79±0.44	12.39±6.03	7.59±4.31	4.03 ± 3.34	29.37±15.35	1.28±0.65	$0.30{\pm}0.37$	13.09±11.24	118.20±42.42	1841.99±132.49	24.07 ± 0.48
Rainforest	31.63±9.792	2.92±0.90	4.59±0.59	15.31±5.49	13.01±6.75	4.13±3.72	78.58±39.67	2.08±0.94	0.18±0.13	15.69 ± 7.80	784.60±161.68	1831.46±293.21	24.03 ± 0.48

57 **Table S3** Keystone bacterial taxa in the overall network. Keystones were selected on the basis of high degree, high closeness centrality and low

- 58 betweenness centrality (for dry season: cut-off: degree >45 and CC >0.42 and BC <0.030, for rainy season: cut-off: degree >72 and CC >0.45 and
- 59 BC <0.020) according to Berry and Widder (2014).

Forest systems	Season	OTU ID	Abundance	Genus	Phylum	Betweenness	Closeness	Degree	
						Centrality	Centrality	Degree	
Rubber	Dry								
		OTU7157	4249	norank_oAcidimicrobiales	Actinobacteria	0.029	0.441	50	
		OTU12862	2526	norank_cTK10	Chloroflexi	0.019	0.443	48	
		OTU11199	5405	norank_oAcidimicrobiales	Actinobacteria	0.025	0.439	47	
Rainforest	Dry								
		OTU11388	3403	norank_cAcidobacteria	Acidobacteria	0.030	0.448	50	
		OTU13452	3618	Isosphaera	Planctomycetes	0.028	0.422	50	
		OTU11373	50724	norank_cAcidobacteria	Acidobacteria	0.017	0.424	47	
		OTU12812	17787	Mycobacterium	Actinobacteria	0.028	0.423	47	
		OTU12831	1892	norank_fPlanctomycetaceae	Planctomycetes	0.019	0.422	47	
Rubber	Rainy								
		OTU12588	2428	Iamia	Actinobacteria	0.018	0.498	78	
		OTU7139	1714	norank_fNitrosomonadaceae	Proteobacteria	0.012	0.488	76	
		OTU8355	15140	norank_fNitrosomonadaceae	Proteobacteria	0.008	0.485	73	
Tropical	Rainy								
		OTU11373	45930	norank_cAcidobacteria	Acidobacteria	0.019	0.510	88	
		OTU11421	5437	Candidatus_Xiphinematobacter	Verrucomicrobia	0.011	0.504	79	
		OTU2626	26970	norank_cAcidobacteria	Acidobacteria	0.012	0.497	78	
		OTU12996	8087	Candidatus_Xiphinematobacter	Proteobacteria	0.011	0.501	77	
		OTU8228	6839	norank_cAcidobacteria	Acidobacteria	0.011	0.492	77	
		OTU2133	3464	H16	Proteobacteria	0.016	0.513	76	
		OTU11388	3390	norank_cAcidobacteria	Acidobacteria	0.018	0.508	75	

60 Table S4 Keystone fungal taxa in the overall network. Keystones were selected on the basis of high degree, high closeness centrality and low


61 betweenness centrality (for dry season: cut-off: degree >25 and CC >0.25 and BC < 0.06, for rainy season: cut-off: degree >30 and CC >0.32 and

Forest systems	Season	OTU ID	Abundance	Genus	Phylum	Betweenness Centrality	Closeness Centrality	Degree
Rubber	Dry							
		OTU1965	9341	Clitopilus	Basidiomycota	0.060	0.290	32
		OTU2200	6757	unclassified	unclassified	0.052	0.289	28
Rainforest	Dry							
		OTU7656	4373	unclassified_fThelephoraceae	Basidiomycota;	0.048	0.306	26
Rubber	Rainy							
		OTU5009	2362	unclassified	unclassified	0.022	0.323	31
		OTU4781	3421	Mortierella	Zygomycota	0.1417	0.354	30
		OTU5180	1719	unclassified_pAscomycota	Ascomycota	0.015	0.321	29
		OTU2200	5201	unclassified	unclassified	0.068	0.337	28
		OTU5403	1789	Magnaporthe	Ascomycota	0.011	0.320	28
		OTU5846	1485	unclassified_cLeotiomycetes	Ascomycota	0.012	0.325	27
		OTU4425	9770	unclassified	unclassified	0.011	0.314	27
		OTU4250	3463	unclassified	unclassified	0.009	0.307	27
		OTU6498	12083	unclassified_pAscomycota	Ascomycota	0.055	0.296	27
		OTU1965	5951	Clitopilus	Basidiomycota	0.046	0.325	26
		OTU5761	3945	unclassified	unclassified	0.009	0.319	26
		OTU5590	3691	unclassified_oPleosporales	Ascomycota	0.008	0.317	26
		OTU4323	5781 5781	unclassified	unclassified	0.015	0.309	26
		OTU994	5828	unclassified	unclassified	0.020	0.293	26
		OTU4659	4215	unclassified_oSordariales	Ascomycota	0.012	0.285	26
Rainforest	Rainy							

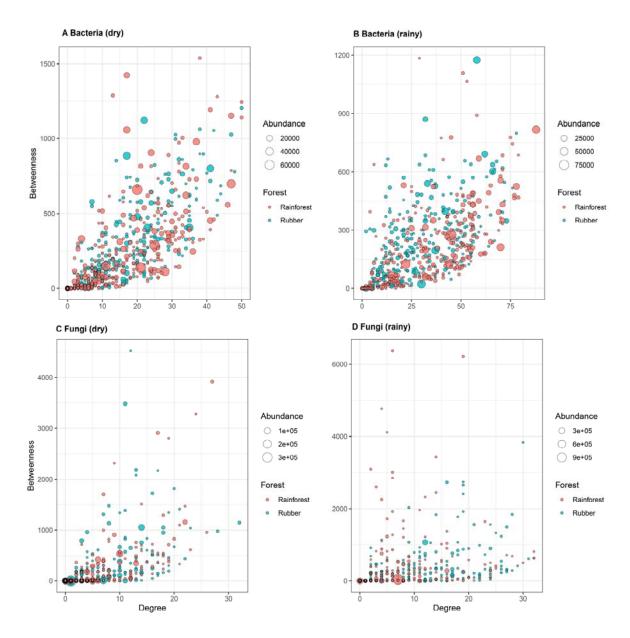
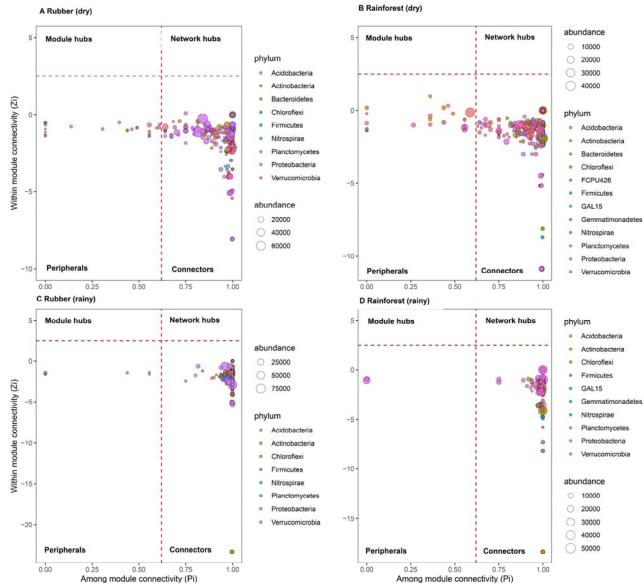
62 BC <0.040) according to Berry and Widder (2014).

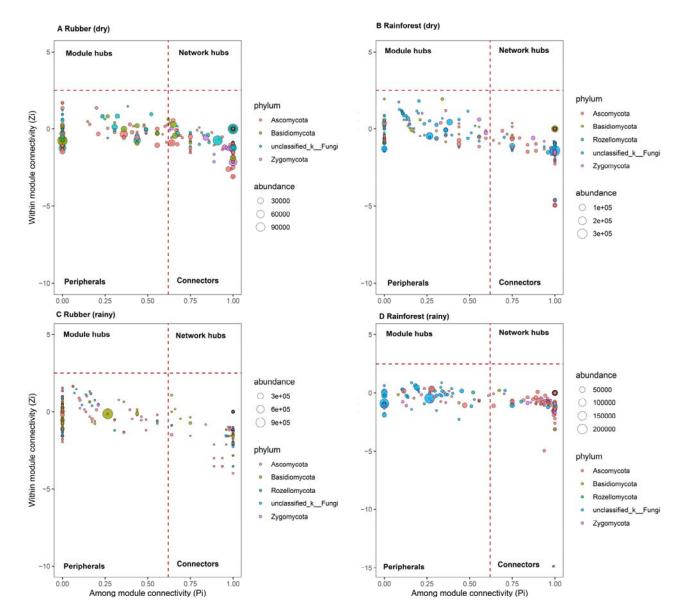
Rainforest Rainy

OTU10963	4510	Neobulgaria	Ascomycota	0.032	0.205	32
OTU11424	1413	unclassified_fPezizaceae	Ascomycota	0.032	0.205	32
OTU10509	1200	unclassified_cSordariomycetes	Ascomycota	0.040	0.204	32
OTU10426	1105	unclassified_cSordariomycetes	Ascomycota	0.025	0.024	30
OTU11839	1086	unclassified	unclassified	0.035	0.204	28
OTU3670	1181	Pyrenochaetopsis	Ascomycota	0.036	0.204	27

65 Figure S1 Rainforest (blue solid hexagons) and rubber plantation (red solid triangles) study sites

66 on Hainan Island.


Figure S2 Relationship between network properties and OTU abundance of rubber plantations and
 tropical rainforests across season. The size of the node indicates the OTU abundance.

73 Among module of

Figure S3 Z_i . P_i plot showing the topological distribution of OTUs in the bacterial networks. Each

- point represents a fungal OTU. Threshold values of Z_i and P_i for classification are 2.5 and 0.62,
- respectively. The size of the node indicates the OTU abundance.
- 77
- 78

79

Figure S4 Z_i . P_i plot showing the topological distribution of OTUs in the fungal networks. Each point represents a fungal OTU. Threshold values of Z_i and P_i for classification are 2.5 and 0.62, respectively. The size of the node indicates the OTU abundance.

- 83
- 84

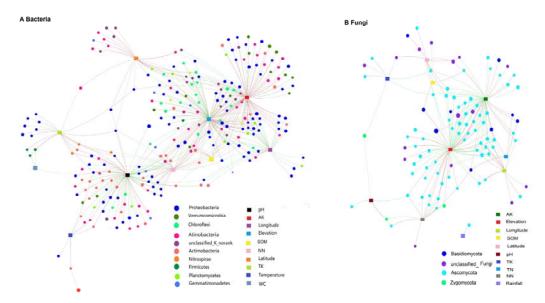
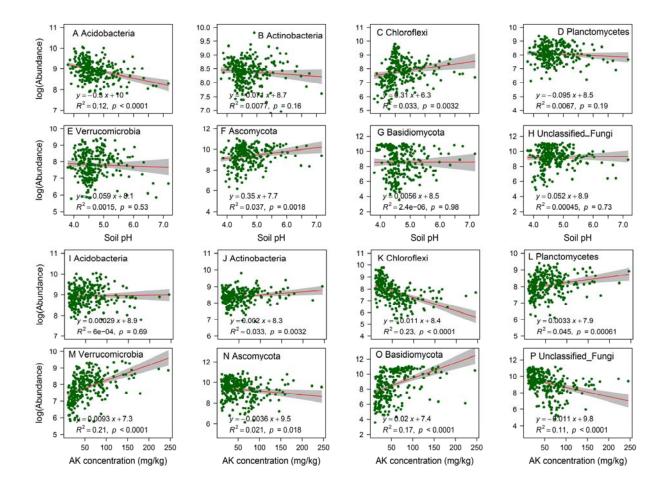



Figure S5 Two ways correlation network of top 500 abundant bacterial (A) and fungal (B) OTU and environmental factors. The size of the node indicates the OTU abundance. Red line indicates positive correlation between species/functions, and green indicates negative correlation. Absolute value of correlation coefficient > 0.5, P < 0.01.

93 Figure S6 Relationship between abundance of phylum (bacteria: A-E, I-M; fungi: F-H,

N-P) and soil properties (Soil pH: A-H; AK (available potassium) concentration: I-P)

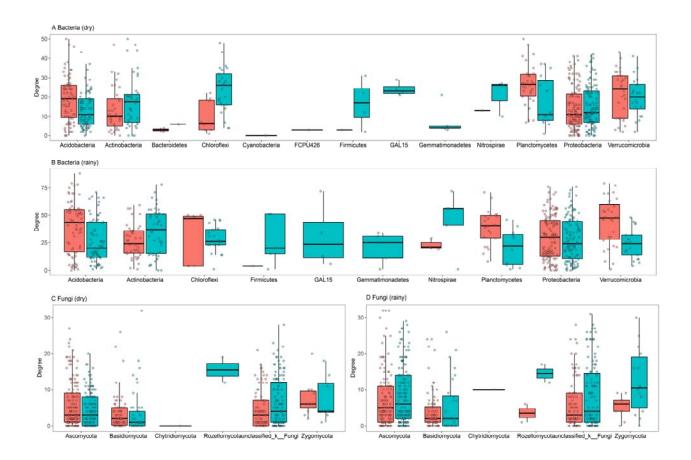
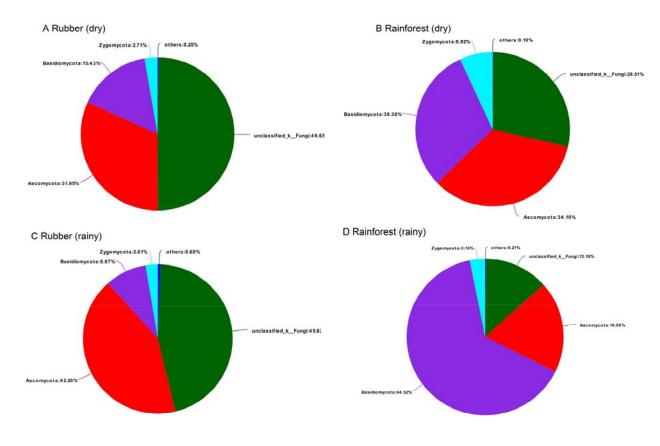
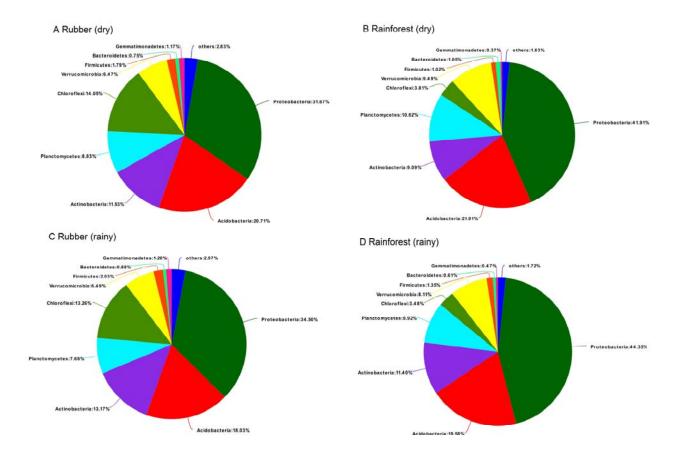




Figure S7 Network degree of soil bacterial and fungal community of rubber plantations (blue) and tropical rainforest (red) in the dry and rainy season (A: bacteria in dry season, B: bacteria in rainy

season, C: fungal in dry season, D: fungal in rainy season)

105 Figure S8 Phylum composition of soil fungal community of rubber plantations and tropical 106 rainforests across seasons.

110 Figure S9 Phylum composition of soil bacterial community of rubber plantations and tropical

111 rainforests across seasons.