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Abstract. Low soil fertility is challenging the sustainable production of yam and other staple crops in the yam
belt of West Africa. Quantitative soil measures are needed to assess soil fertility decline and to improve crop nu-
trient supply in the region. We developed and tested a mid-infrared (mid-IR) soil spectral library to enable timely
and cost-efficient assessments of soil properties. Our collection included 80 soil samples from four landscapes
(10 km× 10 km) and 20 fields per landscape across a gradient from humid forest to savannah and 14 additional
samples from one landscape that had been sampled within the Land Health Degradation Framework. We de-
rived partial least squares regression models to spectrally estimate soil properties. The models produced accurate
cross-validated estimates of total carbon, total nitrogen, total sulfur, total iron, total aluminum, total potassium,
total calcium, exchangeable calcium, effective cation exchange capacity, and diethylenetriaminepentaacetic acid
(DTPA)-extractable iron and clay content (R2 > 0.75). The estimates of total zinc, pH, exchangeable magne-
sium, bioavailable copper, and manganese were less predictable (R2 > 0.50). Our results confirm that mid-IR
spectroscopy is a reliable and quick method to assess the regional-level variation of most soil properties, espe-
cially the ones closely associated with soil organic matter. Although the relatively small mid-IR library shows
satisfactory performance, we expect that frequent but small model updates will be needed to adapt the library to
the variation of soil quality within individual fields in the regions and their temporal fluctuations.
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1 Introduction

Yam (Dioscorea spp.) is an important food and cash crop
in West Africa. The yam belt of West Africa spans across
the central zone of coastal countries in West Africa, located
across the humid forest zone and northern Guinean savanna.
It contributes to about 92 % of total world yam production,
e.g., a total yield of 73× 106 t in 2017 (Food and Agricul-
ture Organization of the United Nations, 2019). The crop-
ping area in the West African yam belt has been expanded
with accelerated population growth. The deforestation and
expansion of agricultural land has in many places caused soil
degradation. Furthermore, there has been a trend of short-
ened fallow periods in the cropping areas of West Africa
over the last decades, which has further exacerbated the de-
cline in soil fertility across the yam belt. Traditionally, yam
is grown without external input in these areas. Therefore, the
production of yam and other crops grown in the region de-
pends on soil organic matter (SOM) status (Padwick, 1983),
which serves as a main pool of plant-available nutrients and
provides cation exchange surfaces for soil nutrients (Syers
et al., 1970; Soares and Alleoni, 2008). A particularly strong
positive relationship between high organic matter stocks and
yam productivity is reported after fallow and when no fer-
tilizer is added (Diby et al., 2009; Kassi et al., 2017). Thus,
maintaining or increasing SOM and available nutrient levels
is of utmost importance for sustainable production of yam
and other crops in West Africa (Carsky et al., 2010). Fur-
thermore, linking soil properties and yam yields (Frossard
et al., 2017) and accounting for soil macro- and micronutri-
ent status (O’Sullivan and Jenner, 2006) are fundamental to
improving crop yields and soil management strategies.

Soil fertility is an integrative measure of soil attributes
and their interactions that support the long-term agricultural
production potential. Soil fertility is commonly decomposed
into physical, chemical, and biological major components
(Abbott and Murphy, 2007). Here, it is important to inter-
pret soil fertility in the form of soil conditions and functions
at an adequate resolution over time and space and in relation
to the crop of interest. For yam, low tuber yields are often
attributed to an unbalanced ratio of essential nutrients (i.e.,
N, P, K) available in the soil (Enyi, 1972) and a fast mineral-
ization and hence depletion of organic matter (Carsky et al.,
2010; Hgaza et al., 2011). Yet, the relationship between soil
properties and tuber yield is not fully understood (Frossard
et al., 2017). The reason is that the response of yam to min-
eral fertilization is highly variable because of confounding
environmental and management variables, such as climate,
soil type, inherent soil fertility, micronutrient deficiencies,
tillage, seed tuber quality, planting date and density, staking,
and disease pressure across the yam belt (Kang and Wilson,
1981; O’Sullivan and Jenner, 2006; Cornet et al., 2016; En-
esi et al., 2018). Further, there are no soil fertility recommen-
dations specific for yam under West African conditions. For
this reason, establishing yam field trials designed with differ-

ent organic and mineral fertilization strategies within differ-
ent yam-growing regions is required to optimize yam nutrient
supply targeting regional soil and environmental conditions
(Frossard et al., 2017). Despite the importance of soil fer-
tility, it is challenging to quantify soil measures at sufficient
temporal and spatial resolution to relate them to yam produc-
tivity together with other management effects.

To quickly assess key soil properties, such as soil organic
carbon (SOC) and cation exchange capacity (CEC), we need
more cost- and time-efficient methods in addition to the tradi-
tional wet chemistry laboratory analyses that are often cost-
intensive and time-consuming. Proximal sensing is a method
that can provide reliable, rapid, and inexpensive soil mea-
surements (UNEP, 2012). Soil visible and near-infrared (vis–
NIR) and mid-infrared (mid-IR) diffuse reflectance spec-
troscopy has gained popularity over the past 30 years to as-
sess soil properties in a complementary manner to conven-
tional laboratory analytical methods (Nocita et al., 2015).
For model development and calibration but, importantly, also
for validation purposes, soil IR spectroscopy requires labo-
ratory reference analysis data. Previous studies have shown
successful spectroscopic predictions of soil properties, such
as organic C, texture, cation exchange capacity (CEC), and
exchangeable K (Viscarra Rossel et al., 2006; Cécillon et al.,
2009; Nocita et al., 2015; Sila et al., 2016). Many soil chem-
ical and physical properties, such as soil mineralogy and the
concentration, forms, and distribution of SOM, are closely
associated with IR spectral diversity. However, for determin-
ing a range of extraction-based soil properties, the predic-
tive capability seems variable. This can be caused by com-
plex surface chemical processes that are not directly related
to soil organic matter and/or insufficient densities available
at local scale to represent such locally complex relationships
(Viscarra Rossel et al., 2006; Abdi et al., 2012; Sanderman
et al., 2020). Further, a library that includes a broad range
of soil biophysical conditions found in the region in which it
is used needs to be established. Depending on the geograph-
ical extent of the study – field (e.g., Cambou et al., 2016),
region, country (e.g., Clairotte et al., 2016), continent (e.g.,
Sila et al., 2016), world (e.g., Viscarra Rossel et al., 2016) –
various statistical predictive modeling strategies are typically
employed to account for geographically regional variability
in soil properties and determine empirical relationships be-
tween spectra and soil attributes. Particular subsets of and
features in spectra are characteristic of functional groups of
soil components, and thus, elucidating spectral features that
are important for the prediction of a particular soil attribute
helps to understand and validate the mechanisms based on
which the empirically models predict the soil properties.

In this work, we aim to develop mid-IR spectroscopy as a
diagnostic tool for key analytical soil variables within four
climatically, ecologically, and agriculturally distinct land-
scapes in Burkina Faso and Côte d’Ivoire. For yam and other
cash crops, there is a lack of soil diagnostic tools to iden-
tify factors limiting yields and to derive site-specific fertil-
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izer recommendations within and across landscapes. In these
regions, yam has substantial economic importance for small-
holder farmers. As land management and soil status is a key
factor not only for yam but also for other high-value crops
in the region, quick and cost-effective soil status assessments
should be transferable to other crops with similar nutrient de-
mands. Thus, the main objectives of this study were to (1) de-
velop and evaluate openly accessible and reusable mid-IR
spectroscopic models to estimate soil properties for selected
landscapes representing major soil and climatic conditions in
the West African yam belt, (2) to determine important spec-
tral features for specific soil properties, and (3) to build a new
soil spectral library in four landscapes of the West African
yam belt for soil prediction and assessment. Finally, we make
specific recommendations on whether and how specific mid-
infrared diagnostic measures are applicable for different soil
management and screening purposes. We also discuss the
spectroscopic evaluation of the soil’s capacity to retain and
release nutrients for sustained and improved cropping in the
region.

2 Materials and methods

2.1 Landscapes and soil sampling

Our study area covered the climatic and soil biophysical con-
ditions representative of the West African yam belt. We se-
lected four landscapes, two in Côte d’Ivoire and two in Burk-
ina Faso. Each landscape (approximately 10 km× 10 km)
represents a diverse geographic ecoregion. The landscapes
cover a gradient between humid forest and the northern
Guinean savannah. Specifically, the landscape Liliyo in Côte
d’Ivoire is at 5.88◦ N and in the humid forest zone. The
predominant soil type is Ferralsol (IUSS Working Group
WRB, 2015). The landscape Tiéningboué in Côte d’Ivoire
is at 8.14◦ N and belongs to the forest savannah transitional
zone. The soils are dominated by Nitisols and Lixisols (IUSS
Working Group WRB, 2015). The landscape Midebdo is at
9.97◦ N and in the sub-humid savannah of Burkina Faso. Its
dominant soil types include Lixisols, Gleysols, and Leptosols
(IUSS Working Group WRB, 2015). The landscape Léo is
at 11.07◦ N and in the northern Guinean savannah of Burk-
ina Faso and has Lixisols and Vertisols as the dominant soil
types (IUSS Working Group WRB, 2015). The mean annual
rainfall was approximately 1300 mm in Liliyo, and 900 mm
in Tiéningboué, Midebdo, and Léo.

During July and August 2016, we sampled the soil from a
total of 80 fields under yam cultivation across the four land-
scapes, i.e., 20 yam fields in each landscape. The fields were
selected in advance by taking into account visual variation in
soil color and texture across the landscape. The yam fields
selected contained the maximum soil variability based on
soil color and cropping history, taking into account both local
farmers’ knowledge on soil fertility and agronomic extension
expertise. Yam is typically planted on soil mounds, ranging

from 5000 to 10 000 mounds ha−1 with a single yam plant
per mound. Within each field, we sampled the soil at four
adjacent mounds in square arrangement, which were spaced
between 0.5 and 2 m. At each mound, six to eight auger cores
(25 mm in diameter) to the 0.3 m depth were taken at a radius
between 0.15 and 0.3 m away from the center of a mound, de-
pending on the size of the mounds. Then the soils from the
four mounds were combined into one composite sample per
field (around 500 to 1000 g of soil).

An additional set of 14 composite soil samples was col-
lected by the International Center for Research in Agro-
forestry (ICRAF) at Liliyo from one sentinel site called
“Petit-Bouaké” (UNEP, 2012). Sampling took place between
25 and 29 August 2015 at positions that were previously
selected for the Land Degradation Surveillance Framework
(LDSF) in a spatially stratified manner (Vagen et al., 2010).
The soil samples received from ICRAF were within the same
landscape as the sampled soils in Liliyo within YAMSYS but
sampled from different positions. All soil samples were air-
dried and stored in plastic bags until further analysis.

2.2 Soil reference analyses

The air-dried soil samples were crushed and sieved at 2 mm.
About 60 to 70 g of the sieved soil was oven-dried at 60◦C
for 24 h, of which 20 g was ball-milled. All chemical anal-
yses except soil pH were conducted both on the soils sam-
pled in yam fields (n= 80) and the LDSF soils obtained from
ICRAF (n= 14).

The milled soils were analyzed for total C and macronu-
trient (N and S) concentrations using an elemental analyzer
(vario PYRO cube, Elementar Analysensysteme GmbH, Ger-
many). For each of the four landscapes, two soils were se-
lected and analyzed based on three analytical replicates for
quantifying within-sample variance of the elemental analy-
sis. For the remaining samples, the analysis was not repeated.
Sulfanilamide was used as a calibration standard for the dry
combustion. For pH determination, 10 g of air-dried soil per
sample was placed in a 50 mL Falcon tube, and 20 mL of
de-ionized water was added. The samples were shaken in a
horizontal shaker for 1.5 h and measured for pH using a pH
electrode (Benchtop pH/ISE meter model 720A, Orion Re-
search Inc., USA).

Bioavailable micronutrient (Fe, Mn, Zn, and Cu) con-
centrations in soils were determined with the diethylene-
triaminepentaacetic acid (DTPA) extraction method, as de-
scribed in Lindsay and Norvell (1978). The extracting solu-
tion consisted of 0.0005 M DTPA, 0.01 M CaCl2, and 0.1 M
triethanolamine. Briefly, 10 g of the sieved (< 2 mm) soils
was extracted with 20 mL of DTPA solution. Micronutrient
concentrations in the filtrates were measured by inductively
coupled plasma optical emission spectroscopy (ICP-OES;
using a Shimadzu ICPE-9820 plasma atomic emission spec-
trometer). Final DTPA-extractable concentrations of Fe, Mn,
Zn, and Cu were calculated back to per kilogram of dry soil.
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For each landscape, two soils were selected and analyzed in
triplicate to assess analytical errors. For the remaining soils
the analysis was not repeated.

For each sample, the concentrations of total elements (Fe,
Si, Al, K, Ca, P, Zn, Cu, and Mn) in the soil were assessed
by energy dispersive X-ray fluorescence spectrometry (ED-
XRF) measurements on 4 g of the milled soil with a SPEC-
TRO XEPOS instrument (SPECTRO Analytical Instruments
GmbH, Germany). The soil was mixed with an equal amount
of wax using a ball mill and pressed into pellets. Exchange-
able cations (Ca2+, Mg2+, K+, Na+, and Al3+) were de-
termined with the BaCl2 method (Hendershot and Duquette,
1986). About 2 g of the air-dried soil (< 2 mm) was extracted
by shaking for 2 h with 30 mL of 0.1 M BaCl2 on a hori-
zontal shaker (120 cycles min−1). The suspension was fil-
tered through no. 40 filter paper (Whatman, Brentford, UK).
For each landscape, two soils were analyzed in analytical
triplicate. The concentrations of exchangeable cations in the
BaCl2 extract were measured by ICP-OES (using a Shi-
madzu ICPE-9820 plasma atomic emission spectrometer).
Different BaCl2 extract dilutions were used in order to obtain
an optimal signal intensity for the quantification of specific
elements across all samples. Concentration of H+ per kilo-
gram of dry soil was calculated based on the pH measured in
the BaCl2 extractant. The BaCl2 extraction does only slightly
modify pH and is therefore an appropriate method to cal-
culate effective CEC (CECeff) at native soil pH. Using the
concentrations of the BaCl2-extractable cations (i.e., Ca2+,
Mg2+, K+, Na+, Al3+, and H+), CECeff was calculated as
the sum of exchangeable cations in centimoles (cmol) of
cation charge per kilogram of dry soil. Exchangeable acid-
ity was defined by the sum of exchangeable Al3+ and H+.
Base saturation in percent was calculated as a ratio of the
sum of basic cations (Ca2+, Mg2+, K+, and Na+) in cmol(+)
per kilogram of soil to the CECeff multiplied by 100.

Particle size analysis was conducted by the International
Institute of Tropical Agriculture (IITA) in Cameroon, as de-
scribed in Bouyoucos (1951). Briefly, 50 g of dried 2 mm
sieved soil was stirred with 50 mL 4 % sodium hexam-
etaphosphate and 100 mL of deionized water in a mixer, to
break down the aggregates into individual particles. Read-
ings with a hydrometer (ASTM 152 H, Thermco, New Jer-
sey, USA) were taken after letting it stand in the suspension
for 30 min. The silt content was calculated by subtracting the
measured proportion of sand and clay from 100 %.

Spectroscopic measurements

The milled soils (n= 94) were measured on a Bruker AL-
PHA DRIFT spectrometer (Bruker Optics GmbH, Ettingen,
Germany), which was equipped with a ZnSe optics device,
a KBr beamsplitter, and a DTGS (deuterated triglycine sul-
fate) detector. Mid-IR spectra were recorded between 4000
and 500 cm−1 with a spectral resolution of 4 cm−1 and
a sampling resolution of 2 cm−1. Reflectance (R) spectra

were transformed to apparent absorbance (A) using A=

log10(1/R) and corrected for atmospheric CO2 using macros
within the OPUS spectrometer software (Bruker Corpora-
tion, US). The spectra were referenced to a IR-grade fine
ground potassium bromide (KBr) powder spectrum, which
was measured prior to the first soil sample and measured
every hour again. All spectra were recorded by averaging
128 scans (internal measurements) to improve the signal-to-
noise ratio for each of the three independent replicate sam-
ples of each soil.

2.3 Spectroscopic modeling

2.3.1 Processing of soil spectra

Three replicates of spectra were averaged for each sample.
The spectra were transformed by using a Savitzky–Golay-
smoothed first derivative using a third-order polynomial and
a window size of 21 points (42 cm−1 at a spectrum inter-
val of 2 cm−1) (Savitzky and Golay, 1964). Prior to spectral
modeling, Savitzky–Golay-preprocessed spectra were fur-
ther mean-centered and scaled (divided by standard devia-
tion) at each wavenumber.

2.3.2 Model development and validation

The measured soil properties were modeled by applying par-
tial least squares regression (PLSR) (Wold et al., 1983) with
the preprocessed spectra as predictors. The models were fit-
ted using the orthogonal scores’ PLSR algorithm. A 10-fold
cross-validation, repeated five times, was performed to pro-
vide unbiased and precise assessment of PLSR model per-
formance (Molinaro et al., 2005; Kim, 2009). For each indi-
vidual soil property, the number of factors for the most accu-
rate PLSR model was tuned separately. For each soil property
model, the sample set was repeatedly randomly split into k =
10 (approximately) equally sized subsets without replace-
ment for all repeats r = 1,2, . . .,5 and all candidate values in
the tuning grid with the number of PLSR factors (ncomp) =
1,2, . . .,10. Within each of the r × ncomp= 5× 10= 50 re-
sampling data set splits, each of the 10 possible held-out and
model fitting set combinations (folds) was subjected to candi-
date model building at the respective ncomp, using k−1= 9
out of 10 subsets, and remaining held-out samples were pre-
dicted based on the fitted models. The root mean square er-
ror (RMSE; Eq. 1) of the held-out samples was calculated
by aggregating all repeated K-fold cross-validation predic-
tions (ŷi) and corresponding observed values (yi) grouped
by ncomp, which resulted in a cross-validated performance
profile RMSE vs. ncomp.

RMSE=

√∑n
i=1
(
ŷi − yi

)2
n

(1)

Based on this performance profile, the minimal ncomp
among the models, whose performance was within a sin-
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gle standard error (“one standard error rule”; Breiman et al.,
1984) of the lowest numerical value of RMSE, was selected.

Model assessment was done with the best factors for each
property using cross-validation hold outs. We reported the
cross-validated measures’ RMSE, R2 (coefficient of deter-
mination) obtained via linear least squares regression, and
ratio of performance to deviation (RPD), after averaging pre-
dictions across repeats. The RPD index is the ratio of the
chemical reference data standard deviation (sy) to the RMSE
of prediction.

RPD=
sy

RMSE
(2)

Besides calculating the above listed performance mea-
sures, the uncertainty of spectral estimates was graphically
reported for each soil sample, using prediction means and
95 % confidence intervals derived from cross-validation re-
peats (n= r = 5; Eqs. 3 and 4).

S2
n =

1
n− 1

n∑
i=1

(
yi − ŷi

)2
(3)

ŷi ± t (n− 1,1−α/2)
Sn
√
n
; α = 0.05 (4)

To cover the full training data space in the models for fu-
ture sample predictions, the final PLSR models were rebuilt
using the entire training set and the respective values of the
optimal final number of PLSR components determined by
the procedure described above.

2.3.3 Model interpretation

The mid-IR spectra contain complex information about soil
composition and properties. To establish a predictive rela-
tionship, statistical models need to find relevant spectral fea-
tures for each soil property. Model interpretation requires a
variable importance assessment to decide on the contribu-
tion of spectral variables to prediction and to explain spectral
mechanisms. Therefore, we conducted model interpretation
based on the variable importance in projection (VIP) method
(Wold et al., 1993; Chong and Jun, 2005), using the model
at the respective best number of factors (ncomp). The VIP
measure vj was calculated for each wavenumber variable j
as

vj =

√√√√p A∑
a=1

[
SSa

(
waj/‖waj‖

)2
]/ A∑

a=1
(SSa), (5)

where waj are the PLSR weights for the ath component for
each of the wavenumber variables, and SSa is the sum of
squares explained by the ath component:

SSa = q2
a t
T
a ta, (6)

where qa are the scores of the predicted variable y, and ta are
the scores of the predictors X. These VIP scores account for

multicollinearity found in spectra and are considered to be
a robust measure to identify relevant predictors. Important
wavenumbers were classified with a VIP score above 1. A
variable with VIP above 1 contributes more than the average
to the model prediction. For model interpretation, we only
computed VIP at the respective finally chosen number of PLS
(partial least squares) components afinal for each considered
model. We focused on a selection of three well-performing
models with R2

≥ 0.8 (RPD≥ 2.3) to illustrate model inter-
pretation. These were total C, total N, and clay content.

2.4 Statistical software

The entire analysis was performed using the R statisti-
cal computing language and environment (version 3.6.0)
(R Core Team, 2017). We used the pls (Mevik et al., 2019)
package for PLSR, as described by Martens and Naes (1989).
Cross-validation resampling, model tuning, and assessment
was done using the caret package (Kuhn et al., 2019). Cus-
tom functions from the simplerspec package were used for
spectroscopic modeling (Baumann, 2019). All data and code
to reproduce the results of this study are available online via
Zenodo (Baumann, 2020).

3 Results

Measured properties and mid-IR estimates of yam soils

The distribution of soil properties of the yam fields showed
a wide variation across the landscapes (Fig. 1). Total C con-
centrations across all fields ranged from 2.4 to 24.7 g C kg−1.
Total C values at the landscape scale were the lowest
(median) in Léo and the highest in Tiéningboué. Soils
from yam fields in the two landscapes from Côte d’Ivoire
(13.0± 5.4 g C kg−1; mean± standard deviation) had rela-
tively higher total C compared with the fields in the land-
scapes in Burkina Faso (6.1± 3.6 g C kg−1). The median
value and variation of CECeff exhibited similar patterns
across the landscapes to total C. Total N concentrations
across all fields ranged from 0.18 to 2.48 g N kg−1. Total N
within and across the four landscapes exhibited a similar pat-
tern to total C. Generally, the landscapes in Burkina Faso
were low in total N compared to those from Côte d’Ivoire
(0.44± 0.24 g N kg−1 vs. 1.09± 0.46 g N kg−1). Median to-
tal N concentrations were almost identical for Liliyo and
Tiéningboué, with 1.1 g N kg−1. Total S concentrations var-
ied between 41 and 242 mg S kg−1 across all fields and
showed a similar pattern to total C and N. The yam fields
in the landscapes of Burkina Faso had on average more than
2 times higher total S than the other landscapes. Total P con-
centrations were in a similar range for the landscapes Léo,
Midebdo, and Liliyo. In Tiéningboué, total P values were al-
most 2 times higher than the other fields (817 mg S kg−1 vs.
453 mg P kg−1), with more within-landscape variation.
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Figure 1. Reference measurements of soil chemical properties. Léo and Midebdo are two yam-growing landscapes in Burkina Faso, and
Liliyo and Tiéningboué are in Côte d’Ivoire. The chemically analyzed soils (n= 94) originated from 20 yam fields per landscape and 14
additional soils from the Liliyo region were provided by the World Agroforestry Center (ICRAF). C is carbon, N is nitrogen, P is phosphorus,
Fe is iron, Al is aluminum, Si is silicon, Ca is calcium, Zn is zinc, Cu is copper, K is potassium, and Mn is manganese. Bioavailable
micronutrients were measured by the diethylenetriaminepentaacetic acid (DTPA) extraction method. Ca(exch.), Mg(exch.), K(exch.), and
Al(exch.) signify exchangeable elements determined with BaCl2 extraction. CECeff is the effective cation exchange capacity, and BSeff is
the effective base saturation. The number of soils analyzed for each individual property is indicated above the 75 % percentile.

The concentrations of total Fe, total Al, total Ca, total Zn,
and total Cu in the soil tended to be higher for the land-
scapes in Côte d’Ivoire than in Burkina Faso (Fig. 1). To
give an example, median concentrations of total Ca were
2.16 g Ca kg−1 in fields sampled from the Tiéningboué re-
gion and similar in Liliyo (i.e., 1.90 g Ca kg−1), while they
were markedly lower in Léo and Midebdo (i.e., 0.90 vs.
1.26 g Ca kg−1). In general, the ranges for total micronutri-
ent contents were more variable in the landscapes of Côte

d’Ivoire (e.g., range= 14.0–57.0 mg Zn kg−1 in Liliyo; low-
est range in Léo= 12.2–19.7 mg Zn kg−1). Total K concen-
tration was highly variable within and across the landscapes
(overall range= 0.5–34.1 g K kg−1) and lowest in Midebdo
(range= 0.9–8.9 g K kg−1), while the highest total K me-
dian was measured in yam fields of Léo (range= 4.1–
25.0 g K kg−1).

Median extractable Fe and its interquartile ranges were
comparable across the landscapes (see Fig. 1). However,
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there were some fields where extractable Fe reached values
higher than 100 mg Fe kg−1. Median extractable Zn values
showed a similar pattern to total C, with the highest median
values and interquartile range in Tiéningboué, and had the
lowest in Léo. In comparison, the highest median values and
interquartile range of extractable Cu and Mn were found in
Liliyo. For extractable Zn, Cu, and Mn, median values and
interquartile range were higher in the two landscapes in Côte
d’Ivoire than the two landscapes in Burkina Faso.

Across all samples and landscapes, soil pH varied between
4.7 and 8.4. Median pH was comparable in Tiéningboué
(i.e., 6.4), Liliyo (i.e., 6.5), and Midebdo (i.e., 6.5). Median
pH of yam fields in Léo (i.e., 6.0) was lower than in the
other landscapes. Exchangeable K, Ca, and Mg concentra-
tions showed similar patterns across the four landscapes. In
Burkina Faso, each of the exchangeable cations showed rel-
atively low median concentrations across the fields and less
landscape-level variation than in Côte d’Ivoire. In general,
the highest median and variation of exchangeable cations
among the landscapes were measured in the yam field soils
of Tiéningboué. Median exchangeable Al values were com-
parable among the landscapes, although there were some
outliers with exchangeable Al> 20 mg kg−1 for Midebdo,
Liliyo, and Tiéningboué. The CECeff ranged from 0.9 to
14.6 cmol(+) kg−1 across all fields and landscapes. Median
CECeff tended to decrease in the following order across
landscapes: Léo>Midebdo>Liliyo>Tiéningboué. The in-
terquartile range of CECeff was also the greatest in Tiéning-
boué and the smallest in Léo.

Reference measurements for total N, S, exchangeable Ca,
exchangeable Mg, and CECeff. were closely correlated with
total C (Fig. 2; 0.71≤ r ≤ 0.92 (CECeff.)). Also, total Ca,
Al, and clay content correlated closely with total C (r >
0.70). Clay contents were weakly related to silt (r = 0.21),
while sand had a markedly negative relationship with silt
(r =−0.89). Bioavailable Zn (DTPA) was covarying with
both CECeff. (r = 0.58) and total Zn (r = 0.59). Bioavailable
Cu (DTPA) had a strongly positive association to total Cu
(r = 0.90). Exchangeable K (BaCl2) had the strongest rela-
tionship with total C and CECeff. (r = 0.63, and r = 0.64).

3.1 Soil mid-IR spectroscopic models

Among the measured soil properties, mid-IR PLSR models
for total K (R2

= 0.96) and total Al (R2
= 0.97) performed

the best (Table 1). Out of a total of 27 soil attributes, 11
were well quantified by the models (R2

cv>0.75; Fig. 3). The
confidence intervals derived from cross-validation prediction
were very narrow, showing that all PLSR models were stable.
Within this group of stable models, four soil attributes are di-
rectly related to the mineralogy (total Fe, Al, K, and Ca),
three are related to soil organic matter (total C, N, and S),
one is related to texture (clay fraction), one is related to plant
nutrition (exchangeable Fe), and two are related to mineral-
ogy and plant nutrition (exchangeable Ca and CECeff). More

specifically, total C was accurately predicted, with an R2 of
0.92 and a RMSE of 1.6 g C kg−1. The models were also able
to predict total N well (R2

= 0.89; RMSE= 0.16 g N kg−1).
Prediction accuracy of total S was slightly lower than for
total C, but its goodness-of-fit and RMSE suggest that the
model was reliable for prediction. However, exchangeable
K (R2

= 0.28) and BSeff (R2
= 0.24) were poorly predicted

(Table 1). Predictions for percent clay were reliable (R2
=

0.81; RMSE= 2.1 %), whereas predictions for percent sand
(R2
= 0.45; RMSE= 8.1 %) and percent silt (R2

= 0.41;
RMSE= 6.5 %) were not accurate. Finally, chosen models
of all soil attributes had between one and nine PLSR compo-
nents.

3.1.1 Model interpretation

A large proportion of absorptions had VIP> 1 for each of
the total C, total N, and clay models (Fig. 4). Important
wavenumbers (VIP> 1) for total C were mostly between
3140 and 1230 cm−1. Besides clear absorption peaks, there
were relatively continuous spectral features that were impor-
tant to the models. For example, the relatively continuous and
smooth spectral region between the alkyl C−H vibrations at
2855 and 2362 cm−1 had a comparable contribution to the
model as peak regions associated with total C prediction. The
VIP patterns across wavenumbers were almost identical for
total C and N models, and its reference measurements were
strongly correlated (r = 0.94; Fig. 2). In contrast, the clay
content model deviated from the total C model in particu-
lar regions, for example around the kaolinite OH− feature
at 3620 cm−1 or at kaolinite Al−O−H vibrations at 934 and
914 cm−1.

Discussion

3.2 Accuracy and relevance of mid-IR spectroscopy for
agronomic diagnostics

Timely and accurate estimates of multiple soil properties
are required to better understand and predict soil constraints
across the yam belt in West Africa. The soil spectral library
from our study, which includes four landscapes of the yam
belt, can be practical to diagnose and monitor (and eventually
manage) soil fertility that is considered to be low and there-
fore is a major constraint to yam production in West Africa.
Specifically, our results show that properties closely related
to organic matter – total amount of C, (micro)nutrients, and
exchangeable cations – can be accurately estimated using
mid-IR spectra and in the selected yam-growing landscapes
(Fig. 3). Soil organic matter plays a crucial role during vege-
tative growth and tuber formation phases of yam, as it guar-
antees among many other functions the storage and avail-
ability of essential nutrients and water needed for yam and
tuber growth throughout the season and prevents soil erosion
as well due to its structural stabilization capacity. It promotes
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Figure 2. Correlation matrix of soil properties measured on each of the 20 soils sampled from individual yam fields per landscape and 14
additional agricultural soils received from the World Agroforestry Center (n= 94; see Fig. 1 for further details and abbreviated chemical
properties). Pearson correlation coefficients (r) were rounded to one decimal point.

soil aggregation, which stabilizes soil organic matter and pro-
tects it from microbial decomposition (Six et al., 2006).

Fertilizers are becoming more essential to replenish min-
eral nutrients for prolonged cropping. Nevertheless, soil or-
ganic matter is at high risk of depletion in these regions be-
cause of the increasing land use frequencies and shorter fal-
lows to restore the soil organic C pools. While it is pivotal
to develop innovative crop and soil management solutions to
this problem (O’Sullivan and Jenner, 2006; Frossard et al.,
2017; Kiba et al., 2020), it is also crucial to perform a sep-
arate but complementary activity to give feedback on poten-
tial soil changes: developing and applying soil conventional
and proximal sensing methods. When testing sustainable soil
and crop management options, for example to derive region-
specific and farm-adapted nutrient management strategies,
putting both validated quantitative statements on the status

of soil organic carbon and local farmers’ soil knowledge into
the equation is crucial (Wawire et al., 2021). Inevitably, both
determining the inherent soil status (i.e., soil texture and or-
ganic carbon) and measuring the chemical and physical envi-
ronment that regulates nutrient availability at trial sites (e.g.,
pH) is of agronomic and environmental importance (Foster,
1981). Maintaining and improving soil quality attributes will
be paramount to sustaining soils’ ecosystem functions and
crop yields over time. Activities to maintain and improve soil
properties can for example be oriented towards fostering nu-
trient recycling.

Quick and reasonably accurate soil estimates derived from
mid-IR spectra and empiric models as for example outlined
in this study can inform the site-adapted timing, placing, and
form of nutrient supply based on local soil conditions. To
give a specific example, yam requires relatively large quan-
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Table 1. Descriptive summary of measured (meas.) soil reference data (see Fig. 1) and evaluation results of cross-validated PLSR models.
All samples across the four landscapes were aggregated into a single model per respective soil property. Model evaluation was done on
held-out predictions of 10-fold cross-validation (cv) repeated five times at the finally selected number of PLSR components (ncomp). CV is
the coefficient of variation, RMSE is the root mean square error, and RPD is the ratio of performance to deviation. C is carbon, N is nitrogen,
P is phosphorus, Fe is iron, Al is aluminum, Si is silicon, Ca is calcium, Zn is zinc, Cu is copper, K is potassium, and Mn is manganese.
Bioavailable micronutrients were measured by diethylenetriaminepentaacetic acid (DTPA) extraction. Ca(exch.), Mg(exch.), K(exch.), and
Al(exch.) signify exchangeable elements determined with BaCl2 extraction. CECeff is the effective cation exchange capacity, and BSeff is
the effective base saturation.

Soil attribute n Minmeas. Maxmeas. Medmeas. Meanmeas. CVmeas. ncomp RMSEcv R2
cv RPDcv

Total C [g kg−1] 94 2.4 24.7 8.5 9.9 58 6 1.6 0.92 3.6
Total N [g kg−1] 94 0.18 2.48 0.72 0.81 61 6 0.16 0.89 3.0
Total S [mg kg−1] 94 41 242 99 111 46 2 20 0.85 2.6
Sand [%] 80 29.8 91.6 75.6 74.2 14 2 8.1 0.42 1.3
Silt [%] 80 3.9 54.1 12.0 14.1 60 2 6.5 0.41 1.3
Clay [%] 80 4.5 26.1 10.1 11.6 42 2 2.1 0.81 2.3
Total P [mg kg−1] 94 240 1631 467 530 40 3 131 0.61 1.6
Total Fe [g kg−1] 94 4 35 10 12 54 5 3 0.81 2.3
Total Al [g kg−1] 94 10 102 48 53 42 5 4 0.97 6.0
Total Si [g kg−1] 94 200 363 262 262 12 3 20 0.59 1.6
Total Ca [g kg−1] 94 0.3 7.6 1.4 1.9 70 5 0.6 0.78 2.2
Total Zn [mg kg−1] 94 9.5 71.6 19.1 22.6 49 1 6.7 0.63 1.7
Total Cu [mg kg−1] 94 0.5 29.2 4.7 6.8 87 7 3.2 0.71 1.9
Total K [g kg−1] 94 0.5 34.1 5.8 9.5 91 7 1.7 0.96 5.1
Total Mn [mg kg−1] 94 59.2 1146.0 221.5 308.0 74 5 116.4 0.74 2.0
log(Fe(DTPA)) [mg kg−1] 92 1.0 6.7 2.7 2.9 38 9 0.5 0.77 2.0
Zn (DTPA) [mg kg−1] 87 0.2 11.5 1.9 2.8 89 3 2.1 0.25 1.1
Cu (DTPA) [mg kg−1] 92 0.1 1.5 0.2 0.4 89 6 0.2 0.74 2.0
Mn (DTPA) [mg kg−1] 92 2.5 31.4 6.5 8.6 69 3 4.0 0.55 1.5
pHH2O 80 4.7 8.4 6.4 6.4 11 8 0.5 0.61 1.6
Ca (exch.) [mg kg−1] 92 98 2170 604 774 70 5 237 0.81 2.3
Mg (exch.) [mg kg−1] 93 18 432 76 113 84 3 58 0.62 1.6
K (exch.) [mg kg−1] 94 0 868 104 145 95 1 120 0.28 1.2
Al (exch.) [mg kg−1] 94 0 47 0 4 258 2 9 0.21 1.1
CECeff [cmol(+) kg−1] 91 0.9 14.6 4.2 5.3 67 6 1.4 0.84 2.5
BSeff [%] 91 79 100 100 98 4 2 3 0.24 1.1

tities of N and K (e.g., O’Sullivan, 2010); on light-textured
soils, yam can attain high tuber yields but at a high risk of
losing large proportions of applied N and K to the environ-
ment (e.g., Diby et al., 2011). Therefore, spectral estimates
of texture can give an indication that applying larger amounts
of N and K at once would not improve yield potential under
such situations. Hence, more frequent and local mineral ap-
plications of these nutrients after crop emergence, eventually
combined with organic mulch, could improve the fertilizer
efficiency and mitigate negative environmental impacts un-
der these soil conditions. To estimate the availability of spe-
cific (micro)nutrients, however, more efforts need to be made
to measure them at fine temporal and spatial resolution.

The mid-IR model accurately estimated C
(RMSE= 1.6 g kg−1; Table 1; Fig. 3). Mostly, only
field-scale spectroscopic models achieve such accuracy
(Nocita et al., 2015; Guerrero et al., 2016), whereas the
predictive accuracy reported for larger scale application of
spectroscopic models is lower than for our model (Rossel

and Webster, 2012; Stevens et al., 2013; Sila et al., 2016).
Models covering a wide geographical range of soils often
result in high prediction errors (Stenberg and Rossel, 2010).
Despite different soil types and climate regimes across a
wide geographic spacing between the calibration fields, we
achieved an accurate spectroscopic estimation of total C.
The model was also able to reliably estimate a range of other
important soil properties than total C. Specifically, other
soil variables eligible for a mid-IR quantification include
total N, total S, total Ca, total K, total Al, exchangeable
Ca, Fe DTPA, CECeff., and clay content (R2 > 0.75). The
close correlations of total C with N, S, exchangeable Ca,
exchangeable Mg, CECeff., total Ca, Al, and clay content
(Fig. 2) are consistent with Johnson et al. (2019), who
reported very similar associations of clay content and
exchangeable cations (Ca, Mg, K) as well as CECeff. in soils
from rice fields (0.54≤ r ≤ 0.65) – nevertheless they spec-
trally modeled a considerable soil variability (20 countries
in sub-Saharan Africa; 42 study sites) and a larger sample
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Figure 3. Cross-validated predictions of soil properties derived from best mid-infrared (mid-IR) partial least squares regression (PLSR)
models vs. laboratory reference measurements (see Fig. 1). Average estimates, their confidence intervals (error bars), and evaluation metrics
were derived with 10-fold cross-validation repeated five times. “ncomp” is the number of PLSR components of most accurate final models,
RSME is the root mean square error, and RPD is the ratio of performance to deviation. Only soil properties modeled with R2 > 0.75 are
shown. CECeff is the effective cation exchange capacity. Exchangeable (exch.) elements were determined with BaCl2. Bioavailable Fe was
determined via diethylenetriaminepentaacetic acid (DTPA) extraction.

size (n= 285) using PLS regression. At the same time, the
measured range and the error in spectral estimates of CEC
were larger compared to ours (RMSE= 6.7 cmol(+) kg−1

vs. 1.4 cmol(+) kg−1; range= 1.9–66.5 cmol(+) kg−1 vs.
0.9–14.6 cmol(+) kg). Even though total K and Fe(DTPA)
were poorly correlated with total C, their spectroscopic
estimates were relatively accurate. This suggests that the
mid-IR prediction of other soil properties is largely based
on their correlation with total C as well as other absorption
features of many organic and mineral soil components
having a specific IR adsorption.

We also found reasonable prediction accuracy for
Cu(DTPA) (R2

= 0.74) and Mn(DTPA) (R2
= 0.55), al-

though soil nutrients that are extraction-based or dependent
on surface chemistry usually have variable predictive perfor-
mance (Janik et al., 1998). Since relationships between soil
composition and soil matrix exchange processes are typically
complex, some properties may not be represented in the mod-

els in a straightforward manner (Janik et al., 1998; Nocita
et al., 2015).

Although total elements are not necessarily a direct proxy
for plant-available nutrients – with the exception of total C
from organic matter – they can be related to mineralogical
status, which is influenced by weathering and nutrient sup-
ply. For example, total Fe from iron oxides can be important
in controlling the availability of P (Parfitt et al., 1975), and
total P can be correlated to available P in other cases. For yam
– which is an understudied crop with a relatively large yield
gap – fertilizer response to N, P, and K is often absent on soils
that have been under long fallow periods (O’Sullivan, 2010).
Even more importantly, the number of thoroughly conduced
yam fertilizer trials in a region and for distinct soil types
is often not sufficient for the site-specific calibration of soil
tests with regard to fertilizer response and recommendations
(O’Sullivan and Jenner, 2006).
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Figure 4. Variable importance analysis of partial least squares regression (PLSR) models for the concentrations of total soil C and total
N and clay content, including overlaid raw and preprocessed spectra. The top panel shows resampled mean sample absorbance spectra
(n= 94). Prominent peaks were identified as local maxima with a span of 10 points 20 cm−1 for the selected wavenumbers. Fundamental
mid-IR vibrations that are well described in the literature (e.g., Madejová et al., 2002; Rossel and Behrens, 2010; Stevens et al., 2013)
were added as labels when identified peaks matched literature assignments. (Q) stands for quartz and (K) for kaolinite. The middle panel
depicts preprocessed spectra (Savitzky–Golay first derivative with a window size of 21 points (42 cm−1); third-order polynomial fit). The
bottom panel shows variable importance in the projection (VIP) for three selected well-performing PLSR models (total C, total N and clay;
R2 > 0.81). The horizontal black line at VIP= 1 indicates the threshold above which absorbance at a given wavenumber contributes more
than the average (wavenumber) to the spectral variance explained of a certain soil property. Dashed points closely below the y = 0 line of
the VIP graph visualize positive (above y = 0) and negative (below y = 0) PLSR β coefficients.

3.3 Interpretation of spectral features

All mid-IR spectra that we measured for soils in the four
landscapes exhibited a similar pattern of absorbance (Fig. 4).
The O−Si−O absorptions in quartz at 1080, 800–780, and
700 cm−1 were a prominent feature in the spectra due to rel-
atively high sand contents across the landscapes (range 30 %
to 92 %, median 76 %). Our spectra further had hydroxyl
(OH) absorptions, which are typical for kaolin minerals, at
3695 cm−1 (surface OH), 3620 cm−1 (inner OH), 914 cm−1

(inner OH), and 936 cm−1 (surface OH) (Madejová et al.,
2002). The spectral pattern between the hydroxyl bands at
3695 and 3620 cm−1 was relatively consistent, and the in-
tensity ratio of these flanking peaks was close to 1. This is
typical for halloysite (0.8–0.9), while the ratio for kaolinite
is often higher (1.2–1.5) and dickite lower (0.6–0.8) (Lyon
and Tuddenham, 1960). The two weak intermediary stretch-
ing absorptions at around 3657 and 3670 cm−1 indicate sur-
face hydroxyls. Together with the absorption at 936 cm−1,
the spectra would suggest the presence of rather well-ordered
prismatic halloysite (Hillier et al., 2016). This aligns well

with the spectral patterns of soils that were assigned to the
Halloysite archetype through similarity mapping (by com-
parison to the pure mineral spectra) by Sila et al. (2016). Our
spectra confirm the presence of kaolin minerals, which re-
flects the advanced state of mineral weathering in these trop-
ical soil types.

Our accurate predictions, which are comparable to field-
scale calibrations, are most likely because of the relatively
uniform mid-IR spectra we obtained from our samples and
their linear relationships to some of the key properties. This
suggests a relatively homogeneous soil chemical composi-
tion, particularly with regard to the mineralogy of the sam-
pled soils. Still, the data set presented here is relatively small,
and no randomized spatial sampling strategy was used for se-
lecting field locations. Therefore, we propose the implemen-
tation of a spectroscopy-driven approach to diagnose soils in
more yam-growing areas, as an effort to broaden the library
to achieve better spatial coverage of soil variability.
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4 Conclusions

We developed models with mid-IR spectra to estimate soil
chemical and physical properties relevant to the production
of yam and other staple crops in four landscapes in the yam
belt of West Africa. We tested the models for the important
soil properties that are applied widely for agronomic per-
formance evaluation. We showed that mid-IR spectroscopy
models have the potential for the cost-effective and rapid
determination of the distribution and variability of impor-
tant soil properties across highly variable yam production
landscapes in West Africa. Specifically, total C, total N, to-
tal S, total Fe, total Al, total K, total Ca, exchangeable Ca,
CECeff, bioavailable Fe, and clay content can be quantified
with RPD> 2 and R2 > 0.75 when aiming to predict in the
range of soil property values found in the environmental con-
ditions covered by this study. We achieved spectral estimates
with quite small uncertainties that are typically reported for
libraries at the geographical extent of a field or farm. The
correlation analysis of measured values together with spec-
tral inference helps improve our understanding of how soil
properties are interrelated with soil functional composition.
This study delivered parsimonious, unbiased, and accurate
mid-IR spectroscopy-based models to monitor and predict
soil quality and to manage crop nutrition. Hence, we envi-
sion this pilot study as being a starting point to continuously
update and adapt the mid-IR model library for more efficient
site-specific and agronomically relevant soil estimates in the
West African yam belt. This can create a better capacity to
diagnose and monitor soils in the long term compared with
traditional wet chemistry and will hopefully ameliorate the
soil conditions for sustainably meeting the demand of yam
and other important staple crops in the regions.
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