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Abstract. Research carried out on soil organic carbon stock (SOCS) in the Sudano-Sahelian region of
Cameroon is very rare. The few existing studies are mostly available in reports and concern in most cases carbon
stocks in plant biomass. In order to contribute to the documentation on soils in this part of the country, the present
work was designed to evaluate the SOCS in the main soil types and the influence of environmental factors and
soil properties on these stocks under the natural dry tropical area of the Sudano-Sahelian zone of Cameroon.
The study was undertaken in four sites, including three natural forest reserves (Laf, Zamai, Kosohon) and one
national park (Mozogo), located at different latitudes. Three replicates were collected at each site, giving rise to
three sampling points chosen per site, from 0 to 75 cm depth, for the determination of SOCS. At each sampling
point, soils were sampled using depth increments of 25 cm from the surface. The studied area is covered by Hap-
lic Vertisols, Dystric Arenosols, Dystric Leptosols and Dystric Planosols. Total SOCS (T-SOCS) content, which
refers to a depth of 75 cm, decreases with increasing latitude, with 249±26.26 Mg ha−1 in Vertisols at Laf forest
reserve most southerly located, 199±8.00 Mg ha−1 in Arenosols at Zamai forest reserve, 166±16.63 Mg ha−1 in
Leptosols at Kosohon forest reserve and 161±8.88 Mg ha−1 in Planosols at Mozogo national park most northerly
located, regardless of the altitude. No significant correlation was noted between T-SOCS and the altitude. A good
correlation was noted between precipitation which decreases with increasing latitude and T-SOCS, indicating the
importance of climate in the distribution of T-SOCS in the study area, which directly influences the productivity
of the vegetation. More than 60 % of the SOCS was stored below the first 25 cm from the soil surface, a peculiar-
ity of SOCS in drylands. The SOCS in the Sudano-Sahelian area of Cameroon is mainly influenced by climate
and vegetation.
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1 Introduction

Soil is the largest carbon (C) pool, and its content in the first
100 cm is estimated at about 1500 Pg (1 Pg= 1015 g), which
represents more C than what is currently contained in the at-
mosphere and vegetation combined (Boulmane et al., 2010;
Lehmann and Kleber, 2015). Soil organic C stocks are crucial
for a wide range of ecosystem services such as climate regu-
lation through atmospheric CO2 storage (Olson et al., 2016;
Greiner et al., 2017; Mayer et al., 2019). As a result of pho-
tosynthesis, vegetation fixes about 120 Pg of C per year from
the atmosphere, and half of it is returned to the atmosphere
by plants (Bernoux and Chevalier, 2013). Part of the atmo-
spheric C drawn by plants is stored in biomass and soil in the
form of organic matter, consisting of plant and animal detri-
tus at various stages of decomposition, cells and tissues of
soil microbes, and substances that soil microbes synthesize
(Eswaran et al., 1993; Mayer et al., 2019). Terrestrial ecosys-
tems thus have the potential to constitute a C sink, slowing
down the increase of CO2 in the atmosphere (Mayer et al.,
2019). The interaction between the root system and the soil
profile has profound impact on soil C accumulation, where
the root system can contribute to soil organic carbon (SOC)
stocks (Olson and Al-Kaisi, 2015).

Soil organic matter (SOM), which contains more than
50 % C by weight, plays a fundamental role in the overall be-
haviour of soils and the ecosystems they support, especially
the physical qualities of soils, the stimulation of biological
activity of soil, the storage and provision of water and nu-
trients for plants, and the regulation of pollutants (Haygarth
and Ritz, 2009; Fernandez et al., 2009; Liu et al., 2012). It
is generally considered a primary indicator of soil quality for
agricultural and environmental functions (Plaza et al., 2018).
Thus, loss of SOC or SOM results in the loss of soil quality
and impaired associated functions including soil degradation,
decline in agronomic productivity and food insecurity, result-
ing in malnutrition and starvation (Haygarth and Ritz, 2009;
Brown and Huggins, 2012; Olson and Al-Kaisi, 2015; Olson
et al., 2016; Plaza et al., 2018). Increasing the SOC or SOM
directly improves the quality of the soil and hence contribut-
ing to the resilience and sustainability of agriculture and con-
sequently to the food security of societies as C is sequestered.
Nowadays, many phenomena such as climate change, land
degradation and loss of biodiversity make soils and their C
storage one of the most vulnerable resources (Bardgett, 2005;
Maestre et al., 2013; Soleimani et al., 2019). Currently, the
storage of SOC is a topic of paramount importance in inter-
national negotiations to fight against climate change through
a reduction in greenhouse gas emissions that contribute to
global warming (FAO, 2017). Despite the importance of soils
in C storage, decisions in the political sphere in terms of cli-
mate change mitigation have long focused on the industrial,
transport and energy sectors only. The impact of forestry and
agricultural activities on C sequestration has until recently
been neglected, making agriculture and SOC the poor par-

ents of international negotiations (Bernoux and Chevalier,
2013). It was after the 2008 and 2009 food prices crises and
hunger riots in Africa that international debates focused on
the soil issue. SOC is now at the centre of global environmen-
tal issues, especially in the framework of the United Nations
Agreements on Climate Change, Convention on Biological
Diversity and the United Nations Convention on Desertifica-
tion (Bernoux and Chevalier, 2013).

In dry areas, SOC content is low (less than 1 % of the soil
mass), whereas in the temperate zone it reaches 4 % to 5 % in
grassland soils or under forest (Bernoux and Chevalier, 2013;
Lehmann and Kleber, 2015; Plaza et al., 2018). This low
SOC content in dry regions is due to several anthropogenic
and natural factors that led to soil C losses (Lal, 2004; Pineiro
et al., 2010; Bernoux and Chevalier, 2013; Wang et al., 2020).
Anthropogenic factors include overgrazing and deforestation
(Lal, 2004; Plaza et al., 2018; Soleimani et al., 2019; Wang
et al., 2020). Natural factors that contribute to SOC degra-
dation/loss are poor weather conditions characterized by low
rainfall and high temperatures, disappearance of vegetation,
aggressive rains, erosion and high mineralization (Von Lut-
zow et al., 2006; Olson et al., 2016; Wang et al., 2020). De-
spite this low C concentration in dryland soils, it is important
to study the C stock in this area for several reasons. Soils
in dry areas cover about 41 % of the global land area, and
their C stock should be carefully considered for good envi-
ronmental management and sustainability of the agroecosys-
tem (Haygarth and Ritz, 2009; Lal, 2009; Hounkpatin et al.,
2018). Moreover, their stock deserves to be studied because
of its permanence, i.e. the duration during which C is stored
in dryland soils in relation to wetland soils and if these soils
are treated sustainably. Soil has the potential to sequester
large amounts of C, which contributes to the adaptation and
mitigation of climate change (Plaza et al., 2018). It is known
that increasing C content in terrestrial ecosystems is one of
the main approaches to mitigate anthropogenic production of
atmospheric CO2 (Jiang et al., 2019). However, SOC storage
and dynamics depend on region, parent material, time, cover
vegetation, topography, and soil properties such as texture
and the cation exchange capacity (Muñoz-Rojas et al., 2012;
Jiménez-González et al., 2020; Reyna-Bowen et al., 2020).
Therefore, local studies are necessary to appraise the poten-
tial of soil to store C properly (Reyna-Bowen et al., 2020).

In Cameroon, the few existing studies were mainly
achieved in the humid tropical part of the country (Amougou
et al., 2016; Tsozué et al., 2019). Studies on the Sudano-
Sahelian part of the country are scare, and the few that exist
are mainly available in unpublished reports or are more con-
cerned with C stocks in plant biomass (Ibrahim and Habib,
2008; Tchobsala et al., 2014, 2016). Moreover, many studies
have ignored deeper SOC in the world (Ruiz Sinoda et al,
2012; Tornquist et al., 2009; Nyameasem et al., 2020; Schae-
fer et al., 2020; Mabicka et al., 2021). The present work aims
to evaluate the SOC stock (SOCS) in the main soil types un-
der the natural dry tropical area in the Sudano-Sahelian zone
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of Cameroon. More specifically, it focused on (i) the identi-
fication of the main soil types in the natural ecosystems that
constitute the study area, (ii) the assessment of the SOCS in
each soil type, (iii) the influence of soil depth in the storage
of SOC, and (iv) the evaluation of the influence of environ-
mental factors and soil properties on these stocks. To achieve
this goal, four sites were chosen to conduct the study in the
Far North Region of Cameroon, namely Laf, Zamai, Koso-
hon and Mozogo.

2 Material and methods

2.1 Study area

The study was conducted in the Far North Region of
Cameroon (10–13◦ N; 13–15◦ E) which covers an area of
about 3 424 600 ha (Fig. 1). The climate is dry tropical in na-
ture and characterized by two highly contrasted seasons with
a long dry season from October to May and a short rainy sea-
son from June to September. The mean annual rainfall and
temperature are 800–1000 mm and 26–28 ◦C, respectively.
The geologic substratum consists of Precambrian formations
(gneiss, migmatite, mica schist, granite, syenite), volcanic
formations (basalts, trachyte, rhyolite) and alluvial deposits
(Ngounouno et al., 2000; Tamen et al., 2015; Gountié Dedzo
et al., 2019). Two morphological units are distinguished in
the study area: mountain (600–1000 m as an average alti-
tude) and plain (400–600 m as an average altitude). The veg-
etation of the area belongs to the Sudano-Sahelian domain
with woody arboreous or scrubby vegetation with abundant
perennial grasses. The characteristic species are summarized
in Table 1. However, a major part of the natural vegetation
has been degraded and the soil subjected to cultivation and
fallowing. Natural vegetation only exists now in dry forest
reserves and national parks.

2.2 Experimental design and sampling

The study was undertaken in four sites, including three
natural forest reserves (Laf, Zamai, Kosohon) and one na-
tional park (Mozogo), located along a latitudinal gradient and
corresponding respectively to low-density shrub savannah,
herbaceous savannah, moderately densified shrub savannah
and wooded savannah (Figs. 1 and 2). The characteristics of
the studied sites are summarized in Table 1. After the descrip-
tion of the physical characteristics of the studied sites (relief,
geologic substrate, vegetation), soil classification was done
with the International Union of Soil Sciences (IUSS) (IUSS
Working Group WRB 2015), and results are presented in Ta-
ble 2. SOCS was thereafter evaluated at 75 cm depth since
SOC in dryland is believed to reside in topsoil (Ciais et al.,
2011; Plaza et al., 2018). Two replicates were made, giv-
ing rise to three sampling points chosen per site, separated
from each other by a minimum distance of 100 m. The soil
samples (about 500 g of disturbed samples and undisturbed

Figure 1. Locations of the study sites.

clods) were taken from three soil sections of 25 cm (S1: 0–
25 cm, S2: 25–50 cm and S3: 50–75 cm), corresponding to
a total of 36 disturbed samples and 36 undisturbed clods, in
order to establish a better comparison between the different
study sites. Undisturbed clods were taken in the same vicin-
ity as disturbed samples. They were collected for bulk den-
sity analysis. Clods were first roughly sized in order to fit into
the cell (8× 6× 6 cm) of the clod box.

2.3 Laboratory analysis

In the laboratory, after sieving the soil through 2 mm meshes,
physical and chemical analyses were carried out. Bulk den-
sity was measured by the paraffin-coated clods method
(USDA, 2004). The particle size distribution was analysed by
sieving and using Robinson’s pipette method (USDA, 2004).
Soil pH was measured with pH meter equipped with a glass
electrode in 1 : 2.5 soil–water suspensions (Guitian and Car-
ballas, 1976). Exchangeable cations were extracted by 1 N
NH4OAc at pH 7, and their concentrations were determined
by atomic absorption spectrometry (Perkin Elmer) for Ca and
Mg and by flame emission spectrometry for K and Na. Cation
exchange capacity (CEC) was also determined using the am-
monium acetate method at pH 7, by a direct continuation us-
ing a 1 N potassium chloride (KCl) saturation solution. SOC
was determined by dichromate oxidation using the Walkley–
Black method (Walkley and Black, 1934). SOM content was
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Figure 2. From left to right clockwise: low-density shrub savannah (Laf), herbaceous savannah (Zamai), moderately densified shrub savannah
(Kosohon) and wooded savannah (Mozogo).

Table 2. Main soil characteristics and soil classification of the study area.

Sites Soil characteristics Soil classification

Laf In dry season, many large cracks are observed in the soil surface, drawing a set of polygonal
figures. Clay contents are more than 30 %. Wedge-shaped soil aggregates and slickensides
are observed from 9 cm of the soil surface to the base of the soil profile. Calcareous nod-
ules (7 %) are present at the base of the soil profile. The CEC clay ranges between 39 and
70 cmol(+) kg−1. The sum of exchangeable bases is low, and base saturation varies between
10.5 % and 15.2 %.

Haplic Vertisols

Zamai The soils are dominated by sand fraction, with 75 % in the upper 25 cm of the soil profile.
The CEC is low, ranging between 7.2 and 11.6 cmol(+) kg−1 in the upper 100 cm of the
soil. Base saturation values range between 22.0 % and 31.4 %.

Dystric Arenosols

Kosohon The surface humiferous horizon is 17 cm thick. It is followed beneath by an underlying
weathering continuous rock, characterized by a well preserved bedrock structure. The fine
earth (silt+ clay) content is about 32 %. Base saturation is low, ranging between 8.7 % and
10.3 %.

Dystric Leptosols

Mozogo The soils are characterized by the presence of rusty and greyish spots in the yellowish-red
surface horizon, an indurated subsurface horizon between 20 and 38 cm and abrupt textural
difference noted in sand contents. There are whitish calcareous nodules (2 %) at the base
of the soil profile. The CEC varies between 42 and 45 cmol(+) kg−1 and base saturation is
< 5 % in all the horizons.

Dystric Planosols.

https://doi.org/10.5194/soil-7-677-2021 SOIL, 7, 677–691, 2021
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obtained using a conversion factor of 1.724 (Walkley and
Black, 1934). Total nitrogen (N) was determined with the
Kjeldahl method (Bremner, 1996), and the C : N ratio calcu-
lated by dividing the SOC concentration by the N concentra-
tion. Available phosphorus was extracted from the soil using
Bray-2 solution as extractant (Bray and Kurtz, 1945).

SOC stock (SOCS), expressed for a specific depth in
Mg ha−1, was computed as the product of SOC con-
centration, bulk density, depth and gravels, according
to IPCC (2003) as follows: SOCS= (SOC concentra-
tion×BD× d × (1− δ2 mm %)× 10), where SOC is the or-
ganic C content (g kg−1), d is the thickness of the control
section (m), δ2 mm is the ratio of gravel larger than 2 mm in
size in the soil, and BD the soil bulk density (Mg m−3). Total
SOC stock (T-SOCS), referring to 75 cm of depth (Mg ha−1),
was calculated according to IPCC (2003) as follows: T-
SOCS=

∑
soil section SOC Stocksoil section.

2.4 Statistical analysis

The normality of the distribution was studied by the
Anderson–Darling normality test. Descriptive statistics
(mean values, standard deviations and correlation) were used
to characterize the general trends of soil properties, using Ex-
cel 2007. A Spearman rank correlation coefficient was car-
ried out in order to assess the possible connection between
the soil properties and SOC in each site. Kruskal–Wallis sta-
tistical test was used to identify the statistical significance of
the differences in each soil variable, among each sampling
point within the site and among the sites. Significance was
considered at p < 0.05. All analyses were performed using
XSLSAT 2008.6.03 software for Excel.

3 Results

3.1 Physical characteristics of the studied soils

According to the International Soil Classification System,
soils of the study area show a sandy clay loamy (SCL) to
sandy loamy (SL) texture. Sand is the most abundant frac-
tion. The highest sand contents were observed in the 0–25 cm
depth interval in Vertisols (71±12.12 %), Leptosols (71.33±
2.88 %) and Arenosols (76.66± 3.21 %). It decreased from
the soil surface to the base of soil in the 50–75 cm inter-
vals (Table 3). In the Planosols, however, high sand content
(79±6.42 %) was observed at the middle 25–50 cm interval,
in line with the classification of the studied soil. Clay content
increased from the surface to the bottom of the soil, except
in the Planosols where the low clay content (15± 6.42 %)
was noted in the middle part of the soil, in the 25–50 cm
interval (Table 3). Silt contents were low, ranging between
4.0± 1.73 and 9.3± 2.51 %. Bulk density (BD) values in-
creased with depth except in Vertisols where similar val-
ues were observed in the two upper sections. Similarly, in
Planosols, as for the sand content, the high value of bulk

density (1.68±0.11 Mg m−3) was observed in the 25–50 cm
interval. With regard to soil pH values, Arenosols, Leptosols
and Planosols were acidic (4.7±0.47 to 5.6±0.4), and Verti-
sols were close to neutral (6.8±0.59 to 7.9±0.84). However,
a very acid value of 4.7± 0.47 was noted in the 25–50 cm
interval of Planosols (Table 3). Gravel content in the stud-
ied soil was consistently low (< 3 %). A value of 7 % was,
however, obtained in the Vertisols, in line with the presence
of calcareous nodules in these soils. Generally, there was no
significant difference between main soil physical parameters
within each site and between sites.

3.2 Soil organic matter, nitrogen and C : N ratio

The average SOM values varied between 21.7± 6.10 and
37.9±7.10 g kg−1 (Table 3). The average SOM values ranged
between 26.50±5.84 and 37.88±7.10 g kg−1 in Vertisols and
Arenosols and between 21.70±6.10 and 27.95±2.55 g kg−1

in Leptosols and Planosols. The SOM content decreased with
soil depth at Zamai in Arenosols and at Kosohon in Lep-
tosols. In Vertisols at Laf, there was a decrease of SOM from
the soil surface in the 0–25 cm interval to 25–50 cm depth
and an increase from this depth to the base of soils in the 50–
75 cm interval, whereas in Planosols SOM exhibited an op-
posite trend (Table 3). Total nitrogen (TN) contents were low.
TN decreased with soil depth in Vertisols from 0.39 g kg−1 in
the 0–25 cm interval to 0.21 g kg−1 in the 50–75 cm interval
at the base of the soil profile. In Arenosols, there was a de-
crease of TN content from the soils surface to the subsurface
of the soil and an increase to the base of the soil. TN con-
tent in Leptosols and Planosols exhibited an opposite trend
to TN contents in Arenosols. The C : N ratios ranged between
31± 15.82 and 112± 28.16. Besides the high value of C : N
ratio in the 25–50 cm interval of Arenosols (112±28.16), the
highest ratios were observed in Vertisols, while the lowest
rations were noted in Planosols (Table 3). A significant nega-
tive correlation was observed between SOM and silt fraction
(−0.70, p < 0.05) (Table 4).

3.3 Evolution of SOC and SOCS contents in the studied
soils

The highest SOC content in the study area was observed in
the 0–25 cm interval in Vertisols (21.97± 4.12 g kg−1). The
lowest one was also observed in the same interval but in
Planosols (12.59± 3.53 g kg−1) (Table 5). In fact, besides
Arensols where a regular decrease of SOC with depth was
observed, a zigzag evolution with depth was observed for the
other three soil types, with the trend in vertisols opposing
to that observed in Leptosols and Planosols (Table 5). The
T-SOC was high in Vertisols and Arenosols (53.75± 3.25
and 54.61± 2.71 g kg−1 respectively) and low in Leptosols
and Planosols (41.21±2.89 and 42.03±3.33 g kg−1 respec-
tively). With respect to SOCS, a high content was observed
in the 0–25 cm interval in Vertisols (102.04±30.59 Mg ha−1)
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Figure 3. Variation of SOCS along the soil profiles in the study
sites.

(Fig. 3). SOCS content decreased with depth, reaching
70.99± 21.68 Mg ha−1 in the 25–50 cm interval and in-
creased thereafter reaching 75.57±26.50 Mg ha−1 in the 50–
75 cm interval (Table 5). This trend was similar in Arenosols
and Leptosols but differed from that of Planosols where
SOCS content increased from the soil surface to the mid-
dle part of the soil (47.03± 4.73 to 61.82± 1.93 Mg ha−1)
and decreased thereafter reaching 52.10± 19.98 Mg ha−1

in the 50–75 cm at the base of the soil. The highest T-
SOCS was obtained in Vertisols most southerly located,
while the lowest was obtained in Planosols most northerly
located. It appears that T-SOCS content decreased with
increasing latitude, with 248.60± 26.26 Mg ha−1 in Ver-
tisols at Laf, 199.04± 8.00 Mg ha−1 in Arenosols at Za-
mai, 166.52± 16.63 Mg ha−1 in Leptosols at Kosohon and
160.95± 8.88 Mg ha−1 in Planosols at Mozogo (Table 4 and
Fig. 1), irrespective of the altitude. In fact, a very weak corre-
lation was noted between the altitudinal gradient and SOCS
(R2
= 0.13), meaning that there was no influence of the al-

titudinal gradient on the distribution of T-SOCS in the stud-
ied area (Fig. 4). A good correlation was noted, on the con-
trary, between precipitation which decreased with increasing
latitude and SOCS (r = 0.64), indicating the importance of
the climate in the distribution of T-SOCS in the study area
(Fig. 5). Overall, 58.94 %, 57.87 %, 64.23 % and 70.77 %
of SOC respectively in Vertisols, Arenosols, Leptosols and
Planosols was stored below the first 25 cm from the soil sur-
face.
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Table 4. Spearman correlation matrix for relationships between selected soil parameters in the study area.

Variables Gravel Sand Silt Clay OM N C : N pH BD

Gravel 1.00
Sand −0.64∗ 1.00
Silt 0.25 −0.47 1.00
Clay 0.64∗ −0.91∗ 0.14 1.00
OM −0.13 0.47 −0.71∗ −0.23 1.00
N −0.11 0.33 0.06 −0.43 −0.14 1.00
C : N 0.05 0.00 −0.22 0.22 0.53 −0.77∗ 1.00
pH 0.12 −0.27 −0.13 0.31 0.30 −0.50 0.43 1.00
BD 0.24 −0.25 0.28 0.20 0.28 −0.12 0.43 0.40 1.00

∗ Significant at p < 0.05.

Table 5. Soil organic carbon (SOC) content and soil organic carbon stock (SOCS) (mean±SD∗) in the study area.

Soil types Sections Depth, cm SOC, g kg−1 T-SOC, g kg−1 SOCS, Mg ha−1 T-SOCS, Mg ha−1

Vertisols S1 0–25 21.97± 4.12a 102.04± 30.59a

(Laf) S2 25–50 15.36± 3.39a 53.75± 3.25 70.99± 21.68a 248.60± 26.26

S3 50–75 16.42± 2.25a 75.57± 26.50a

Arenosols S1 0–25 21.33± 2.59a 83.82± 3.45a

(Zamai) S2 25–50 16.85± 2.25a 54.61± 2.71 55.57± 10.84a 199.04± 8.00

S3 50–75 16.43± 3.28a 59.65± 9.71a

Leptosols S1 0–25 14.29± 3.53a 59.54± 15.99a

(Kosohon) S2 25–50 13.44± 2.22a 41.21± 2.89 51.30± 13.60a 166.52± 16.63

S3 50–75 14.08± 2.93a 55.68± 20.29a

Planosols S1 0–25 12.59± 3.53a 47.03± 4.73a

(Mozogo) S2 25–50 16.21± 1.48a 42.03± 3.33 61.82± 1.93a 160.95± 8.88

S3 50–75 13.23± 4.97a 52.10± 19.98a

∗ Standard deviation. Numbers followed by different lower-case letters within the same column have significant differences (p < 0.05) at different
depths, considering the same topographic position.

4 Discussion

4.1 Soil physical properties

Clay content increased with depth in Vertisols and Arenosols.
This might be due to eluviation and illuviation processes as
consequences of vertical movement of water through the soil
profile. The clay content was almost similar in the three in-
crements in Leptosols, in line with the weak development
and differentiation of the soil. Contrastingly in Planosols, the
presence of rusty and greyish spots in addition to the abrupt
variation of sand and clay fractions contents had already been
reported elsewhere (Driessen et al., 2001; Van Ranst et al.,
2011). Bulk density is high, especially in Vertisols. Similar
values were obtained by Azinwi et al. (2011). This might be
due to the Sudano-Sahelian climate with 8 to 9 months of dry
season which leads to soil compaction and sealing (Tsozué

et al., 2014). Bulk density increases with soil depth in Verti-
sols and Arenosols in line with increase of clay fraction. In
Planosols, the evolution of bulk density with depth follows
that of sand. Bulk density is known to vary under the influ-
ence of particle size distributions in a soil layer (Carter, 1990;
Tuttle et al., 1988). The increase of bulk density with soil
depth regardless of the texture in Leptosols might be linked
to the progressive weathering of the parent rock. High pH
values are noted in Vertisols. The slightly acid to neutral na-
ture of studied Vertisols is unfailingly attributed to the pres-
ence of free calcium from calcareous nodules or base-rich
parent materials from which they were developed. In fact,
weathering of base-rich parent materials could increase the
content of alkali and alkaline earth elements (Ca2+, Mg2+,
K+ or Na+) in soils which would consequently increase the
soil pH. Similar results were obtained by Nguetnkam (2004)
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Figure 4. Plots of the soil organic carbon stock (SOCS) versus al-
titudinal gradient in the study area.

Figure 5. Plots of the soil organic carbon stock (SOCS) versus pre-
cipitation in the study area.

in the Far North Region of Cameroon and Moustakas (2012)
in the north-eastern part of Greece. Low pH in the bleached
layer of Planosols might be due to ferrolysis processes which
have been suggested to explain oxides (Mn-Fe) segregation
and gleying in such environments (Singh et al., 1998; Barbi-
ero et al., 2010) and textural variations (O’Geen et al., 2008;
Van Ranst et al., 2011; da Silva et al., 2019). It is common
for Planosols to present pH< 5.5 due to acidification and de-
struction of clay minerals, leaving only quartz as the major
constituent (Brinkman, 1970; Spiau and Pedro, 1986; Van
Breemen and Buurman, 2002).

4.2 Soil organic matter, nitrogen and C : N ratio

The studied soils are the most common under dryland
ecosystems (FAO, 2004). Their average SOM values are
low, ranging between 21.70± 6.10 and 37.88± 7.10 g kg−1,
compared to those obtained in soils of humid-region soils

by Tsozué et al. (2019), which range between 15.10 and
180.50 g kg−1. The low SOM concentrations in the study
area might be due to the semi-arid climate and the sandy
textures (Gallardo et al., 2000; González and Candás, 2004;
Parras-Alcantara et al., 2015). This is in agreement with ob-
servations already made in dryland soils (Lal, 2004; Plaza
et al., 2018). SOM influences almost all physical, chemi-
cal, and biological properties and processes in such ecosys-
tems (Lal, 2004, 2009; Adoum et al., 2017). It promotes
soil aggregation, which improves soil structure, porosity and
moisture-holding capacity, thus reducing the severity of wa-
ter scarcity and protecting soils from erosion and compaction
(Ruiz Sinoga et al., 2012; Yüksek, 2012). Nitrogen (N) is an
essential nutrient used in relatively large amounts by all liv-
ing organisms. Generally, the concentration of N is high in
areas where SOM and SOC are high (Sakin, 2012), indicat-
ing that N nutrition of plants greatly depends on the main-
tenance of SOM and SOC level. In the study area, no sig-
nificant correlation was noted between N and SOM. Except
in Planosols where the evolution of SOC with soil depth is
modelled on that of N, the absence of correlation between
N and SOM implies that in the studied area, N and SOC
act independently. The C : N ratios are high, ranging between
31.33±15.82 and 112±28.16, suggesting an absence of re-
active and readily biodegradable SOM. The wide variation
of C : N ratios across the studied area might be due to the
tropical dry climate, natural vegetation, intrinsic soil proper-
ties and soil drainage (Yoh, 2001; Cools et al., 2013; Zinn et
al., 2018). Since C : N ratio can reflect the degree of decom-
position of SOM, this might indicate that the C fractions in
the studied soils are still composed of various C components
with different properties (Chen et al., 2020).

4.3 SOC and SOCS

SOC content was highest in the top 25 cm in Vertisols,
Arenosols and Leptosols. This is in line with Batjes (1996),
who reported that the amount of SOC in the topsoil was
higher than in subsoil. SOM could be concentrated, and
the mechanisms of C mineralization and immobilization
are more active in the soil’s top 30 cm (Hiederer, 2009).
Similar results were also obtained by Reyna-Bowen et
al. (2020) in Hinojosa del Duque in Spain where they noted
that trees’ influence on SOC is strongly related to their
roots in the A horizon. In Planosols, there was an increase
in SOC content in the bleached layer. This is in agree-
ment with observations made by da Silva et al. (2019) in
three Brazilian Planosols. The low SOC content in the 0–
25 cm interval of Planosols might be due to the fact that
these soils are periodically flooded. In fact, in periodically
flooded soils, aerobic periods promote higher microbial ac-
tivity and more rapid decomposition of SOM, which is also
poorly stabilized by sorption in the sandy surface horizons
(Vepraskas, 2001; da Silva et al., 2019). In the study area,
a high T-SOC value is observed in Vertisols and Arenosols
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(53.75± 3.25 and 54.61± 2.71 g kg−1 respectively) and a
low one is observed in Leptosols and Planosols (41.21± 2.89
and 42.03± 3.33 g kg−1 respectively). The T-SOC content
in the studied Vertisols (53.75 g kg−1) is 50 % of the T-
SOC content obtained in the semi-evergreen medium forest
Vertisols (95.20 g kg−1), but 200 % of the quantity obtained
in the flooded low rainforest zone Vertisols (28.60 g kg−1),
all in the warm subhumid equatorial climate of Yucatán
Peninsula in Mexico characterized by dry winters (Tsao,
2017). It is, however, lower than that obtained in Spain
by Muñoz-Rojas et al. (2015). This difference can be at-
tributed to their richness in clay and the climatic conditions.
In fact, climatic conditions in the study area are close to
those of Yucatán Peninsula in Mexico (tropical climate), but
in Spain, low temperature would slowdown the microbio-
logical activities leading to an increase in SOC contents.
Also, the wetting and drying cycle plays a crucial role in
aggregation and C stabilization in Vertisols (Rahman et al.,
2018). On the other hand, the T-SOC content in Arenosols
is 54.61± 2.71 g kg−1. This SOC content is higher than that
found by Batjes (2008) on sandy marine sediments on freely
drained Arenosols in the lower Congo. This difference can
be attributed not only to parent materials but also to drainage
conditions (freely drained sediments) that favour the leaching
of SOM and SOC (Batjes, 2008; Torn et al., 2009). The T-
SOC value of 41.21± 2.89 g kg−1 in Leptosols here is lower
than that obtained in Umbric Leptosols of the temperate zone
(52.40± 7.05 g kg−1) but higher than the value obtained in
Mollic Leptosols under similar climatic conditions in South-
ern Spain (38.95± 6.41 g kg−1) studied by Parras-Alcantara
et al. (2015), meaning that climate is not responsible for the
variation of SOC contents in Spanish Leptosols.

The trend of SOCS contents with depth in the studied
area follows that of SOC, in line with observations of Bat-
jes (1996), Hiederer (2009) and da Silva et al. (2019). SOCS
in the upper 30 cm in the studied Vertisols is 96.87 Mg ha−1.
This value is higher than that obtained in the upper 30 cm
of Vertisols (56.4 Mg ha−1) by Tornquist et al. (2009) in
Brazil. It is also relatively higher than those obtained by
Tsao (2017) in different land covers in Yucatán Peninsula
in Mexico, with 70.70 Mg ha−1 in flooded low rainforest
zone Vertisols, 80.03 Mg ha−1 in semi-deciduous low rain-
forest, 88.43 Mg ha−1 in Semi-evergreen low rainforest and
154.16 Mg ha−1 in semi-evergreen medium forest Vertisols.
High T-SOCS in the studied Vertisols might be due to the
fact that Vertisols contain smectitic clay minerals, with a high
cation exchange capacity dominated by Ca2+ ions, which
favours SOC stabilization and accumulation (Muneer and
Oades, 1989; Tornquist et al., 2009). This is in line with high
correlation between CEC and SOC commonly demonstrated
worldwide. T-SOCS values are higher in Arenosols and Lep-
tosols than those obtained in Mexico by Tsao (2017), irre-
spective of altitude. It might also be related to the nature of
clay mineral as montmorillonite in Vertisols. They are also
higher than the values documented in Europe by De Vos et

al. (2015), with 102 Mg ha−1 in Arenosols and 134 Mg ha−1

in Leptosols. Another comparison could be made with An-
dosols from the eastern part of the African continent (Jones
et al., 2013) and Andosols from the humid mountainous
zone of south Cameroon (Tsozué et al., 2019), where locally
they present elevated stocks reaching respectively 150 and
302 Mg ha−1. Soluble substances and labile compounds of
litter are rapidly degraded in the early stages of decomposi-
tion by fast-growing microorganisms that might lead to the
loss of SOC. Also, cellulose and lignin, the most abundant
components of litter in Europe, for example, are decomposed
slowly (Fioretto et al., 2005) and might negatively impact the
SOC content. In the studied Planosols on the contrary, SOCS
was high in the 0–25 cm interval, and the T-SOCS value was
low in the study area (160.95± 8.88 Mg ha−1). This T-SOCS
value, although low in the study area, was higher than that
obtained by Batjes (1996) in the world (77 Mg ha−1 with co-
efficient of variation of 0.56), De Vos et al. (2015) in Eu-
rope (67 Mg ha−1 with coefficient of variation of 0.35) and
Batjes (2002) in central and eastern Europe (108 Mg ha−1

with coefficient of variation of 0.18). The high T-SOCS value
in the studied Planosols might be attributed to the very low
slope gradient (2 %) and the possible presence of biocrusts
which take C and N from the atmosphere and might protect
soil from wind and water erosion in the studied area (Plaza et
al., 2018). Globally, the obtained T-SOCS values in the stud-
ied area are close to those obtained by Adoum et al. (2017)
(173.9 to 241.0 Mg ha−1) in polder soils under semiarid cli-
mate in Lake Chad.

4.4 Effect of environmental factors on SOCS

There was a decrease of SOCS with latitude in the stud-
ied area. This agrees with the findings by Jenny (1930),
which revealed that the major reservoirs of soil C change
with latitude. Most southerly, only a small fraction of the
T-SOC is stored in surface detritus, and most of the C is
in the mineral soil. Most northerly, slow litter decay leads
to large accumulations of detrital organic material, and rel-
atively little organic C is in the mineral soil. This is in
agreement with a high T-SOCS content obtained in the
Laf Vertisols (248.60± 26.26 Mg ha−1) most southerly lo-
cated and a low T-SOCS obtained in the Mozogo Planosols
(160.95± 8.88 Mg ha−1) most northerly located in the stud-
ied area. In fact, there is a decrease in total precipitation and
an increase in the mean air temperature as one moves away
from the Equator towards the Sahara, and thus with increas-
ing latitude in this part of the tropical zone. This implies that
T-SOCS storage responds negatively to increasing tempera-
ture and decreasing precipitation along with the latitude gra-
dient. Similar results were obtained by Tang et al. (2020) in
China. Climate appears to be the principal factor explaining
the low SOC contents in the studied soils as already observed
by Plaza et al. (2018), with precipitation explaining 41.15 %
of the variability of SOCS (R2

= 0.4115) along the soil pro-
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files. Similar observations were noted by Lozano-García et
al. (2017) in the semiarid Mediterranean part of southern
Spain and also by Jiménez-González et al. (2020) in the hu-
mid subtropical, Mediterranean and oceanic temperate part
of Spain. Moreover, 58.94 %, 57.87 %, 64.23 % and 70.77 %
of SOC respectively in Vertisols, Arenosols, Leptosols and
Planosols are stored below the first 25 cm from the soil sur-
face. This is a peculiarity of SOCS under dryland ecosys-
tems. It is essentially climate dependent (Gray et al., 2016;
Plaza et al., 2018). Globally, temperature and precipitation
negatively and positively (respectively) affected SOCS, be-
cause they affect the balance between C inputs from plant
residues and C outputs caused by microbial decomposition
of SOM (Post et al., 1982; Wang et al., 2020).

Spearman correlation between different soil parameters of
the study area show that there was no correlation between the
different soil parameters and SOM apart from the negative re-
lationship with silt contents. The lack of correlation between
SOM and particle size fractions in different soils can be ex-
plained by the fact that the alteration in dry intertropical zone
is essentially geochemical. The influence of the parent rock
in the accumulation of SOM in the study area therefore seems
negligible, in line with Plaza et al. (2018) observations. How-
ever, the availability of polyvalent cations such as Ca2+ from
the weathering of a parent rocks in the soil, might be an im-
portant factor in the chemical protection of SOC (Briedis et
al., 2012). In fact, Ca2+ is frequent in the soil solution and
precipitates in the form of calcareous nodules at the base of
soils in the study area.

The vegetation cover and/or the type of vegetation influ-
ences the amount of SOC stored in soils (Torn et al., 2009;
Reyna-Bowen et al., 2020). The site of Laf most southerly
located had the highest T-SOCS, while the site of Mozogo
most northerly located had the lowest T-SOCS. The differ-
ence in T-SOCS contents might be due to the type of vege-
tation in the various sites. The Laf site would therefore have
more productive vegetation due to high precipitation and thus
provide more SOC than the other sites. This is also valid
for the site of Kosohon which, although located at higher
altitude (865 m a.s.l.) and therefore likely to have a high T-
SOCS, shows a lower T-SOCS than that obtained in Vertisols
at Laf. The influence of the vegetation might occur through
deep root distribution and the chemical nature of litter (Bird
and Torn, 2006; Zhang et al., 2008; Torn et al., 2009; Reyna-
Bowen et al., 2020). Generally, decomposition of SOM in-
volves multiple microbial processes catalysed by various en-
zymes (Zhang et al., 2020). Changes in microbial community
and enzyme activity are therefore expected to influence the
decomposition rate (Chenu et al., 2019; Wang et al., 2020;
Zhang et al., 2020). It is demonstrated that soil acidification
depresses the decomposition of SOM, both by decreasing
microbial activity and by increasing protection of SOC by
mineral phases (Zhang et al., 2020). Soil pH decreases with
latitude and SOCS, thus reinforcing the fact that the produc-

tivity of the vegetation due to precipitation is a main factor
controlling the distribution of SOC in the study area.

With respect to topography, T-SOCS contents decrease
with increasing latitude, regardless of the altitude. Moreover,
no significant correlation was noted between T-SOCS and the
altitude. This implies that topography has no impact on the
T-SOCS in the studied Sudano-Sahelian zone of Cameroon.

The role of topography and parent rock in the storage of
SOC seems to be negligible in the studied area. The avail-
ability of polyvalent cations such as Ca2+ is linked to geo-
chemical processes induced by the climate. The distinguish-
ing factors affecting SOCS are thus the climate and the vege-
tation. According to Plaza et al. (2018), these two factors are
the main soil-forming factors driving the SOM storage and
consequently the SOCS in such dryland ecosystems.

5 Conclusion

The present work was designed to evaluate SOCS in the main
soil types under the natural dry tropical area in the Sudano-
Sahelian zone of Cameroon. The main soil types are Haplic
Vertisols, Dystric Arenosols, Dystric Leptosols and Dystric
Planosols. The C : N ratios are high, suggesting the absence
of reactive and readily biodegradable SOM. Vertisols
recorded the highest T-SOCS (248.60± 26.26 Mg ha−1),
followed by Arenosols (199.04± 8.00 Mg ha−1),
Leptosols (166.52± 16.63 Mg ha−1) and Planosols
(160.95± 8.88 Mg ha−1). More than 60 % of SOCS is
stored below the first 25 cm from the soil surface. The
T-SOCS is controlled by climate and vegetation, with
precipitation explaining 41.15 % of the variability of SOCS.
The influence of the climate is manifested by the decrease
in the SOCS as the latitude increases, in line with the
increase of the temperature and the decrease of the rainfall
as one move away from the Equator. The climate affects
the primary productivity of the vegetation, which influences
the quality and quantity of inputs to the SOM, as attested
by the good correlation between precipitation and T-SOCS.
No significant correlation was noted between T-SOCS and
the altitude, meaning that there is no influence of altitude
gradation in the repartition of T-SOCS in the studied area.
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