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Abstract. Soil aggregate stability is a useful indicator of soil physical health and can be used to monitor con-
dition through time. A novel method of quantifying soil aggregate stability, based on the relative increase in
the footprint area of aggregates as they disintegrate when immersed in water, has been developed and can be
performed using a smartphone application – SLAKES. In this study the SLAKES application was used to obtain
slaking index (SI) values of topsoil samples (0 to 10 cm) at 158 sites to assess aggregate stability in a mixed
agricultural landscape. A large range in SI values of 0 to 7.3 was observed. Soil properties and land use were
found to be correlated with observed SI values. Soils with clay content > 25 % and cation exchange capacity
(CEC) : clay ratio > 0.5 had the highest observed SI values. Variation in SI for these soils was driven by organic
carbon (OC) content which fit a segmented exponential decay function. An OC threshold of 1.1 % was observed,
below which the most extreme SI values were observed. Soils under dryland and irrigated cropping had lower
OC content and higher observed SI values compared to soils under perennial cover. These results suggest that
farm managers can mitigate the effects of extreme slaking by implementing management practices to increase
OC content, such as minimum tillage or cover cropping. A regression-kriging method utilising a Cubist model
with a suite of spatial covariates was used to map SI across the study area. Accurate predictions were produced
with leave-one-out cross-validation, giving a Lin’s concordance correlation coefficient (LCCC) of 0.85 and a
root-mean-square error (RMSE) of 1.1. Similar validation metrics were observed in an independent test set of
samples consisting of 50 observations (LCCC= 0.82; RMSE= 1.1). The potential impact of implementing man-
agement practices that promote soil OC sequestration on SI values in the study area was explored by simulating
how a 0.5 and 1.0 % increase in OC would impact SI values at observation points and then mapping this across
the study area. Overall, the maps produced in this study have the potential to guide management decisions by
identifying areas that currently experience extreme slaking and highlighting areas that are expected to have a
significant reduction in slaking by increasing OC content.
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1 Introduction

Objective and quantitative metrics are required to assess soil
health and monitor soil condition through time. Development
of simple accessible metrics to assess soil health will facili-
tate increased spatial and temporal sampling density, and will
encourage farmers, consultants, and even citizens to partici-
pate in soil health assessment. Aggregate stability is an im-
portant indicator of physical condition that quantifies a soil’s
resistance to slaking and dispersion. Slaking is the disinte-
gration of soil aggregates as a result of rapid wetting (Yoder,
1936; Oades and Waters, 1991). Slaking occurs when soil ag-
gregates are unable to withstand the stress induced by water
uptake derived from two main causes: swelling of clay min-
erals as water is adsorbed into the interstitial space and in-
ternal pressure caused by compression of entrapped air bub-
bles as capillary action draws water into the small pores be-
tween soil particles (Emerson, 1964). Most cultivated soils
in Australia are prone to some degree of slaking. The degree
of slaking determines if the process produces a favourable or
unfavourable environment for cultivation and plant growth,
and it has implications for soil conservation. A small de-
gree of slaking can be beneficial and is associated with self-
mulching – an ability to recover from disturbance by reform-
ing small (< 5 mm) aggregates at the soil surface following
wetting–drying cycles (Grant and Blackmore, 1991) – and
mellowing: a partial disintegration of soil aggregates on wet-
ting that results in increased friability (Barzegar et al., 1996).
Slaking produces detrimental effects when aggregates dis-
integrate further into microaggregates (∅ < 0.25 mm). De-
tached microaggregates migrate and settle into pores, re-
ducing pore volume, decreasing infiltration and percolation
rates, and leading to increased surface run-off (Rengasamy
et al., 1984). Erosion susceptibility is exacerbated as greater
run-off volumes increase erosive power, and the slaked ag-
gregates also provide suitably sized particles for transloca-
tion. Ultimately the soil has a lowered capacity to support
plant growth as plant-available water and soil–atmosphere
gas exchange are both reduced. In severe cases, crusting or
hard setting occurs when slaked and dispersed aggregates
coalesce and set hard on drying (Mullins et al., 1990). Soil
strength increases as the soil dries, producing difficulty in
cultivation until the soil is rewetted, and shoot emergence
and root growth may be restricted (Mullins et al., 1990).

The susceptibility of a soil aggregate to slake is related
to texture, mineral composition, and organic matter content
(Mullins et al., 1990). Soils with high clay content, especially
those containing smectite or vermiculite minerals, are more
likely to slake as they expand on wetting and also contain a
greater number of small diameter pores into which capillary
action will draw water and compress entrapped air bubbles
(Emerson, 1964). High organic matter content improves soil
structure by binding soil particles into stable aggregates and
reducing susceptibility to slaking (Chenu et al., 2000). Tech-
niques that increase soil organic matter – such as cover crop-

ping, reduced tillage, and application of organic amendments
– may reduce susceptibility to slaking. Agricultural manage-
ment practices that increase susceptibility to slaking include
conventional tillage methods that destroy soil structure and
accelerate organic matter decomposition, burning or removal
of crop residues, and the application of pesticides and other
chemicals that are harmful to soil biota and lead to disrup-
tion of organic matter cycling and reduced aggregation. The
detrimental effects of soil slaking are more pronounced in ar-
eas with clear wetting–drying cycles, such as temperate Aus-
tralia. Collis-George and Lal (1971) found that the initial wa-
ter content of soil affects the degree of slaking upon rewet-
ting, and soils of low initial water content are more prone to
rapid and explosive slaking.

Slaking and dispersion are quantified through aggregate
stability tests that observe changes in soil aggregate mor-
phology following immersion in water in an attempt to pre-
dict soil behaviour in the field. Emerson (1967) developed a
test to classify samples into eight classes based on the degree
of slaking, swelling, and dispersion observed when air-dried
soil aggregates are immersed in distilled water. The Emer-
son aggregate test was extended by including a supplemen-
tary analysis whereby soil samples were wetted and moulded
into cubes before immersion in the distilled water as a means
to simulate the shear forces associated with raindrop impact
and tillage on bare soil (Loveday and Pyle, 1973; Emerson,
1991). Field et al. (1997) modified these tests further to in-
clude observations of slaking and dispersion at both 10 min
and 2 h post-submersion in the “aggregate stability in water”
(ASWAT) test. This greatly decreased the time requirement
from 20+ h required for previous tests; however, interpreta-
tion of the degree of slaking for the ASWAT test remained
moderately subjective, and scores were produced on an ordi-
nal scale from 0 to 4, which limits statistical applications.
Established methods of quantifying stability of aggregates
subject to wet sieving or simulated rainfall are also time-
consuming and require specialist equipment (Yoder, 1936;
Schindelbeck et al., 2016).

A new method has been developed to calculate degree of
slaking using a time series of digital photographs to quan-
tify the increase of the footprint area of aggregates as they
disintegrate when immersed in distilled water (Fajardo et al.,
2016). This method has been incorporated into a smartphone
application, SLAKES, that is able to quantify aggregate sta-
bility in only 10 min (Fajardo and McBratney, 2019). The
reduced assessment time was achieved as the authors found
that the 2 h reading can be reliably estimated from change in
footprint area over the 10 min analysis period. The SLAKES
application requires no specialty equipment, and the auto-
mated nature of the application allows aggregate stability to
be quantified with minimal training. These advances make
the analysis more readily available to farm managers and citi-
zen scientists. The method calculates an objective and contin-
uous slaking index (SI), which reduces operator error and fa-
cilitates elucidation of contributing factors of observed slak-

SOIL, 7, 33–46, 2021 https://doi.org/10.5194/soil-7-33-2021



E. J. Jones et al.: Mapping soil slaking index and assessing the impact of management 35

ing. For example, Flynn et al. (2020) investigated aggregate
stability of Vertisols under different agricultural management
strategies and found that SI was significantly more sensi-
tive at distinguishing the perennial, no-till, and conventional
tillage management treatments compared to the Cornell wet
aggregate stability test (Schindelbeck et al., 2016).

Few studies have mapped aspects of soil aggregate stabil-
ity using digital soil mapping (DSM) techniques. Odeh and
Onus (2008) used regression kriging and indicator kriging
to model the electrochemical stability index (ESI) across an
irrigated cropping region of western NSW, Australia. This
resulted in a map of “risk zones” that were susceptible to dis-
persion and that could be prioritised for increased monitor-
ing and tactical management to abate immediate and future
detrimental impacts on crop production. A study by Annabi
et al. (2017) also utilised regression kriging to produce accu-
rate predictions of soil aggregate stability of an agricultural
district in Tunisia. Fine-resolution maps of soil aggregate sta-
bility across fields and farms have considerable potential to
aid farm managers in decision-making processes. Such maps
could guide farm managers to implement soil amelioration
practices, such as tactical application of gypsum, or change
in management practices, such as minimum tillage or use of
cover crops. Tools that make aggregate stability quantifica-
tion accessible, such as the SLAKES application, may facil-
itate the production of such maps.

The current study investigated the use of the SLAKES ap-
plication and DSM techniques to assess variation in SI across
a landscape with different agricultural and natural land uses.
The contribution of both soil attributes and land management
to slaking was investigated, and the potential impact of in-
creasing soil organic carbon (OC) levels on slaking was ex-
plored.

2 Methodology

2.1 Site description

The study was centred around a mixed farming prop-
erty, L’lara (30◦15′18′′ S, 149◦51′39′′ E), which is located
∼ 11 km north-east of the township of Narrabri, NSW, Aus-
tralia (Fig. 1). Climate at the study site is classified as hu-
mid subtropical (Cfa) under the Köppen–Geiger system (Peel
et al., 2007). The site experiences hot summers and cool
winters. The long-term average annual precipitation for the
study area is 658 mm and is slightly summer-dominant (Bu-
reau of Meteorology, 2020). The landscape at L’lara and its
surrounds can be broadly characterised into two distinct ar-
eas: sand-covered hills derived predominantly from Juras-
sic coarse-grained sediments of Pilliga sandstone covered by
Quaternary sands and talus material, and floodplain areas de-
rived from Quaternary alluvial deposits of basaltic materi-
als washed from the western side of the Nandewar range.
The soils of the floodplain area at L’lara are classified as
Vertisols according to the World Reference Base for Soil

Resources, with some expression of calcic horizons (IUSS
Working Group WRB, 2014). The sand hill area is repre-
sented by Luvisol, Lixisol, Solonetz, Leptosol, and Regosol
soil groups. L’lara encompasses a total area of 1850 ha, with
approximately 1070 ha used for dryland cropping. Cropping
is performed primarily on the Vertisols and occurs over both
summer and winter periods with cotton (Gossypium hirsu-
tum L.), wheat (Triticum aestivum L.), canola (Brassica na-
pus L.), and chickpea (Cicer arietinum L.) grown in rotation.
Lower-lying floodplain areas close to creek lines and all of
the sand hill area are used for grazing of beef cattle on unim-
proved native pastures (∼ 704 ha) and remnant forest cover
(∼ 76 ha).

L’lara lies at the centre of a diverse landscape. Outside the
property, dryland cropping and grazing occur on the flood-
plains and slopes to the east and south. Intensive irrigated
agricultural production occurs on the lower floodplain to the
south-west of the property, and the Killarney State Conser-
vation Area lies directly to the north. This conservation area
contains similar species to the remnant forest area found
at L’lara, which is dominated by white cypress pine (Cal-
litris glaucophylla), hickory (Acacia leiocalyx), black cy-
press pine (Callitris endlicheri), narrow-leaved ironbark (Eu-
calyptus crebra), bull oak (Allocasuarina luehmannii), and
dirty gum (Eucalyptus chloroclada).

2.2 Soil sampling

A training set of 108 samples and a test set of 50 samples
were defined (Table 1). The training set comprised both on-
and off-farm samples. The on-farm samples (n= 58) were
identified based on a random stratified sampling approach
utilising soil type and land use as parameters (Fig. 1). This
ensured representation of the major soil types and different
land uses – dryland cropping, pasture, and forest cover found
on the property. The off-farm samples (n= 50) samples were
sourced from neighbouring properties found within a 5 km
distance from the boundary of L’lara. As a soil type map was
not available for off-farm locations, the sites were identified
through a random stratified approach utilising k-means clus-
tering and rasters of elevation, multi-resolution valley bottom
flatness (MrVBF), and airborne gamma radiometrics as in-
put variables (Filippi et al., 2020). Four strata were identified
whose geographic distribution was approximately equivalent
to sand hill, transition, upper floodplain, and lower flood-
plain landscape positions. Sample sites were randomly se-
lected within each stratum. Five of the samples on the lower
floodplain were under irrigated agriculture, a land use not
represented at L’lara. The test set was constructed utilising 30
existing sites in the dryland cropping areas of L’lara, which
are described in Filippi et al. (2019), and 20 sites in the pas-
ture areas. At each of the 158 sites a topsoil (0 to 10 cm) sam-
ple was obtained by excavation using a shovel at a discrete
location.
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Figure 1. (a) Location of L’lara farm and the wider study area in relation to the township of Narrabri, NSW, Australia. Sample locations used
as a training set (n= 108) and test set (n= 50) are indicated. Satellite imagery sourced from Google Earth Pro V 7.3.2.5776 (5 March 2019).
Narrabri, NSW, Australia. 30◦16′31.37′′ S, 149◦51′46.42′′ E. Eye altitude: 20.57 km. Image © CNES/Airbus 2020 (http://www.earth.google.
com, last access: 20 April 2020). (b) MrVBF calculated at 30 m resolution using the SRTM digital elevation model. (c) Pixel-wise 50th
percentile of NDVI calculated from Landsat 7 scenes covering the time period 2000 to 2018. (d) Simplified land use across the study
area (ABARES, 2018). FR: forest reserve; Gr: grazing including understorey grazing and stock routes; DC: dryland cropping; IC: irrigated
cropping; OW: open water; BU: built-up areas. The external perimeter boundary of L’lara is indicated by the thick black line, and boundaries
of cropping paddocks are indicated by thin black lines.

Table 1. Summary of sampling campaigns and land use for each dataset.

Observations (n)

Sample set Location Date Forest Pasture Dryland Irrigated Total

Training L’lara Dec 2018 6 20 32 – 58
Surrounds Aug 2019 7 18 20 5 50

Test L’lara Jul 2018 – – 30 – 30
L’lara Jul 2018 – 20 – – 20

2.3 Sample preparation and laboratory methods

All soil samples were air-dried at 40 ◦C for 48 h. A selection
of 12 to 15 soil aggregates (∅ 5–10 mm) were isolated from
the air-dried bulk soil samples prior to grinding and sieving
for laboratory analysis. If distinct aggregates were not imme-
diately evident in the bulk soil, then the sample was passed
through a 5 mm sieve to isolate aggregates; this procedure
was often required in sandy soils. The remaining sample was
then ground to pass through a 2 mm sieve prior to labora-
tory analysis. Particle size analysis was performed using the
hydrometer method (Gee and Bauder, 1986). Organic car-
bon content was quantified using the Walkley–Black method
(Walkley and Black, 1934). Soil pH and electrical conduc-
tivity (EC) were measured using a 1 : 5 soil / H2O suspen-
sion. As the soil samples did not contain significant quanti-
ties of carbonates or soluble salts, the cation exchange capac-
ity (CEC) was assessed using the ammonium acetate method
(Rayment and Lyons, 2011). Exchangeable sodium percent-

age (ESP) and Ca : Mg ratio were calculated from the rele-
vant exchangeable cations, and the CEC : clay ratio was cal-
culated following correction for the CEC contribution of or-
ganic matter. Laboratory data were obtained on the 108 sam-
ples of the training set only; for the test set only slaking index
information was obtained.

2.4 SLAKES slaking index

A slaking index (SI) was obtained using the SLAKES appli-
cation (Fajardo and McBratney, 2019). Briefly, a smartphone
(Galaxy J2 Pro, Samsung, Republic of Korea) with an 8 MP
digital camera was fixed on an articulated stand to provide
the camera lens an unimpeded view of the bench surface.
The height of the stand was adjusted so that the field of view
of the camera was filled by a 100 mm diameter Petri dish
placed on the surface of the bench directly below the camera.
Three soil aggregates were placed into the Petri dish, and an
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initial image of the aggregates was acquired. The Petri dish
was then drawn back and replaced by an identical Petri dish
filled with sufficient deionised water to completely immerse
the aggregates. The aggregates were held directly above the
deionised water and dropped simultaneously into the Petri
dish, with care being taken to preserve the order and ori-
entation of the aggregates to that of the initial image. The
start button of the SLAKES application was then immedi-
ately pressed, and the set-up left to process over a 10 min
period, after which the SI was displayed on the screen of the
smartphone. The experiment was performed on a white sur-
face to increase contrast between the soil aggregates and the
background surface. The experiment was also performed un-
der diffuse and constant lighting to prevent the occurrence
of shadows over the Petri dish, which could introduce errors
during the image segmentation process. The procedure was
repeated twice for each sample; if the difference between the
duplicate readings was greater than one unit, an additional
reading was obtained. An additional reading was required for
approximately 20 % of samples and was more commonly re-
quired for soils with higher slaking index values compared to
samples which exhibited minimal slaking. When additional
readings were taken, the outlier reading was discarded and
remaining readings averaged to provide the final SI for each
sample.

The SLAKES application uses an image segmentation ap-
proach to calculate the footprint area of each aggregate, ex-
pressed as pixel count, and tracks the relative increase in area
of individual aggregates as they break down over time (Fa-
jardo et al., 2016). The SI of an individual aggregate at a
given time after immersion is calculated as

SIt =
At −A0

A0
, (1)

where A0 is the initial footprint area of the aggregate and
At is the footprint area of the aggregate at time t . An SI of
0 means that the footprint area of the aggregate has not in-
creased at all, an SI of 1 means that the footprint area has
increased in size by 100 %, an SI of 2 means that the foot-
print area has increased in size by 200 %, etc. The change in
SI over the course of the analysis is used to fit a Gompertz
function on a log timescale and calculate parameters a, b,
and c:

SIt = ae−be
−c·log(t)

, (2)

where, as described in Fajardo et al. (2016), a is an asymp-
tote representing the maximum SI after an indefinite period
of time, b describes displacement along the time axis and
is associated with initial slaking, and c describes the growth
rate and is associated with ongoing slaking of the aggregate.
The SI value returned from the SLAKES application is the
average of the a parameter calculated individually for each
aggregate. A major benefit of this approach is that this value
can be estimated after only 10 min of immersion, unlike the
ASWAT test, which requires 2 h of immersion.

2.5 Spatial covariates for modelling and mapping
slaking index

A range of publicly available spatial datasets were used as in-
put variables to model SI across the study area (Table 2). This
included satellite imagery, a digital elevation model (DEM),
terrain attributes, airborne γ -radiometric maps, and a lithol-
ogy indicator. Landsat 7 Tier 1 surface reflectance satellite
imagery from 2000 to 2018 was accessed through Google
Earth Engine (Gorelick et al., 2017). To remove pixels that
were affected by cloud cover or shading, a cloud-masking
filter was applied to all images. The normalised difference
vegetation index (NDVI) was then calculated for each pixel
in each image. The 5th, 50th, and 95th percentiles of the time
series of NDVI values were then determined for each pixel.
The reason for using different NDVI percentiles was to char-
acterise spatial variability in vegetation cover and vigour over
the 19-year period. For example, the median (50th percentile)
gives a value of typical greenness, and the 95th percentile
gives peak plant greenness. The 5th percentile would likely
be low and represent soil variability for areas that are tilled
or heavily grazed and remain higher for areas of perennial
cover, such as forests.

A 5 m DEM was accessed through the ELVIS (ELeVa-
tion Information System) platform (ANZLIC, 2019). This
DEM was derived from photogrammetry and generated via
airborne imagery; it gives an accurate point estimate of eleva-
tion, though it is not hydrologically enforced. Shuttle Radar
Topography Mission (SRTM)-derived terrain attributes at
30 m resolution were also accessed through CSIRO’s Data
Access Portal (CSIRO, 2019). The specific terrain attributes
obtained included aspect, multi-resolution ridgetop flatness
(MrRTF), MrVBF, and slope. Gridded gamma radiometric
data at 100 m spatial resolution derived from an airborne
gamma ray spectrometer were obtained through the Geo-
physical Archive Data Delivery System (GADDS) (Geo-
science Australia, 2019). Variation in the concentrations of
the radio-elements in this product are indicative of change
in soil type or parent material. The individual datasets used
included dose rate and potassium concentration data, which
were processed with low-pass filtering (Minty et al., 2009).
A map of silica index, which is essentially a map of silica
content of soil parent material, was also used as a covariate
(Gray et al., 2016). The silica index is known to relate to soil
texture and other important soil physical properties, such as
water holding capacity.

2.6 Modelling and mapping procedure

A regression-kriging approach was utilised to map SI across
the study area. All data handling and processing was per-
formed in the R platform for statistical computing (R Core
Team, 2019). The dataset was split into a training set
(n= 108) and a test set (n= 50) as previously defined. At
each of the 108 sampling sites in the training set, the spa-
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Table 2. Description and source of covariates used for digital soil mapping.

Type Description Resolution Source

Satellite imagery∗ Landsat 7 NDVI 5 % 30 m Google Earth Engine
Landsat 7 NDVI 50 % 30 m Google Earth Engine
Landsat 7 NDVI 95 % 30 m Google Earth Engine

Terrain DEM (m) 5 m NSW Government
Slope (%) 30 m CSIRO
Aspect (◦) 30 m CSIRO
MrVBF 30 m CSIRO
MrRTF 30 m CSIRO

γ Radiometrics Total dose 100 m Geoscience Australia
Potassium (%) 100 m Geoscience Australia

Lithology Silica (%) ∼ 125 m Gray et al. (2016)

∗ Landsat 7 NDVI values represent percentiles computed over the 2000–2018 time period.

tial covariates described in Table 1 were extracted using the
nearest-neighbour method. A Cubist model was then used to
build a relationship between SI and the spatial covariates at
each observation point (Kuhn and Quinlan, 2020). A 20 m
grid of the study area was created, and the spatial covari-
ates were then extracted using the nearest-neighbour method
at each grid point. The developed Cubist model was then
used to predict SI on this grid of the study area. The resid-
uals (difference between the observed and predicted SI val-
ues) at observation points showed a weak spatial autocorrela-
tion. A Gaussian function fit to the empirical semivariogram
had a relatively large nugget of 0.81, sill of 1.11, and range
of 1.92 km. A grid of kriged residuals was constructed and
added to the mapped output of the Cubist model to obtain
the final SI prediction map of the study area. The complex-
ity of the Cubist model was fine-tuned using a leave-one-out
cross-validation (LOOCV) approach on the training set. The
external validation test set consisting of 50 sites was used to
assess the final model. Validation metrics used to assess the
prediction performance were Lin’s concordance correlation
coefficient (LCCC), root-mean-square error (RMSE), bias,
and the coefficient of determination (R2).

2.7 Mapping the simulated effect of increased soil
organic carbon on slaking index

Relationships between SI and measured soil properties were
explored to identify potential contributing factors as a means
to inform management practices to reduce excessive slaking.
Two classes of soils were evident in the samples, soils with
clay content ≥ 25 % and CEC : clay ratio ≥ 0.5 which con-
sistently exhibited excessive slaking, and other soils. Class-
based regression was used to construct individual predic-
tive models between SI and other measured soil attributes
for each class using either multiple linear regression or seg-
mented, non-linear regression for more complex relation-

ships (Baty et al., 2015). The effect of increasing soil OC
levels on SI was investigated by simulating increases of 0.5
and 1.0 % OC and applying the relevant class-based regres-
sion equation using the laboratory data at each point. These
modified SI values were then extrapolated across the study
area using the same regression-kriging approach as described
above and validated using a LOOCV approach.

3 Results and discussion

3.1 Investigating slaking index variation

3.1.1 Slaking index and soil properties

A large range in SI was observed for the samples analysed
in this study (Table 3). A minimum SI of 0 was observed
for nine samples, meaning that no slaking or swelling oc-
curred and the footprint area of these soil aggregates did not
increase. A maximum SI of 7.3 was observed, meaning that
the average footprint area for these aggregates is projected to
increase in size by 730 %. This indicates an extreme level
of aggregate disintegration, although it remains below the
maximum theoretical SI of 7.8 suggested by Fajardo et al.
(2016). Organic C had an observed range of 0.33 to 2.97 %
and a median value of 0.88 %, demonstrating that many of
the sampled locations had low levels of OC. Other measured
soil properties ranged widely, demonstrating the diversity of
soils sampled; for example clay ranged from 2.5 to 60.2 %,
and pH ranged from 4.8 to 9.2.

Slaking index was positively correlated with clay content
(r = 0.84), pH (r = 0.70), electrical conductivity (r = 0.44),
CEC (r = 0.87), CEC : clay ratio (r = 0.84), and all ex-
changeable cations (Table 4). Weak negative correlations
were observed for SI with OC (r =−0.31) and Ca : Mg
(r =−0.26). These observations support the findings of Fa-
jardo et al. (2016) that SI was positively correlated with
pH, clay content, and exchangeable Na+ and Mg+2, and
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Table 3. Summary statistics of slaking index and laboratory-derived soil properties.

Property Min. 1st Qu. Median Mean 3rd Qu. Max.

Slaking index 0.0 0.4 2.6 2.7 4.8 7.3
Organic carbon (%) 0.33 0.74 0.88 1.07 1.22 2.97
Clay (%) 2.5 11.1 29.1 28.1 42.1 60.2
pH (1 : 5 H20) 4.8 6.0 6.8 7.0 8.3 9.2
EC (dS m−1) 0.01 0.04 0.12 0.15 0.19 0.81
Exch. Ca+2 (cmolc kg−1) 0.0 1.7 10.5 11.3 19.8 34.0
Exch. Mg+2 (cmolc kg−1) 0.0 0.7 5.1 6.0 11.0 17.0
Exch. K+ (cmolc kg−1) 0.1 0.4 0.8 0.9 1.4 2.2
Exch. Na+ (cmolc kg−1) 0.0 0.0 0.2 0.5 0.6 3.6
CEC (cmolc kg−1) 0.2 2.8 15.6 18.8 32.8 52.8
ESP (%) 0.2 1.0 1.8 2.9 3.6 19.4
Ca : Mg ratio 0.1 1.5 1.9 2.2 2.5 10.8
CEC : clay ratio 0.01 0.08 0.44 0.43 0.70 1.09

negatively correlated with Ca : Mg. The strongest correlation
with SI in this study was observed with exchangeable Mg+2

(r = 0.90). This is in contrast to a recent study that demon-
strated exchangeable Mg+2 played a negligible role in floc-
culation of soil particles and aggregate stability (Zhu et al.,
2019). It is believed that the observed correlation in our study
is due to the dependence of exchangeable Mg+2 on clay
content, CEC, and shrink–swell minerals, such as smectite,
rather than a direct causal effect. Clay content was a strong
indicator of SI potential. Only one sample with clay content
< 25 % had an observed SI greater than 1; in contrast only
three samples with clay content ≥ 25% had an observed SI
less than 1. Clay soils are often more susceptible to slaking as
they have both a higher concentration of shrink–swell miner-
als and also a greater concentration of smaller pores that may
trap and compress air bubbles (Emerson, 1964). The major-
ity of clay soils had a high CEC : clay ratio, indicating that
the dominant phyllosilicate in many of the clay soils stud-
ied is smectite. No correlation was observed between SI and
ESP in our study. Churchman et al. (1993) reviewed causes
of swelling and dispersion in Australian soils and identified
that exchangeable Na+ increased swelling, but only for high
ESP values. Most of the samples in our study had low ESP
values, which explains the lack of correlation with SI values.
The low ESP values resulted in minimal dispersion observed
in these samples, which was beneficial for this study as the
SLAKES application currently cannot distinguish between
slaking and dispersion (Fajardo et al., 2016).

3.1.2 Slaking index and land use

Land use at sampling sites was categorised into four classes:
forest, predominately remnant vegetation cover on sand hills;
pasture, encompassing not only improved and unimproved
pastures but also stock routes and other areas of perennial
grass cover; dryland cropping; and irrigated cropping. Clear
differences in SI values were observed under these different

land uses, which were accentuated after separating based on
clay content (Fig. 2). For samples with clay content ≥ 25%,
irrigated cropping had the highest SI values, followed by dry-
land cropping (which showed a large range of SI values) and
then pasture. No samples with clay content ≥ 25% were ob-
served under forest cover, nor soils with clay content< 25 %
under irrigated cropping. These findings are supported by
the few existing studies investigating SI values of aggregates
under cultivated sites compared to paired sites under natu-
ral vegetation (Fajardo et al., 2016; Flynn et al., 2020). De-
creased aggregate stability of soils under cropping compared
to pasture or natural vegetation has also been observed by
other indicators of aggregate stability, such as mean weight
diameter and water-stable aggregates (Saygın et al., 2012; Ye
et al., 2018). The marked differences in soil aggregate stabil-
ity between land uses may be attributable to the impact of
cultivation on the soil – both the direct destruction of ag-
gregates through cultivation and associated increase in soil
respiration and loss of OC. The natural disposition of these
soils to slake is evident with an average SI of 2.8 observed
for soils with ≥ 25% clay content under perennial ground
cover in the pasture land use. This natural disposition had
been significantly exacerbated by cultivation, with an aver-
age SI value of 4.8 observed for sites under dryland cropping
and 5.0 for sites under irrigation. The difference in mean SI
value between irrigated and pasture land uses for clay soils
was not found to be significant at the 95 % confidence level
(p = 0.07), but given the large difference in means this is as-
sumed to be due to the small number of observations for the
irrigated clay soils (n= 5). The higher level of slaking un-
der irrigation may be due to the fact that irrigated cropping
represents a further level of cultivation intensification com-
pared to dryland sites, and sampled irrigated sites also only
occurred on soils with clay content> 50 %. For the sites with
clay content < 25 % SI values were predominately < 1. Dif-
ferences between land use were not significant for these low-
clay-content soils, although increases in mean values were
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Table 4. Pearson correlation coefficient (r) between soil properties.

OC −0.31
Clay 0.84 −0.13
pH 0.70 −0.20 0.85
EC 0.44 0.07 0.58 0.47
Exch. Ca 0.83 −0.15 0.84 0.83 0.45
Exch. Mg 0.90 −0.22 0.85 0.74 0.45 0.92
Exch. K 0.59 0.19 0.65 0.60 0.63 0.67 0.65
Exch. Na 0.64 −0.25 0.68 0.65 0.63 0.60 0.65 0.52
CEC 0.87 −0.17 0.87 0.82 0.49 0.99 0.97 0.70 0.66
ESP 0.01 0.04 0.01 −0.10 0.16 −0.09 −0.04 −0.10 0.40 −0.06
Ca : Mg −0.26 0.22 −0.20 −0.04 −0.07 −0.10 −0.27 −0.04 −0.18 −0.16 −0.24
CEC : clay 0.84 −0.21 0.74 0.72 0.38 0.94 0.91 0.62 0.53 0.94 −0.14 −0.16

SI OC Clay pH EC Exch. Ca Exch. Mg Exch. K Exch. Na CEC ESP Ca : Mg

Bold font indicates significance at p < 0.05. SI: slaking index; OC: organic carbon; pH: pH (1 : 5 H2O); EC: electrical conductivity (1 : 5 H2O); CEC: cation exchange capacity; ESP:
exchangeable sodium percentage; Ca : Mg: ratio of exchangeable Ca+2 to Mg+2; CEC : clay: ratio of organic-matter-corrected CEC to clay content.

Figure 2. Box plots of slaking index grouped by land use (for-
est, pasture, dryland cropping, or irrigated cropping) and clay con-
tent (< 25 % or ≥ 25%) for the training set. Significant differences
between means (p < 0.05) of each class calculated using Tukey’s
honest significant difference test are indicated by a lowercase let-
ter above each plot. The number of observations for each class is
indicated in brackets below each plot.

observed from forest to pasture and then dryland agriculture.
A wide range of SI values was observed for samples with
≥ 25 % clay content, warranting further investigation.

3.1.3 Effect of organic carbon on slaking index

Organic C has been shown to increase soil aggregation and
decrease susceptibility to slaking (Six et al., 2000). Chenu
et al. (2000) found OC to be a good predictor of soil ag-

gregate stability (R2
= 0.72) when investigating the effects

of tillage management on humic loamy soils in south-west
France. The diverse range of soils used in this study is as-
sumed to have confounded this relationship as only a weak
negative correlation (r =−0.31) between SI and OC was ob-
served, while much stronger correlations were observed for
other soil properties, such as clay content or CEC : clay ra-
tio (Table 4). To investigate these correlations further, the
relationship between clay content, CEC : clay ratio, and SI
was visualised (Fig. 3). CEC : clay ratio was identified as
an important parameter as it is an indicator of clay min-
eral type which affects slaking through its contribution to
the shrink–swell characteristics of a soil. A correlation be-
tween clay content and CEC : clay ratio was observed (Ta-
ble 4). This relationship was related to landscape position
in the study area, as high-clay-content soils found in flood-
plain areas also contained a higher proportion of shrink–
swell clay minerals, such as smectite. Meanwhile, topsoil
samples from the hills and slopes had lower clay content and
also a lower CEC : clay ratio, indicating the dominance of
low-CEC phyllosilicates, such as kaolinite or illite. As iden-
tified previously, samples with clay content < 25 % showed
minimal slaking. For samples with a clay content ≥ 25%,
CEC : clay ratio was an important predictor of slaking. For
example, soils with a clay content ∼ 40 % showed low-to-
moderate slaking for CEC : clay ratio< 0.5 and moderate-to-
extreme levels of slaking for CEC : clay ratio > 0.5 (Fig. 3).
Clear threshold values were observed, with extreme slak-
ing values only occurring for soils clay content ≥ 25% and
CEC : clay ratio > 0.5. This observation was used to allocate
samples into two classes: samples with clay content ≥ 25%
and CEC : clay ratio > 0.5, and all remaining samples. Re-
lationships between measured soil properties and observed
SI values were modelled independently for each class as dif-
ferent critical values were expected to control behaviour of
different soil classes (Loveland and Webb, 2003).
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Figure 3. Relationship between clay content, CEC : clay ratio, and
slaking index (SI). Land use at sample site is indicated as forest,
pasture, dryland cropping, or irrigated cropping. Dashed lines indi-
cate clay content of 25 % and CEC : clay ratio of 0.5, above which
extreme slaking was observed.

Soil organic carbon was the only significant predictor of SI
for soils with clay content≥ 25% and CEC : clay ratio> 0.5.
The relationship between SI and OC fit a segmented, expo-
nential decay function (Fig. 4). This equation was developed
by optimising a four-parameter non-linear regression model
to minimise residual sum of squares using the nls function
from the nlstools R package (Baty et al., 2015). The model
contained a constant value that characterised SI behaviour
under low OC levels, a threshold value above which the re-
lationship was characterised by exponential decay, and two
parameters that characterised exponential decay behaviour at
high OC levels. A threshold value of 1.1 % OC was identi-
fied. The average observed SI value for samples below this
threshold was 5.01. Extreme SI values were uniquely ob-
served for samples with OC content under this threshold
value. As the constant value indicates, no relationship be-
tween OC and SI was identified for these samples, nor could
a relationship be developed between SI and other measured
soil properties. As such the factors responsible for the large
range in observed SI values for these soils remain unidenti-
fied. To identify causal factors, future research should inves-
tigate potential relationships between SI and OC fractions,
OC type, microbial activity, or crop species that have been
previously identified as influencing aggregate stability (Six
et al., 1998; Morel et al., 1991; Blankinship et al., 2016). The
1.1 % threshold value also effectively separated observed dif-
ferences in OC content between pasture and cropping land
use activities. Interestingly, pasture sites with ∼ 1.0 % OC
had lower observed SI values than corresponding dryland
agriculture sites, indicating that direct effects of cultivation,

extended fallow, or monoculture production may influence
observed SI values, although the number of samples is too
small for statistical analysis. Similar critical OC content val-
ues ranging from 1.1 to 2 % have been identified when con-
sidering a soil’s ability to provide nutrients for crop growth or
support microbial diversity (Aune and Lal, 1997; Zvomuya
et al., 2008; Yan et al., 2000). For this study the 1.1 % OC
value should not be interpreted as a target value for farm
managers to achieve, but rather it describes an absolute mini-
mum threshold below which slaking is unpredictable and can
result in extreme values. To abate potentially detrimental ef-
fects of slaking, farm managers should aim to increase OC
levels above this minimum threshold. The exponential de-
cay component of the equation provided a weak fit to the
available data (R2

= 0.27). The function suggests that slak-
ing can be reduced, but not completely eliminated, by in-
creasing OC content for the range of OC contents observed
in this study. The constant parameter of 2.76 in the exponen-
tial decay function suggests a minimum obtainable SI value
for these soils; however this model was based on few obser-
vations and limited samples of > 2 % OC. Future investiga-
tion should prioritise identification of sites with higher OC
content to better characterise this relationship.

The relationship between SI and OC for the soils that did
not meet the criteria of ≥ 25% clay content and CEC : clay
ratio> 0.5 was modelled separately using multiple linear re-
gression. For these soils, SI was explained with the following
equation: SI=−0.22− 0.19×OC+ 0.09×clay (R2

= 0.77,
RMSE= 0.7, p= 0.000). This regression equation indicates
that, while OC content still had a significant effect on ob-
served SI values, the magnitude of the effect is lower for
these soils. For example, soils with clay content ≥ 25% and
CEC : clay ratio> 0.5 are expected to see a reduction in SI of
1.59 units if OC is increased from 0.7 to 1.7 %; meanwhile if
OC is increased from 0.7 to 1.7 % in other soils, a decrease
in SI of only 0.19 is expected to occur. These two equations
were used to model the effect on SI of simulated 0.5 and
1.0 % increases in OC at the sample sites, which were then
mapped across the study area. The results of these analyses
are shown in Sect. 3.2.4.

3.2 Mapping results

3.2.1 Importance of predictor variables

Investigation of the use of covariates as conditions and pre-
dictors in the Cubist model showed that MrVBF and the
NDVI 5th, 50th, and 95th percentiles were the most impor-
tant predictor variables of SI values. The NDVI data used
in this study largely represent variation in vegetation cover
and, hence, land use. The 5th percentile of NDVI was used
as both a condition and a predictor in the model. The 5th
percentile of NDVI represents the lower distribution of vege-
tation over the 2000–2018 period, with low values indicating
cultivated sites (Chen et al., 2018) and variation within culti-

https://doi.org/10.5194/soil-7-33-2021 SOIL, 7, 33–46, 2021



42 E. J. Jones et al.: Mapping soil slaking index and assessing the impact of management

Figure 4. Relationship between slaking index (SI) and organic car-
bon (OC) for soil samples with clay content ≥ 25% and CEC : clay
ratio > 0.5. A segmented, exponential decay function containing a
lag phase and threshold value of 1.1 % OC was fit to the observed
data points. Land use at each observation point is indicated.

vated sites representing topsoil variability. Low values of the
5th percentile of NDVI indicate areas of bare earth from cul-
tivation or extended fallow, facilitating the identification of
cropping sites. For cropping sites, the 5th-, 50th-, and 95th-
percentile values would be vastly different due to the sea-
sonal nature of cropping. This would be similar in the pas-
tures due to seasonal “browning off” of the perennial grass
cover. In contrast, the different NDVI percentiles for forest
cover would be high and relatively similar due to the more
constant biomass throughout different seasons. The impor-
tance of NDVI percentiles in the model and known relation-
ships with land use support previous findings that land use
has a considerable influence on observed SI values (Fig. 2).
The importance of MrVBF may be attributed to the informa-
tion it contains on landscape position, which is related to clay
content and CEC : clay ratio (Gallant and Dowling, 2003).
The lowest MrVBF values were found on the sand hills, in-
creasing through a transition zone to the upper floodplain.
The highest MrVBF values were found on the lower flood-
plain, which also corresponded to the highest clay content in
the study area. Slope and gamma radiometric potassium data
were used as predictors in the model. The important predic-
tors in the model reflect those used by Ye et al. (2018) to map
aggregate stability in a small catchment of the Loess Plateau,
which the authors found was explained by intrinsic factors
(parent material, terrain attributes, and soil type) and extrin-
sic factors (land use and farming practice). The covariates
that were the least important predictors included elevation,
MrRTF, and aspect.

3.2.2 Mapping accuracy

The quality of the predictions of SI from the regression-
kriging approach was assessed using two validation tech-
niques. The first technique involved using LOOCV on the
training dataset (n= 108). This method showed that SI could
be predicted to a relatively high degree of accuracy, with an
LCCC of 0.85, R2 of 0.75, RMSE of 1.1, and bias of 0.0
(Fig. 5). The second approach involved comparing SI val-
ues observed for an independent test set (n= 50) with SI
values extracted from the final map product. The second ap-
proach demonstrated the robustness of the model, as SI was
predicted with similar accuracy to that of the training set,
with an LCCC of 0.82, R2 of 0.78, RMSE of 1.1, and bias of
0.6 (Fig. 5). This demonstrates that SI can be accurately spa-
tially predicted when using DSM techniques and ancillary
spatial information. The successful prediction of SI can be
attributed to availability of ancillary spatial information that
explains the main factors controlling slaking, such as the dif-
ferent NDVI percentiles representing land cover and use, and
MrVBF representing clay content and the accumulation of
water and soil deposition across the landscape. While there
are no other published studies to our knowledge that have
modelled and mapped SI across a study area, these valida-
tion statistics are comparable to other DSM studies that have
modelled other aspects of soil stability, such as Annabi et al.
(2017), who modelled aggregate stability using three differ-
ent indices in a study region in Tunisia, with an accuracy of
0.62 to 0.74 R2 when tested with LOOCV.

3.2.3 Spatial variability of slaking index

The map of soil SI across the study area shows considerable
variation (Fig. 6). The model was very effective at mapping
high-clay-content soils that had a natural tendency to slake
and also at identifying tillage practices that exacerbated this
effect. It is clear that SI values were higher in arable areas,
particularly on the cropped fields at L’lara, as well as the dry-
land and irrigated cropping areas lower down the floodplain
to the south-west of L’lara. The forested areas showed the
lowest SI values in the study area. The spatial patterns of
the maps are clearly driven by vegetation cover and MrVBF,
as indicated by the variables used as conditions and predic-
tors in the Cubist model. The unique features of MrVBF can
be seen, as low SI values are found where deposition would
be low, whereas high SI values are found where deposition
is expected to be high. The NDVI 5th-percentile covariate
provides a good indication of whether a field has undergone
tillage or been left in a bare fallow but provides no insight
into the frequency, timing, or intensity of tillage events. An
aspect for further improvement to this approach would be to
include a more sensitive method able to characterise the fre-
quency of tillage events or quantify the amount of time left
under bare fallow.
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Figure 5. Plot of observed and predicted slaking index (SI) val-
ues from regression kriging for two validation methods: (1) leave-
one-out cross-validation (LOOCV) on the training set (n= 108)
and (2) external validation on an independent test set (n= 50).

3.2.4 Mapping slaking index after modelled increase in
organic carbon

The impact of increasing soil OC levels by 0.5 and 1.0 %
on SI values was assessed and mapped across the study area
(Fig. 7). When tested with LOOCV, the mapping procedure
used for the simulated scenario of a 0.5 % increase in OC
was found to have an LCCC of 0.94, R2 of 0.90, RMSE of
0.6, and bias of −0.1, and the simulated scenario of a 1.0 %
increase in OC had an LCCC of 0.95, R2 of 0.92, RMSE of
0.4, and bias of 0.0. The validation metrics for the simulated
0.5 and 1.0 % increases in OC were better than those derived
from modelling under current conditions. This may be at-
tributed to the simulated map showing a bimodal distribution
of SI values, with approximately half of the study area pre-
dicted to have SI values of ∼ 0, and the other half predicted
to have SI values of ∼ 3 under the scenario of a 1.0 % in-
crease in OC. The reason for this is likely due to SI values re-
turning to their natural or expected values, which are primar-
ily driven by clay content and clay type as opposed to land
use and management. Another contributing factor for the im-
proved validation metrics under increased-OC scenarios is
that the SI values are based on modelled data from which
unexplained error has been removed. Future efforts should
account for the error of the underlying regression equations
and quantify the uncertainty of the resultant maps by boot-
strapping and applying random error based on the prediction
variance of the underlying regression equations. The change
maps show the difference between the current observed SI
values and the simulated SI under increased-OC-content sce-
narios. These maps reveal a much larger expected decrease
in SI values for the scenario of a 1.0 % increase in OC and

Figure 6. Prediction of slaking index (SI) across the study area us-
ing regression kriging. The SI values at observation sites for the
training set (n= 108) and test set (n= 50) are provided. The exter-
nal perimeter boundary of L’lara is indicated by the thick black line,
and boundaries of cropping paddocks are indicated by thin black
lines.

that the largest decreases in SI values were predicted to oc-
cur in dryland and irrigated cropping areas at L’lara and its
surrounds. Some of these areas were predicted to have their
SI value decreased by up to 3 units. Many of the forested and
pasture areas with lower current SI values were predicted to
have their SI value largely unchanged even by a 1.0 % in-
crease in OC content. The produced maps highlight areas that
are expected to have lower SI when OC levels are increased.
This could encourage farmers and land managers to imple-
ment management practices that increase soil OC levels in
cultivated areas, such as minimal tillage and cover cropping.

4 Conclusions

Topsoil SI values were obtained through the use of the
SLAKES smartphone application to assess aggregate stabil-
ity in a mixed agricultural landscape. Land use had a clear
impact on SI values, with sites under irrigated and dryland
cropping showing higher SI values than those under pasture
and forested areas. Clay content, CEC : clay ratio, and or-
ganic carbon content had a considerable impact on SI val-
ues of soil samples. Samples with low OC and high clay
content combined with high CEC : clay ratio were the most
prone to slaking. An OC threshold of 1.1 % was observed,
below which slaking behaviour was not correlated with any
of the measured soil properties and the most extreme SI val-
ues were observed. A regression-kriging approach utilising
a Cubist model and diverse spatial covariates proved to be
successful in spatially modelling SI values. The model had
high predictive power, with an LCCC of 0.85 and RMSE of
1.1, when using a LOOCV approach on the training dataset
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Figure 7. Prediction of slaking index across the study area using regression kriging after modelled increases in organic carbon: (a) slaking
index after a modelled 0.5 % increase in organic carbon, (b) change in slaking index after a modelled 0.5 % increase in organic carbon,
(c) slaking index after a modelled 1.0 % increase in organic carbon, and (d) change in slaking index after a modelled 1.0 % increase in
organic carbon. The external perimeter boundary of L’lara is indicated by the thick black line, and boundaries of cropping paddocks are
indicated by thin black lines.

(n= 108). The results were also of high quality when as-
sessed using an independent test set (n= 50), with an LCCC
of 0.82 and RMSE of 1.1. The decrease in SI expected from
a 0.5 and 1.0 % increase in OC content was also simulated
and mapped across the study area. The results of these sim-
ulations suggested that considerable improvements in SI and
soil aggregate stability could be achieved if practices that
promote the sequestration of OC were implemented, particu-
larly in cultivated areas. Overall, this study demonstrated that
novel approaches to cheaply and rapidly assess the aggregate
stability of soil samples could be combined with DSM ap-
proaches to create accurate, fine-resolution maps of aggre-
gate stability. These maps have the potential to guide man-
agement decisions, whether that be to determine land use and
management, such as to minimise cultivation in areas that are
prone to slaking, or to increase OC in areas of extreme slak-
ing through the use of minimum tillage or cover cropping.
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