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Abstract. Soil organic carbon (SOC) stabilization and destabilization has been studied intensively. Yet, the
factors which control SOC content across scales remain unclear. Earlier studies demonstrated that soil texture
and geochemistry strongly affect SOC content. However, those findings primarily rely on data from temperate
regions where soil mineralogy, weathering status and climatic conditions generally differ from tropical and
subtropical regions. We investigated soil properties and climate variables influencing SOC concentrations across
sub-Saharan Africa. A total of 1601 samples were analyzed, collected from two depths (0–20 and 20–50 cm)
from 17 countries as part of the Africa Soil Information Service project (AfSIS). The data set spans arid to humid
climates and includes soils with a wide range of pH values, weathering status, soil texture, exchangeable cations,
extractable metals and land cover types. The most important SOC predictors were identified by linear mixed-
effects models, regression trees and random forest models. Our results indicate that geochemical properties,
mainly oxalate-extractable metals (Al and Fe) and exchangeable Ca, are equally important compared to climatic
variables (mean annual temperature and aridity index). Together, they explain approximately two-thirds of SOC
variation across sub-Saharan Africa. Oxalate-extractable metals were most important in wet regions with acidic
and highly weathered soils, whereas exchangeable Ca was more important in alkaline and less weathered soils
in drier regions. In contrast, land cover and soil texture were not significant SOC predictors on this large scale.
Our findings indicate that key factors controlling SOC across sub-Saharan Africa are broadly similar to those in
temperate regions, despite differences in soil development history.

1 Introduction

Soil conservation and sustainable management are crucial to
address some of the main challenges humanity is facing, such
as climate change, food security, environmental degradation
and loss of soil biodiversity. Assessing the state of soils
and their potential responses to climate and land use change
requires carefully designed sampling strategies combined

with systematic analytical and statistical analyses across
locations and scales (IPCC, 2019). One key component is
soil organic carbon (SOC). Due to its variety of sources,
transformations and stabilization mechanisms, SOC is
chemically very complex and spatially heterogeneous. This
complexity causes significant uncertainties in global climate
models (Friedlingstein et al., 2014). It also complicates
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the extrapolation of SOC to a global scale using statistical
relationships to build robust global SOC products, such as
SoilGrids and the Harmonized World Soil Database (Tifafi
et al., 2018). To improve our understanding of global C
dynamics, it is important to better understand the factors that
control SOC stabilization and destabilization in soils from
regional to global scales (Blankinship et al., 2018; Heimann
and Reichstein, 2008).

SOC-stabilizing drivers and processes have been
intensively studied over the past several decades.
Dokuchaev (1883) and Jenny (1941) shaped the
understanding that soil properties are correlated with
(independent) variables – the so-called soil-forming factors
(Eq. 1) as follows:

s = f ′(cl,o,r,p, t), (1)

where s stands for any type of soil property, such as
pH, carbon content, mineralogy, etc., and is determined
by the function f ′ of the following soil-forming factors:
cl – climate; o – organisms; r – topography; p – parent
material; and t – time. This concept is still relevant and forms
the basis for many experiments and research attempting
to understand SOC storage. However, the importance of
the individual factors of Eq. (1) at different spatiotemporal
scales remains unclear (Doetterl et al., 2015; Rasmussen
et al., 2018; Wiesmeier et al., 2019). This uncertainty
hinders implementation of Eq. (1) in Earth system models,
resulting in a gap between the theoretical understanding
of SOM dynamics and our ability to improve terrestrial
biogeochemical projections that rely on existing models
(Blankinship et al., 2018; Rasmussen et al., 2018; Schmidt
et al., 2011). Despite the long history of studying SOC
stabilization (Greenland, 1965; Oades, 1988), there still is an
increasing demand for data on SOC dynamics at landscape
to global scales (Blankinship et al., 2018), especially from
subtropical and tropical ecosystems.

SOC stabilization is commonly conceptualized as the
competition between accessibility for microorganisms versus
chemical associations with minerals (Oades, 1988; Schmidt
et al., 2011). These processes are often only considered
implicitly by models (Blankinship et al., 2018; Schmidt et al.,
2011). Instead, models commonly rely on broader variables,
such as clay content, which is used as a proxy for sorption
and other organo-mineral interactions (Rasmussen et al.,
2018; Schmidt et al., 2011). These more generic variables
integrate a variety of stabilization processes which can be
difficult to disentangle. They can differ in their relative
importance and may not adequately capture soil mineralogy
and chemistry across different ecosystems and climate zones.
Hence, improving the predictive capacity of such models
requires not only a better understanding of the factors that
control SOC dynamics but also verification (or falsification)
of those new findings in regions that are underrepresented in
field studies and models.

For example, Rasmussen et al. (2018) found that
exchangeable Ca was correlated with the quantity of SOC
in water-limited soils, while Alox was a better predictor of
SOC in wet, acidic soils. However, those findings may not be
directly transferable to subtropical and tropical soils, since
they differ greatly in climate, parent material and vegetation
(Six et al., 2002b), which usually results in more weathered
and older soils compared to those in temperate regions
(Feller and Beare, 1997). This was illustrated recently in
Quesada et al. (2020), where SOC variation in highly
weathered forest soils from across the Amazon Basin was
best explained by clay content, whereas the best explanatory
variables for less-weathered soils were Al species, pH and
litter quality. Feller and Beare (1997) also found that tropical
soils, dominated by low-activity clays (i.e., 1 : 1 clays), show
a strong relationship between SOC and clay and silt content.
In addition, Barthès et al. (2008) found that sesquioxides
(Al and Fe) play an important role in SOC stabilization for
various tropical soils. However, the relationship for high-
activity clays (i.e., 2 : 1 clays) is less clear, and contrasting
trends between SOC and clay and silt content have been
reported (Feller and Beare, 1997; Six et al., 2002a). In terms
of SOC distribution across sub-Saharan Africa, Vågen et
al. (2016) showed, by using a data set similar to the one in
this paper, that SOC content was highest in equatorial and
warm temperate climates where sand content, the sum of
base concentrations and pH values were low. With regard to
land cover, it has been shown for several sites across Africa
that forests usually contained the highest amount of SOC,
whereas the differences between cropland, grassland and
shrubland were less distinct (Abegaz et al., 2016; Olorunfemi
et al., 2020; Winowiecki et al., 2016a). Cropland cultivation
decreased carbon content by 50 % compared to forested
and semi-natural plots for sites in Tanzania, regardless of
sand content and topographic position (Winowiecki et al.,
2016b). Additionally, land degradation (i.e., erosion) resulted
in decreased SOC concentrations in those ecosystems,
independent of vegetation cover (Winowiecki et al., 2016a).

To address these diverging explanations of SOC variations
at regional scales, we analyzed a comprehensive soil
data set collected across the African continent using the
Land Degradation Surveillance Framework (Vågen et al.,
2010). This data set covers a wide range of climatic and
mineralogical conditions – from very arid to humid regions,
with different pHH2O values, soil texture, weathering status,
exchangeable cations and extractable metals – allowing us
to test different parameters to explain the variation in SOC
content in subtropical and tropical soils across sub-Saharan
Africa for two distinctive depth layers (0–20 cm – topsoil;
20–50 cm – subsoil). Here, we use this continental-scale data
set to address the following research questions:

1. Which soil properties and climate parameters best
explain SOC content variation across sub-Saharan
Africa?
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We explored the importance of soil texture,
exchangeable Ca, oxalate-extractable Al and Fe,
soil pHH2O, mean annual temperature, aridity index
(PET / MAP), land cover and weathering status to
explain the variation in SOC content on a continental
scale. We expect that oxalate-extractable metals, soil
texture and climate will be among the most important
predictors of SOC concentration.

2. How do geochemical controls on SOC vary between
environmentally distinct subregions?

Due to the heterogeneity of climate and soil conditions
across sub-Saharan Africa, we expect to see different
geochemical controls explaining variations in SOC
content between regions. For example, we expect
exchangeable Ca will be most important in regions that
are drier, with less weathered and alkaline soils, while
oxalate-extractable Al and Fe will mainly be important
in humid regions with highly weathered and acidic soils.

2 Methods

2.1 Study area and data collection

Soil data used in this study were collected during the
AfSIS (Africa Soil Information Service) project. In total,
18 257 soil samples were taken from 60 sentinel sites
and from two different depths (0–20 cm – topsoil; 20–
50 cm – subsoil). Samples stem from 19 countries across
sub-Saharan Africa and were collected between 2009 and
2012, following the well-established Land Degradation
Surveillance Framework (Vågen et al., 2010). The 60
sentinel sites (each 100 km2) were stratified across sub-
Saharan Africa according to Koeppen–Geiger zones (Vågen
et al., 2016). Within each sentinel there were 10 plots of
1000 m2 randomized within 16 spatially stratified 1 km2

clusters (Fig. 1). This hierarchical sampling design allows
process identification at a continental scale without losing
the ability to understand and quantify local heterogeneity
(Nave et al., 2021; Vågen et al., 2010). For more details about
sampling design and field survey, see Towett et al. (2015),
Vågen et al. (2013a) and Winowiecki et al. (2016a).

Our analyses built upon a subset of samples (11 %
of the total; n= 2002) which were originally selected
as reference samples for laboratory measurements. These
samples were used to calibrate mid-infrared spectroscopy
models (Terhoeven-Urselmans et al., 2010) and to predict
properties in the remaining 16 255 soil samples (Vågen et
al., 2016; Winowiecki et al., 2017). The calibration subset
was chosen to maximize the variation in the spectral data
using the Kennard–Stone algorithm (Kennard and Stone,
1969). More information about this approach can be found
in Terhoeven-Urselmans et al. (2010). This selection strategy
results in unequally distributed samples across 51 of the

Figure 1. (a) Aridity index map and sampling scheme (ntotal =
1601). Gray triangles represent individual sentinel sites where
sample clusters were collected. The top-right inset (b) shows
the exact sampling points within one of the sentinel sites (Didy,
Madagascar) as an example.

60 sentinel sites yet captures the variation in the original data
set.

2.2 Sample and data processing

Soil material was air-dried and sieved to a particle size
<2 mm in the Soil–Plant Spectroscopy Laboratory at the
World Agroforestry Centre (ICRAF) in Nairobi, Kenya.
All soil properties (except for soil texture, which was
measured at ICRAF) were analyzed at Rothamsted Research
in Harpenden, UK.

Data for soil organic carbon (SOC; weight percentage
– wt %), pHH2O, amorphous oxalate-extractable aluminum
(Alox; wt %) and iron (Feox; wt %, exchangeable calcium
(Caex; centimoles per kilogram), clay + fine silt content
(<8 µm; percent), and total element concentrations (in wt %)
of Al, Ca, K, and Na, were selected in order to cover a wide
range of soil properties that have been identified to relate
to SOC stabilization mechanisms (Oades, 1988; Rasmussen
et al., 2018), while maximizing the number of samples and
minimizing the correlation among variables included in our
analysis.

SOC was calculated from the difference of total C
and inorganic C. The latter was directly measured with a
Primacs AIC100 analyzer (Skalar Analytical B.V., Breda, the
Netherlands) by treating the sample with phosphoric acid
and heating it to 135 ◦C in a closed system. Inorganic C
in the sample was converted to CO2 and then measured
by nondispersive infrared detection (NDIR). Total C was
determined with the TruMac total N and C combustion
analyzer (LECO Corporation, St. Joseph, Michigan, USA).
Soil pHH2O was performed in a 1 : 2.5 soil : water suspension.
The extraction of Al and Fe with oxalic acid and ammonium
oxalate solution was done by shaking the solution for 4 h at
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25 ◦C in the dark. Carbonate-rich samples were pretreated
with ammonium acetate at pH 5.5 to remove any CaCO3.
Acid-oxalate extraction in particular dissolves short-range-
order minerals such as ferrihydrite (Fe), allophane and
imogolite (Al), as well as other amorphous and organic Fe
and Al minerals (Parfitt and Childs, 1988). Hexamine-cobalt
trichloride solution was used as an extractant to determine
Caex. Aqua regia acid digestion was applied for major and
trace elements, including Al, Ca, K and Na. Although this
method does not give absolute total contents, it does give
results sufficiently close to accepted values for different soils
(McGrath and Cunliffe, 1985). Samples were digested in
tubes in time- and temperature-controlled heating blocks. All
elements were measured with inductively coupled plasma
optical emission spectrometry (ICP-OES; Optima 7300 DV,
PerkinElmer Inc., Waltham, Massachusetts, USA). Particle
size distribution was measured using a laser diffraction
particle size analyzer (LDPSA) model LA-950 (HORIBA,
Ltd., Kyoto, Japan). Each sample was shaken for 4 min in
a 1 % sodium hexametaphosphate (calgon) solution with
ultrasonic energy before measuring to disperse aggregates.
We used 8 µm as cut-off to capture all clay + fine silt
particles. Results were comparable to <20 µm (see Appendix
Fig. A1), but <8 µm was selected because it is more relevant
to our interest in studying the influence of smaller particles
with large surface area on SOC concentration. In addition,
particles <8 µm resulted in a reproducible fraction across
soil types, unlike using only clay particles <2 µm (Fig. A1).
Aluminum, Ca, K and Na concentrations were used to
calculate the chemical index of alteration (CIA) after Nesbit
and Young (1982), using the following equation:

CIA= Al2O3/ (Al2O3+CaO+K2O+Na2O)× 100, (2)

where CaO is the amount incorporated in the silicate fraction.
Correction is necessary for samples that contain carbonates
and apatite (Nesbit and Young, 1982). We adopted an
approach introduced by McLennan (1993), which assumes
that Ca is typically lost more rapidly than Na during
weathering. If a soil sample contained inorganic C (Ctotal–
Corg; used as a proxy for carbonates and apatite) and the
CaO content was greater than that of Na2O in the same
sample (n= 476), then the CaO concentration was set to
that of Na2O from the same sample (Malick and Ishiga,
2016). After applying the correction, no obvious correlation
remained between CIA and inorganic C (Fig. A3). The index
increases (i.e., more highly weathered soil) with the loss of
Ca2+, K+ and Na+.

Samples were removed that contained missing or negative
values for one or more of the abovementioned parameters.
In addition, a single sample with extraordinarily high SOC
content (>22 wt %) was excluded. This resulted in a total
of 1601 soil samples (out of the original 2002 samples) at
45 sentinel sites across 17 countries. Note that due to the
sample selection, not all profiles had data from both topsoil
and subsoil layers (Table B1).

The remaining soil samples (n= 1601) were paired
(based on longitude and latitude at the profile level) with
mean annual temperature (MAT; degrees Celsius) and mean
annual precipitation (MAP; millimeters) from the WorldClim
data set at 30 arcsec resolution (Fick and Hijmans, 2017).
Potential annual evapotranspiration (PET; millimeters) was
added from Trabucco and Zomer (2019), who calculated it
after the Penman–Monteith method, based on the WorldClim
data. Mean annual precipitation and PET were used to
calculate an annual aridity index, defined as PET / MAP
(Budyko, 1974). Values >1 indicate water-limited (dry)
regions and ratios <1 point to energy-limited (wet) regions.
For the monthly aridity index, we used monthly climate data
at the same spatial resolution and from the same data sources.

Land cover data was used from the collected field
data. The land cover groups were reclassified into the
following four major groups: (a) cropland (including all
cultivated plots), (b) forest, (c) grassland and (d) other
(including mainly woodland, shrubland and bushland but
also samples classified as other). A total of 10 missing
values were gap-filled from a prototype high-resolution
Africa land cover map at 20 m resolution based on
1 year of Sentinel-2A observations from December 2015
to December 2016 (http://2016africalandcover20m.esrin.esa.
int/, last access: 9 June 2020).

Due to the lack of precise data products for lithology
and soil types in sub-Saharan Africa, we did not include
these variables in our analyses. Soils at AfSIS sites
(Fig. 1) developed mainly from two parent material types,
(i) metamorphic and (ii) volcanic rocks (Hartmann and
Moosdorf, 2012; Jones et al., 2013; Schlüter, 2008), likely
modified throughout the Quaternary. (i) Metamorphic rocks
are most commonly found in West Africa, southern Africa
and Madagascar. These regions are characterized by old
cratons, except for Madagascar, which is influenced by
Mesozoic volcanism (Schlüter, 2008). Most of these soils are
classified as Ferralsols (World Reference Base, WRB, soil
classification system; Jones et al., 2013). Related AfSIS soils
from those regions are usually highly weathered with low
pHH2O values. In contrast, soils derived from (ii) volcanic
rocks are mainly found in the East African Rift System. They
are usually younger and less weathered (Buringh, 1970).
Beyond the influence of volcanic rocks, Ca2+ rich soils are
frequent in East Africa.

2.3 Statistical analyses

We used three different statistical approaches, including
linear mixed-effects models, regression trees and random
forests, to determine geochemical and climatic parameters
that best explain SOC variation across sub-Saharan Africa.
In brief, we used linear mixed-effects models to handle
the hierarchal sampling design of the AfSIS data set,
whereas regression trees and random forests enabled us to
account for nonlinearities within the data. More precisely,
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we used regression trees as a qualitative tool to explore and
understand the structure of the data, whereas random forests
offered more generalizable models. All statistical analyses
were performed within the R computing environment
(version 4.0.0; R Core Team, 2020). The R Markdown file
in the Supplement provides the code to reproduce all our
analyses.

Linear mixed-effects modeling was performed using the
nlme R package (Pinheiro et al., 2020) to account for
the nested sampling scheme (clusters within sites and
two sampling depths within one profile). This allows the
intercept of the regression to vary for each site, for each
cluster within the same site and for each sample within
the same profile (Harrison et al., 2018). The variance
inflation factor was used to check for multi-collinearity
among predictor variables with a threshold of <3.0 (Zuur et
al., 2010). To meet linear mixed-effects model assumptions
and to standardize variation among variables, all continuous
parameters were transformed to a normal distribution using
Box–Cox transformation, followed by standardization to a
mean of 0 and standard deviation of 1 by using the R
package bestNormalize (Peterson and Cavanaugh, 2019).
The relationship between SOC and the predictors of the
original data may not be linear.

To answer our first research question, i.e., which
soil properties and climate parameters best explain SOC
content, we started from a constant null model with
siteID/clusterID/plotID as random effects and then extended
the model in a step-wise manner by fitting the following
sequence of fixed effects: MAT, PET / MAP, depth, land
cover, clay + fine silt, pHH2O, CIA, Mox (Alox+ 1/2 Feox),
Caex, and pHH2O×Mox. The order and selection of fixed
effects was predefined based on a priori knowledge from
a larger set of variables (Burnham and Anderson, 2002),
starting with large-scale climate variables and ending with
fine-scale physiochemical soil properties. The oxalate-
extractable metals Alox and Feox were summed to Mox
(Alox+ 1/2 Feox) to normalize the atomic mass difference
between Al and Fe (Wagai et al., 2020) and to account
for their similar behavior over their concentration range
(Fig. 5b). The maximum likelihood method and likelihood
ratio tests (L. ratio) were applied to evaluate model
performance and the statistical significance of the added
fixed effects (Tables B4–B9). The variation explained by
each fixed effect was obtained by calculating the marginal
R2 (excluding the variation explained by the random effects
siteID/clusterID/plotID) for each model and subtracting
the R2 from the previous fitted model using the function
r.squaredGLMM from the MuMIn R package (Barton, 2020;
Nakagawa and Schielzeth, 2013). To identify how much
SOC variation is explained by climate and geochemistry
only (Legendre and Legendre, 2012), we built one model
with climate parameters (MAT and PET / MAP) only and
one model with geochemistry variables (clay + fine silt,
pHH2O, CIA, Mox, Caex and pHH2O×Mox) only. In addition,

we analyzed the two sampling depths (0–20 and 30–
50 cm) separately to determine whether the same factors are
important for topsoil versus the deeper soil layer (Table 1).
For this model, we did not include plotID as a random effect
since each profile only contained one sample in each depth
model.

For the second research question, i.e., how geochemical
controls on SOC content vary between environmentally
distinct subregions, we grouped the data based on (a) pHH2O,
(b) wetness, (c) weathering and (d) land cover (Table 1).
Soil pHH2O and weathering data were grouped with the
number of categories chosen to maximize and equalize the
number of samples in each category and to correspond with
common pHH2O and weathering groups (Nesbit and Young,
1982). In order to take seasonality of the sites into account
separately, the data were divided into three categories based
on the number of wet months (i.e., months with P / PET > 1).
Land cover was grouped based on the four predefined
categories. For each category within each subgroup, we
built a linear mixed-effects model, as previously described,
yet only included the geochemical properties (clay + fine
silt, pHH2O, CIA, Mox, Caex and pHH2O×Mox) as fixed
effects, since we intended to test if the importance of
these predictors changed between environmentally distinct
subregions (Table 1). When CIA or pHH2O were used to
create the categories, they were not included as a fixed effect
in the corresponding submodels.

Regression tree (R packages rpart and rpart.plot;
Milborrow, 2019; Therneau and Atkinson, 2019) and random
forest analyses (R package ranger; Wright and Ziegler, 2017)
were conducted to identify nonlinear relationships between
SOC and any explanatory variable. This also enabled the
identification of pedogenic thresholds within the data. Each
analysis was conducted with the same explanatory variables
as for the linear mixed-effects models. However, no data
transformation was needed due to the nonlinearity of the
models.

Regression tree analysis was applied to obtain an easily
interpretable and nonlinear model for the entire data set and
for both depth layers (topsoil vs. subsoil) that best describes
the existing data (Breiman et al., 1984). Since regression
trees are known to easily overfit data, we used a grid search to
prune the model (Boehmke and Greenwell, 2020), according
to the minimum number of data points required to attempt
a split and the maximum number of internal nodes between
the root node and terminal nodes, in order to minimize the
cross-validation error (Breiman et al., 1984). The overall
performance of the regression tree analysis was tested using
a five-fold spatial cross-validation (R package mlr; Bischl et
al., 2016). Spatial partitioning was used to split the data into
five disjoint subsets, using the coordinates from each sample
and repeating the partitioning 100 times (Fig. A4). This
results in a bias-reduced assessment of model performance
(Brenning, 2012; Lovelace et al., 2019). Absolute values at
the bottom of each node indicate the predicted SOC content
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Table 1. Grouping variables, subgroups, number of samples and fixed effects used for the linear mixed-effects models.

Groups Categories n Fixed effects

All samples None 1601
All
Climate
Geochemistry

Depth
Topsoil (0–20 cm) 791

Geochemistry
Subsoil (30–50 cm) 810

pHH2O

Strongly acidic (3.9–5.2 pHH2O) 404

Geochemistry
Moderately acidic (5.2–6.1 pHH2O) 399
Neutral (6.1–7.5 pHH2O) 398
Alkaline (7.5–9.9 pHH2O) 400

Wetness (No. of 0 wet months 572
Geochemistrywet months 1–3 wet months 367

(P / PET > 1)) 4–7 wet months 662

Weathering (CIA)
Moderate (10 %–88 % CIA) 801

Geochemistry
High (88 %–100 % CIA) 800

Land cover

Cropland 429

Geochemistry
Forest 228
Grassland 242
Other 702

P – monthly precipitation (millimeters); PET – monthly potential evapotranspiration (millimeters);
CIA – chemical index of alteration (percent); fixed effects – all (i.e., mean annual precipitation (MAT), aridity
index (PET / MAP), depth, land cover, clay + fine silt, pHH2O, CIA, oxalate-extractable metals (Mox),
exchangeable Ca (Caex) and pHH2O ×Mox); climate (MAT, PET / MAP); and geochemistry (i.e., clay + fine
silt, pHH2O, CIA, Mox, Caex and pHH2O ×Mox).

(wt %) and the percentage corresponds to the relative number
of samples in this node (Fig. A6).

Random forest was used to build more generalized models
since it is an ensemble of multiple decorrelated trees.
Tuning of the model hyperparameters was done based
on spatial tuning (R package mlr; Bischl et al., 2016;
Lovelace et al., 2019). These hyperparameters included
the number of predictors used at each split, the minimum
number of observations in a terminal node and the fraction
of samples used in each tree (Probst et al., 2019). The
best hyperparameter combination search was done for the
complete data set via a five-fold spatial cross-validation with
one repetition. In each of these five spatial partitions, we ran
50 models to find the optimal hyperparameter combination
(Lovelace et al., 2019).

Partial dependence plots were used to further explore the
relationship between the predicted SOC content and the
explanatory variables of the tuned random forest models
(R package pdp; Greenwell, 2017). These plots were used
to investigate the marginal effect of individual explanatory
variables (such as Alox, Caex, etc.) on the predicted SOC
content (Friedman, 2001). This allowed us to identify
thresholds within the data and provided an indication of how
important each explanatory variable was for the prediction of
SOC concentration across specific value ranges.

3 Results

3.1 Data distribution across sub-Saharan Africa

All soil and climate variables spanned at least 1 order
of magnitude (except MAT and PET), demonstrating the
diversity of this continent-wide data set. Based on skewness,
kurtosis, histograms and Shapiro–Wilk tests (data not shown
for the latter two), no variable was normally distributed
(Table 2).

In total, 429 samples were classified as cropland, 228
as forest, 242 as grassland and 702 as other land covers,
including mainly shrubland, bushland and woodland.
The SOC content decreased among those groups in the
following sequence: forest (2.69± 1.15 wt %) > cropland
(2.21± 1.68 wt %) > grassland (1.77± 1.55 wt %) > other
(1.35± 1.28 wt %; Fig. 2a). Clay + fine silt content and
SOC showed a positive relationship across the entire data set
yet with a large spread (Fig. 2b). However, individual sites
showed contrasting correlations between SOC and clay +
fine silt content, including none, positive and negative values
(Figs. 2c; see A5 for all individual sites).
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Table 2. Summary statistics of all numerical soil and climate variables for the entire data set (ntotal = 1601; nTopsoil = 791; nSubsoil = 810).

Variable Mean SD P0 P25 P50 P75 P100 Skewness Kurtosis

SOC (wt %) 1.84 1.51 0.07 0.65 1.42 2.54 9.19 1.42 2.23
MAT (◦C) 21.7 3.2 13.7 19.8 21.5 23.0 29.8 0.17 −0.12
MAP (mm) 1070 487 255 648 1057 1432 2708 0.29 −0.63
PET (mm) 1810 310 1350 1571 1759 1933 2949 1.19 1.96
PET / MAP 2.35 1.73 0.71 1.2 1.54 3.16 9.54 1.46 1.31
Clay + fine silt (%) 55.4 22.6 0.1 37.7 57.9 74.7 100.0 −0.26 −1.00
Alox (wt %) 0.28 0.36 0.01 0.12 0.20 0.29 3.71 4.52 25.29
Feox (wt %) 0.38 0.56 0.01 0.10 0.21 0.40 4.46 3.60 14.96
Caex (cmol+ kg−1) 10.29 11.01 0.03 1.34 5.86 16.49 75.66 1.28 1.32
pHH2O 6.3 1.3 3.9 5.2 6.1 7.5 9.9 0.27 −1.11
CIA (%) 87.7 9.3 10.3 81.7 88.1 96.0 99.9 −1.04 3.88

SD – standard deviation; P – percentile; SOC – soil organic carbon; MAT – mean annual temperature; MAP – mean annual precipitation;
PET – potential evapotranspiration; Alox – oxalate-extractable Al; Feox – oxalate-extractable Fe; Caex – exchangeable Ca; CIA – chemical
index of alteration.

Figure 2. (a) Soil organic carbon (SOC) content (wt %) for the
different land covers, i.e., cropland, forest, grassland and other
(bushland, shrubland and woodland) by depth (0–20 cm – topsoil;
20–50 cm – subsoil). (b) SOC (wt %) and clay+fine silt content
(<8 µm) (percent) by depth. (c) SOC (wt %) and clay + fine
silt content (<8 µm) (percent) by depth for three example sites
that show contrasting trends. The gray area around fitted linear
regressions (y–x; for illustration only) in (b) and (c) shows the 95 %
confidence interval. For the relationship between SOC (wt %) and
clay + fine silt content (<8 µm) (percent) for all individual sites
(see Fig. A5).

3.2 Predictors of soil organic carbon

Linear mixed-effects modeling

The full linear-mixed effects model for the entire data set
had a marginal R2 of 0.72. The two climate parameters
(MAT and PET / MAP), depth, Mox and Caex were the
most important predictors of SOC content, based on their
marginal R2. Land cover, clay + fine silt, pHH2O, CIA
and pHH2O×Mox contributed either little or nothing to the
overall explanatory power of the model. Clay+fine silt

content, Mox and Caex were positively correlated with SOC,
whereas all other fixed effects showed negative relationships
with SOC concentration. The negative coefficient for depth
indicates that the SOC content in the subsoil layers is,
on average, lower as compared with the topsoil samples
(Fig. 3a).

The marginal R2 for the geochemistry model was 0.46,
which is almost the same as for the climate model
(R2
= 0.48). For the geochemistry model, the contribution of

Mox and Caex to explain SOC content was much higher than
in the full model (Fig. 3a). Based on variation partitioning,
27 % of the explained variation is shared between the
geochemistry model and the climate model, whereas the
variation explained by the geochemical or climate variables
alone is 19 % and 21 %, respectively (Fig. 3b).

Differences between the predictors were negligible for
the two depth models (topsoil vs. subsoil). However, the
explained variation by clay + fine silt was larger in the
subsoil layers compared with the topsoil layers. For Caex,
the opposite was true (Fig. 4a).

Within the pHH2O submodels, Mox was most important in
the strongly acidic model. The opposite was observed for
Caex (Fig. 4b), which corresponds to higher concentrations of
Caex in neutral and alkaline soils compared with moderately
and strongly acidic soils. However, Caex was also found to
have a positive relationship with SOC in acidic soils (Fig. 5;
Table B2). The direction of the correlation between clay +
fine silt and SOC concentration was not consistent across
the four pH groups, in contrast to the other fixed effects
(Table B2). The alkaline submodel had the lowest marginal
R2 of all pHH2O submodels, which suggests that important
predictors were missing (Fig. 4b).

Grouping by the number of wet months (wetness) showed
that Mox explained most of the variation in wet regions,
whereas Caex was most important in drier regions (Fig. 4c).
This corresponds to the overall distribution of Mox and
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Table 3. Marginal R2 for each predictor based on sequential fitting of the linear mixed-effects models of all samples (nTotal = 1601) for the
full, geochemistry-only and climate-only models. The sign in parentheses refers to the correlation between the predictors and soil organic
carbon. Bold values have a p value < 0.05 based on likelihood ratio tests.

Figure 3. Venn diagram illustrating the independent and shared
variation explained by the geochemistry-only and the climate-only
linear mixed-effects models.

Caex across MAP and pHH2O (Fig. 5b). The chemical index
of alteration (CIA) explained most of the variation in the
intermediate wet regions (Fig. 4c).

The high weathering model was dominated by Mox,
whereas the importance of Mox and Caex in the moderate
weathering model was similar. The other fixed effects did not
explain much of the variation in the two weathering models
(Fig. 4d).

Within the land cover models, the cropland and grassland
models had the highest marginal R2 and were both
dominated by Mox. The variation explained by Caex was
smallest for the forest model, whereas it did not change much
for the other three models (Fig. 4e).

In summary, in the linear mixed-effects models, Mox was
more important in wetter regions and acidic and highly
weathered soils, whereas Caex was more important in drier
regions and alkaline and less weathered soils. The other fixed
effects usually did not explain much of the SOC variation.

3.3 Regression tree and random forest

The root mean squared error (RMSE) for the topsoil
regression tree was 1.47 wt % (range=0.80 wt %–3.11 wt %)
and for the subsoil regression tree was 0.67 wt % (range=
0.44 wt %–2.26 wt %); the relative RMSEs were 0.65 %
and 0.48 %, respectively. In the topsoil regression tree
(Fig. A6a) Feox, MAT and PET / MAP were the most
important predictors to split and explain the variation in
SOC concentration. About 23 % of the SOC data could be
explained by Feox and MAT alone. In general, higher Feox,
Alox and Caex values resulted in higher SOC content. This
was equally true for the subsoil tree (Fig. A6b). While much
of the SOC variation was explained by climate parameters in
topsoils, the subsoil regression tree was more dominated by
geochemical variables, namely Feox and Alox. About 40 % of
the subsoil SOC variation could be explained by Feox only.
In both trees, clay + fine silt content and land cover poorly
predicted SOC.

In summary, topsoil and subsoil regression trees contained
the same predictors, but climate variables played a larger role
in the topsoil regression tree, and geochemistry had a larger
influence in the subsoil regression tree. Overall, the results
showed that the explanatory variables did not differ much
between the depth intervals (topsoil vs. subsoil), while their
magnitude did.

The random forest models had a RMSE of 1.31 wt %
and a R2 of 0.70 for the topsoil samples, and for the
subsoil samples, they had a RMSE of 0.87 wt % and a R2

of 0.72. Based on the partial dependence plots (Fig. 6),
Alox and Caex were important in predicting SOC over the
entire range of each variable (Fig. 6a and b). However,
in subsoils, the predictive power of Caex was reduced
(Fig. 6b). We observed a decrease in the predicted SOC with
increasing soil weathering status (CIA). However, due to the
low number of samples with CIA values below 60 %, the
relationship should be interpreted with caution in this range
(Fig. 6c). Clay + fine silt content had almost no effect on
SOC, with only a weak positive trend in subsoil samples
(Fig. 6d). The relationship between Feox concentration and
predicted SOC content varied with Feox concentration. At
low concentrations (<0.25 wt %), there was a strong positive
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Figure 4. Explained variation (based on marginal R2) for each fixed effect, based on sequential fitting of the linear mixed-effects models
grouped by (a) depth (0–20 cm – topsoil; 20–50 cm – subsoil), (b) pH classes (3.9–5.2 pH – strongly acidic; 5.2–6.1 – moderately acidic;
6.1–7.5 – neutral; 7.5–9.9 – alkaline), (c) wetness (no. of wet months; P / PET > 0; 0, 1–3, 4–7), (d) weathering (CIA – chemical index of
alteration; 10 %–88 % CIA – moderate; 88 %–100 % – high) and (d) land cover.

Figure 5. (a) Soil organic carbon (SOC) (wt %) and exchangeable Ca (Caex; centimoles per kilogram) content colored by pH classes (3.9–
5.2 pH – strongly acidic; 5.2–6.1 – moderately acidic; 6.1–7.5 – neutral; 7.5–9.9 – alkaline) with binned averages (bold squares; n= 20).
Note that the x axis is truncated for improved visualization, which removes three data points (Caex = 53.91, 54.58 and 75.66 cmol+ kg−1).
(b) Alox, Feox (grams per kilogram; which were combined to Mox, i.e., Alox+ 1/2 Feox, for the linear mixed effects models) and Caex
(centimoles per kilogram) averaged content (n= 20) across pHH2O and mean annual precipitation (MAP; millimeters).
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Figure 6. Partial dependence plot for each explanatory variable of the random forest models (topsoil and subsoil). The x axes always
correspond to the range of the explanatory variable. Arrows indicate splitting points in the regression tree (Fig. A6). Each colored tick mark
along the x axes represents one sample.

relationship between predicted SOC content and Feox.
For higher concentrations, the predicted SOC content was
relatively constant (Fig. 6e). MAT correlated negatively over
the entire range with predicted SOC concentration (Fig. 6f).
For PET / MAP, the predicted SOC content declined sharply
as PET / MAP increased from 1 to 2 (transition from wet to
dry water regimes; Fig. 6g). The relationship between pHH2O
and predicted SOC content was not strong (Fig. 6h). For land
cover, there was almost no difference between the classes
within the same depth layer; however, topsoils had higher
SOC content (2.2 wt %) compared with the subsoil samples
across all land covers (1.5 wt %; Fig. 6i).

4 Discussion

Climate and geochemical variables are similarly important
for explaining SOC variations across sub-Saharan Africa
(Fig. 3), which is in line with findings from a global study
(Luo et al., 2021). However, the explanatory power of climate
and geochemical variables are not independent of each other,
reflecting the overall strong interaction between climate and
geochemistry (Doetterl et al., 2015). Since it is likely that, in
the long term, climate variables have predominantly indirect
effects on SOC dynamics through their influence on soil
geochemistry, we focus our discussion on those geochemical
variables (Caex, Alox and Feox) that showed the highest

explanatory power with respect to SOC content across all
models. In addition, we discuss the role of depth, clay + fine
silt content and land cover in explaining SOC variations on
a continental scale, since other studies have identified their
important role in SOC dynamics.

4.1 Exchangeable calcium

Strong and positive relationships emerged between Caex
and SOC concentration across all models, even though
Caex concentration showed strong pHH2O and precipitation
dependence (Fig. 5). Typical Ca2+ sources in soils are
from (a) weathering of bedrock or surface rock formations,
(b) decomposition of Ca2+-rich organic materials, (c) lateral
movement of Ca2+-rich water, (d) atmospheric dust and rain
deposition or (e) anthropogenic inputs (Likens et al., 1998;
Rowley et al., 2018). Characteristically, Ca2+ is weathered
easily from both primary and secondary minerals (Likens
et al., 1998). This usually leads to its accumulation in
semi-arid to arid environments that are characterized by
low rates of water flow through the soil profile that drives
slow weathering rates and high pHH2O values (Fig. 4b–d).
In such environments, Ca2+ plays an important role as a
cation bridge that facilitates aggregate formation (Rimmer
and Greenland, 1976; Tisdall and Oades, 1982) and bonding
of clay minerals to organic matter functional groups because
of their divalent charge, relative abundance and modest
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hydration radius (Likens et al., 1998; Muneer and Oades,
1989). However, we found that Caex was not only important
in alkaline and less-weathered soils in dry regions but also
in acidic and more-weathered soils under wetter conditions
(Fig. 5). It is likely that the main Ca2+ source in those
regions derives from atmospheric deposition (Albani et
al., 2015; Goudie and Middleton, 2001) and/or biological
cycling by plants (Likens et al., 1998). This is supported
by the fact that Caex showed a stronger relationship with
SOC in topsoil than subsoil layers (Figs. 4a and 6b). Since
land cover, which is a major driver of C inputs into the
soil, did not show a strong relationship with SOC in the
models, we speculate that biological cycling of Ca2+ does
not play a major role in explaining the observed differences
in SOC content. Yet, further analysis with better proxies
for biological Ca2+ inputs is needed to test this hypothesis.
High Ca2+ concentrations in acidic soils can also be derived
from the development of those soils from Ca2+-rich parent
material which are out of equilibrium with modern climate
conditions (Slessarev et al., 2016).

In conclusion, the important role of Caex in our data set
was most pronounced in dry regions dominated by alkaline
and less weathered soils. However, it also played a role in
explaining the SOC variation in wetter regions and more
acidic soils, which supports the overall importance of Caex
in stabilizing SOC.

4.2 Oxalate extractable Al and Fe

Similar to Caex, short-range-order minerals (Mox, Alox and
Feox) showed a positive and strong correlation with SOC
content across all models. The relationship was strongest
in wet regimes with acidic and highly weathered soils
(Figs. 4b–d and 5b). Hydrous oxides of Al and Fe are usually
highly reactive because of their large specific areas with a
high proportion of reactive sites (Parfitt and Childs, 1988).
This results in the adsorption of organic matter to Fe and Al
oxides and the formation of stable soil aggregates (Tisdall
and Oades, 1982). In humid regions, high rates of mineral
weathering may release Fe, Al and Si faster than crystalline
minerals can precipitate (Rasmussen et al., 2018). Therefore,
Feox and Alox are usually found to be important in SOC
stabilization in humid and acidic soils (Eusterhues et al.,
2003; Kramer and Chadwick, 2018).

In our study, short-range-order minerals were also
identified to play an important role for SOC stabilization in
soils of sub-Saharan Africa. However, even though Alox and
Feox showed similar trends in their concentrations (Fig. 5b),
we observed diverging behavior in their predictive power
of SOC in the regression trees (Fig. A6) and the random
forests (Fig. 6a and e). For example, Feox was one of the
most important explanatory variables in the regression tree
and partial dependence plots, although only within a very
narrow range and at low Feox concentrations (Fig. 6e),
whereas Alox was important over the entire range (Fig. 6a).

Inagaki et al. (2020) showed that higher amounts of soil
organic matter were co-localized with Fe in drier regions
compared to sites with higher rainfall, whereas the content
of Alox co-localized with organic matter was not affected by
precipitation changes. This may be linked to the different
oxidation levels of Fe. At higher precipitation levels, Fe
oxides can be reduced, resulting in a release of associated
SOC to the aqueous phase (Berhe et al., 2012; Chen et al.,
2020; Thompson et al., 2011). This mechanism is probably
responsible for the low correlation between SOC and high
Feox concentrations in our data (Fig. 6e), pointing to the fact
that Feox can act as pedogenic threshold, depending on its
oxidation level in the soil system.

In summary, short-range-order minerals also play an
important role in SOC stabilization across sub-Saharan
Africa, similar to other regions. However, Alox and Feox do
behave differently in explaining SOC content, even though
they showed covariance in terms of their concentrations.
Since we only have data for acid-oxalate extraction, we
cannot speculate further about their diverging behavior in the
models.

4.3 Depth

For the depth models, predictor differences were small
between topsoil (0–20 cm) and subsoil (20–50 cm) samples
(Figs. 4a and 6). This may reflect the large depth increments
for each of the two sampling depths, which may also
explain the overall small explanatory power of depth in the
linear-mixed effects model (Fig. 3a). Since the identified
SOC-controlling factors were similar for both depth layers
(Fig. 4a), differences in SOC content were likely driven by
the fact that subsoil samples usually contain less SOC due to
lower C inputs at greater depth (Jobbágy and Jackson, 2000).
Soil erosion at some sites (data not shown) might also dilute
differences between the two depth layers, since water and
wind can permanently remove surface soil.

4.4 Clay + fine silt content

Clay + fine silt content (<8 µm) did not emerge as
an important predictor of SOC concentration within our
different models (Figs. 3, 4 and 5e). This is in contrast to
some earlier studies that indicated that total clay content
explains a large proportion of SOC storage and stabilization
due to the sorption of soil organic matter to surfaces
of clay minerals and building of aggregates (Amelung et
al., 1998; Kahle et al., 2002). The relationship between
SOC and total clay content is used in various models to
describe the turnover and storage of SOC. However, this
simplified correlation may not account for the different
stabilization mechanisms related to various clay minerals,
e.g., 1 : 1 vs. 2 : 1 clay minerals (Oades, 1988). Past research
has yielded contradictory results on whether clay content
explains SOC variation in subtropical and tropical soils or
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not. For example, Bruun et al. (2010) showed, for various
tropical soils, that clay mineralogy, Feox and Alox are better
explanatory variables for SOC content than clay content
alone (<2 µm). In contrast, Quesada et al. (2020) found a
strong relationship between clay and SOC content for highly
weathered soils in the Amazon Basin that are dominated
by 1 : 1 clay minerals, such as kaolinite, whereas soils in
the same system, dominated by 2 : 1 clay minerals, showed
stronger relationship between SOC and Al species. In a
comparison between tropical and temperate soils, Six et
al. (2002b) found that less C was associated with the clay and
silt fraction (<20 µm) in tropical soils than in temperate soils.
Even though these studies used various cut-offs to define
the clay (<2 µm), clay + fine silt (<8 µm) and clay and
silt fraction (<20 µm), they all illustrate that the relationship
with SOC can be complex in subtropical and tropical soils.

Due to the broad spatial scale, soils in the AfSIS data set
contain different clay minerals (Butler et al., 2020). No clear
relationship between clay + fine silt content (<8 µm) and
SOC concentration was observed in the models, although
the raw data indicate an overall positive trend between
clay + fine silt content (<8 µm) and SOC concentration
(Fig. 2b). This positive relationship does not hold across
all sites (Figs. 2c and A5). Variable relationships with SOC
(Table B2) may explain the low predictive power of clay +
fine silt content in this data set. Instead, variables that better
capture the different behavior of clay-sized minerals, e.g.,
Caex, Feox and Alox, are likely more suitable soil parameters
to explain the variation in SOC content – even in highly
weathered soils across sub-Saharan Africa. This is supported
by the fact that a clay+ fine silt-only model resulted in a very
small R2 (0.01 – linear mixed-effects model; 0.12 – random
forest; Table B3).

4.5 Land cover

The effect of land cover on SOC content was generally
small in our models, even in topsoils (Fig. 6i). Similar
findings were recently encountered in a global study (Luo
et al., 2021). One possibility may be that the relatively large
0–20 cm depth interval might dilute differences that could
be more marked in the top few centimeters. However, we
did observe differences in SOC content across land cover
classes, with forests containing the highest amount of SOC
– especially in topsoils (Fig. 2a). Croplands had higher
SOC content than grasslands, which is opposite of what is
commonly observed in temperate regions (Prout et al., 2020).

Another possible explanation for the absence of land cover
as an important predictor in our models, is that we lacked the
detailed data necessary to disentangle the impacts of different
practices and land use history. The land cover class cropland
contained a wide variety of cultivated plots, while more
detailed information about land management practices was
missing. This is particularly important since prior research
in other regions showed that SOC stock changes in tropical

cropland soils may be driven by C inputs (Fujisaki et al.,
2018b). Additionally, historical land use may even play a
more important role in explaining current stocks compared
to recent land use (Vågen et al., 2006).

Furthermore, land cover may covary with other parameters
(temperature, precipitation and geochemistry) to such a
degree that it is not an explanatory variable. This might
be the reason why the submodels grouped by land cover
did not show a clear pattern (Fig. 4e). However, the land-
cover-only models resulted in small R2 (0.01 – linear mixed-
effects models; 0.10 to 0.16 – random forest), which suggests
that land cover is a poor predictor for our SOC data at this
large spatial scale (Table B3). This may be due to the high
variation in SOC content within the different land cover
classes (Fig. 2a). Land use changes and their impact on soil
physico-chemical properties are scale dependent and likely
to be more distinct at smaller scales (Holmes et al., 2004,
2005). For example, land management and land degradation
(i.e., erosion) are known to impact SOC stocks at regional
scales in sub-Saharan Africa (Winowiecki et al., 2016a).

Future studies are needed to better understand the impacts
of land management and carbon storage potential in soils
across sub-Saharan Africa at different scales (Fujisaki et al.,
2018a; Vanlauwe et al., 2015). Overall, our data for sub-
Saharan Africa suggests that SOC content on a continental
scale is better explained by stabilization potential in soils
(climate, geochemistry) than by different aboveground C
inputs (vegetation).

5 Conclusions

We used a continental-scale data set from sub-Saharan Africa
to test relationships between SOC content, various soil
properties and climate variables in order to address our core
research questions.

1. Which soil properties and climate parameters best
explain SOC content variation across sub-Saharan
Africa?

Parameters similar to temperate regions best explain the
variation in SOC content in tropical and subtropical
soils under various climate conditions across sub-
Saharan Africa, namely Caex, Mox (Alox and Feox)
and PET / MAP. At this large spatial scale, climate
and geochemical parameters are equally important and
share some of the explained SOC variation. However,
land cover and clay + fine silt content did not explain
much of the variation in SOC content, in contrast to
some findings from other regions and studies.

The selected climatic and geochemical parameters,
which can be seen as proxies for most of the soil-
forming factors, explain about two-thirds of SOC
variation across sub-Saharan Africa. The remaining
third likely reflects those soil-forming factors that were
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not or only poorly represented within our selected
variables, namely organisms, relief and time. However,
given the large spatial scale of the study, even such
additional information is unlikely to explain all of the
SOC variation measured.

2. How do geochemical controls on SOC vary between
environmentally distinct subregions?

In dry regions with alkaline and less-weathered
soils, Caex explained most of the SOC concentration
variation, whereas Mox was more important in wetter
regions with acidic and highly weathered soils. Still,
Caex remained important in acidic and more weathered
soils and in wetter regions. Feox, as a predictor of
SOC content, was only important at low concentrations
in moderately weathered and wet soils. This observed
trend suggests that Feox can play an important role
in pedogenic thresholds in various soils across sub-
Saharan Africa.

Overall, a combination of PET / MAP, Caex and Mox
seems to be an appropriate set of variables to explain the
SOC content variation on a continental scale across sub-
Saharan Africa. This does not imply that other variables,
such as clay + fine silt content and land cover are
not good predictors on a regional scale, as shown by
previous studies. However, the variables identified by
this study showed a consistent predictive power of SOC
content across various climate regions.

Future studies on large-scale SOC stabilization should
consider measuring these soil properties to include them
in models. This would likely improve the predictive
capacity of these models and contribute to closing
the gap between our theoretical understanding of SOC
concentration across large scales and our ability to
improve terrestrial biogeochemical model projections.
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Appendix A

The figures and tables on the next two pages all belong to
the same topic. They show the results for the different cut-
offs we used to identify the best cut-off to be used for soil
texture. We looked at and tested for <2, <8 and <20 µm. In
the end, we decided to use <8 µm because we wanted to stay
as close as possible to <2 µm. However, we could not use
<2 µm due to some reproducibility issues for duplicates. The
differences between <8 and <20 µm are negligible.

Figure A1. Scatterplot of duplicate measurements for the particle size distribution data. (a) Duplicate 1 and 2 <2 µm. (b) Duplicate 1 and 2
<8 µm. (c) Duplicate 1 and 2 <20 µm.

Table A1. Correlation coefficient between SOC and particle size data <8 and <20 µm for all samples (n= 1601), topsoil (0–20 cm; n= 791)
and subsoil (20–50 cm; n= 810).

Samples <8 µm <20 µm

All 0.32 0.41
Topsoil 0.37 0.46
Subsoil 0.43 0.49
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Figure A2. (a) Soil organic carbon (SOC) content (wt %) and clay + fine silt content <8 µm (percent) by depth. (b) SOC content (wt %)
clay + fine silt content <20 µm (percent) by depth.

Table A2. Summary table of R2 for the different models (linear mixed-effects model and random forest) for the two different explanatory
variables (<8 and <20 µm) for all samples (n= 1601), topsoil (0–20 cm; n= 791) and subsoil (20–50 cm; n= 810).

Model Linear Random Random
mixed-effects forest forest

model (topsoil) (subsoil)

Clay + fine silt <8 µm 0.01 0.12 0.12
Clay and silt <20 µm 0.03 0.17 0.19
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Figure A3. Scatterplot of inorganic carbon (Ctotal–Corg; wt %), the uncorrected chemical index of alteration (CIA; percent) a) and the CIA
(percent) correct for carbonates and apatite after Nesbit and Young (1982) (b). See Sect. 2 for more details.

Figure A4. Spatial visualization of selected training (blue) and test (orange) observations for spatial cross-validation of two repetitions from
the topsoil samples. Note: each dot may represent multiple samples.
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Figure A5. Soil organic carbon (SOC; wt %) and clay + fine silt content (percent) by depth for each sampling site that contained more
than one sample per depth layer (0–20 cm – topsoil; 20–50 cm – subsoil). The gray area around fitted linear regressions represents the 95 %
confidence interval.

Figure A6. Regression tree for (a) topsoil (0–20 cm) and (b) subsoil (20–50 cm). Splitting values are always in the units of the parameter
used for the split (for units, see Table 1). Absolute values in the boxes indicate the predicted soil organic carbon (SOC) content (wt %). The
percentage corresponds to the relative number of samples.
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Appendix B

Table B1. Overview of sample distribution used in this study across geographical regions, countries, sites, depths and land cover.

Region Country Site Depth Land cover

Topsoil Subsoil Forest Cropland Grassland Other

East

TZA 5 61 54 6 16 13 80
ETH 4 179 165 3 153 56 132
KEN 3 131 153 5 4 55 220
UGA 2 99 101 0 90 29 81
MDG 2 161 175 206 86 20 24

West

NGA 5 16 19 1 15 5 14
MLI 3 11 14 1 9 6 9
CMR 1 8 6 2 10 2 0
GIN 2 12 8 1 9 1 9
NER 1 13 11 0 12 0 12
GHA 1 1 0 1 0 0 0

South

ZAF 3 11 11 0 0 7 15
MOZ 2 7 6 0 4 3 6
BWA 3 29 26 0 2 11 42
ZMB 2 10 9 1 2 13 3
AGO 4 36 44 1 14 17 48
ZWE 2 6 8 0 3 4 7

TZA – Tanzania; ETH – Ethiopia; KEN – Kenya; UGA – Uganda; MDG – Madagascar; NGA – Nigeria; MLI – Mali;
CMR – Cameroon; GIN – Guinea; NER – Niger; GHA – Ghana; ZAF – South Africa; MOZ – Mozambique;
BWA – Botswana; ZMB – Zambia; AGO – Angola; ZWE – Zimbabwe.

Table B2. Marginal R2 for each fixed effect based on sequential fitting of the linear mixed-effects models for the different submodels (depth,
pH classes, number of wet months, weathering and land cover). The sign in parentheses refers to the correlation between the fixed effect and
soil organic carbon, respectively. Bold values have a p value < 0.0001 based on likelihood ratio test.

Submodel Clay and fine silt pHH2O CIA Mox Caex pHH2O×Mox

Depth
Topsoil 0.02 (−) 0.04 (−) 0.01 (−) 0.29 (+) 0.09 (+) 0.05 (−)
Subsoil 0.08 (+) 0.01 (−) 0.00 (−) 0.27 (+) 0.03 (+) 0.05 (−)

pH classes

Strongly acid 0.00 (−) – 0.00 (−) 0.54 (+) 0.02 (+) –
Moderately acid 0.04 (−) – 0.04 (−) 0.37 (+) 0.06 (+) –
Neutral 0.05 (+) – 0.16 (−) 0.19 (+) 0.13 (+) –
Alkaline 0.02 (−) – 0.00 (−) 0.07 (+) 0.10 (+) –

No. of 0 0.04 (−) 0.00 (−) 0.02 (−) 0.10 (+) 0.18 (+) 0.01 (−)
wet months 1–3 0.07 (−) 0.01 (−) 0.25 (−) 0.18 (+) 0.14 (+) 0.00 (−)

4–7 0.00 (−) 0.00 (−) 0.00 (−) 0.32 (+) 0.14 (+) 0.01 (−)

Weathering
Moderate 0.05 (−) 0.01 (−) – 0.19 (+) 0.17 (+) 0.02 (−)
High 0.00 (−) 0.01 (−) – 0.40 (+) 0.05 (+) 0.01 (+)

Land cover

Cropland 0.00 (−) 0.00 (−) 0.09 (−) 0.31 (+) 0.11 (+) 0.03 (−)
Forest 0.01 (−) 0.06 (−) 0.00 (−) 0.19 (+) 0.01 (+) 0.07 (−)
Grassland 0.05 (−) 0.09 (−) 0.06 (−) 0.22 (+) 0.11 (+) 0.04 (−)
Other 0.03 (−) 0.00 (−) 0.02 (−) 0.20 (+) 0.09 (+) 0.03 (−)

CIA – chemical index of alteration; Mox – oxalate-extractable metals (Alox+ 1/2 Feox).
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Table B3. Summary table of R2 for the different models (linear mixed-effects model and random forest) with different explanatory variables
(clay + fine silt, land cover, clay + fine silt and land cover and full) included for the entire data set. The R2 in parentheses for the linear
mixed-effects models refer to the conditional R2, which include the variation explained by the random effects (siteID/clusterID/plotID).

Model Linear mixed- Random Random
effects model forest forest

(topsoil) (subsoil)

Clay + fine silt 0.01 (0.72) 0.12 0.12
Land cover 0.01 (0.75) 0.10 0.16
Clay + fine silt and land cover 0.02 (0.72) 0.22 0.26
Full 0.71 (0.94) 0.70 0.72

Table B4. Analysis of variance (ANOVA) summary for linear mixed-effects analyses with the entire data set (n= 1601), including all
predictors and geochemistry-only and climate-only predictors. Fixed effects were added using a step-wise method. The first entry (∼ 1)
refers to the constant null model, respectively.

df AIC BIC logLik Test L. ratio p value

All predictors

∼ 1 5 2993.22 3020.11 −1491.61 n/a n/a n/a
MAT 6 2969.00 3001.27 −1478.50 1 vs. 2 26.23 <0.0001
. . . +PET / MAP 7 2932.50 2970.15 −1459.25 2 vs. 3 38.50 <0.0001
. . . +Depth 8 2414.21 2457.24 −1199.11 3 vs. 4 520.29 <0.0001
. . . +Land cover 11 2416.06 2475.22 −1197.03 4 vs. 5 4.15 0.2454
. . . +Clay + fine silt 12 2340.40 2404.94 −1158.20 5 vs. 6 77.65 <0.0001
. . . + pHH2O 13 2342.00 2411.92 −1158.00 6 vs. 7 0.40 0.5281
. . . +CIA 14 2248.88 2324.18 −1110.44 7 vs. 8 95.13 <0.0001
. . . +Mox 15 1915.32 1995.99 −942.66 8 vs. 9 335.56 <0.0001
. . . +Caex 16 1678.09 1764.14 −823.04 9 vs. 10 239.23 <0.0001
. . . + pHH2O×Mox 17 1599.15 1690.59 −782.58 10 vs. 11 80.93 <0.0001

Geochemistry only

∼ 1 5 2993.22 3020.11 −1491.61 n/a n/a n/a
Clay + fine silt 6 2979.20 3011.47 −1483.60 1 vs. 2 16.03 0.0001
. . . + pHH2O 7 2980.12 3017.77 −1483.06 2 vs. 3 1.07 0.3000
. . . +CIA 8 2882.13 2925.16 −1433.07 3 vs. 4 99.99 <0.0001
. . . +Mox 9 2515.81 2564.22 −1248.91 4 vs. 5 368.32 <0.0001
. . . +Caex 10 2249.95 2303.73 −1114.97 5 vs. 6 267.86 <0.0001
. . . + pHH2O×Mox 11 2170.66 2229.82 −1074.33 6 vs. 7 81.29 <0.0001

Climate only

∼ 1 5 2993.22 3020.11 −1491.61 n/a n/a n/a
MAT 6 2969.00 3001.27 −1478.50 1 vs. 2 26.23 <0.0001
. . . +PET / MAP 7 2932.50 2970.15 −1459.25 2 vs. 3 38.50 <0.0001

MAT – mean annual temperature; PET – potential evapotranspiration; MAP – mean annual precipitation; CIA – chemical index of
alteration; Mox – oxalate-extractable metals (Alox+ 1/2 Feox); Caex – exchangeable calcium; n/a – not applicable; df:– degree of
freedom; AIC – Akaike information criterion; BIC – Bayesian information criterion; logLik – log likelihood; L.ratio – likelihood
ratio.
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Table B5. ANOVA summary for linear mixed-effects grouped by depth (nTopsoil = 791; nSubsoil = 810). Fixed effects were added using a
step-wise method. The first entry (∼ 1) refers to the constant null model, respectively.

df AIC BIC logLik Test L. ratio p value

Topsoil

∼ 1 4 1440.72 1459.42 −716.36 n/a n/a n/a
Clay + fine silt 5 1418.88 1442.25 −704.44 1 vs. 2 23.84 <0.0001
. . . + pHH2O 6 1408.74 1436.78 −698.37 2 vs. 3 12.14 0.0005
. . . +CIA 7 1350.41 1383.12 −668.20 3 vs. 4 60.33 <0.0001
. . . +Mox 8 1148.87 1186.26 −566.44 4 vs. 5 203.54 <0.0001
. . . +Caex 9 1016.14 1058.20 −499.07 5 vs. 6 134.73 <0.0001
. . . + pHH2O×Mox 10 967.11 1013.84 −473.55 6 vs. 7 51.03 <0.0001

Subsoil

∼ 1 4 1460.72 1479.51 −726.36 n/a n/a n/a
Clay + fine silt 5 1373.42 1396.91 −681.71 1 vs. 2 89.30 <0.0001
. . . + pHH2O 6 1372.98 1401.16 −680.49 2 vs. 3 2.44 0.1180
. . . +CIA 7 1373.42 1406.30 −679.71 3 vs. 4 1.56 0.2123
. . . +Mox 8 1188.60 1226.18 −586.30 4 vs. 5 186.82 <0.0001
. . . +Caex 9 1135.71 1177.99 −558.86 5 vs. 6 54.89 <0.0001
. . . + pHH2O×Mox 10 1106.11 1153.09 −543.06 6 vs. 7 31.60 <0.0001

MAT – mean annual temperature; PET – potential evapotranspiration; MAP – mean annual precipitation; CIA – chemical
index of alteration; Mox – oxalate-extractable metals (Alox+ 1/2 Feox); Caex – exchangeable calcium; n/a – not applicable;
df:– degree of freedom; AIC – Akaike information criterion; BIC – Bayesian information criterion; logLik – log likelihood;
L.ratio – likelihood ratio.
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Table B6. ANOVA summary for linear mixed-effects grouped by pHH2O (nstrongly acidic = 404; nmoderately acidic = 399; nneutral = 398;
nalkaline = 400). Fixed effects were added using a step-wise method. The first entry (∼ 1) refers to the constant null model, respectively.

df AIC BIC logLik Test L. ratio p value

Strongly acidic (3.9–5.2 pH)

∼ 1 5 909.23 929.23 −449.61 n/a n/a n/a
Clay + fine silt 6 909.32 933.33 −448.66 1 vs. 2 1.91 0.1673
. . . +CIA 7 911.31 939.32 −448.65 2 vs. 3 0.01 0.9293
. . . +Mox 8 712.18 744.19 −348.09 3 vs. 4 201.13 <0.0001
. . . +Caex 9 690.68 726.69 −336.34 4 vs. 5 23.51 <0.0001

Moderately acidic (5.2–6.1 pH)

∼ 1 5 876.39 896.34 −433.20 n/a n/a n/a
Clay + fine silt 6 864.42 888.36 −426.21 1 vs. 2 13.97 0.0002
. . . +CIA 7 849.82 877.74 −417.91 2 vs. 3 16.60 <0.0001
. . . +Mox 8 734.60 766.51 −359.30 3 vs. 4 117.22 <0.0001
. . . +Caex 9 679.03 714.93 −330.51 4 vs. 5 57.57 <0.0001

Neutral (6.1–7.5 pH)

∼ 1 5 785.87 805.80 −387.93 n/a n/a n/a
Clay + fine silt 6 772.22 796.14 −380.11 1 vs. 2 15.65 0.0001
. . . +CIA 7 686.06 713.97 −336.03 2 vs. 3 88.16 <0.0001
. . . +Mox 8 620.16 652.06 −302.08 3 vs. 4 67.90 <0.0001
. . . +Caex 9 581.03 616.91 −281.52 4 vs. 5 41.13 <0.0001

Alkaline (7.5–9.9 pH)

∼ 1 5 688.71 708.67 −339.36 n/a n/a n/a
Clay + fine silt 6 679.07 703.02 −333.53 1 vs. 2 11.64 0.0006
. . . +CIA 7 681.04 708.98 -333.52 2 vs. 3 0.02 0.8765
. . . +Mox 8 651.45 683.38 −317.72 3 vs. 4 31.59 <0.0001
. . . +Caex 9 592.58 628.51 −287.29 4 vs. 5 60.87 <0.0001

MAT – mean annual temperature; PET – potential evapotranspiration; MAP – mean annual precipitation;
CIA – chemical index of alteration; Mox – oxalate-extractable metals (Alox+ 1/2 Feox); Caex – exchangeable
calcium; n/a – not applicable; df:– degree of freedom; AIC – Akaike information criterion; BIC – Bayesian
information criterion; logLik – log likelihood; L.ratio – likelihood ratio.
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Table B7. ANOVA summary for linear mixed-effects grouped by the number of wet months (P / PET >1; n0 = 572, n1−3 = 367,
n4−7 = 662). Fixed effects were added using a step-wise method. The first entry (∼ 1) refers to the constant null model, respectively.

df AIC BIC logLik Test L. ratio p value

0 (no. of wet months)

∼ 1 5 1016.28 1038.03 −503.14 n/a n/a n/a
Clay + fine silt 6 989.89 1015.98 −488.94 1 vs. 2 28.40 <0.0001
. . . + pHH2O 7 990.41 1020.85 −488.20 2 vs. 3 1.48 0.2245
. . . +CIA 8 980.65 1015.44 −482.32 3 vs. 4 11.76 0.0006
. . . +Mox 9 934.82 973.96 −458.41 4 vs. 5 47.82 <0.0001
. . . +Caex 10 840.40 883.89 −410.20 5 vs. 6 96.42 <0.0001
. . . + pHH2O×Mox 11 840.08 887.92 −409.04 6 vs. 7 2.33 0.1272

1–3 (no. of wet months)

∼ 1 5 933.01 952.53 −461.50 n/a n/a n/a
Clay + fine silt 6 912.86 936.29 −450.43 1 vs. 2 22.15 <0.0001
. . . + pHH2O 7 910.07 937.41 −448.04 2 vs. 3 4.79 0.0287
. . . +CIA 8 811.91 843.16 −397.96 3 vs. 4 100.16 <0.0001
. . . +Mox 9 708.70 743.85 −345.35 4 vs. 5 105.21 <0.0001
. . . +Caex 10 618.44 657.49 −299.22 5 vs. 6 92.26 <0.0001
. . . + pHH2O×Mox 11 599.70 642.66 −288.85 6 vs. 7 20.74 <0.0001

4–7 (no. of wet months)

∼ 1 5 1,489.12 1,511.60 −739.56 n/a n/a n/a
Clay + fine silt 6 1487.46 1514.44 −737.73 1 vs. 2 3.66 0.0558
. . . + pHH2O 7 1488.86 1520.32 −737.43 2 vs. 3 0.61 0.4355
. . . +CIA 8 1486.23 1522.19 −735.11 3 vs. 4 4.63 0.0315
. . . +Mox 9 1339.02 1379.48 −660.51 4 vs. 5 149.21 <0.0001
. . . +Caex 10 1256.20 1301.15 −618.10 5 vs. 6 84.82 <0.0001
. . . + pHH2O×Mox 11 1237.14 1286.58 −607.57 6 vs. 7 21.06 <0.0001

MAT – mean annual temperature; PET – potential evapotranspiration; MAP – mean annual precipitation; CIA – chemical index
of alteration; Mox – oxalate-extractable metals (Alox+ 1/2 Feox); Caex – exchangeable calcium; n/a – not applicable; df:–
degree of freedom; AIC – Akaike information criterion; BIC – Bayesian information criterion; logLik – log likelihood; L.ratio
– likelihood ratio.
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Table B8. ANOVA summary for linear mixed-effects grouped by weathering (nmoderate = 801; nhigh = 800). Fixed effects were added using
a step-wise method. The first entry (∼ 1) refers to the constant null model, respectively.

df AIC BIC logLik Test L. ratio p value

Moderate weathering (10-88 % CIA)

∼ 1 5 1535.35 1558.78 −762.67 n/a n/a n/a
Clay + fine silt 6 1495.43 1523.54 −741.71 1 vs. 2 41.92 <0.0001
. . . + pHH2O 7 1487.13 1519.93 −736.56 2 vs. 3 10.30 0.0013
. . . +Mox 8 1352.69 1390.18 −668.35 3 vs. 4 136.44 <0.0001
. . . +Caex 9 1169.17 1211.35 −575.59 4 vs. 5 185.52 <0.0001
. . . + pHH2O×Mox 10 1151.67 1198.53 −565.84 5 vs. 6 19.50 <0.0001

High weathering (88-100 % CIA)

∼ 1 5 1536.25 1559.67 −763.13 n/a n/a n/a
Clay + fine silt 6 1538.15 1566.26 −763.07 1 vs. 2 0.10 0.7483
. . . + pHH2O 7 1535.93 1568.72 −760.96 2 vs. 3 4.22 0.0400
. . . +Mox 8 1343.70 1381.17 −663.85 3 vs. 4 194.23 <0.0001
. . . +Caex 9 1248.82 1290.99 −615.41 4 vs. 5 96.87 <0.0001
. . . + pHH2O×Mox 10 1215.27 1262.12 −597.64 5 vs. 6 35.55 <0.0001

MAT – mean annual temperature; PET – potential evapotranspiration; MAP – mean annual precipitation; CIA – chemical
index of alteration; Mox – oxalate-extractable metals (Alox+ 1/2 Feox); Caex – exchangeable calcium; n/a – not applicable;
df:– degree of freedom; AIC – Akaike information criterion; BIC – Bayesian information criterion; logLik – log likelihood;
L.ratio – likelihood ratio.
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Table B9. ANOVA summary for linear mixed-effects grouped by land cover (nCropland = 429; nForest = 228; nGrassland = 242;
nOther = 702). Fixed effects were added using a step-wise method. The first entry (∼ 1) refers to the constant null model, respectively.

df AIC BIC logLik Test L. ratio p value

Cropland

∼ 1 5 942.57 962.88 −466.28 n/a n/a n/a
Clay + fine silt 6 942.77 967.13 −465.38 1 vs. 2 1.80 0.1794
. . . + pHH2O 7 943.73 972.16 −464.86 2 vs. 3 1.04 0.3085
. . . +CIA 8 911.72 944.21 −447.86 3 vs. 4 34.01 <0.0001
. . . +Mox 9 817.96 854.51 −399.98 4 vs. 5 95.77 <0.0001
. . . +Caex 10 755.49 796.11 −367.75 5 vs. 6 64.46 <0.0001
. . . + pHH2O×Mox 11 736.80 781.48 −357.40 6 vs. 7 20.69 <0.0001

Forest

∼ 1 5 627.98 645.13 −308.99 n/a n/a n/a
Clay + fine silt 6 626.06 646.64 −307.03 1 vs. 2 3.92 0.0477
. . . + pHH2O 7 615.79 639.79 −300.89 2 vs. 3 12.27 0.0005
. . . +CIA 8 614.94 642.38 -299.47 3 vs. 4 2.85 0.0915
. . . +Mox 9 556.77 587.64 −269.39 4 vs. 5 60.17 <0.0001
. . . +Caex 10 538.35 572.64 −259.17 5 vs. 6 20.42 <0.0001
. . . + pHH2O×Mox 11 532.33 570.05 −255.16 6 vs. 7 8.02 0.0046

Grassland

∼ 1 5 570.23 587.68 −280.12 n/a n/a n/a
Clay + fine silt 6 561.06 581.99 −274.53 1 vs. 2 11.18 0.0008
. . . + pHH2O 7 542.45 566.88 −264.23 2 vs. 3 20.60 <0.0001
. . . +CIA 8 484.66 512.57 −234.33 3 vs. 4 59.79 <0.0001
. . . +Mox 9 430.95 462.35 −206.47 4 vs. 5 55.71 <0.0001
. . . +Caex 10 381.49 416.38 −180.75 5 vs. 6 51.45 <0.0001
. . . + pHH2O×Mox 11 352.66 391.04 −165.33 6 vs. 7 30.83 <0.0001

Other

∼ 1 5 1313.24 1336.01 −651.62 n/a n/a n/a
Clay + fine silt 6 1291.22 1318.54 −639.61 1 vs. 2 24.02 <0.0001
. . . + pHH2O 7 1293.10 1324.98 −639.55 2 vs. 3 0.12 0.7294
. . . +CIA 8 1277.31 1313.75 −630.66 3 vs. 4 17.79 <0.0001
. . . +Mox 9 1146.62 1187.60 −564.31 4 vs. 5 132.70 <0.0001
. . . +Caex 10 1020.27 1065.81 −500.13 5 vs. 6 128.35 <0.0001
. . . + pHH2O×Mox 11 1011.66 1061.75 −494.83 6 vs. 7 10.61 0.0011

MAT – mean annual temperature; PET – potential evapotranspiration; MAP – mean annual precipitation; CIA – chemical
index of alteration; Mox – oxalate-extractable metals (Alox+ 1/2 Feox); Caex – exchangeable calcium; n/a – not applicable;
df:– degree of freedom; AIC – Akaike information criterion; BIC – Bayesian information criterion; logLik – log likelihood;
L.ratio – likelihood ratio.
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