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Abstract. Most soil management activities are implemented at farm scale, yet digital soil maps are commonly
available at regional or national scale. Disaggregating these regional and/or national maps is applicable for
farm-scale tasks, particularly in data-poor or limited situations. Although disaggregation is a frequently dis-
cussed topic in recent digital soil mapping literature, the uncertainty of the disaggregation process is not often
discussed. Underestimation of inferential or predictive uncertainty in statistical modelling leads to inaccurate
statistical summaries and overconfident decisions. The use of Bayesian inference allows for quantifying the
uncertainty associated with the disaggregation process. In this study, a framework of Bayesian area-to-point re-
gression kriging (ATPRK) is proposed for downscaling soil attributes, in particular, maps of soil organic carbon.
An estimation of point support variograms from block-supported data was carried out using the Monte Carlo
integration via the Metropolis–Hastings algorithm. A regional soil carbon map with a resolution of 100 m (block
support) was disaggregated to 10 m (point support) information for a farm in northern New South Wales (NSW),
Australia. The derived point support variogram has a higher partial sill and nugget, while the range and param-
eters do not deviate much from the block support data. The disaggregated fine-scale map (point support with
a grid spacing of 10 m) using Bayesian ATPRK had an 87 % concordance correlation with the original coarse-
scale map. The uncertainty estimates of the disaggregation process were given by a 95 % confidence interval
(CI) limit. Narrow CI limits indicate that the disaggregation process gives a fair approximation of the mean
soil organic carbon (SOC) content of the study site. The Bayesian ATPRK approach was compared with dis-
sever, which is a regression-based disaggregation algorithm. The disaggregated maps generated by dissever had
96 % concordance correlation with the coarse-scale map. Dissever achieves this higher concordance correlation
through an iteration process, while Bayesian ATPRK is a one-step process. The two disaggregated products were
validated with 127 independent topsoil carbon observations. The validation concordance correlation coefficient
for Bayesian ATPRK disaggregation was 23 %, while downscaled maps generated from dissever had 18 % con-
cordance correlation coefficient (CCC). The advantages and limitations of both disaggregation algorithms are
discussed.
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1 Introduction

The proliferation of digital soil mapping (DSM) and mod-
elling techniques during the past decade has made vast
amounts of digital soil information available (Lagacherie,
2008; Grunwald, 2009; Minasny and McBratney, 2016). For
example, the GlobalSoilMap project (Arrouays et al., 2014)
aspired towards delivering a global coverage of soil attributes
at 100 m resolution for all six standard soil depths. The Soil
and Landscape Grid of Australia (SLGA; Grundy et al.,
2015), the maps of topsoil organic carbon content across
Europe (de Brogniez et al., 2014), the national digital soil
maps of France (Mulder et al., 2016), and the carbon map of
Nigeria (Akpa et al., 2016) are examples of large-extent dig-
ital soil mapping. However, these national or regional dig-
ital maps do not capture the sufficient spatial variability of
soil for farm-scale decision-making (Malone et al., 2017).
Yet, these maps can be converted into useful farm-scale in-
formation using a combination of fine-scale environmental
covariates and geostatistical methods. This process is called
downscaling or disaggregation (Malone et al., 2017).

Disaggregation is the process of detailing information col-
lected at a small or coarse scale towards a larger or finer
scale (Cheng, 2008). Disaggregating techniques can be clas-
sified into two categories, namely geostatistical and regres-
sion techniques. Area-to-point kriging (ATPK; Kyriakidis,
2004) and its variants, such as area-to-point regression krig-
ing (ATPRK), are the most common geostatistical techniques
applied to disaggregate soil resource information. Incorpo-
rating both point and areal data in the kriging system is
a variant of ATPK presented by Goovaerts (2011). Firstly,
that study demonstrated how ATPK mapped the variability
within soil units and, secondly, introduced a general formula-
tion for incorporating area-to-area, area-to-point, and point-
to-point covariance in the kriging system. Replacing the areal
mean with summary statistics in the kriging system is another
improved ATPK technique suggested by Brus et al. (2014).
Román Dobarco et al. (2016) extended this approach us-
ing summary statistics in the ATPRK system. Furthermore,
a Bayesian regression kriging model was presented by Reid
et al. (2013). They introduced the Gaussian process model as
a novel image-fusion technique for the panchromatic sharp-
ening of low-resolution satellite images. They used images
from unmanned aerial vehicles flown over agricultural fields
to demonstrate their model.

Regression approaches are also a popular approach
for downscaling soil attributes. For example, Malone
et al. (2012), formalised a statistical downscaling algorithm.
In addition, dissever is based on the Liu and Pu (2008) al-
gorithm for downscaling continuous earth resources with
a case study of downscaling soil organic carbon content.
This method was refined by Roudier et al. (2017), allow-
ing the user to choose between a range of regression mod-
els apart from the originally contained generalised additive
models (GAMs). The Disaggregation and Harmonisation of

Soil Map Units through Resampled Classification Trees (DS-
MART) approach is another popular regression-based ap-
proach proposed by Odgers et al. (2014) to downscale soil
map units to soil series information. However, it is different
to the discussed method since there is no fine gridding in-
volved.

Disaggregation is a change in the support problem
(Cressie, 1991; Gotway and Young, 2002). Spatial support
is the geometrical size, shape orientation, and spatial unit of
an observation or a prediction. In the disaggregation process,
when the support changes the associated statistical and spa-
tial properties of the variable also change, adding a major
source of uncertainty (Truong et al., 2014). ATPK is a theo-
retically based method that uses the classical kriging princi-
ples to predict point support using block support information
(Kyriakidis, 2004). Incorporating fine-scale covariate data in
the kriging system (ATPRK) is superior to ATPK as it allows
for within-class variability, spatial autocorrelation, and also
ancillary covariates representing the Soils, Climate, Organ-
isms, Parent material, Age and (N) space or spatial position
(SCORPAN) factors (McBratney et al., 2003; Kerry et al.,
2012).

In disaggregating soil information, quantifying the uncer-
tainties of this process is not often discussed. Underestima-
tion of inferential or predictive uncertainty in statistical mod-
elling can lead to inaccurate statistical summaries and over-
confident decisions (Draper, 1995). Therefore, it is important
to account for the underlying parameter uncertainty associ-
ated with the disaggregation process. The use of Bayesian
inference in the ATPRK system enables one to quantify the
uncertainty associated with inferring point support parame-
ters from the block-supported system, in addition to estimat-
ing the product uncertainty (Diggle et al., 1998).

To the best of our knowledge, Bayesian ATPRK has not
been used for downscaling soil information. In this paper,
we present a Bayesian ATPRK approach for downscaling
soil attributes. Specifically, the study focuses on downscaling
regional soil organic carbon (SOC) maps to high-resolution
farm-scale maps. SOC is arguably a key soil property due
to its conferring benefits to the soil’s physical and chemical
properties and its potential for storing atmospheric carbon.
Accurate estimations of SOC stocks at farm scale are im-
portant for precision agricultural needs. In addition, the fine-
scale maps can be used for designing sampling strategies for
the quantification of SOC stocks (de Gruijter et al., 2016) re-
quired by carbon sequestration auditing process, such as the
carbon farming initiatives in Australia (Malone et al., 2017).

A regional soil carbon map with a resolution of 100 m
(block support) was disaggregated into 10 m (point support)
information for a farm in the Spring Ridge region in northern
NSW. Application of the Bayesian ATPRK approach is pre-
sented and demonstrated within the study. In addition, a com-
parative analysis with the dissever algorithm, a regression-
based downscaling method, is performed to assess the per-
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formance of Bayesian ATPRK in the context of the spatial
downscaling of digital soil carbon mapping.

2 Theoretical background

Assuming we are observing a continuous Gaussian process,
we denote the process as S(p) for locations p ∈D, where D
is the region of interest. For block support (B) data, where
B ⊂D, we presume that the observations are block averages
as follows:

S(B)= |B|−1
∫
B

S(p)dp, (1)

where |B| denotes the area of B.
The underlying Gaussian process S can be expressed as

follows:

S =

l∑
k=0

mβ + ε, (2)

where m is the design matrix of the trend function and β is
the vector of coefficients; ε is the stochastic residual with
a mean of zero and covariance function C(θ ), where θ rep-
resent the parameters of the covariance function. Since the
block-supported observations SB and point support observa-
tions Sp are jointly Gaussian, the prediction problem can be
introduced as follows:[
Sp
SB

]
∼N

([
m
M

]
β,

[
Cpp CpB
CBp CBB

])
, (3)

where Cpp is the variance–covariance matrix of Sp, CBB is
the variance–covariance matrix of SB, and CpB and CBp are
the variance–covariance matrices between Sp and SB and
vice versa. m is the design matrix for fine-scale covariates
of Sp.

Since the joint distribution is Gaussian, the optimal predic-
tions at unsampled point locations can be given as follows:

Ŝp =m′β +C′pBCBB (SB−Mβ) , (4)

where Ŝp is the vector of predicted soil carbon at points.
And the variance–covariance matrix for the prediction er-

ror is the following:

var(Sp|SB)= CPP−CpBC−1
BBCpB

′. (5)

This shows that the inference of Sp from SB is straightfor-
ward and resembles a simple kriging formulation (Cressie
and Wikle, 2011). However, the estimation of a point support
variogram from the block support data is not a trivial task.
Usually, the estimation is done via deregulation or deconvo-
lution of the empirical variogram. Goovaerts (2008), Gotway
and Young (2007), and Pardo-Igúzquiza and Atkinson (2007)

proposed an iterative numerical procedure for the deconvolu-
tion of the block support variogram for irregular block sup-
port. Wang et al. (2015) suggested an integration approach,
while Nagle et al. (2011) used a maximum likelihood ap-
proach. Gelfand et al. (2001) used the Markov chain Monte
Carlo (MCMC) integration to estimate the point support var-
iogram from block support data where the parameters of the
point support variogram were given as non-informative pri-
ors. Truong et al. (2014) used a similar approach, but the pa-
rameters of the point support variogram were given as infor-
mative priors. In this paper, the variogram parameters were
inferred directly from the data via Bayesian estimation with
an objective of inferencing the uncertainty of the disaggrega-
tion process.

2.1 Bayesian inference

The likelihood function of the Gaussian process S can be
given as f (S)|,θ )=N (mβ,C(θ )). C is a function of the Eu-
clidean distance h, with the vector of parameters θ . Then, the
likelihood of predictive distribution at point locations can be
given as follows:

f (Sp|SB)=
∫
f (Sp|SB;β,θ )f (β,θ |SB)dβdθ , (6)

where Sp|SB,β,θ is distributed as follows:

N
(

Mβ +C′Bp(θ )C−1
pp (θ )(Sp−mβ)

)
,

CBB(θ )−C′Bp(θ )C−1
pp (θ )CBp(θ )). (7)

Each entry of the distribution can be estimated through
a Monte Carlo integration. Then, we can replace Eq. (3) with
f̂
(
(SpSB)′|β,θ

)
, where “hat” denotes a Monte Carlo inte-

gration. Then it is apparent, from the following, that:

f̂
(
(SpSB)′|β,θ

)
= f̂

(
(SpŜB)′

)
|β,θ . (8)

To predict at Ŝp we require f (Ŝp,SB), which is given by
Eq. (3). Using f̂ ((Sp,SB)′|β,θ ) and Eq. (8), we can obtain
f ((SpŜB)′)|β,θ to sample Ŝp.

Then, given the priors [β,θ ], the Bayesian model is speci-
fied and a Monte Carlo fitting procedure can be carried out to
maximise the following log likelihood function. A complete
description of deducing the Bayesian area-to-point inference
can be found in Gelfand et al. (2001).

L(β,θ |SB)=
n

2
log(2π )+

1
2

log |CBB|

−
1
2

(SB−Mβ)TC−1
BB(SB−Mβ), (9)
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where CBB is block-to-block covariance and can be ap-
proximately calculated as follows:

CBB(i,j )={
c1
K
+

(
2

K(K−1)

)∑K
k=1

∑K
l>k

(
c1+ c0− γp(sk − sl))

)
, i 6= j

1
K2

(
c1+ c0− γp(sk − sl))

)
, i = j,

(10)

where i,j index are block-supported observations, k, l are in-
dex discretised points within a block, andK is the number of
discretisation points per block (Truong et al., 2014). c1, c0
are the partial sill and the nugget component of the semivar-
iogram γp.

3 Case study

3.1 Study area and coarse-scale soil carbon map

We illustrate the methodology by disaggregating a regional
topsoil organic carbon map of the University of Sydney E.J.
Holtsbaum Agricultural Research Station (Fig. 1). The land-
holding, also known as “Nowley”, is in the Spring Ridge dis-
trict of the central/northwestern slopes of New South Wales
(NSW), Australia. Its area is approximately 2300 ha and is
managed as a mixed farming enterprise of cattle grazing
throughout the year and wheat, barley, and canola in win-
ter and sorghum and sunflower in the summer. Cropping is
performed on soils derived from basalt parent materials. The
average annual rainfall is 600 mm.

The available map is a NSW topsoil carbon map, which
was generated using a local regression kriging technique (So-
marathna et al., 2016). These maps are analogues of the na-
tionally available soil carbon maps of Australia, which are
available in separate layers corresponding to the depth inter-
vals definition in the GlobalSoilMap product specifications
(Arrouays et al., 2014). The standard soil depth layers are
0–5, 5–15, 15–30, 30–60, and 60–100 cm.

This NSW soil carbon map has a grid spacing of
100 m× 100 m, with block support of the same size. Hence,
the map spatial resolution and the support are equal, which in
turn means that the pixel values that make up the map repre-
sent a predicted mean for the area of each pixel. Commonly,
the pixel values of a digital soil map are on point support,
with the pixel value representing the value at a point that
is usually at the centre of each pixel (Malone et al., 2013).
Therefore, block kriging was used convert the maps to point-
supported maps before the analysis.

The topsoil of the study area was represented by the depth
interval of 0–7.5 cm, as this was the depth interval used in
previous work conducted at this site for soil carbon audit-
ing (de Gruijter et al., 2016). The respective coarse (NSW)
map for the 0–7.5 cm depth interval was predicted by using
mass-preserving splines (Malone et al., 2009) of the 0–5 and
5–15 cm standardised maps. This map will hereafter be re-
ferred to as the coarse-scale map. It is this map that subse-
quent descriptions of spatial downscaling will refer to. The

experimental variogram of the block-supported coarse-scale
map is given in Fig. 2.

3.2 Environmental covariates

Elevation, topographic wetness index (TWI), gamma ra-
diometric thorium, gamma radiometric potassium, Landsat
band 4, and Landsat band 7 were used as environmental co-
variates in the spatial downscaling model. Landsat data have
a resolution of 30 m. Since the coarse map was disaggregated
into a 10 m resolution, the Landsat data were pan sharpened
using the panchromatic band (15 m) and then resampled to
10 m.

The elevation data had been collected during a ground sur-
vey using an all-terrain vehicle with a 20 m swath. Then the
data were processed using a local block kriging approach to
produce elevation data at a 10 m resolution. Based on the
developed digital elevation model (DEM), the TWI was de-
rived. The gamma radiometric data were derived from aerial
surveys (Minty et al., 2009), which were resampled to 10 m.
A more detailed description of data collection and post-
processing can be found in Malone et al. (2017).

3.3 Model parameter inferencing using the MCMC
simulation

Suppose our observed soil carbon data (S) follows a second-
order stationary Gaussian process which is characterised by
the mean (trend) and the variogram where Sp ∼N (Sp,γp)
and where γp = (h,θ ) is a function of Euclidian distance h
and θ vector of parameters of Matérn variogram (Eq. 14).
The block averages SB have the same spatial mean as Sp but
a different spatial structure (Gotway and Young, 2002). The
block support covariance CBB is also a function of h, with a
parameter vector of θ , but has a different support.

Cij = c0δij + c1

[
1

2υ−10(υ)

(
h

r

)υ
Kυ

(
h

r

)]
, (11)

where Cij is the covariance between observation i and j , h
represents the separation distance between i and j , δij de-
notes the Kronecker delta (δij = 1 if i = j and δij = 0 when
I 6= j ), c0+ c1 signifies the sill variance, and Kv is the mod-
ified Bessel function of the second kind of order υ. 0 is the
gamma function, r denotes the distance or range parameter
and υ is the spatial smoothness. Calculating CBB requires
discretisation, and it was done using a regular grid pattern,
with equal 10 m spacing between discretising points within
a block. Then CBB was calculated according to Eq. (11).

The priors were given as informative priors and consid-
ered as normally distributed. The coarse-scale soil carbon
map was regressed against the selected covariates to estimate
the approximate prior values for the coefficient of the linear
trend (β). Gaussian priors were assigned for both the spatial
trend (β) and covariance component (θ ) of the spatial model.
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Figure 1. The study area (left; sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA-FSA, USGS, AEX, Getmapping, AeroGRID, IGN, IGP,
Swisstopo, and the GIS user community) and the coarse-scale topsoil soil organic carbon map (right).

Figure 2. Block support experimental variogram of the coarse-scale
(100 m resolution) soil carbon map.

MCMC integration was carried out using the Metropolis–
Hastings algorithm. Metropolis–Hastings is a computation-
ally efficient algorithm that allows sampling from conditional
distributions (Diggle et al., 1998). Calibration of the model
was done using two parallel chains of MCMC with 100 000
iterations.

3.4 Spatial prediction

The mean 95 % upper and lower CI limits of the spatial
model parameters were calculated using the values of the last
10 000 MCMC iterations. These calibrated parameters were
used to predict the SOC content at the fine scale. The pre-
dictions were made onto the 10 m× 10 m points based on
Eq. (4).

3.5 Disaggregation using dissever

The proposed Bayesian model was also compared with the
dissever regression-based disaggregation approach. Dissever

is a regression-based downscaling approach proposed by
Malone et al. (2012). Dissever operates in two steps, namely
initialisation and iteration. At the initialisation step, the
coarse map is resampled using the nearest neighbour resam-
pling technique to match the resolution of available fine-scale
covariates. Then the resampled map is regressed against the
fine-scale covariates. Next, the regressed fine map is upscaled
through averaging, and then the mass balance deviation (de-
viation factor – DF) from the coarse map is calculated. The
regressed fine map is corrected using the DF, and then the al-
gorithm progresses to the iteration step. In the iteration step,
regression and upscaling continue until the mass balance de-
viation between the upscaled map and the original map is
less than a set minimum (threshold). The following flow di-
agram (Fig. 3) is an illustrative description of the dissever
algorithm. This differs from Bayesian ATPRK since it is not
focused on addressing the change in support problem, and it
is a fine-gridding exercise. A detailed and comprehensive ac-
count of dissever can be found in Malone et al. (2012; 2017).

Following the procedure mentioned above, the coarse-
scale carbon map of the area was disaggregated into 10 m
using dissever. The environmental covariates used in the
Bayesian approach were similarly made available for dis-
sever.

3.6 Independent validation

3.6.1 Validation data

The accuracy of the model was tested using an indepen-
dent dataset, which consists of 127 soil samples from 0–
7.5 cm soil cores (cross section area of 41 cm2 and height
of 7.5 cm). The samples are considered to have point sup-
port. These data were collected over two separate soil sur-
veys during 2014 and 2015, using stratified random sam-
pling. Stratification was based on the SOC prediction fields

https://doi.org/10.5194/soil-6-359-2020 SOIL, 6, 359–369, 2020



364 S. N. S. Pallegedara Dewage et al.: Disaggregating a regional-extent digital soil map

Figure 3. Schematic representation of dissever disaggregation technique.

generated from digital soil mapping. A detailed description
about the stratified random sampling process can be found
in de Gruijter et al. (2015). The carbon content of the col-
lected soil cores was measured using dry combustion by an
Elementar Vario Max CNS macro elemental analyser (Ele-
mentar Analysensysteme GmbH, Langenselbold, Germany).
The measured carbon contents are in carbon concentrations
(g of C per 100 g of soil).

3.6.2 Validation statistics

The model accuracy was compared using mean squared error
(MSE) and Lin’s concordance correlation coefficient (CCC;
Lin, 1989) between the disaggregated values and observed
independent values at sampling points.

CCC is given by the following:

CCC=
2ρσxσy

σ 2
x + σ

2
y +

(
µx −µy

)2 , (12)

where ρ is the correlation coefficient, σx,σy are the variances
of observed (x) and predicted (y) values, and µx,µy are the
respective means. CCC is scaled between −1 and 1, with the
latter implying perfect agreement and the former implying
perfect reverse agreement.

MSE is given by the following:

MSE=

n′∑
i=1

(
Sp− Ŝp′

)2

n′
, (13)

where Sp is the observed values of SOC at independent sam-
pling points, Ŝp′ is predicted SOC values at the fine scale,

and n′ is the number of independent SOC samples at a fine
scale. MSE is an indication of the accuracy of predictions,
while CCC indicates both accuracy and precision of the dis-
aggregation exercise.

4 Results and discussion

The use of the linear mixed model (LMM) as the spatial pre-
diction model allows integration of fine-scale covariate in-
formation and spatial correlation in a single model. Unlike
regression kriging in which regression and residual kriging
are used in two phases of modelling, LMM is a one-step pro-
cess. We used Bayesian inference techniques to estimate the
parameters of LMM to deliver uncertainty estimates of the
model parameters. This section provides a description of the
posterior parameters of the spatial model followed by a com-
parison of spatially disaggregated maps using Bayesian AT-
PRK and dissever.

4.1 Bayesian parameter estimation of the spatial model

Figure 4 illustrates the posterior statistics of the linear trend
parameters. The upper diagonal panel displays the correla-
tion coefficients among the covariates, the lower diagonal
depicts the scatter plots, while the diagonal shows the poste-
rior distributions. The diagonal histograms are well defined,
which indicates that all parameters of the linear trend are rel-
atively well defined. The correlations among covariates are
minimal, which indicates that there is no multicollinearity
between the covariates.

Figure 5 displays the posterior distribution of Matérn var-
iogram parameters and their correlations. Posterior values of
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Figure 4. Correlations and posterior distributions of linear trend parameters of the spatial model.

Table 1. 1. Posterior parameters of the linear trend model.

β0 β1 β2 β3 β4 β5 β6

Lower CI limit 1.360 −0.003 −0.291 −0.045 0.002 −0.019 −0.030
Mean 1.416 0.002 −0.281 −0.040 0.007 −0.014 −0.024
Upper CI limit 1.471 0.007 −0.270 −0.034 0.012 −0.009 −0.018

β0, β1, β2, β3, β4, β5, and β6 are the coefficients of the linear trend for intercept, elevation, TWI, gamma
radiometric thorium, gamma radiometric potassium, and Landsat band 4 and Landsat band 7 parameters,
respectively.

the range parameter are similar to the prior values. However,
the partial sill and nugget parameters are different from their
priors. The posterior partial sill is higher than the prior sill,
which agrees with the fact that the coarse-scale variability of
soil carbon is lower compared to the finer scale (Fig. 5b).

Tables 1 and 2 provide the estimates of the parameters
of the spatial model along with the 95 % confidence limits,
which is an indication of the uncertainty of the parameters.
The estimated posterior parameters have narrow CI limits, in-
dicating the estimated mean provides a good approximation
of the soil carbon content of the study area.

4.2 Spatial disaggregation using Bayesian ATPRK

Figure 6 displays the Bayesian ATPRK disaggregated soil
carbon content of Nowley at 10 m, along with the 95 % con-
fidence interval limits. Unlike other methods which only give
a single estimate of mean soil carbon content, the Bayesian
technique provides a range and/or interval of the most prob-
able value with a 95 % confidence. These estimates are more
reliable as they are generated using numerous repeated sam-
plings. Accuracy and confidence in estimates are important
parameters for planning, designing, and implementing soil
management. Therefore, Bayesian ATPRK provides a com-
prehensive output of soil carbon estimates at the farm scale.

4.3 Comparison of Bayesian ATPRK and dissever
disaggregation methods

The disaggregated maps from both techniques were upscaled
using a spatial overlay to assess the accuracy of disaggrega-
tion. CCC values were calculated for both techniques. Fig-
ure 7 shows the agreement between the cell values of the
coarse map and the upscaled disaggregated maps.

Concordance correlation between the original coarse val-
ues and upscaled product were 87 % and 96 % for Bayesian
ATPRK and dissever, respectively. Dissever iterates until the
agreement between upscaled and original coarse cell reaches
a set minimum, while Bayesian ATPRK output is a result
of one simulation considering both the correlation with the
covariates and covariance structure of the residuals. This ex-
plains the stronger concordance associated with dissever.

Figure 8 illustrates the comparison between the dissever
and Bayesian ATPRK disaggregated product with the coarse-
scale source map. A closer examination reveals that Bayesian
ATPRK product resembles the spatial pattern of SOC more
closely than the dissever product, while dissever seemingly
over-predicts the SOC content.

Conversely, dissever is computationally more efficient
compared to Bayesian ATPRK. Calculating the block-to-
point and block-to-block distance matrixes is a computation-
ally expensive procedure. The whole study area cannot be
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Figure 5. (a) Correlations and posterior distributions of variogram
parameters (b) and the point and block support variograms.

Table 2. Posterior parameters of the point support Matérn vari-
ogram model. CI refers to the confidence interval.

Method Nugget Sill Range Smoothness

Lower CI limit −0.05 −0.02 759.10 0.45
Mean 0.005 0.034 788.24 0.50
Upper CI limit 0.06 0.09 817.37 0.57

computed in a single run using a desktop computer. There-
fore, the study area has to be split into tiles, and predictions
were carried out for each of the tiles. This resulted in abrupt
changes between two tiles in the Bayesian ATPRK disaggre-
gated map.

4.4 Validation of disaggregated maps

Independent validation results between disaggregated maps
using dissever and Bayesian ATPRK indicate that Bayesian
ATPRK technique is slightly more accurate compared to
dissever-produced output in general.

The CCC value of Bayesian ATPRK was 23 %, while that
of dissever was 18 %. Greater CCC indicates more accurate
and precise predictions. The mean squared error (MSE %) of
the Bayesian ATPRK product was 0.45 while MSE for dis-
sever was 0.49, which indicates that Bayesian ATPRK disag-
gregation is slightly more accurate than dissever disaggrega-
tion.

Figure 6. Bayesian ATPRK disaggregated map with 95 % confi-
dence limits.

Although the validation CCC is low, it still is a sufficient
approximation in terms of SOC as the SOC prediction ac-
curacy generally remains low. The coarse map is a product
of regression for the whole region, which also has a lower
concordance correlation with the sampled data. Through the
disaggregation process, the errors tend to propagate, widen-
ing the gap between the actual and predicted SOC content.

Overall, we have demonstrated using Bayesian ATPRK for
downscaling coarse-scale rasters to more informative fine-
scale rasters by using available fine-scale covariates. The
study proves that Bayesian ATPRK provides more accurate
results with uncertainty estimates of the disaggregation pro-
cess. There are a few limitations to this study. Firstly, we did
not deal with the uncertainty from all sources of measure-
ment errors. The coarse-scale map always carries a certain
degree of error and/or uncertainty. Also, there is an uncer-
tainty associated with the splining of the maps. Both of these
uncertainties can be treated as measurement errors and fil-
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Figure 7. Correlation plots between upscaled disaggregated values
from Bayesian ATPRK, dissever, and original coarse-scale block
values.

tered by adding as a noise variance along the diagonal of the
covariance matrix CBB. Another way of correcting the bias
is to use the measured data in the spatial model to reflect
the actual ground conditions. Malone et al. (2017) demon-
strated that the inclusion of the ground observations improves
the accuracy of the disaggregated maps. A further limitation
of our method is that the disaggregated map produced from
Bayesian ATPRK has a block effect due to the final map be-
ing a collection of tiles produced separately due to the high
computing demands of the model. This tiling effect can be
eliminated by using high-performing and parallel-computing
solutions to generate the fine-scale image in one go. Also,
low-ranking representations (Wikle, 2010) of the covariance
can also be used as a possible solution to the computational
burden of the process.

Furthermore, although we have used the proposed
Bayesian ATPRK in the DSM domain, this method can also
be used to downscale coarse-scale satellite data. Even though
there is a wide range of fine-resolution satellite images avail-
able in the present context, there is still a scarcity of fine-
resolution data for certain parts of the world. Spatial down-
scaling is a solution to this data sparsity. There is a range of
disaggregation and/or pan-sharpening techniques available in
the literature. However, very few techniques can tackle the
uncertainty of source images and the uncertainty of the disag-
gregation process. Unlike other methods, Bayesian ATPRK

Figure 8. Comparing the disaggregated map with original coarse-
scale SOC map.

can explicitly help to tackle observation errors of the satellite
images.

5 Conclusions and recommendations

The study demonstrates that Bayesian techniques can be ef-
fectively used to address the change in the support problems.
Monte Carlo integration provides the estimates of point-
supported covariance structures using block-supported data
along with uncertainty estimates of the parameter inference.
This study used informative priors of covariance parameters,
as the soil carbon data were available for the study site. In
the absence of prior information, priors can be given as non-
informative priors.

Bayesian ATPRK provides an effective way of disaggre-
gating coarse-scale SOC maps. The output of this study fa-
cilitates policy making and soil management activities by
providing the maps with confidence limits, which lead to a
wider understanding of the SOC content of the area. How-
ever, the method is computationally intensive, and the use of
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high-performing computing techniques is recommended for
faster and smoother predictions.

Furthermore, the noise of coarse-scale observations can be
filtered through incorporating the noise variance in the di-
agonal of CBB. The use of point data (if available) in the
spatial model can improve the accuracy of the disaggrega-
tion. Finally, the use of both techniques is recommended for
lower uncertainty and improved accuracy of the disaggrega-
tion process.
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