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Abstract. Decision tree algorithms, such as random forest, have become a widely adapted method for map-
ping soil properties in geographic space. However, implementing explicit spatial trends into these algorithms has
proven problematic. Using x and y coordinates as covariates gives orthogonal artifacts in the maps, and alterna-
tive methods using distances as covariates can be inflexible and difficult to interpret. We propose instead the use
of coordinates along several axes tilted at oblique angles to provide an easily interpretable method for obtaining
a realistic prediction surface. We test the method on four spatial datasets and compare it to similar methods. The
results show that the method provides accuracies better than or on par with the most reliable alternative methods,
namely kriging and distance-based covariates. Furthermore, the proposed method is highly flexible, scalable and
easily interpretable. This makes it a promising tool for mapping soil properties with complex spatial variation.

1 Introduction

Machine learning has become a frequently applied means for
mapping soil properties in geographic space. The most com-
mon approach is to train models from soil observations and
covariates in the form of geographic data layers. The mod-
els can often provide reliable predictions of soil properties.
Many researchers have used decision tree algorithms as they
are computationally efficient, do not rely on assumptions
about the distributions of the input variables, and can use
both numeric and categorical data (Quinlan, 1996; Mitchell,
1997; Rokach and Maimon, 2005; Tan et al., 2014). Addi-
tionally, they effectively handle nonlinear relationships and
complex interactions (Strobl et al., 2009).

However, a disadvantage of decision tree models is that
they do not explicitly take into account spatial trends in the
data. Unlike geostatistical methods, such as kriging, the pre-
dictions can therefore contain spatial bias.

A number of studies have applied regression kriging (RK)
as a solution (Knotters et al., 1995; Odeh et al., 1995; Hengl
et al., 2004). By kriging the residuals of the predictive model
and adding the kriged residuals to the prediction surface, this
approach can account for spatial trends and achieve higher
accuracies. A disadvantage of RK is that the combination of

two models hinders the combination of spatial trends with
the other covariates. Spatial trends therefore remain discon-
nected from other statistical relationships in the analysis,
leading to difficulties in interpreting the model and its as-
sociated uncertainties.

An obvious solution to this problem would be to use the
x and y coordinates of the soil observations as covariates.
However, results have shown that this approach can lead to
unrealistic orthogonal artifacts in the output maps when used
in conjunction with decision tree algorithms (Behrens et al.,
2018; Hengl et al., 2018; Nussbaum et al., 2018). The cause
of this problem lies in the splitting procedure of decision
tree algorithms, as they use only one covariate for each split.
Therefore, a dataset containing only the x and y coordinates
will force the algorithm to make orthogonal splits in geo-
graphic space.

Several researchers have proposed solutions to this prob-
lem. Behrens et al. (2018) proposed the use of Euclidean dis-
tance fields (EDFs) in the form of distances to the corners
and middle of the study area and the x and y coordinates.
Their results showed that this approach efficiently integrated
spatial trends and that accuracies were better than or on par
with other methods for integrating spatial context.
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On the other hand, Hengl et al. (2018) suggested an ap-
proach referred to as spatial random forest (RFsp). This
method consists of calculating data layers with buffer dis-
tances to each of the soil observations in the training dataset.
It then trains a random forest model, using the buffer dis-
tances as covariates, either combined with auxiliary data or
on their own. One of the main advantages of this approach is
that it incorporates distances between observations in a simi-
lar manner to geostatistical models. The authors assessed the
use of RFsp on a large number of spatial prediction problems
and showed that it effectively eliminated spatial trends in the
residuals.

Although these two methods are able to integrate spatial
trends in machine-learning models, they can be difficult to
interpret. The distances used in EDFs depend on the geom-
etry of the study area, and for RFsp, they depend on the lo-
cations of the soil samples. The meaning and interpretation
of the distances therefore varies depending on the study area
and the soil observations.

EDFs and RFsp also have limited flexibility as both meth-
ods specify the number of geographic data layers a priori.
For EDFs, the number of distance fields is seven, and for
RFsp, the number of buffer distances is equal to the number
of soil observations. This means that there is no straightfor-
ward way to increase the number of spatially explicit covari-
ates if the number is insufficient to account for spatial trends.
Conversely, there is no way to decrease the number of spa-
tially explicit covariates, even if a smaller number would suf-
fice. The latter is especially relevant for RFsp as the method
is computationally unfeasible for datasets with a large num-
ber of observations (Hengl et al., 2018).

In this study, we propose an alternative method for includ-
ing spatially explicit covariates for mapping soil properties.
With the method, we aim to directly address the cause of
the orthogonal artifacts produced with x and y coordinates
as covariates in decision tree models. Furthermore, we aim
to improve upon the shortcomings of previous methods by
developing a method that is both flexible and easily inter-
pretable.

We refer to the method as oblique geographic coordinates
(OGCs). In short, it works by calculating coordinates for the
observations along a series of axes tilted at several oblique
angles relative to the x axis. By including oblique coordi-
nates as covariates, we enable the decision tree algorithm to
make oblique splits in geographic space. As this is not possi-
ble with only x and y coordinates as covariates, this addition
should allow the model to produce a more realistic predic-
tion surface. Furthermore, the number of oblique angles is
adjustable, and soil mappers can therefore choose a number
that suits their purpose. Some mapping tasks may require a
higher number of oblique angles than others, and soil map-
pers can therefore increase the number as necessary. Alter-
natively, if a small number of oblique angles suffices, soil
mappers can reduce their number and thereby shorten com-
putation times.

We test the method on four spatial datasets. Firstly, we
test it for predicting soil organic matter contents in a densely
sampled agricultural field in Denmark, located in northern
Europe. Secondly, we test it on three publicly available spa-
tial datasets (meuse, eberg and Swiss rainfall). We hypothe-
size that OGCs can provide accuracies on par with previous
methods for including explicitly spatial covariates. We also
hypothesize that it is possible to adjust the number of oblique
angles in order to optimize accuracy and that the results allow
for meaningful interpretations.

2 Materials and methods

2.1 Study areas

We test OGCs and compare them to other methods based on
four spatial datasets. Firstly, we test them for a predicting soil
organic matter (SOM) for an agricultural field in Denmark
(Vindum). Secondly, we test them on three publicly available
datasets. For Vindum, we will present methods and results in
detail. For the other three datasets, we will present methods
and results in brief, while Appendix A contains a detailed
presentation of the methods and results for these datasets.

2.1.1 Vindum

This study area is a 12 ha agricultural field located in Den-
mark in northern Europe (9.568◦ E, 56.375◦ N; European
Terrestrial Reference System (ETRS89), 1989; Fig. 1). It
lies in a kettled moraine landscape 55–66 m above sea level
(a.s.l.). The parent materials in the field include clay till,
glaciofluvial sand and peat. The climate is temperate coastal,
with mean monthly temperatures ranging from 1 ◦C in Jan-
uary to 17 ◦C in July and a mean annual precipitation of
850 mm (Wang, 2013). The field contains 285 measurements
of SOM from the depth interval 0–25 cm located in a 20 m
grid.

The SOM contents of the topsoil in the field range from
1.3 % to 38.8 %, with a mean value of 3.5 % and a median
of 2.2 %. The values have a strong positive skew of 4.7 and
are leptokurtic with a kurtosis of 26.9. Logarithmic transfor-
mation reduces skewness (2.9) and kurtosis (11.1). Pouladi
et al. (2019) described the spatial structure of the data, with
a stable variogram with 139 m range, nugget of 0 and sill of
23.8.

2.1.2 Additional datasets

For additional analyses, we included the meuse dataset, the
eberg dataset and the Swiss rainfall dataset. The meuse
dataset, available through the R package sp (Pebesma et al.,
2020), contains 155 measurements of soil heavy-metal con-
centrations from a 5 km2 flood plain of the Meuse River
near the village of Stein in the Netherlands. For this dataset,
we mapped zinc concentrations. The eberg dataset, avail-
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Figure 1. (a) Location of Denmark in northern Europe. (b) Location of the Vindum field within Denmark. (c) Map of the Vindum field,
including locations of the samples extracted for soil organic matter (SOM) measurements. The thin black lines are 2 m contour lines. The
background shows hill shade (northwest; 45◦ altitude) based a digital elevation model (DEM) in 1.6 m×1.6 m resolution (National Survey
and Cadastre of Denmark, 2012).

able through the R package plotKML (Hengl et al., 2020),
contains 3670 soil observations from a 100 km2 area in
Ebergötzen near the city of Göttingen in Germany. For this
dataset, we mapped soil types. Lastly, the Swiss rainfall
dataset contains 476 rainfall measurements from 8 May 1986
in Switzerland (Dubois et al., 2003). Although this is not a
soil dataset, we included it because of the high anisotropy of
the data, which makes it useful for comparing methods on
their ability to account for anisotropic spatial problems. We
describe these three datasets in more detail in Appendix A.

2.2 Oblique geographic coordinates

The method that we propose consists of calculating coordi-
nates along a number of axes titled at various oblique angles,
relative to the x axis. In the following, we show that it is pos-
sible to calculate the coordinate of a point (b1, a1) along an
axis tilted at an angle θ relative to the x axis, based on θ and
the x and y coordinates of the point (b1, a1). Equation (1)
shows the calculation of the oblique geographic coordinate,
using Fig. 2 for illustration.

OGCs= b2 =

√
a2

1 + b
2
1 × cos

(
θ − tan−1 a1

b1

)
, (1)

where θ is the angle of the titled axis relative to the x axis; a1
is the y coordinate of (b1, a1); b1 is the x coordinate of (b1,
a1); and b2 (or “OGCs”) is the coordinate of (b1, a1) along
an axis tilted with the angle θ relative to the x axis.

As the x and y coordinates of soil observations are known,
and θ is given, it is possible to calculate coordinates at

Figure 2. Illustration for the derivation of the oblique geographic
coordinate for the point (b1, a1) along an axis tilted with the angle
θ from the x axis. The coordinate is equal to the length of b2. Trian-
gles a1b1c and a2b2c are right triangles with the same hypotenuse
c. The sides a1 and b1 are the x and y coordinates of the point (b1,
a1), respectively. A1 is the angle between the x axis and the line c
between the origin of the coordinate system and the point (b1, a1);
A2 is the difference between θ and A1.

oblique angles for all soil observations in a dataset. Like-
wise, as the x and y coordinates of the cells in a geographic
raster layer are known, it is possible to calculate oblique co-
ordinates for the cells. Our approach relies on calculating co-
ordinates along n axes tilted at angles ranging from zero to
π ((n− 1)/n) with increments of π/n between the angles. θ
should not be π or greater, as coordinates along axes tilted at
these angles will correlate with coordinates along axes tilted
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at angles of zero to π ((n− 1)/n). For example, coordinates
along an axis with θ = 0.25π (northeast) perfectly correlate
with coordinates along an axis with θ = 1.25π (southwest).
Figure 3 shows coordinates along axes tilted at six different
angles relative to the x axis for the Vindum study area. The
coordinate rasters (a) and (d) are equivalent to the x and y co-
ordinates, respectively, while the coordinate rasters (b), (c),
(e) and (f) show coordinates at oblique angles.

2.3 Method comparison

2.3.1 Vindum

We use the 285 SOM observations from the Vindum study
area in order to test the accuracy of predictions made by ran-
dom forest models using OGCs as covariates. In addition to
OGCs, we also employed 19 data layers with auxiliary data,
which Pouladi et al. (2019) derived from a 1.6 m digital ele-
vation model (DEM), satellite imagery and electromagnetic
induction. Topographic variables included the sine and co-
sine of the aspect, depth of sinks, plan and profile curvature,
elevation, flow accumulation, valley bottom flatness, mids-
lope position, standard and modified topographic wetness in-
dex, slope gradient, slope length, and valley depth. Satellite
imagery included normalized difference, absolute difference,
ratio and soil-adjusted vegetation indices. Lastly, we used the
apparent electrical conductivity from a DUALEM-1 sensor
in perpendicular mode.

In order to optimize the number of raster layers for OGCs,
we generated datasets with 2–100 coordinate rasters. We then
trained random forest models from each dataset, both with
and without auxiliary data. In order to assess predictive accu-
racy, we used 100 repeated splits on the SOM observations,
each using 75 % of the observations for model training and
a 25 % holdout dataset for accuracy assessment. We trained
models using the R package ranger (Wright and Ziegler,
2015) and parameterized the models using the R package
caret (Kuhn, 2008). For each split, we tested five different
values for mtry, with minimum node sizes of 1, 2, 4 and 8
and two different splitting rules, namely variance and extra-
trees. We mainly adjusted mtry and the minimum node size
in order to avoid overfitting. We tested mtry values at even in-
tervals between 2 and the total number of covariates, includ-
ing both auxiliary data and spatially explicit covariates. The
tested mtry values therefore varied, depending on the number
of covariates. The extratrees splitting rule generates random
splits as opposed to the variance splitting rule, which chooses
optimal splits. By default, extratrees generates one random
split for each covariate and then chooses the random split
that gives the largest variance reduction (Geurts et al., 2006).
It therefore leads to a greater degree of randomization. We
selected the setup that provided the lowest root mean square
error (RMSE) for the out-of-bag predictions on the training
data and used this setup for predictions on the 25 % holdout
dataset.

We used the same 100 repeated splits for each number of
coordinate rasters, with and without auxiliary data. We cal-
culated accuracy based on Pearson’s R2, RMSE and Lin’s
concordance criterion (ccc) and subsequently used the num-
ber of coordinate rasters that yielded the lowest RMSE. We
selected a different number of coordinate rasters with and
without auxiliary data.

We then compared the accuracies obtained with the op-
timal numbers of coordinate rasters, with and without aux-
iliary data, to the accuracies obtained with other methods.
We tested kriging, random forest models trained only on
the auxiliary data and random forest models trained using
EDFs and RFsp, with and without auxiliary data. We trained
the random forest models using the same procedure outlined
above. For kriging, we used variograms automatically fit-
ted on logarithmic-transformed SOM observations using the
autofitVariogram function of the R package automap (Hiem-
stra, 2013). A previous study using the same dataset showed
that kriging predicted SOM more accurately than regression
kriging (Pouladi et al., 2019). We therefore omitted regres-
sion kriging from the analysis although, without this previous
finding, it would have been relevant to include it.

We used the same 100 repeated splits for assessing the ac-
curacies of all methods. This allowed us to carry out pairwise
t tests between the accuracies of the methods. We used the re-
sults of the pairwise t tests to rank the methods according to
their accuracies according to each of the metrics. If there was
no statistical difference (p > 0.05) between the accuracies of
two or more methods, these methods received the same rank.
We calculated separate ranks for the methods for each accu-
racy metric, resulting in three different sets of ranks. In order
to illustrate the results, we produced maps of SOM with each
method, using models trained from all the data.

We also investigated the covariate importance of models
trained with OGCs and tested all methods for spatially auto-
correlated residuals using experimental variograms. To pro-
duce sample variograms of the residuals, we produced maps
with each method using all observations. We converted both
observations and predictions to a natural logarithmic scale.
We then subtracted the predictions from the observations and
calculated variograms for these residuals. For this purpose,
we used the function variogram from the R package gstat
(Pebesma and Graeler, 2020) with its default parameters.

2.3.2 Additional datasets

We also compared OGCs to other methods based on the
three additional datasets meuse, eberg and Swiss rainfall. The
methods in the comparison depended on the dataset. For the
meuse dataset, we tested all the methods tested on the Vin-
dum dataset, with the addition of RK using random forest
models for regression. For the eberg dataset, we tested ran-
dom forest models based on auxiliary data (AUX), EDFs
and OGCs, and the combined methods (EDFs+AUX and
OGCs+AUX). For the Swiss rainfall dataset, we tested only
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Figure 3. Examples of rasters with coordinates tilted at six different angles for the Vindum study area. Easting and northing for the Universal
Transverse Mercator (UTM) zone 32N (ETRS89).

purely spatial methods, including ordinary kriging (OK),
EDFs, RFsp and OGCs. As for the Vindum dataset, we tested
each method based on 100 splits into training and test data
and carried out pairwise t tests on the resulting accuracies.
Appendix A gives additional details on the methods for each
dataset. For the three additional datasets, we focused on the
accuracies and maps produced with each method. We there-
fore omitted analyses of the residuals and covariate impor-
tance of these datasets.

3 Results and discussion

3.1 Optimal number of coordinate rasters

3.1.1 Vindum

For the Vindum dataset, accuracies of predictions obtained
with OGCs, without auxiliary data, increased with the num-
ber of coordinate rasters up to an optimum at seven coordi-
nate rasters (Fig. 4). However, with more than seven coordi-
nate rasters, accuracies deteriorated slightly with the number
of coordinate rasters. This pattern was the same for all three
metrics. On the other hand, with OGCs in combination with
auxiliary data, accuracies generally increased with the num-
ber of coordinate rasters. The increase was greatest when the
number of coordinate rasters was small, while the effect of
more coordinate rasters decreased for larger numbers of co-
ordinate rasters. With auxiliary data, the optimal number of
coordinate rasters was 94 for Pearson’s R2, 80 for RMSE
and 89 for ccc. Accuracies with auxiliary data were almost
invariably higher than accuracies achieved without auxiliary
data.

Figure 5 shows SOM contents mapped for Vindum with
increasing numbers of coordinate rasters, without auxil-
iary data. The predictions with only two coordinate rasters
showed a pattern very typical of predictions with x and y co-
ordinates with very visible orthogonal artifacts. As the num-
ber of coordinate rasters increased, the patterns of the arti-
facts changed. With coordinate rasters at three different an-
gles, the artifacts had a hexagonal pattern, and with coordi-
nate rasters at four different angles, the artifacts gained an
octagonal pattern. Furthermore, as the number of coordinate
rasters increased, the artifacts became less pronounced. Al-
though some artifacts were visible with coordinate rasters
at seven different angles, they were much less visible than
the artifacts in the map produced with only two coordinate
rasters.

With auxiliary data, the effect of increasing the number
of coordinate rasters was less clearly visible for the Vindum
dataset (Fig. 6). Even with only two coordinate rasters, the
predictions had no orthogonal artifacts. However, they con-
tained noisy patterns and sharp boundaries in some areas.
This is most likely an artifact from the auxiliary data. For ex-
ample, using a high-resolution DEM may have created noise
in the predictions. However, with coordinate rasters at 80 dif-
ferent angles, the spatial pattern of the predicted SOM con-
tents became substantially smoother, with a reduction in both
noise and sharp boundaries. Furthermore, some areas with
moderately high SOM contents became more clearly visible
and coherent, for example, in the area approximately one-
third of the way from the western to the northern corner of
study area. The predicted patterns with a higher number of
coordinate rasters were therefore not only more accurate but
also more realistic.

https://doi.org/10.5194/soil-6-269-2020 SOIL, 6, 269–289, 2020



274 A. B. Møller et al.: Oblique geographic coordinates

Figure 4. Effects of the number of coordinate rasters on the accuracy of SOM predictions on the Vindum dataset, calculated as Pearson’s
R2, root mean square error (RMSE) and Lin’s concordance criterion (ccc). We calculated effects for random forest models trained on only
coordinate rasters (OGCs) and with coordinate rasters in combination with auxiliary data (OGCs+AUX). The lines represent mean values
obtained from 100 repeated splits (75 % training dataset; 25 % test dataset) for each number of coordinate rasters.

Figure 5. Maps of soil organic matter (SOM) contents in the topsoil at Vindum predicted using random forest models trained with coordinate
rasters at two to seven different angles as covariates. Easting and northing for UTM zone 32N (ETRS89).

3.1.2 Additional datasets

For the three additional datasets, the effect of increasing the
number of coordinate rasters without auxiliary data was gen-
erally the same as for the Vindum dataset. In all three cases,
there was relatively little, if any, increase in accuracy after an
initially very steep increase. For the meuse dataset, the opti-
mal number of coordinate rasters was six or eight, depending

on the accuracy metric (Fig. A1 in the Appendix). For the
eberg dataset, the optimal number was 91, but there was only
limited improvement in accuracy with more than five coor-
dinate rasters (Fig. A3). For the Swiss rainfall dataset, the
optimal number of coordinate rasters was 33 or 50, depend-
ing on the accuracy metric (Fig. A5).
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Figure 6. Maps of soil organic matter (SOM) contents in the topsoil
at Vindum predicted using random forest models trained using aux-
iliary data in conjunction with coordinate rasters at (a) 2 and (b) 80
different angles as covariates. Easting and northing for UTM zone
32N (ETRS89).

As for the Vindum dataset, the optimal number of coordi-
nate rasters was generally larger in combination with auxil-
iary data than without auxiliary data. For the meuse dataset,
the optimal number of coordinate rasters in combination with
auxiliary data was 11 or 13, depending on the accuracy met-
ric. For the eberg dataset, the optimal number of coordinate
rasters in combination with auxiliary data was 22. However,
unlike the results for the Vindum dataset, accuracies for these
two datasets gradually decreased when the number of coor-
dinate rasters was larger than the optimal value.

In summary, the combination of OGCs with auxiliary data
generally increased the optimal number of coordinate rasters.
Furthermore, in some cases, accuracy deteriorates when the
number of coordinate rasters surpasses an optimal value,
while in other cases it reaches a plateau. The decrease in ac-
curacy past the optimum may be due to the correlation be-
tween the coordinate rasters. Coordinates x and y are per-
fectly uncorrelated, but the coordinate rasters become in-
creasingly correlated as their number increases. The opti-
mal value may therefore be a trade-off between the increased
ability of the model to account for spatial trends and the ad-
verse effect of increasingly correlated covariates. It is there-
fore likely that it depends on the complexity of the spatial
distribution of the target variable and the number of observa-
tions.

With OGCs in combination with auxiliary data, the
process-based covariates in the auxiliary data most likely
help to reduce the effect of correlation between the coor-
dinate rasters. Furthermore, in this case, the number of co-
ordinate rasters also affects the relative weighting between
the auxiliary data and the coordinate rasters. When mtry is
smaller than the total number of covariates, a higher number
of coordinate rasters increases the chance that a coordinate
raster will be available for a split. The optimal number of co-
ordinate rasters may therefore depend on the optimal weight-
ing between process-based and explicitly spatial covariates.
This optimal weighting may depend on the number of covari-

ates in the auxiliary data and the strength of the relationship
between the target variable and the auxiliary data.

At present, several factors could therefore explain the op-
timal number of coordinate rasters for each dataset with and
without auxiliary data. The exact interplay between these fac-
tors is unclear, and the best option may therefore be to exper-
iment with different numbers of coordinate rasters.

3.2 Method comparison

3.2.1 Predictive accuracy

For all four datasets, there were large overlaps in the accura-
cies of the methods, as accuracies varied across the 100 re-
peated splits (Figs. 7, A2, A4 and A6). However, an analysis
on the Vindum dataset revealed that the accuracies generally
correlated between the methods across the repeated splits.
The mean correlation coefficient (Pearson’s R) was 0.52
(0.19–0.88) for R2, 0.71 (0.65–0.71) for RMSE and 0.65
(0.41–0.89) for ccc. This shows that some holdout datasets
yielded consistently high accuracies, while others yielded
consistently low accuracies. Furthermore, especially for R2

and ccc, a few holdout datasets yielded much lower accura-
cies than the other holdout datasets, leading to long negative
tails (Figs. 7, A2 and A6).

For the Vindum dataset, kriging achieved the highest rank
for R2 (Table 2). For RMSE, kriging shared the highest rank
with EDFs, RFsp and OGCs in combination with auxiliary
data. Lastly, OGCs and RFsp in combination with auxiliary
data shared the highest rank for ccc. In short, kriging, RFsp
with auxiliary data and OGCs with auxiliary data all had the
highest rank for two accuracy metrics out of three. We there-
fore regard these three methods as the most accurate methods
for the Vindum dataset. Furthermore, we regard these three
methods as equally accurate for this dataset, as none of them
was universally more accurate than the other two methods.

Auxiliary data used on their own, and RFsp without aux-
iliary data, had the lowest rank for all three accuracy metrics
on the Vindum dataset. Furthermore, OGCs without auxil-
iary data had the same rank as EDFs without auxiliary data
for all three accuracy metrics.

Pouladi et al. (2019) tested several methods for predict-
ing SOM on the Vindum dataset, including kriging and the
machine-learning algorithms cubist and random forest, with
and without kriged residuals. The authors found that kriging
provided the most accurate predictions of SOM. The results
for Vindum affirm the high accuracy of kriging predictions,
but they also show that random forest models combining aux-
iliary data with spatial trends can achieve similar accuracies.

For the meuse dataset, OGCs in combination with auxil-
iary data achieved the highest rank for R2 and RMSE (Ta-
ble 3). For ccc, OGCs in combination with auxiliary data
shared the highest rank with EDFs in combination with aux-
iliary data. Without auxiliary data, OGCs received the third
rank for RMSE and the fourth rank with R2 and ccc. OGCs
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Table 1. Auxiliary data variables used as covariates in the study including the name, the description, the mean value and the range. Pouladi
et al. (2019) describe the derivation of the variables.

Predictor variable Description Mean (range)

DEM

Cos aspect Cosine of surface aspect −0.1 (−1.0 to 1.0)
Sin aspect Sine of surface aspect 0.32 (−1.0 to 1.0)
Depth of sinks Depth of sinks (m) 0.1 (0.0 to 1.1)
Plan curvature Shape of the surface in the horizontal plane 0 (−34 to 15)
Profile curvature Shape of the surface in the vertical plane 0.00 (−0.06 to 0.04)
Elevation Elevation from DEM; m above sea level 60.8 (54.6 to 66.2)
Flow accumulation Number of upslope cells 74 (3 to 8969)
MRVBF Multiresolution index of valley bottom flatness 1.5 (0.0 to 4.9)
Midslope position Covers the warmer zones of slopes 0.5 (0.0 to 1.0)
SAGA wetness index SAGA GIS modified topographic wetness index 4.0 (2.2 to 8.6)
Slope gradient Local slope gradient (degrees) 4.9 (0.0 to 17.5)
SL Slope length factor 0.4 (0.0 to 2.3)
TWI Topographic wetness index 6.6 (3.7 to 14.6)
Valley depth Depth of valleys (m) 1.4 (0.1 to 8.1)

Sentinel 2

DVI Difference vegetation index 1735 (1202 to 3294)
NDVI Normalized difference vegetation index 0.5 (0.3 to 0.7)
RVI Ratio vegetation index 2.8 (2.0 to 6.4)
SAVI Soil-adjusted vegetation index 0.7 (0.5 to 1.1)

DUALEM-1mPRP

ECa Apparent electrical conductivity 8.9 (4.9 to 16.0)

Table 2. Ranks for the accuracies of the methods on the Vindum dataset calculated as Pearson’sR2, RMSE and ccc, respectively. Methods for
which a pairwise t test did not give a significant difference in accuracy (p > 0.05) received equal ranks for the metric in question. Ranks for
the methods therefore differ between the three metrics. AUX – auxiliary data; EDFs – Euclidean distance fields; OGCs – oblique geographic
coordinates; and RFsp – distances between observations.

Rank R2 RMSE ccc

Method Mean Method Mean Method Mean

1 Kriging 0.87 EDFs+AUX 2.0 OGCs+AUX 0.89
Kriging 2.0 RFsp+AUX 0.89
OGCs+AUX 1.9
RFsp+AUX 1.9

2 OGCs+AUX 0.85 EDFs 2.2 EDFs+AUX 0.87
RFsp+AUX 0.86 OGCs 2.2 Kriging 0.87

3 EDFs 0.82 AUX 2.4 AUX 0.84
EDFs+AUX 0.83 RFsp 2.3 EDFs 0.85
OGCs 0.81 OGCs 0.84

RFsp 0.84

4 AUX 0.77
RFsp 0.79
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Figure 7. Violin plots showing accuracies of soil organic matter predictions on the Vindum dataset with kriging, and random forest models
trained using either auxiliary data (AUX), Euclidean distance fields (EDFs), distances to observations (RFsp), oblique geographic coordinates
(OGCs), or EDFs, RFsp, or OGCs in conjunction with AUX. The figure shows Pearson’s R2, root mean square error (RMSE) and Lin’s
concordance obtained from 100 repeated splits (75 % training dataset; 25 % test dataset).

Table 3. Ranked accuracies obtained with each method on the meuse dataset, calculated as Pearson’s R2, RMSE and ccc. Methods received
shared ranks if a pairwise t test revealed no statistically significant difference between their accuracies for the metric in question. Each t test
used accuracies obtained with 100 repeated splits into training and test datasets. AUX – auxiliary data; EDFs – Euclidean distance fields;
RFsp – distances to observations; OGCs – oblique geographic coordinates; OK – ordinary kriging; and RK – regression kriging.

Rank R2 RMSE ccc

Method Mean Method Mean Method Mean

1 OGCs+AUX 0.68 OGCs+AUX 202 EDFs+AUX 0.78
OGCs+AUX 0.78

2 EDFs+AUX 0.67 EDFs+AUX 204 RFsp+AUX 0.77
RFsp+AUX 0.66 RFsp+AUX 206

3 OK 0.63 AUX 224 OK 0.76
RK 0.63 EDFs 226 RK 0.76

OGCs 220
OK 215
RK 216

4 AUX 0.61 RFsp 250 AUX 0.74
EDFs 0.59 OGCs 0.74
OGCs 0.61

5 RFsp 0.50 EDFs 0.71

6 RFsp 0.63

without auxiliary data were generally on par with models
based only on auxiliary data and with EDFs. They were less
accurate than combined methods and OK (R2 and ccc). RFsp
without auxiliary data was the least accurate method.

For the eberg dataset, OGCs in combination with auxiliary
data were the most accurate method (Table 4). Without aux-
iliary data, OGCs had the third rank. They were less accurate
than EDFs combined with auxiliary data but more accurate

than EDFs without auxiliary data and models based only on
auxiliary data. Models based only on auxiliary data yielded
the lowest accuracies.

For the Swiss rainfall dataset, OGCs were the most ac-
curate method for all three metrics (Table 5). RFsp was the
second most accurate method, followed by EDFs. OK was
the least accurate method.
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Table 4. Ranks of the accuracies (percent cases correctly predicted)
obtained with each method on the eberg dataset. Pairwise t tests
showed that differences between the accuracies of the methods were
all statistically significant (p < 0.05). AUX – auxiliary data; EDFs
– Euclidean distance fields; and OGCs – oblique geographic coor-
dinates.

Rank Method Accuracy

1 OGCs+AUX 0.39
2 EDFs+AUX 0.38
3 OGCs 0.37
4 EDFs 0.37
5 AUX 0.35

Table 5. Ranked accuracies on the Swiss rainfall dataset for each
method. Pairwise t test showed statistically significant (p < 0.05)
differences between the methods for all three metrics. The ranks are
the same for all three metrics. EDFs – Euclidean distance fields;
RFsp – distances to observations; OGCs – oblique geographic co-
ordinates; and OK – ordinary kriging.

Rank Method R2 RMSE ccc

1 OGCs 0.831 4.7 0.902
2 RFsp 0.822 4.8 0.893
3 EDFs 0.818 4.9 0.891
4 OK 0.804 5.0 0.887

In summary, for Vindum, meuse and eberg, OGCs com-
bined with auxiliary data were either the most accurate
method or one of the most accurate methods. Without auxil-
iary data, OGCs were not one of the most accurate methods
for these datasets. However, for the Swiss rainfall dataset,
OGCs were the most accurate method, even though we used
no auxiliary data.

It is important to consider that in most cases all methods
yielded acceptable accuracies. Although the differences be-
tween the accuracies of the methods were in many cases sta-
tistically significant, they were generally small. However, the
results show that OGCs compare well with other methods for
integrating spatial trends in machine-learning models.

3.2.2 Maps

For the Vindum dataset, kriging produced a smooth predic-
tion surface, which is very common for this method (Fig. 8a).
The prediction surface with EDFs was mostly smooth, but it
also contained a distinct “rings in the water” artifact caused
by the raster with the distance to the middle of the study area
(Fig. 8b). The prediction surface with RFsp was smoother
than the prediction surface produced by kriging (Fig. 8c).
The predictions with only auxiliary data were very similar
to the predictions made with x and y coordinates in combi-
nation with auxiliary data (compare Figs. 8c and 6a). In com-
bination with auxiliary data, both EDFs and RFsp produced

smoothing effects similar to the effect seen with OGCs in
combination with auxiliary data (compare Figs. 8e–f to 6b).
However, for EDFs the smoothing was less visible than with
OGCs and for RFsp it was more visible than with OGCs.

For the meuse dataset, OK, EDFs and RFsp produced
smooth prediction surfaces (Fig. 9). However, OGCs with-
out auxiliary data produced a prediction surface with sev-
eral abrupt, angular artifacts. The accuracy of OGCs without
auxiliary data was on par with some of the other methods,
but the maps revealed that the predictions were not realistic.
Predictions with the combined methods (RK, EDFs+AUX,
RFsp+AUX and OGCs+AUX) were mostly similar to pre-
dictions with only auxiliary data. However, in some places
these methods smoothed out the spatial patterns produced
with only auxiliary data (for example, in the northern part
of the study area), and in other places they made them more
distinct (for example, southwest of the middle of the study
area). In this regard, the results are similar to the results from
Vindum.

For the eberg dataset, predictions based only on auxiliary
data showed a very noisy spatial pattern with many soil types
occupying small, incoherent areas (Fig. 10c). The spatial pat-
terns produced with OGCs and especially EDFs were much
smoother and contained several large, rounded areas with lit-
tle internal variation in soil types (Fig. 10a and b). The pre-
dictions obtained with the combined methods were similar
to the spatial pattern obtained with only auxiliary data. How-
ever, they were much smoother as the soil types occupied
mostly coherent areas. The effect for predictions of soil types
therefore appears similar to the effect for numeric variables
seen for Vindum and meuse.

For the Swiss rainfall dataset, OK produced a smooth,
highly anisotropic prediction surface (Fig. 11a). The pre-
diction surfaces of EDFs, RFsp and OGCs also showed
anisotropy, but they were generally smoother and more
rounded. For example, with OK, some individual observa-
tions showed an effect on the prediction surface as elon-
gated spots in the direction of the anisotropy. With the other
three methods, a few individual observations showed an ef-
fect in the prediction surface, but their effects are more
rounded and less distinct. The predictions with EDFs, RFsp
and OGCs therefore appear more general than the OK pre-
dictions. Moreover, the prediction surfaces of EDFs, RFsp
and OGCs appear very similar.

3.2.3 Residuals

For the Vindum dataset, the residuals of the SOM predic-
tions had some degree of spatial dependence for all methods
except kriging (Fig. 12). This finding contrasts with Hengl et
al. (2018), who found that there was no spatial trend in the
residuals of predictions with RFsp. EDFs, RFsp and OGCs
used without auxiliary data had the most spatially dependent
residuals. However, the residuals of the combined methods
(EDFs+AUX, RFsp+AUX and OGCs+AUX) had less
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Figure 8. Prediction of soil organic matter (SOM) contents for the topsoil at Vindum using (a) kriging, or random forest models trained with
(b) Euclidean distance fields (EDFs), (c) distances to observations (RFsp), (d) auxiliary data (AUX), (e) EDFs in conjunction with AUX, or
(f) RFsp in conjunction with AUX. Easting and northing for UTM zone 32N (ETRS89).

spatial dependence than the residuals of models based only
on auxiliary data. OGCs+AUX was the machine-learning
method with the least spatially dependent residuals, although
the residuals still had more spatial dependence than kriging
residuals.

3.3 Covariate importance

For the Vindum dataset, the most important covariate from
the auxiliary data was the depth of sinks (Table 6). The most
likely reason for its high importance is the presence of a large
sink with very high SOM contents northwest of the middle
of this study area (Fig. 1). As sinks trap surface runoff, they
often have wet conditions, which give rise to peat accumula-
tion.

When used in combination with the auxiliary data, the
importance of the individual coordinate rasters varied from
0.6 % to 3.1 % of the importance of the depth of sinks, with
mean value of 1.7 %. The most important coordinate raster
had θ = 0.48π (close to a north–south axis) and was the
12th most important covariate. The sum of the importance
of the coordinate rasters was equal to 134.3 % of the impor-
tance of the depth of sinks (Table 6). Therefore, with coordi-
nate rasters at 80 different angles, the effect of the individual
rasters on the predictions was subtle, but their combined ef-
fect was strong.

Figure 13 shows the importance of the coordinate rasters
relative to θ in a way that is similar to a wind rose. The plots
repeat the bars for θ ≥ π , as the importance of a given angle

Table 6. Covariate importance of the model using OGCs in com-
bination with auxiliary data for Vindum. The importance of OGCs
represents the sum of the importance of the coordinate rasters at 80
different angles.

Covariate Importance
(variance)

OGCs 2689
Depth of sinks 2003
MRVBF 476
SAGA wetness index 170
Elevation 166
Valley depth 157
ECa 123
Slope gradient 101
Midslope position 84
NDVI 76
Plan curvature 74
SL 64
SAVI 58
Cos aspect 44
DVI 42
TWI 38
RVI 34
Flow accumulation 32
Sin aspect 32
Profile curvature 21
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Figure 9. Zinc contents predicted with each method for the meuse dataset. Easting and northing are Rijksdriehoek (RDH; Netherlands
topographical map) coordinates. (a) Ordinary kriging (OK), (b) regression kriging (RK), (c) auxiliary data (AUX), (d) Euclidean distance
fields (EDFs), (e) distances to observations (RFsp), (f) oblique geographic coordinates (OGCs), (g) EDFs combined with AUX, (h) RFsp
combined with AUX, and (i) OGCs combined with AUX.

is directionless. For example, the importance of θ = 0 (east)
is equal to the importance of θ = π (west).

Without auxiliary data, the most important coordinate
rasters had a general northwestern to southeastern angle
(Fig. 13). On the other hand, the coordinate rasters with an-
gles between a north–south and a northeast–southwest axis
had low importance. The most likely reason for this pattern
is the location of the sink with very high SOM contents to
the northwest of the middle of this study area. This creates
a large difference in the SOM contents of the northwestern
and southeastern parts of the study area, giving large im-
portance to covariates that can explain this difference. Ad-
ditionally, the northwestern side of the sink has a very steep
slope, creating a steep gradient in SOM contents in this direc-
tion. A stable variogram showed anisotropy along a north–

northeast to south–southwest axis (θ = 0.34π ), with a major
range of 136 m and a minor range of 118 m. The direction of
the anisotropy therefore coincided with the direction of the
least important coordinate rasters.

On the other hand, with OGCs in combination with aux-
iliary data, the most important coordinate rasters had tilt an-
gles close to a north–south axis (θ = 0.5π ). At the same time,
the least important coordinate rasters had tilt angles close to
a northeast–southwest axis (θ = 0.25π ). The residuals from
the predictions with only auxiliary data also displayed a de-
gree of anisotropy. A stable variogram showed anisotropy
along a northeast to southwest axis (θ = 0.21π ), with a major
range of 52 m and a minor range of 38 m. Again, the angle of
the anisotropy coincided with the angle of the least important
coordinate rasters. The spatial pattern of the residuals there-
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Figure 10. Soil types predicted with each method for the eberg dataset. Easting and northing are coordinates according to DHDN/Gauss–
Krueger zone 3 (German coordinate system). (a) Euclidean distance fields (EDFs), (b) oblique geographic coordinates (OGCs), (c) auxiliary
data (AUX), (d) EDFs combined with AUX, and (e) OGCs combined with AUX.

Figure 11. Maps of rainfall on 8 May 1986 in Switzerland predicted with each method. Northing and easting are coordinates according to
the Swiss coordinate system LV95. (a) Ordinary kriging (OK), (b) Euclidean distance fields (EDFs), (c) distances to observations (RFsp),
and (d) oblique geographic coordinates (OGCs).

fore differed from the spatial pattern of the SOM contents in
the Vindum study area. Apparently, there are unaccounted for
processes decreasing the spatial variation along a northeast–
southwest axis relative to other angles.

A possible cause of the anisotropy in the residuals may be
the plowing direction. The main plowing direction in the Vin-

dum study area is along an east–northeast to west–southwest
axis (θ = 0.18π ). This angle is nearly parallel to the angle of
the least important coordinate rasters (Fig. 14). The plowing
direction, combined with the topography, has a large impact
on soil movement, as plowing displaces soil both along and
across its direction (Lindstrom et al., 1990; De Alba, 2003;
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Figure 12. Experimental variograms for the residuals of the SOM predictions made with each method for the Vindum dataset. The variograms
use residuals from natural logarithmic-transformed SOM measurements and predictions. AUX – auxiliary data; EDFs – Euclidean distance
fields; RFsp – spatial random forest; and OGCs – oblique geographic coordinates.

Figure 13. Covariate importance of the coordinate rasters at various
angles for Vindum. (a) Importance of coordinate rasters at seven
different angles. (b) Importance of coordinate rasters at 80 different
angles used with auxiliary data (importance of auxiliary data not
shown). The sizes of the bars show the importance of the coordinate
rasters at a given angle. Bars in (b) show the sum of the importance
of coordinate rasters aggregated into 0.125π intervals.

Heckrath et al., 2006). Most of the study area has the same
plowing direction, irrespective of the topography, resulting
in up-, down- and cross-slope plowing in various parts of
the field. This creates in a complex pattern of soil redistri-
bution, which likely affects the SOM contents of the topsoil.
As downslope soil movement is strongest in the plowing di-
rection, variation in soil properties parallel to this direction
is likely to be smaller than the variation perpendicular to the
plowing direction. This corresponds to the low importance of
coordinate rasters with angles close to the plowing direction.
However, none of the auxiliary data accounted for the plow-
ing direction. This indicates that OGCs can add information
on the most likely processes affecting soil properties in an
area.

Figure 14. Orthophoto of the study area from 27 September 2016
(Esri, 2019). Sources: Esri, DigitalGlobe, Earthstar Geographics,
CNES/Airbus DS, GeoEye, USDA FSA, USGS, Aerogrid, IGN,
IGP, and the GIS User Community.

3.4 Choice of method

At Vindum, the three most accurate methods were kriging,
RFsp with auxiliary data and OGCs with auxiliary data. For
meuse, OGCs and EDFs combined with auxiliary data were
most accurate and for eberg, OGCs combined with auxiliary
data were most accurate. For the Swiss rainfall dataset, OGCs
were the most accurate method.

Although kriging was in most cases less accurate than
other methods, some soil mappers would probably still
choose it for mapping soil properties due to its computa-
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tional efficiency and conceptual simplicity. However, aside
from accuracy, an advantage of methods based on machine
learning lies in the fact that they provide larger amounts of
information than geostatistical models. Kriging in itself does
not provide information on the processes that control spa-
tial variation in soil properties, but machine-learning models
can include covariates related to soil processes, providing in-
formation on the processes that are most likely to affect the
spatial distribution of a soil property.

With spatial approaches such as EDFs, RFsp and OGCs,
researchers can incorporate feature space and geographic
space in a machine-learning model. Of the previously used
approaches, OGCs are most similar to EDFs, as they used the
x and y coordinates, and the distances to the corners of the
study area resemble the coordinates. On the other hand, RFsp
is more similar to geostatistical models, as it relies on dis-
tances between observations. However, this similarity comes
at the cost of calculating a large number of distance rasters.

One advantage of using spatially explicit covariates
(EDFs, RFsp or OGCs) is that researchers can interpret lo-
cal and spatial effects at once. In this regard, OGCs have an
advantage over EDFs and RFsp, as it is clear what the coordi-
nate rasters represent. It is less clear how researchers should
interpret distances to the corners of the study area or the dis-
tance to a specific observation. We have also shown that it is
straightforward to illustrate covariate importance of OGCs.

Furthermore, an advantage of OGCs relative to RFsp is
that OGCs required fewer covariates to achieve the same
accuracy. In fact, without auxiliary data, OGCs achieved a
higher accuracy with a smaller number of covariates for the
datasets of Vindum, meuse and Swiss rainfall. This demon-
strates a clear advantage of OGCs, as it is possible to ad-
just the number of coordinate rasters. EDFs and RFsp do not
presently have similar options.

We will stress that, as a rule, soil mappers should not use
machine-learning models relying only on spatial trends, as
EDFs, RFsp and OGCs all yielded lower accuracies with-
out auxiliary data for the soil datasets (Vindum, meuse and
eberg). Moreover, surprisingly, these methods had the most
spatially autocorrelated residuals for the Vindum dataset,
although they relied exclusively on spatial trends. The re-
sults therefore suggest that soil mappers should primarily use
these methods in combination with auxiliary data and not on
their own. If no auxiliary data are available, kriging is likely
to be a better option. However, results from the Swiss rainfall
dataset show that, for other spatial problems, auxiliary data
may be unnecessary.

4 Conclusions

We have shown in this study that the use of oblique geo-
graphic coordinates (OGCs) is a reliable method for integrat-
ing auxiliary data with spatial trends for modeling and map-
ping soil properties. In most cases, the method eliminated
the orthogonal artifacts that arise from the use of x and y co-
ordinates and achieved higher accuracies than maps created
with only two coordinate rasters. However, for meuse, with-
out auxiliary data, OGCs still produced abrupt angular arti-
facts in the final map. Soil mappers should therefore combine
OGCs with auxiliary data, as this gives higher accuracies and
spatial patterns with a higher degree of realism.

OGCs are more interpretable than previous similar ap-
proaches, and more flexible, as it is possible to adjust the
number of coordinate rasters. This should allow soil map-
pers to find a good compromise between accuracy and com-
putational efficiency for mapping soil properties, as the opti-
mal number of coordinate rasters may vary depending on the
study area and the soil property in question.

At this point, we have only tested the method for three soil
datasets and one meteorological dataset. It will therefore be
highly relevant to test the method for other soil properties
and areas. It will especially be relevant to test the method
in larger, less densely sampled areas. Previous studies have
shown that machine learning is likely to provide higher ac-
curacies in such areas (Zhang et al., 2008; Greve et al., 2010;
Keskin et al., 2019), and it will be relevant to test if this is also
the case for oblique geographic coordinates. Results from the
Vindum and the Swiss rainfall datasets also suggest that the
method can be useful for mapping variables with anisotropic
spatial distributions, and it will therefore be relevant to test
it on datasets with a high degree of anisotropy. Lastly, one
should note that we carried out this study for relatively small
areas using “flat” coordinate systems. Using OGCs for larger
areas and other coordinate systems may require alterations to
the method.

We call upon researchers within digital soil mapping to aid
us in testing oblique geographic coordinates as covariates for
additional datasets, and we have therefore made the function
for generating oblique geographic coordinates available as
an R package. Moreover, to allow other researchers to test
methods on the Vindum dataset, we have made it available
and part of the same package.
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Appendix A: Methods and results for additional
datasets

A1 Methods

A1.1 meuse

We mapped zinc contents for the meuse dataset (155 points).
The meuse dataset contains covariates including the flood-
ing frequency and the distance to the river. We added two
covariates in the form of a digital elevation model (DEM,
https://www.ahn.nl/, last access: 9 July 2020) and surface wa-
ter occurrence (Pekel et al., 2016). We converted the categor-
ical raster of flooding frequency to indicator variables and
transformed all the covariates to principal components. This
resulted in six principal components.

We tested all the methods applied to the Vindum dataset,
with the addition of regression kriging (RK). We used ran-
dom forest models trained on the auxiliary data for regression
and then kriged the residuals using the function krige.conv
from the R package geoR (Ribeiro et al., 2020). As for the
Vindum dataset, we tested each method with 100 repeated
splits into training (75 %) and test (25 %) data. For each split,
we calculated Pearson’s R2, RMSE and ccc. We carried out
pairwise t test on the accuracies obtained with each method
in order to assess if the differences between their accuracies
were statistically significant. We also produced maps with
each of the nine methods in order to compare results.

A1.2 eberg

We mapped soil types for the eberg dataset. The eberg dataset
contains 3670 soil observations. We removed points out-
side the coverage of the covariates and points without a soil
type classification. Furthermore, we removed the soil types
“Moor” and “HMoor”, as only one observation was available
for each soil type. This reduced the dataset to 2552 observa-
tions.

The eberg dataset contains covariates including the par-
ent material, a DEM, the SAGA GIS topographic wetness
index and the thermal infrared reflectance from satellite im-
agery. We converted the parent material classes to indicators
and converted all covariates to principal components. This
resulted in 11 principal components.

The dataset is highly clustered, which is likely to affect
accuracy assessments, as some areas have much higher point
densities than others. To counter this effect, we organized the
data in 100 groups using k means clustering on their coordi-
nates. We then produced 100 splits into training and test data
based on these groups. In each split, the training data con-
tained observations from 75 groups, and the test data con-
tained observations from the remaining 25 groups.

As we aimed to predict a categorical variable, we did not
use kriging. Furthermore, due to the large size of the dataset,
we did not use RFsp, as this would require us to produce
more than 2000 raster layers with buffer distances. Hengl et

al. (2018) avoided this by calculating only buffer distances
to each soil type. However, we did not choose this solution
as it would create problems for accuracy assessment. If a
raster layer contains distances to test observations and train-
ing observations, the result would be circular logic, invalidat-
ing the accuracy assessment. Buffer distances based only on
the training data would be less problematic. However, as we
used 100 repeated splits, this was not an option.

We therefore tested only five methods for the eberg
dataset, namely models based on auxiliary data (AUX), Eu-
clidean distance fields (EDFs), OGCs, and EDFs and OGCs
combined with auxiliary data.

Due to the large size of the dataset, model training was
slower than for the other datasets. We therefore tuned a ran-
dom forest model only once for each method and used the re-
sulting parameterization for all 100 data splits. For each split,
we calculated the accuracy on the test data as the fraction of
observations correctly predicted. We carried out pairwise t
tests on the accuracies obtained with each method in order to
assess if the differences between their accuracies were statis-
tically significant.

We produced maps of soil types with each of the five meth-
ods in order to compare results.

A1.3 Swiss rainfall

The Swiss rainfall dataset contains 467 rainfall observations
from Switzerland from 8 May 1986. We did not use any co-
variates for this dataset, and we therefore tested only purely
spatial methods. We tested ordinary kriging with correction
for anisotropy, EDFs, RFsp and OGCs. As for the Vindum
dataset, we tested each method with 100 repeated splits into
training data (75 %) and test data (25 %). For each split, we
calculated Pearson’s R2, RMSE and ccc. We carried out pair-
wise t tests on the accuracies obtained with each method in
order to assess if the differences between their accuracies
were statistically significant. Lastly, we produced maps of
rainfall with each of the four methods in order to compare
results.

A2 Results

A2.1 meuse

For the meuse dataset, the accuracy of OGCs combined with
auxiliary data was consistently higher than the accuracy of
OGCs without auxiliary data, irrespective of the accuracy
metric and the number of coordinate rasters (Fig. A1). The
accuracy of OGCs initially increased quickly with the num-
ber of coordinate rasters up to an optimum, after which there
was no further improvement. For OGCs+AUX, the increase
in accuracy was more gradual, up to an optimum, after which
the accuracy deteriorated slightly. The optimal number of co-
ordinate rasters without auxiliary data was six for RMSE and
ccc and eight for R2. With auxiliary data, the optimal num-
ber of coordinate rasters was 11 for RMSE and 13 for R2
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and ccc. In the subsequent analysis, we used six coordinate
rasters for OGCs without auxiliary data and 11 coordinate
rasters for OGCs with auxiliary data.

For the meuse dataset, as for the Vindum dataset, the dif-
ferences between the accuracies of the methods were gener-
ally small relative to the variation in accuracy between the
test splits (Fig. A2). Furthermore, most methods had long
tails with lower accuracies.

A2.2 eberg

For the eberg dataset, accuracy for OGCs without auxil-
iary data first increased sharply up to five coordinate rasters.
Past this point, there was little improvement in accuracy and
some numbers of coordinate rasters produced sharp, irregular
drops in accuracy (Fig. A3). Combined with auxiliary data,
the accuracy of OGCs increased up to 22 coordinate rasters,
after which they gradually declined. Without auxiliary data,
the optimal number of coordinate rasters was 91. However,
the highly irregular pattern of the accuracies did not justify
any number past the initial increase, and we therefore used
only five coordinate rasters. For OGCs combined with auxil-
iary data, we used 22 coordinate rasters.

For the eberg dataset, as for the Vindum dataset, varia-
tion in accuracy between the splits into training and test data
was in most cases greater than variation between the meth-
ods (Fig. A4). However, unlike the other datasets, the distri-
butions of the accuracies were mostly symmetric.

A2.3 Swiss rainfall

For the Swiss rainfall dataset, the accuracy of OGCs gen-
erally increased with the number of coordinate rasters
(Fig. A5). The increase in accuracy was steep at first, then
gradual. For Pearson’s R2, the optimal number of coordinate
rasters was 33 and for RMSE and ccc it was 50. There was
little change in accuracy past the optimal number of coordi-
nate rasters.

As for the other datasets, variation in accuracies on the
Swiss rainfall dataset was greater between the splits into
training and test data than between the methods (Fig. A6).
The distributions of RMSE were mostly symmetric, but the
distributions of R2 and ccc had long negative tails, as some
splits yielded much lower accuracies than other splits.
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Figure A1. Accuracy of predictions on the meuse dataset (zinc contents) versus the number of coordinate rasters with oblique geographic
coordinates, with and without auxiliary data. The values are averages obtained with 100 splits into training and test data.

Figure A2. Violin plots showing the accuracies obtained on the meuse dataset (zinc contents) with each method. The plots show values
obtained with 100 splits into training and test datasets.

Figure A3. Accuracy (percent of cases correctly predicted) of predictions on the eberg dataset versus the number of coordinate rasters
with oblique geographic coordinates (OGCs), with and without auxiliary data (AUX). The values are averages obtained with 100 splits into
training and test data.

SOIL, 6, 269–289, 2020 https://doi.org/10.5194/soil-6-269-2020



A. B. Møller et al.: Oblique geographic coordinates 287

Figure A4. Violin plot showing the accuracies obtained on the eberg dataset (percent correctly predicted) with each method. The plot shows
values obtained with 100 splits into training and test datasets.

Figure A5. Accuracy of predictions on the Swiss rainfall dataset versus the number of rasters with oblique geographic coordinates. The
values are averages obtained with 100 splits into training and test data.

Figure A6. Violin plots showing the accuracies obtained on the Swiss rainfall dataset with each method. The plots show values obtained
with 100 splits into training and test datasets.
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Code and data availability. The function for generating oblique
geographic coordinates is available as an R package at https:
//bitbucket.org/abmoeller/ogc/src/master/rPackage/OGC/ (Møller,
2019). The package also contains the SOM observations and aux-
iliary data from the Vindum dataset. Furthermore, we have made
the R code used in this study available in a public repository at
http://dx.doi.org/10.5281/zenodo.3820068 (Møller et al., 2020).
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