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Abstract. Soil classification has traditionally been developed by combining the interpretation of taxonomic
rules that are related to soil information with the pedologist’s tacit knowledge. Hence, a more quantitative ap-
proach is necessary to characterize soils with less subjectivity. The objective of this study was to develop a
soil grouping system based on spectral, climate, and terrain variables with the aim of establishing a quantita-
tive way of classifying soils. Spectral data were utilized to obtain information about the soil, and this infor-
mation was complemented by climate and terrain variables in order to simulate the pedologist knowledge of
soil–environment interactions. We used a data set of 2287 soil profiles from five Brazilian regions. The soil
classes of World Reference Base (WRB) system were predicted using the three above-mentioned variables, and
the results showed that they were able to correctly classify the soils with an overall accuracy of 88 %. To derive
the new system, we applied the spectral, climatic, and terrain variables, which – using cluster analysis – defined
eight groups; thus, these groups were not generated by the traditional taxonomic method but instead by grouping
areas with similar characteristics expressed by the variables indicated. They were denominated as “soil environ-
ment groupings” (SEGs). The SEG system facilitated the identification of groups with equivalent characteristics
using not only soil but also environmental variables for their distinction. Finally, the conceptual characteristics
of the eight SEGs were described. The new system has been designed to incorporate applicable soil data for
agricultural management, to require less interference from personal/subjective/empirical knowledge (which is
an issue in traditional taxonomic systems), and to provide more reliable automated measurements using sensors.

1 Introduction

Knowledge regarding soil has gained importance since hu-
mans learnt to cultivate the land about 10 000 years ago. The
experience gained over this period must be converted into ap-
plied knowledge to solve modern issues involving the soil. In
this respect, pedology plays a fundamental role in the under-
standing of soil formation factors and their spatial distribu-
tion. The pedologist uses their tacit and empirical knowledge
to represent the soil using names. This nomenclature is per-
formed based on a taxonomic classification system with sev-
eral rules. Soil classification nomenclature has traditionally

been achieved by combining the interpretation of soil proper-
ties; soil–landscape relations, with the support of maps, aerial
or satellite images; and the pedologist’s knowledge on soils
(Demattê and Terra, 2014). The formative elements of most
soil classes’ nomenclature do not consider climate or terrain
data, which are important factors in soil formation. There-
fore, there often seems to be no coherence, and comparison
is impaired when we try to associate the name of the soil with
the landscape. This occurs due to two factors: (a) the pedolo-
gist’s knowledge is inherent, acquired with years of learning
(which demands time), and is extremely difficult to extract in
a quantitative way; and (b) the pedologist has to follow tax-
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onomic rules. As an alternative, we need to seek sources that
aggregate the soil–landscape information into a classification
system.

One source of soil–landscape features is remote sensing
(RS) images. Over the last few decades, RS has gradually
been applied in a more quantitative way to the interpreta-
tion of soil classes (Demattê et al., 2004; Mulder et al., 2011;
Teng et al., 2018; Viscarra Rossel et al., 2016). Using digital
elevation models, it is possible to extract several terrain at-
tributes that can then be taken into consideration by a pedolo-
gist in a soil survey (Florinsky, 2012). In addition, the climate
can contribute to a general understanding of the soil (Brevik
et al., 2018) and can also assist in its quantification depending
on the scale of the study. Climate plays a fundamental role
in weathering and soil formation, while the terrain attributes
greatly influence the soil genesis. Thus, these variables are an
essential allies in the search for a better grouping and com-
prehension of the soil.

Another issue is that traditional soil classification data are
becoming increasingly challenging to obtain due to the re-
liance on pedologists’ knowledge. Moreover, the complex-
ity and the large number of soil characteristics that should
be considered in order to classify the soil profile are an-
other complication. The information about soil classification
is becoming scarce in soil libraries, and these libraries are
avid for quantitative data. As the traditional approach for ob-
taining soil classification data is insufficient, it is necessary
to develop new procedures to acquire soil information in a
more measurable way. With the advent of sensors, the collec-
tion and determination of soil data from spectral information
has become more agile, and, due to advancements in soil re-
search, the data have also become more accurate. Thus, the
application of a quantitative technique is necessary to obtain
a new system to characterize soils.

This, however, poses the question of how to combine a sys-
tem that aggregates several soil formation factors without be-
coming trapped in a taxonomy. From this question, the need
for a soil series system emerges. The concept of soil series
is based on grouping soils with homogeneous characteristics
into a system at the lowest possible level; “soil series” is a
common reference term that is used to name soil mapping
units. The USDA soil taxonomy (Soil Survey Staff, 2014) is
the only classification system hierarchy that has established
soil series. The descriptions contain properties that define the
soil series and provide a record of the soil properties needed
to prepare soil interpretations. Moreover, a soil series is an
area that has similar landscape, climate, soil characteristics
and, therefore, does not involve taxonomy. As pedology was
stuck in taxonomy for years, it has had difficulty creating
soil series due to the specificity of this new denomination, in
addition to the fear that soil series will not being easily com-
prehended by the user. However, as almost all surveys today
are quantitative, including environmental data, the possibil-
ity of a soil series system seems feasible. Therefore, when
homogeneous areas are delimited using numerous forms of

information regarding the environment, terrain, and soil, the
taxonomic nomenclature of the soil classes will no longer be
necessary. In this aspect, soil spectroscopy is essential. The
soil spectrum carries information about soil characteristics,
such as soil organic matter (OM), minerals, texture, nutrients,
water, pH, and heavy metals (Stenberg et al., 2010; Viscarra
Rossel and McBratney, 2008). Thus, proximal sensing has
made significant contributions to soil classification (Viscarra
Rossel et al., 2010) and should play a leading role in the de-
velopment of the new soil series. However, spectral data are
limited regarding all of the information needed for soil classi-
fication systems. For this reason, environmental data can con-
tribute by supplying the inherent pedologist’s knowledge in
relation to the soil landscape. Furthermore, the colour, min-
eralogy, humidity, texture and organic carbon, among other
soil properties can be acquired in any part of the world using
the same measurement protocol and equipment. Combining
this information with climatic and terrain data, it is possible
to identify areas with homogeneous characteristics.

The general objective of this study was to create a system
that would indicate how to group homogeneous soils based
on spectral information and climate, and terrain variables, in
order to devise a quantitative method for their classification.
We expect that spectral information in combination with cli-
mate and terrain data can provide sufficient information for a
specific soil to indicate a group, which is more representative
than a taxonomic classification system.

2 Material and methods

2.1 Soil data

The soil database consists of 2287 soil profiles from all five
regions of Brazil. The data were extracted from the Brazilian
Soil Spectral Library (Demattê et al., 2019). The database in-
cludes profiles of 10 soil classes, which are classified accord-
ing to World Reference Base (WRB) – FAO (IUSS, 2015):
Arenosol, Cambisol, Ferralsol, Gleysol, Histosol, Lixisol,
Luvisol, Nitisol, Planosol, and Regosol. Each soil profile had
three depths: A, 0–20 cm; B, 20–60 cm; and C, 60–100 cm.
For the statistical analyses, the spectrum of three depths were
averaged to compose a single spectrum per profile. In or-
der to balance the number of samples of each soil class, the
synthetic minority over-sampling technique (SMOTE) algo-
rithm was applied to avoid imbalance issues in the analyses
(Chawla et al., 2002).

2.2 Spectral data

The spectral data were obtained in the Geotechnologies in
Soil Science group (GeoCIS), São Paulo, Brazil, using the
FieldSpec 3 spectroradiometer (Analytical Spectral Devices
– ASD, Boulder, CO). The spectral sensor, which was used
to capture light via a fibre optic cable, was located 8 cm from
the sample surface. The sensor scanned an area of approx-
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imately 2 cm2, and a light source was provided by two ex-
ternal 50 W halogen lamps. These lamps were positioned at
a distance of 35 cm from the sample (non-collimated rays
and a zenithal angle of 30◦) with an angle of 90◦ between
them. A Spectralon standard white plate was scanned every
20 min during calibration. Two replications (one involving a
180◦ turn of the Petri dish) were obtained for each sample.
Each spectrum was averaged from 100 readings over 10 s.
The mean values of the two replicates were used for each
sample. The spectral data ranged from the visible to the near-
infrared (Vis–NIR) regions (350–2500 nm). The Savitzky–
Golay derivative (Savitzky and Golay, 1964) was applied
to the spectra with following configuration (polynomial or-
der of 2 and window size of 15). As the spectrum is highly
collinear, we only kept the wavelength every 10 nm, result-
ing in 213 wavelengths for the analysis. The soil colour vari-
ables, including hue angle (Ha), value (v), and chroma (c),
were derived from the spectrum.

We applied principal component analysis (PCA) to the
spectral data to select the scores of the principal components
(PC), and we then applied them in the model. The PC eigen-
vectors were utilized to indicate the wavelengths with the
highest contribution in the PCA. The data were not standard-
ized because all of the wavelengths were in the same units
and the differences in the variation between them was inher-
ently important. The number of PCs applied in the model was
selected in order to capture a high percentage of explained
variance and the highest amount of spectral detail possible,
as the spectral data present absorption points in different ar-
eas of the spectral curve that have distinct intensities.

2.3 Climatic and terrain variables

The climatic and terrain variables applied in the model were
extracted from different sources in order to represent the
environmental variability. The climatic variables were the
potential evapotranspiration (PotEvapoTransp), the soil wa-
ter balance (SWB), the annual temperature (AnnualTem),
and the annual precipitation (AnnualPre). The terrain vari-
ables were slope, aspect, hillshade, topographic position in-
dex (TPI), terrain ruggedness index (TRI), roughness, and a
digital elevation model (DEM). The terrain variables were
extracted from the DEM (at a 90 m spatial resolution). Fig-
ure 1 shows the locations of the soil sites in Brazil and the
variations in the annual temperature.

2.4 Supervised modelling to predict soil classes

In order to evaluate the performance of predicting soil
classes, we applied a supervised classification method. Ran-
dom forest (RF) was the algorithm selected, and a 10-fold
cross-validation setting was used. In the first modelling ap-
proach, only the PCs (derived from the spectra) were applied
as independent variables. In the second approach, we added
the climatic and terrain variables (to the PCs), and we applied

Figure 1. Location of the soil sites (soil data set) in Brazil.

RF to predict the soil classes. The purpose of the second ap-
proach was to evaluate the improvement caused by adding
climatic and terrain variables to the model. The results were
displayed using a confusion matrix and the overall accuracy
of the model. From the RF model, we were able to obtain the
importance of each variable in the classification.

2.5 Unsupervised modelling for the new classification

To derive the classification system, we needed to select the
optimal number of classes. Therefore, unsupervised classifi-
cation was performed using k-means clustering analysis. In
the first approach, we only applied the spectral data in the k-
means clustering. Thereafter, we added the climatic and ter-
rain variables to the spectral data and performed the k-means
clustering again. Using this procedure, we were able to ex-
plore the advantages/disadvantages of adding climate and
terrain data to aggregate the groups. To determine how many
clusters best described the data, i.e. the optimal number of
clusters, the Akaike information criterion (AIC) was utilized.
To calculate the AIC, we applied the “kmeansAIC” function
from the “kmeansstep” R package. This function calculates
the AIC value of a specific k-means cluster and specifies
centroids. The AIC was implemented using 1 to 15 clusters.
The data-driven analysis was performed 30 times. The over-
all model number of cluster with the lowest AIC value was
selected and was assumed to be the optimal number of clus-
ters, which, in turn, represented the most appropriate number
of spectral classes.
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2.6 Soil environmental classification

The optimal number of clusters, established using the k-
means clustering analysis, was referred to as soil environ-
ment groupings (SEGs). The association between traditional
soil classes (WRB) and the SEGs was shown by projecting
the discriminant coordinates. This procedure allowed one to
identify the homogeneity of the classes as well as the proxim-
ity of the classes and the relation between them. The correla-
tion between the soil classification and SEGs was arranged in
a table. The characterization of each SEG was performed us-
ing PCA to evaluate the relationship between the categorical
variables, including soil, climate, and terrain variables. The
spectral curves for each SEG were represented by averaging
the soils classified into the same class.

3 Results

3.1 Extracting the principal components of the spectral
data

Discrimination by PCA revealed that the first 10 PCs ac-
counted for 94.5 % of the variance (Fig. A1 in Appendix A).
In order to capture the maximum variation in the spectral
data, the first 10 PCs were used as the spectral information
to predict the traditional soil classification and to develop the
SEGs. Vasques et al. (2014) applied 20 PCs to derive the clas-
sification models. The eigenvectors of PC1–PC10 represent
the important spectral features and the contributions of the
absorbance at individual wavelengths (Fig. A2). According
to Viscarra Rossel and Webster (2011), the functional groups
of minerals and organic components that were most useful
in the discrimination of soil classes were those related to
iron oxides (hematite and goethite; 430, 495, and 570 nm),
O–H–O in 2 : 1 clay minerals (illite and smectite; 1420 and
1900 nm), organics and clay minerals (2150 nm), and Al–OH
clay minerals (gibbsite; 2250 nm). The wavelengths for these
absorption peaks are approximate. According to Bishop et al.
(2008), these peaks may shift from the expected wavelengths
because real molecules do not behave totally harmonically
when they vibrate and/or due to differences in the measure-
ment conditions and instrumentation.

3.2 Predicting traditional soil classes

The performance of the RF model showed an overall ac-
curacy of 83 % using spectral data alone (Table A1 in Ap-
pendix A). The confusion matrix and the accuracy of the RF
analysis including spectral, climatic, and terrain variables are
shown in Table 1. The overall accuracy of this classification
model using RF was superior, reaching 88 %. The values in
the matrix are the number of samples in each class allocated
by the RF model. Three soil classes showed an improve-
ment of 10 % or more in the prediction when climatic and
terrain variables were added to the model. The overall accu-
racy of Cambisol increased from 73.8 % to 83.8 %, Gleysol

increased from 84.2 % to 94.3 %, and Ferralsol presented the
largest improvement, rising from 56.3 % to 72.5 %. The RF
model with spectral, climatic, and terrain data was able to
assign the correct soil class with very good accuracy for His-
tosol, Luvisol, Planosol, Nitisol, and Gleysol, reaching val-
ues of over 94.3%. Ferralsol was the most misclassified class,
with the accuracy reaching only 72.5 %; consequently, a to-
tal of 27.8 % of profiles were reallocated to other classes
– mostly to Arenosol (14 %), Lixisol (7 %), and Regosol
(3 %), as seen in Table 1. Regosol showed a class accuracy
of 72.9 %, with most of its misclassified profiles reallocated
to Cambisol (13 %) and Ferralsol (7 %). Cambisol presented
relatively moderate class accuracy (83.8 %), with most of the
errors reallocated to Regosol (6 %). Both the Cambisol and
Regosol classes present similarities: Regosols comprise soils
in unconsolidated deposits that show little sign of pedogen-
esis and have no B horizon, and Cambisols present the be-
ginning of soil formation with weak horizon differentiation.
As for Arenosols (which had a class accuracy of 76 %), mis-
classification was predominantly observed with Ferralsols,
Lixisols, and Planosols. Lixisols (which had a class accu-
racy of 79.9 %) were also misclassified as Ferralsols (9 %)
and Arenosols (7 %), indicating that these three classes have
common soil properties. Arenosols are soils with little or no
profile differentiation with a loamy sand or coarser texture
class; the majority of Ferralsols in the current data set con-
tained high sand content; and the same was found for Lix-
isols. The latter two soil classes presented sandy characteris-
tics because they are predominantly derived from sandstone
rocks. Thus, the three above-mentioned classes were not well
distinguished by the model. Overall, not all misclassifica-
tions were negative as some classes are very similar with re-
spect to their properties and use, although other classes were
radically different.

3.3 Variable importance from the soil classification
model

The importance of variables derived from the RF model are
represented in Fig. 2. The variable importance of the spectral
data is represented using 10 PCs. PC1 presented a variable
importance of more than 50 % with respect to discriminat-
ing almost all of the soil classes, with the exception of Cam-
bisol. PC1 also showed a significant contribution to distin-
guishing soils with an absorption effect in the visible region
(380 to 740 nm), where the characteristics of iron oxide are
present (Fig. A2). Furthermore, it exhibited important bands
related to hydroxyl bonds (1420 and 1900 nm) and organics
and clay mineral peaks (2150 and 2250 nm). The remaining
PCs showed important bands related to the same features but
with varying intensity. Ferralsols and Nitisols are associated
with iron oxides in the visible region of the spectrum, where
PC1 showed a high contribution (Fig. A2). Planosols contain
a high clay content in the subsurface horizon, which indicates
the presence of clay minerals. Histosols are rich in organic
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Table 1. Confusion matrix and accuracy of soil classification model (World Reference Base, WRB) using spectral, climatic, and terrain data.

WRB Arenosol Cambisol Ferralsol Gleysol Histosol Lixisol Luvisol Nitisol Planosol Regosol

Arenosol 180 1 31 0 0 15 0 0 0 1
Cambisol 0 192 7 9 0 3 0 0 0 30
Ferralsol 27 6 166 0 0 21 0 1 0 16
Gleysol 0 4 1 215 0 1 0 0 2 6
Histosol 0 1 0 1 229 0 0 0 0 2
Lixisol 13 4 16 2 0 183 0 1 1 3
Luvisol 0 1 0 0 0 3 228 0 0 0
Nitisol 0 4 7 0 0 2 0 226 0 0
Planosol 9 2 0 1 0 1 0 0 223 4
Regosol 0 14 1 0 0 0 0 0 3 167

Total number of profiles 229 229 229 228 229 229 228 228 229 229
Class accuracy (%) 78.6 83.8 72.5 94.3 100 79.9 100 99.1 97.4 72.9
Overall accuracy (%) 88

minerals, which are presented in PC1 (Fig. A2). These soil
classes were those with higher variable importance consider-
ing the spectral data (PC1 accounted for 47 % of the variance;
Fig. A2). As the variance explained in the PCs decreased, so
did their importance in the classification.

The soil colour is one of the main soil properties that in-
fluences the soil spectral response. The variables express-
ing the colour characteristics of the soils are Ha, v, and c.
The colour, specifically Ha and v, is important to discrimi-
nate Nitisols, which are heavy, weathered tropical soils that
are red in colour and have a lower overall reflectance. Hill-
shade, TPI, roughness, aspect, and TRI showed relatively low
to medium importance for all of the classes, although they
were most significant for distinguishing the Planosols. As
Planosols are comprised of impermeable subsoil with signif-
icantly more clay in the subsurface horizon and are typically
located in seasonally waterlogged flat areas, these terrain
variables were able to discriminate them. The DEM showed
high importance for Lixisols and low importance for Ferral-
sols, which indicates that the Ferralsols are located in differ-
ent sections of the landscape and are not limited to a certain
altitude; thus, the high DEM range negatively affected the
importance of this variable with respect to predicting Fer-
ralsols. PotEvapoTransp was most important for Arenosols:
as this soil class has a high sand content, especially in the
surface horizon, the PotEvapoTransp is elevated, which con-
tributed to their discrimination. SWB was an important vari-
able with respect to discriminating Lixisols and Arenosols.
Lixisols are soils with a subsurface accumulation of low-
activity clay and a high base saturation, which means that
they are moderately drained (due to the argic horizon); thus,
they may present a low water retention capacity. SWB refers
to the amount of water held in the soil. Because Lixisols
are soils that can hold a limited amount of water, there is
a risk of percolation at depth or runoff under high precipita-
tion conditions. For Arenosols, the high content of the sand
fraction throughout the profile contributed to a high impor-

tance of SWB with respect to predicting this class. The tem-
perature was important to discriminate Cambisols, as these
soils were mostly located in the south and southeast regions
of Brazil, where the average annual temperature is low. The
annual precipitation was an important variable for Lixisols
and Gleysols, as high precipitation is associated with a high
soil moisture content, and these two soils have an imperme-
able subsurface horizon condition, superficial water reten-
tion, and, consequently, high soil moisture.

3.4 Developing the soil environmental classification

The lowest AIC value was found with eight clusters
(Fig. A3), which represent the best spectra categorization.
This means that the optimal number of cluster for the current
data set is eight. Subsequently, the k-means clustering was
performed using an unsupervised classification method ap-
plying eight groups. Firstly, the discriminant coordinate pro-
jection, from the clustering analysis using only the spectral
data, showed the distribution of the eight SEGs (Fig. 3). The
soil classes located on the left side of Fig. 3 were soils with
less weathering, such as Histosols and Regosols (far left) fol-
lowed by Planosols, Gleysols, and Cambisols. On the right
side of Fig. 3, we find Ferralsols and Nitisols, which are the
more weathered soils. In general, the intermediately weath-
ered soils, such as Luvisols, Lixisols, and Arenosols were
located in the centre. This tendency proves that the spec-
tral data were able to discriminate between soils in different
stages of weathering. Arenosols can be considered as soils
with a low level of weathering. However, in the Fig. 3, they
were close to the Ferralsol and Nitisol classes (Fig. 3). This
occurred because both Arenosols and Ferralsols have high
sand contents; thus, the spectral curves of both soil classes
present soil properties with high similarities.

Because the number of soil classes is greater than the num-
ber of SEGs, it is expected that some soil classes will be
allocated in the same SEGs. The association between the
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Figure 2. Variable importance for each soil class derived from the model using spectral, climatic, and terrain data.

Figure 3. Projection of the discriminant coordinates showing the soil classification and soil environment groupings (SEGs) applying only
spectral data for all samples. The circle with the number inside it represents the centre of the SEG.

traditional soil classes and the SEGs is shown in Table 2.
Arenosols showed the highest correspondence with SEG 1.
SEG 2 was associated with Cambisols. SEG 3 was asso-
ciated with Regosols, Planosols, and Gleysols. SEG 4 pre-
sented high correspondence with Nitisols. SEG 5 had a high
equivalence with Planosols followed by the Gleysols. SEG 6
was highly correlated with Histosols. SEG 7 was correlated
with Ferralsols, although a great quantity of Nitisol sam-
ples was also correlated with this SEG. Lastly, SEG 8 pre-

sented the highest correspondence with Luvisols. Lixisols
did not have a predominant SEG, although they were asso-
ciated with SEG 1. SEG 3 and 5 were associated with the
Regosol, Planosol, and Gleysol soil classes. SEG 4 and 7 also
displayed a correlation but, in this case, only with Ferralsols
and Nitisols.

Subsequently, the clustering analysis using spectral, cli-
matic, and terrain data was performed. The projection of the
discriminant coordinates showed that climate and terrain data
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Table 2. Correlation between soil classification (World Reference Base, WRB) and soil environment grouping (SEG) using only spectral
data.

SEG WRB

Arenosol Cambisol Ferralsol Gleysol Histosol Lixisol Luvisol Nitisol Planosol Regosol

1 113 54 47 26 0 63 0 6 0 20
2 32 53 12 23 0 22 26 0 23 21
3 15 24 1 74 8 5 0 2 105 116
4 28 8 40 4 0 42 0 113 0 4
5 16 53 4 58 54 21 0 0 71 26
6 1 9 0 27 167 2 0 0 12 33
7 23 5 123 16 0 47 0 107 0 3
8 1 23 2 0 0 27 202 0 18 6

revealed that the SEGs were more gathered (Fig. 4) com-
pared with the clustering analysis with only spectral data
(Fig. 3). SEG 1 and 3, which mainly corresponded to the Fer-
ralsol, Nitisol, and Lixisol classes, had a more widespread
distribution of samples (Fig. 4). This arrangement was also
observed in the correlation between soil classes and SEGs
using only spectral data (SEG 7, Table 2). Two soils were
associated with SEG 2: Luvisols and Planosols (Table 3).
SEG 3 showed a correlation with Cambisols and Nitisols.
SEG 4 only showed 42 observations, which mostly belonged
to Gleysols and a few Histosols. These soils were grouped
into a specific SEG because they are found in flat areas with
DEM values close to sea level that have a very high annual
temperature and precipitation compared with the Gleysols
clustered in SEG 6. SEG 5 presented a high correspondence
with Arenosols and, as in the analysis with only the spectra,
also showed a correlation with Ferralsols (SEG 1, Table 2).
SEG 6 showed a high association with Gleysols. SEG 7 was
formed by Histosols, and SEG 8 was made up of Regosols.
The climate and terrain variables were able to better discrim-
inate SEGs, although some soils were located far from the
centre of the class. These may have had similar properties to
other groups but were not similar enough to fit into them.

4 Discussion

Vis–NIR spectroscopy is a technique that has the advantage
of being faster and cheaper than the traditional soil anal-
ysis, and it enables important soil classification prediction
to be acquired in situ (Debaene et al., 2017). Teng et al.
(2018) demonstrated the benefit of the technique by updating
the Australian Soil Classification with spectroscopic predic-
tions that showed similar or better correspondence for some
classes. In this study, the 10 PCs carried sufficient spectral
information to suitably classify the soil – as indicated by
the overall accuracy of 83 % for the RF calibration model.
Vasques et al. (2014) applied 20 PCs in their study to clas-
sify the soil orders, and they achieved an overall accuracy
of 91.6 % and 67.4 % for calibration and validation respec-

tively. The prediction of traditional soil classes applying only
spectral data in this study is considered excellent prediction
performance. However, when we added climatic and terrain
data into the calibration model (which are utilized as comple-
mentary data with the objective of incorporating the pedol-
ogist’s impersonal knowledge on environmental factors) an
improvement in the prediction of soil classes is observed
(overall accuracy of 88 %). This result shows that aggregat-
ing soil–landscape information into a classification system
assists the traditional soil system. Depending on the size of
the study area and the characteristics of the study, such an
addition may not be beneficial, as climatic and terrain data
are time-consuming to assemble and are not practical in a
sense. Chen et al. (2019) verified the potential of adding aux-
iliary soil information including colour, OM, and texture for
modelling at the soil order level. They concluded that includ-
ing such information improved the accuracy of the classifi-
cation model, although more auxiliary information might be
needed for better classification. In general, elevation, slope,
and relief were the most important terrain predictors in the
soil classification according to Teng et al. (2018), and ele-
vation was the most important for hydromorphic soils. These
result corroborate the findings of the current study where ele-
vation was an important variable for Gleysols and Planosols.

Ferralsols, Nitisols, and Lixisols showed similarity and
were misclassified; therefore, they were grouped into the
same SEG. However, according to International Soil Clas-
sification system of the FAO (IUSS, 2015), these three soils
are distinct in terms of diagnostic horizons, properties, and
materials. For instance, Nitisols have a nitic horizon, low-
activity clay, P fixation, many Fe oxides, and are strongly
structured, whereas Ferralsols present a ferralic horizon and
kaolinite and iron oxides are dominant. These classification
differences are considered challenging, requiring careful ob-
servation by the pedologist during the field survey. This oc-
curs because both soils are very similar in terms of proper-
ties, and the spectra tend to have similar shape. The spectral
features of Ferralsol and Nitisol showed remarkable similar-
ities with respect to the entire spectral shape and the position
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Table 3. Correlation between soil classification (World Reference Base, WRB) and soil environment groupings (SEGs) using spectral,
climatic, and terrain data.

SEG WRB

Arenosol Cambisol Ferralsol Gleysol Histosol Lixisol Luvisol Nitisol Planosol Regosol

1 53 8 146 13 18 160 0 114 9 15
2 21 6 0 0 0 42 228 0 174 2
3 0 121 11 23 34 6 0 109 0 24
4 0 0 0 30 10 0 0 0 0 2
5 155 12 69 0 0 16 0 5 0 13
6 0 31 2 137 16 0 0 0 0 18
7 0 12 1 24 150 4 0 0 5 10
8 0 39 0 1 1 1 0 0 41 145

Figure 4. Projection of the discriminant coordinates showing the soil classification (World Reference Base, WRB) and soil environment
groupings (SEGs) applying spectral, climatic, and terrain data. The circles with the numbers in them represent the centre of the SEGs.

of absorbance features. As a consequence, Vis–NIR spec-
troscopy was not able to recognize the underlying spectral
patterns of each soil class. The main properties that influence
their spectral response is the soil colour, which is an impor-
tant characteristic used as a criterion in soil type identifica-
tion (Marques et al., 2019). The colour is usually determined
visually in the field by a soil expert. As soil spectral mea-
surements in the visible range are related to attributes such as
soil OM, minerals, texture, nutrients, and water, soil colour
can be determined using spectroscopic data. In general, as
they result from strong weathering, tropical soils are rich
in iron oxides with a high hematite content; consequently,
they are red in colour and have a lower overall reflectance.
In addition, the majority of the soils studied developed from
sandstone (sedimentary rock). According to Bellinaso et al.

(2010), the distinction between Ferralsols and Nitisols based
on the spectrum is very difficult, and their differences are
mostly morphological. This agrees with Terra et al. (2018)
and Vasques et al. (2014), who found the same misclassifica-
tion of Nitisols for Ferralsols in 80 % of the profiles.

Some classes share many soil properties and even environ-
mental characteristics; consequently, they are more difficult
to distinguish. However, other soils are relatively distinctive;
therefore, it is possible to categorize them into a particular
SEG. Soil type differentiation based on the Vis–NIR spectra
predominantly takes the soil properties such as colour, iron
oxides, clay minerals, carbonates, and OM into considera-
tion. According to Viscarra Rossel and Webster (2011), Vis–
NIR can be used for the discrimination and identification of
soils when distinguishable mineral and organic characteris-
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tics are present in the spectra. Planosols and Gleysols could
be arranged into the same SEG due to their similar soil prop-
erties; however, they were assembled in distinct SEG. Both
soils occur in seasonally waterlogged areas that are poorly
drained and saturated with water for long periods, and they
are greyish, blueish, reddish, and yellowish in colour. The
main distinction between them is that the Planosols have an
abrupt textural difference in the first 100 cm of soil surface.
Gleysols have gleyic properties throughout the entire pro-
file. Histosols were also discriminated into a particular SEG.
This demonstrates that organic soils are very unique, as they
present surface horizons that rich in OM and the B horizons
are dominated by accumulated organic compounds, resulting
in dark coloured soils. In the discrimination of Australian soil
classes using Vis–NIR spectra, Viscarra Rossel and Webster
(2011) were also successfully able to differentiate Histosols
from the other soils.

For practical applications (land use and agricultural man-
agement), the arrangement of certain classes with similar
chemical, physical, and/or morphological characteristics is
not detrimental, as the decisions regarding these soils are
usually very similar, with only minor changes in specific sit-
uations (Vasques et al., 2014). Some of the differences be-
tween the traditional soil classes are mainly based on spe-
cific soil properties, whereas others are based more on mor-
phological field determination. For instance, the difference
between Ferralsols and Nitisols is minimal, and for the new
generation of pedologists this distinction is somewhat tricky.
We are not claiming that the role of the pedologist is not im-
portant; on the contrary, there is no way to eliminate it. How-
ever, in the case of field evaluations related the soil environ-
ment, the importance of empirical process increases; when it
comes to modelling or digital mapping, this significance di-
minishes. In terms of agricultural management under natural
conditions, Nitisols can provide greater agricultural produc-
tion, but this may vary for a number of reasons; therefore,
these two classes present practically no management distinc-
tions. For some other classes, such as Cambisols, the clas-
sification requires that the pedologist is able to distinguish
whether sufficient pedogenesis is present in the subsurface
layer in order to qualify it as Cambic horizon.

The current soil classification system is quite specific to
our set of soil classes. However, we understand the impor-
tance of covering the greatest possible number of soil classes.
Thus, we encourage further research with a larger and more
diverse range of soil types, possibly on a global scale. De-
spite this, the SEC system demonstrated substantial progress
regarding the grouping of soils and the utilization of cli-
matic and terrain variables that relate to soil–environmental
information. As soil formation is dependent on environmen-
tal factors, we included climatic and terrain data in order to
simulate the tacit knowledge of the soil–landscape relation-
ship that is offered by pedologists, who derive traditional soil
classification. Indeed, a taxonomic system has as vantage re-
garding communication within the community, but it fails

Figure 5. Generalized relationship between the variable and the soil
environment grouping (SEG).

to describe a homogeneous area where environmental fac-
tors play a role. This leads us to indicate the importance of
grouping areas with similar characteristics and dealing with
the taxonomic situation using the strong computational sys-
tems available. Thus, there is a difference between taxonomic
classification as it is currently used and the proposed group-
ing areas, which are more related to the soil series.

This study sought to develop a quantitative system to
group similar soils as an alternative to the traditional taxo-
nomic strategy. The addition of climate and terrain data was
beneficial and allowed for SEGs to be better distinguished.
Certainly, this is an important indicator of discrepancies in
pedologist field observations. In many situations, a same tax-
onomic soil can be found in very different reliefs. This is a
typical situation where soil series would be able to distin-
guish them, as would SEGs. Moreover, the eight SEGs can
be individually categorized by observing their soil, climate,
and terrain properties. The generalized relationship between
the SEG classes and these properties are shown in Fig. 5. The
results show that the proposed classification system could
group soils with similar properties. Thus, this study can assist
the universal soil system, while demanding less interference
from soil analysis, less personal/subjective data, and a higher
use of automated devices (such as sensors). Figure 6 shows
the shapes of each spectral curve for all of the SEGs.

In summary, we briefly describe the concept and charac-
terization of each SEG.

– SEG 1 refers to soils with a high sand, medium clay,
and low silt content; a medium organic carbon content;
low fertility; an annual temperature of around 22 ◦C; a
high annual precipitation, soil water balance, and poten-
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Figure 6. Generalized continuum removal reflectance curve of each soil environment grouping (SEG).

tial evapotranspiration; which are located at a medium
elevation.

– SEG 2 refers to soils with a low sand and medium
clay and silt content; a medium organic carbon content;
low fertility; an annual temperature of around 23 ◦C; a
low annual precipitation and soil water balance, with a
medium potential evapotranspiration; which are located
at a medium elevation.

– SEG 3 refers to soils with similar sand and clay con-
tents (medium) and a low silt content; a high organic
carbon content; medium fertility; an annual tempera-
ture of about 20 ◦C; a high annual precipitation and soil
water balance, with a medium potential evapotranspi-
ration; which are located at high elevation (in irregu-
lar/roughness areas).

– SEG 4 refers to soils with a low sand content and
medium clay and silt contents; a low organic carbon
content; high fertility; a high annual temperature of
around 26 ◦C; a high annual precipitation, soil water
balance and potential evapotranspiration; which are lo-
cated at low elevation.

– SEG 5 refers to soils with a high sand content and low
clay and silt contents; a low organic carbon content; low
fertility; an annual temperature of around 22 ◦C; high
annual precipitation, soil water balance, and potential
evapotranspiration; which are located at high elevation.

– SEG 6 refers to soils with a low sand, high clay, and
medium silt content; a low organic carbon content;
high fertility; an annual temperature of around 21 ◦C; a
high annual precipitation and soil water balance, with a

medium potential evapotranspiration; which are located
at low elevation.

– SEG 7 refers to soils with a high sand content and
low clay and silt contents; a high organic carbon con-
tent; high fertility; a high annual temperature of around
23 ◦C; a medium annual precipitation, high soil wa-
ter balance, and low potential evapotranspiration; which
are located at low altitudes.

– SEG 8 refers to soils with a relatively balanced sand,
silt, and clay content, a high organic carbon content; low
fertility; a low annual temperature of around 19 ◦C; a
high annual precipitation and soil water balance, with
a low potential evapotranspiration; which are located at
low elevation.

5 Conclusions

We proposed a quantitative soil grouping system that takes
spectral, climate, and terrain variables into consideration.
The system was designated as soil environment groupings
(SEGs). The system initially indicated a strong relationship
with current soil classification (WRB classification system);
however, we observed that many different soil classes were
inserted into the same group after running the SEG. This oc-
curred because the traditional taxonomic system is sealed
and can, therefore, deviate from what is actually observed.
The SEG system could define eight groups according to the
AIC criteria and clustering analysis. Soil classes such as
Ferralsols and Nitisols share many soil and environmental
characteristics, which are difficult to distinguish. However,
other soil classes, such as Histosols, are relatively distinc-
tive; thus, it was possible to categorize them into a particular
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SEG. This innovative soil system facilitated the identifica-
tion and grouping of soils with similar characteristics due to
the use of environmental variables. We believe that this clas-
sification system can provide the extra information needed
for a better understanding of soils in addition to their sus-
tainable management. The development of soil systems such
SEG can assist in the distinction of soil types and serve as
a new soil data source. The present system follows the pre-
existing soil series system which did not gain traction due to
several difficulties, including repeatability by different users
and its communication between communities. However, ow-
ing to the strong computing systems, algorithms, statistical
packages, spectral libraries, remote sensing and environmen-
tal data (free or open sources) now available, quantitative
knowledge has become possible. Therefore, we believe that
a soil series system (such as the one proposed here) has the
potential to group and discriminate soils.
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Appendix A: Supplementary data

Figure A1. Cumulative variance explained for the 10 PCs.

Figure A2. The important spectral features and the contributions of individual wavelengths for PC1–PC10.
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Figure A3. The AIC criteria showing that the lowest value was found with eight clusters.

Table A1. Confusion matrix and accuracy of soil classification model (World Reference Base, WRB) using only spectral data.

WRB Arenosol Cambisol Ferralsol Gleysol Histosol Lixisol Luvisol Nitisol Planosol Regosol

Arenosol 174 4 29 0 0 17 0 0 0 1
Cambisol 4 169 8 9 0 5 0 0 0 30
Ferralsol 18 14 129 4 0 21 0 4 0 11
Gleysol 5 10 3 192 0 5 0 0 0 10
Histosol 0 3 0 4 228 1 0 0 0 4
Lixisol 20 3 33 1 0 167 0 1 1 5
Luvisol 1 0 0 0 0 5 228 0 0 0
Nitisol 0 4 26 0 0 3 0 222 0 0
Planosol 7 4 0 9 1 5 0 0 228 4
Regosol 0 18 1 9 0 0 0 0 3 164

Total number of profiles 229 229 229 228 229 229 228 228 229 229
Class accuracy (%) 76.0 73.8 56.3 84.2 100 72.9 100 97.4 99.6 71.6
Overall accuracy (%) 83.14
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