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Abstract. Soil is an important regulator of Earth system processes, but remains one of the least well-described
data layers in Earth system models (ESMs). We reviewed global soil property maps from the perspective of
ESMs, including soil physical and chemical and biological properties, which can also offer insights to soil data
developers and users. These soil datasets provide model inputs, initial variables, and benchmark datasets. For
modelling use, the dataset should be geographically continuous and scalable and have uncertainty estimates.
The popular soil datasets used in ESMs are often based on limited soil profiles and coarse-resolution soil-type
maps with various uncertainty sources. Updated and comprehensive soil information needs to be incorporated
into ESMs. New generation soil datasets derived through digital soil mapping with abundant, harmonized, and
quality-controlled soil observations and environmental covariates are preferred to those derived through the
linkage method (i.e. taxotransfer rule-based method) for ESMs. SoilGrids has the highest accuracy and resolution
among the global soil datasets, while other recently developed datasets offer useful compensation. Because there
is no universal pedotransfer function, an ensemble of them may be more suitable for providing derived soil
properties to ESMs. Aggregation and upscaling of soil data are needed for model use, but can be avoided by
using a subgrid method in ESMs at the expense of increases in model complexity. Producing soil property maps
in a time series still remains challenging. The uncertainties in soil data need to be estimated and incorporated
into ESMs.

1 Introduction

Soil or the pedosphere is a key component of the Earth
system, and plays an important role in water, energy, and
carbon balances and other biogeochemical processes. An
accurate description of soil properties is essential in mod-
elling the capability of Earth system models (ESMs) to pre-
dict land surface processes at the global and regional scales
(Luo et al., 2016). Soil information is required by land
surface models (LSMs), which are a component of ESMs.
With the aid of computer-based geographic systems, many
researchers have produced geographical databases to orga-

nize and harmonize large amounts of soil information gener-
ated from soil surveys during recent decades (Batjes, 2017;
Hengl et al., 2017). However, soil datasets used in ESMs are
not yet well updated or well utilized (Sanchez et al., 2009;
FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). The popular soil
datasets used in ESMs are outdated and have limited accu-
racies. Some soil properties, such as gravel (or coarse frag-
ment) and depth to bedrock, are not utilized in most ESMs.
The ESMs’ schemes and structures must be changed to rep-
resent soil processes in a more realistic manner when utiliz-
ing new soil information (Oleson et al., 2013; Brunke et al.,
2016; Luo et al., 2016). For example, Brunke et al. (2016)
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incorporated the depth-to-bedrock data into a land surface
model using variable soil layers instead of the previous con-
stant depth. Better soil information with a high resolution and
better representation of soil in models has improved and will
improve the performance of simulating the Earth system (e.g.
Livneh et al., 2015; Dy and Fung, 2016; Kearney and Maino,
2018).

ESMs require detailed information on the physical, chem-
ical, and biological properties of the soil. Site observations
(called soil profiles) from soil surveys include soil properties
such as soil depth, soil texture (sand, silt, and clay fractions),
organic matter, coarse fragments, bulk density, soil colour,
soil nutrients (carbon, C; nitrogen, N; phosphorus, P; potas-
sium, K; and sulfur, S), amount of roots, and so on. The range
of soil data collected during a soil survey varies with scale,
country, or regional specifications and projected applications
of the data (i.e. type of soil surveys, routine versus specifi-
cally designed surveys). As a result, the availability of soil
properties differs in different soil databases. However, soil
hydraulic and thermal parameters as well as biogeochemical
parameters are usually not observed in soil surveys, which
need to be estimated by pedotransfer functions (PTFs) (Looy
et al., 2017). This review focuses on soil data (usually single-
point observations at a given moment in time) from soil sur-
veys, while variables such as soil temperature and soil mois-
ture are beyond the scope of this paper.

Soil properties function in three aspects in ESMs.

1. Model inputs to estimate parameters. The soil ther-
mal (soil heat capacity and thermal conductivity) and
hydraulic characteristics (empirical parameters of the
soil water retention curve and hydraulic conductivity)
are usually obtained by fitting equations (PTFs) to eas-
ily measured and widely available soil properties, such
as sand, silt, and clay fractions, organic matter con-
tent, rock fragments, and bulk density (Clapp and Horn-
berger, 1978; Farouki, 1981; Vereecken et al., 2010; Dai
et al., 2013). Soil albedos are significantly correlated
with the Munsell soil colour value (Post et al., 2000).
For some ESMs, the parameters derived by PTFs are
used as direct input instead of being calculated in the
models.

2. Initial variables. The nutrient (C, N, P, K, S, and so on)
amounts and the nutrients’ associated parameters (pH,
cation-exchange capacity, etc.) in soils can be used to
initialize the simulations. Generally, their initial values
are assumed to be at steady state by running the model
over thousands of model years (i.e. spin-up) until there
is no change trend in pool sizes (McGuire et al., 1997;
Thornton and Rosenbloom, 2005; Doney et al., 2006;
Luo et al., 2016). To initialize nutrient amounts using
soil data derived from observations as background fields
could largely reduce the times of model spin-up, and
could avoid the possibility of a non-linear singularity
evolution of the model, which means that the models

may have multiple equilibria and then provide a better
estimate of the true terrestrial nutrient state. The ini-
tial nutrient stocks’ settings are major factors leading to
model-to-model variation in simulation (Todd-Brown et
al., 2014).

3. Benchmark data. Soil data, as measurements, could
serve as a reference for model calibration, validation,
and comparison. Soil carbon stock is one of the soil
properties that is most frequently used as benchmark
data (Todd-Brown et al., 2013). Other nutrient stocks,
such as nitrogen stock, can also be used as benchmark
data if an ESM simulated these properties.

Soil properties have great spatial heterogeneity both hor-
izontally and vertically. As a result, ESMs usually incorpo-
rate soil property maps (i.e. horizontal spatial distribution)
for multiple layers rather than a global constant or a single
layer. ESMs, especially LSMs, are evolving towards hyper-
resolutions of 1 km or finer with more detailed parameter-
ization schemes to accommodate the land surface hetero-
geneity (Singh et al., 2015; Ji et al., 2017). Therefore, spa-
tially explicit soil data at high resolutions are necessary to
improve land surface representations and simulations. Be-
cause soil properties are observed at individual locations,
soil mapping or spatial prediction models are needed to de-
rive a 3-D representation of the soil distribution. The tradi-
tional method (i.e. the linkage method, also called the taxo-
transfer rule-based method) involves linking soil profiles and
soil mapping units on soil-type maps, sometimes with ancil-
lary maps such as topography and land use (Batjes, 2003;
FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). In recent decades,
various digital soil mapping technologies have been pro-
posed by finding the relationships between soil and environ-
mental covariates (usually remote sensing data), such as cli-
mate, topography, land use, or geology (McBratney et al.,
2003).

There are many challenges related to the application of soil
datasets in ESMs. First, soil datasets are usually not appro-
priately scaled or formatted for the use of ESMs, and some
upscaling issues, which are the most frequently encountered,
need to be addressed. The soil datasets produced by the link-
age methods are polygon-based and need to be converted to
fit the grid-based ESMs. This conversion can be performed
by either the subgrid method or spatial aggregation. The up-
to-date soil data are provided at a resolution of 1 km or finer,
while the LSMs are mostly run at a coarser resolution. There-
fore, soil data upscaling is necessary before it can be used by
ESMs. Proper upscaling methods need to be chosen carefully
to minimize the uncertainty introduced by these methods in
the modelling results (Hoffmann et al., 2016; Kuhnert et al.,
2017). Second, all the current global soil datasets represent
the average state of the last decades, and the production of
soil property maps in a time series is still challenging. Soil
landscape and pedogenic models are developed to simulate
soil formation processes and soil property changes, which
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can be incorporated into ESMs. The prediction of changing
soil properties can also be performed by digital soil mapping
using the changing climate and land use as covariates. Third,
the uncertainty in the soil properties can be estimated, and
adaptive surrogate modelling based on statistical regression
and machine learning may be used to assess the uncertainty
effects of soil properties on ESMs (Gong et al., 2015; Li et
al., 2018). Finally, the layer schemes of soil datasets need to
be converted for model use, and missing values for deeper
soil layers need to be filled.

This paper is organized into the following sections. In
Sect. 2, we first introduce soil datasets produced by the link-
age method and digital soil mapping technology at global
and national scales, and then we introduce the soil datasets
that have already been incorporated into ESMs, and we also
present PTFs that are used in ESMs to estimate soil hy-
draulic and thermal parameters. In Sect. 3, several global soil
datasets are compared and evaluated with a global soil profile
database. In Sect. 4, two issues regarding the model use of
soil data are described and existing challenges related to the
application of soil datasets in ESMs are discussed. In Sect. 5,
a summary and the outlook of further improvements are pro-
vided.

2 General methodology of deriving soil datasets for
ESMs

2.1 Global and national soil datasets

Two kinds of soil data are generated from soil surveys: maps
(usually in the form of polygon maps) representing the main
soil types in landscape units and soil profiles with soil prop-
erty measurements which are considered to be representative
of the main component soils of the respective mapping units.
ESMs usually require the spatial distribution of soil proper-
ties (i.e. soil property maps) rather than information about
soil types. Two kinds of methods, i.e. the linkage method
and the digital soil mapping method, are used to derive the
soil property maps.

Soil maps (the term soil map refers to soil-type map in
this paper) show the geographical distribution of soil types,
which are compiled under a certain soil classification sys-
tem. There are many soil mapping units (SMUs) in a soil
map and an SMU is composed of more than one component
(i.e. soil type) in most cases. At the global level, there is
only one generally accepted global soil map, i.e. the FAO-
UNESCO Soil Map of the World (SMW) (FAO, 1981). The
SMW was made based on soil surveys conducted between
the 1930s and 1970s and technology that was available in the
1960s. Several versions exist in digital format (FAO, 1995,
2003b; Zöbler, 1986) and these products are known to be
outdated. The information on the initial SMW and DSMW
has since been updated for large sections of the world
in the Harmonized World Soil Database (HWSD) prod-

uct (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012), which has re-
cently been revised in WISE30sec (Batjes, 2016).

At the regional and national levels, there are many soil
maps based on either national or international soil classifi-
cations. Some examples of major soil maps available in dig-
ital formats are as follows: the Soil and Terrain Database
(SOTER) databases (Van Engelen and Dijkshoorn, 2012) for
different regions, the European Soil Database (ESB, 2004),
the 1 : 1 million Soil Map of China (National Soil Survey Of-
fice, 1995), the US General Soil Map (GSM), the 1 : 1 million
Soil Map of Canada (Soil Landscapes of Canada Working
Group, 2010), and the Australian Soil Resource Information
System (ASRIS) (Johnston et al., 2003).

Soil profiles are composed of multiple layers called soil
horizons. For each horizon, soil properties are observed (e.g.
site data) or measured (e.g. pH, sand, silt, and clay content).
At the global level, several soil profile databases exist. Here,
we discuss only the two most comprehensive databases.
The World Inventory of Soil Emission Potentials (WISE)
database was developed as a homogenized set of soil pro-
files (Batjes, 2008). The newest version (WISE 3.1) contains
10 253 soil profiles and 26 physical and chemical proper-
ties. The soil profile database of the World Soil Information
Service (WoSIS) contains the most abundant profiles (about
118 400) from national and global databases, including most
of the databases mentioned below (Batjes et al., 2017), al-
though only a selection of important soil properties (12) is
included (Ribeiro et al., 2018). Data from WoSIS have been
standardized, with special attention to the description and
comparability of soil analytical methods worldwide. How-
ever, many countries, while having a large collection of soil
profile data, are not yet sharing such data (Arrouays et al.,
2017).

At the regional and national levels, there are many soil pro-
file databases, usually with soil classifications correspond-
ing to the local soil maps, and here are some examples: the
USA National Cooperative Soil Survey Soil Characteriza-
tion database (http://ncsslabdatamart.sc.egov.usda.gov/, last
access: 3 July 2019), profiles from the USA National Soil In-
formation System (http://soils.usda.gov/technical/nasis/, last
access: 3 July 2019), the Africa Soil Profiles database
(Leenaars, 2012), the ASRIS (Karssies, 2011), the Chinese
National Soil Profile database (Shangguan et al., 2013), the
soil profile archive from the Canadian Soil Information Sys-
tem (MacDonald and Valentine, 1992), soil profiles from
SOTER (Van Engelen and Dijkshoorn, 2012), the soil pro-
file analytical database for Europe (Hannam et al., 2009), the
Mexico soil profile database (Instituto Nacional de Estadís-
tica y Geografía, 2016), and the Brazilian national soil profile
database (Cooper et al., 2005).

The linkage method (called the taxotransfer rule-based
method) involves linking soil maps (with SMUs or soil poly-
gons) and soil profiles (with soil properties) according to
taxonomy-based pedotransfer (taxotransfer for short; note
that here pedotransfer here does not mean PTFs, which are a
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different thing) rules (Batjes, 2003). The criteria used in the
linkage could be one or many factors, such as the following:
soil class, soil texture class, depth zone, topographic class,
distance between soil polygons, and soil profiles (Shangguan
et al., 2012). Each soil type is represented by one or a group
of soil profiles that meet the criteria, and, usually, the me-
dian or mean value of a soil property is assigned to the soil
type. Because the linkage method assigned only one value or
a statistical distribution to a soil type in the soil polygons
(usually a polygon contains multiple soil types with their
fractions), the intra-polygonal spatial variation is not consid-
ered. At the global level, many databases were derived by
the linkage method: the FAO SMW with derived soil prop-
erties (FAO, 2003a), the Data and Information System of
International Geosphere-Biosphere Programme (IGBP-DIS)
database (Global Soil Data Task, 2000), the Soil and Terrain
Database (Van Engelen and Dijkshoorn, 2012) for multiple
regions and countries, the ISRIC-WISE-derived soil property
maps (Batjes, 2006), the HWSD (FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2012), the Global Soil Dataset for Earth System
Model (GSDE) (Shangguan et al., 2014), and WISE30sec
(Batjes, 2016). The three most recent databases are HWSD,
GSDE, and WISE30sec. HWSD was built by combining
the existing regional and national soil information updates.
GSDE, as an improvement of HWSD, incorporated more
soil maps and more soil profiles related to the soil maps,
with more soil properties. GSDE accomplished the link-
age based on the local soil classification, which required
no correlation between classification systems and avoided
the error brought by the taxonomy reference. In addition,
GSDE provides an estimation of eight layers to a depth
of 2.3 m, while HWSD provides an estimation of two lay-
ers to a depth of 1 m. WISE30sec is another improvement
of HWSD that incorporates more soil profiles with seven
layers up to 200 cm depth and with uncertainty estimated
by the mean± standard deviation. WISE30sec used the soil
map from HWSD with minor corrections and climate zone
maps as categorical covariates. Many national and regional
agencies around the world have organized their soil surveys
by linking soil maps and soil profiles, including the USA
State Soil Geographic Database (STATSGO2) (Soil Survey
Staff, 2017), Soil Landscapes of Canada (Soil Landscapes
of Canada Working Group, 2010), the ASRIS (Johnston et
al., 2003), the Soil-Geographic Database of Russia (Shoba et
al., 2008), the European Soil Database (ESB, 2004), and the
China dataset of soil properties (Shangguan et al., 2013).

Digital soil mapping (McBratney et al., 2003) is the cre-
ation and population of a geographically referenced soil
database, generated at a given resolution by using field
and laboratory observation methods coupled with envi-
ronmental data through quantitative relationships (http://
digitalsoilmapping.org/, last access: 3 July 2019). Usually,
the soil datasets derived by digital soil mapping provide
grid-based spatially continuous estimation, while the soil
datasets derived by the linkage method provide estimations

with abrupt changes at the boundaries of soil polygons. Glob-
alSoilMap is a global consortium that aims to create global
digital maps for key soil properties (Sanchez et al., 2009).
This global effort takes a bottom–up framework and pro-
duces the best available soil map at a resolution of 3 arcsec
(about 100 m) with 90 % confidence in the predictions. Soil
properties will be provided for six soil layers (i.e. 0–5, 5–15,
15–30, 30–60, 60–100, and 100–200 cm). Many countries
have produced soil maps following the GlobalSoilMap spec-
ifications (Odgers et al., 2012; Viscarra Rossel et al., 2015;
Ballabio et al., 2016; Mulder et al., 2016; Arrouays et al.,
2018; Ramcharan et al., 2018). The SoilGrids system (https://
www.soilgrids.org, last access: 3 July 2019) is another global
soil mapping project (Hengl et al., 2014, 2015, 2017). The
newest version (Hengl et al., 2017) at a resolution of 250 m
was produced by fitting an ensemble of machine-learning
methods based on about 150 000 soil profiles and 158 soil
covariates, which is currently the most detailed estimation of
global soil distribution. A third global soil mapping project is
the Global SOC (soil organic carbon) Map of the Global Soil
Partnership, which focuses on country-specific soil organic
carbon estimates (Guevara et al., 2018).

Because soil property maps are products that are de-
rived based on soil measurements of soil profiles and spa-
tially continuous covariates (including soil maps), it is nec-
essary to discuss the sources of uncertainty, spatial uncer-
tainty estimation, and accuracy assessment of these derived
data (the last two are different aspects of uncertainty estima-
tion). More attention should be given to this issue in ESM
applications instead of taking soil property maps as obser-
vations without error. There are various uncertainty sources
in the derivation of soil property maps, including uncer-
tainty from soil maps, soil measurements, soil-related co-
variates, and the linkage method itself (Shangguan et al.,
2012; Batjes, 2016; Stoorvogel et al., 2017). The follow-
ing uncertainties are not a complete list of uncertainties, but
the major uncertainties are listed. Uncertainties in soil maps
are major sources of global datasets derived by the link-
age methods. For these datasets, large sections of the world
are incorporated into the coarse FAO SMW map, and the
purity of soil maps (referring to the following website for
the definition: https://esdac.jrc.ec.europa.eu/ESDB_Archive/
ESDBv2/esdb/sgdbe/metadata/purity_maps/purity.htm, last
access: 3 July 2019) is likely to be around 50 % to 65 %
(Landon, 1991). Another important source of uncertainty is
the limited comparability of different analytical methods for
a given soil property when using soil profiles from vari-
ous sources. A weak correlation or even a negative corre-
lation was found between different analytical methods, al-
though a strong positive correlation was revealed in most
cases (McLellan et al., 2013). Both datasets of the linkage
method and those by digital soil mapping are subject to this
uncertainty. Although there are no straightforward mecha-
nisms to harmonize the data, efforts have been undertaken
to address this issue and provide quality assessment (Batjes,
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2017; Pillar 5 Working Group, 2017). Another source of un-
certainty comes from the geographic and taxonomic distribu-
tion of soil profiles, especially for the under-represented ar-
eas and soils (Batjes, 2016). The fourth source of uncertainty
is from the linkage method itself. The linkage method does
not represent the intra-polygon spatial variation and usually
does not explicitly consider soil-related covariates like dig-
ital soil mapping, although there are cases where climate
and topography are considered, and Stoorvogel et al. (2017)
proposed a methodology to incorporate landscape properties
into the linkage method. Finally, uncertainty from the co-
variates is minor because spatial prediction models such as
machine learning in digital soil mapping can reduce its in-
fluences (Hengl et al., 2014), although a more comprehen-
sive list of covariates with higher resolution and accuracy
will improve the predicted soil property maps. Spatial un-
certainty is estimated by different methods for the linkage
method and digital soil mapping methods. For the linkage
method, statistics such as standard derivation and percentiles
can be used for the spatial uncertainty estimation, and these
statistics are calculated for the population of soil profiles
linked to a soil type or a land unit (Batjes, 2016). This estima-
tion has some limitations because soil profiles are not taken
probabilistically but are based on their availability, especially
for the global soil datasets. Uncertainty will be underesti-
mated when the sample size is not large enough to repre-
sent a soil type. For digital soil mapping, spatial uncertainty
could be estimated by methods such as geostatistical meth-
ods and quantile regression forest (Vaysse and Lagacherie,
2017), which make sense of the statistics. The accuracy of
the soil datasets derived by digital soil mapping is estimated
by independent validation or cross-validation. However, this
estimation is not trivial for those data derived by the linkage
method due to the global scale and the support of the data and
independent data (Stoorvogel et al., 2017), and most of these
maps are validated by statistics such as the mean error and
coefficient of determination. Instead, some datasets, includ-
ing WISE and GSDE, use indictors such as the linkage level
of soil class and sample size to offer quality control informa-
tion (Shangguan et al., 2014; Batjes, 2016). A simple way to
compare the accuracy of using datasets with both methods
may be to use a global soil profile database as a validation
dataset, though quite a number of these profiles were used
when deriving these datasets and questions will be raised.
We evaluated several global soil property maps in Sect. 3.

2.2 Soil dataset incorporated into ESMs

Table 1 shows ESMs (specifically, their LSMs) and their in-
put soil datasets. The ESMs in Table 1 cover the CMIP5
(Coupled Model Intercomparison Project) list except those
without information about the soil dataset inputs. LSMs are
key tools to predict the dynamics of land surfaces under cli-
mate change and land use. Five datasets are widely used, i.e.
the datasets by Wilson and Henderson-Sellers (1985), Zöbler

(1986), Webb et al. (1993), Reynolds et al. (2000), the Global
Soil Data Task (2000), and Miller and White (1998). Ex-
cept for GSDE, HWSD, and STATSGO (Miller and White,
1998) for the USA in Table 1, these datasets were derived
from the SMW (note that large sections of GSDE and HWSD
still used this map as a base map because there are no avail-
able regional or national maps) (FAO, 1981) and limited
soil profile data (no more than 5800 profiles), which gained
popularity because of its simplicity and ease of use. How-
ever, these datasets are outdated and should no longer be
used because much better soil information, as introduced
in Sect. 2.1, can be incorporated (Sanchez et al., 2009;
FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012).

In recent years, efforts have been made to improve the soil
data condition in ESMs. The Land-Atmosphere Interaction
Research Group at Sun Yat-sen University (formerly at Bei-
jing Normal University) has put much effort into this topic.
Shangguan et al. (2012, 2013) developed a China soil prop-
erty dataset for land surface modelling based on 8979 soil
profiles and the Soil Map of China using the linkage method.
Dai et al. (2013) derived soil hydraulic parameters using
PTFs based on the soil properties by Shangguan et al. (2013).
Shangguan et al. (2014) further developed a comprehensive
global dataset for ESMs. The above soil datasets were widely
used in the ESMs. Soil properties from these soil datasets,
including soil texture fraction, organic carbon, bulk density,
and derived soil hydraulic parameters, were implemented in
the Common Land Model Version 2014 (CoLM2014, http:
//globalchange.bnu.edu.cn, last access: 3 July 2019). Li et
al. (2017) showed that CoLM2014 was more stable than the
previous version and had comparable performance to that of
CLM4.5, which may be partially attributed to the new soil
parameters being used as input. Wu et al. (2014) showed that
soil moisture values are closer to the observations when sim-
ulated by CLM3.5 with the China dataset than those simu-
lated with FAO. Zheng and Yang (2016) estimated the ef-
fects of soil texture datasets from FAO and BNU based on
regional terrestrial water cycle simulations with the Noah-
MP land surface model. Tian et al. (2012) used the China soil
texture data in a land surface model (GWSiB) coupled with
a groundwater model. Lei et al. (2014) used the China soil
texture data in the CLM to estimate the impacts of climate
change and vegetation dynamics on runoff in the mountain-
ous region of the Haihe River basin. Zhou et al. (2015) es-
timated age-dependent forest carbon sinks with a terrestrial
ecosystem model utilizing China soil carbon data. Dy and
Fung (2016) updated the soil data for the Weather Research
and Forecasting model (WRF).

Researchers have also put efforts into updating ESMs with
other soil data. Lawrence and Chase (2007) used MODIS
data to derive soil reflectance, which was used as a soil colour
parameter in the Community Land Model 3.0 (CLM). De
Lannoy et al. (2014) updated the NASA Catchment land
surface model with soil texture and organic matter data
from HWSD and STATSGO2. Livneh et al. (2015) evalu-
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Table 1. Lists of the soil dataset used by land surface models (LSMs) of Earth system models (ESMs) or climate models (CMs).

Dataset Resolution ESM or CM LSM Input soil data

Elguindi et al. (2014) RegCM BATS1e (Dickinson et al.,
1993)
or CLM4.5 (Oleson et al.,
2013)

Soil texture classes and soil colour
classes prescribed for BATS vegeta-
tion/land cover type

FAO (2003a, b) 5′ CanESM2 CTEM (Arora et al., 2009)
CLASS3.4 (Verseghy,
2000)

Soil texture

FAO (2003a, b) 5′ EC-EARTH HTESSEL (Orth et al.,
2016)

Soil texture classes

FAO (2003a, b; outside
conterminous US)
STATSGO (Miller and
White, 1998)

5′

30′′
WRF
CWRF

Noah (Chen and Dudhia,
2001)
Noah-MP (Niu et al., 2011)
CLM4
Other LSMs

Soil texture

GSDE (Shangguan et
al., 2014)

30′′ CAS_ESM
BNU_ESM
GRAPES

CoLM 2014 (Dai et al.,
2013)

Soil texture, gravel, soil organic carbon,
bulk density

GSDE (Shangguan et
al., 2014)

30′′ WRF
CWRF

Noah (Chen and Dudhia,
2001)
Noah-MP (Niu et al., 2011)
CLM4.5
Other LSMs

Soil texture

GSDE (Shangguan et
al., 2014)

30′′ BCC_CSM 1.1
BCC_CSM
1.1(m)

BCC_AVIM 1.1 (Wu et al.,
2014)

Soil texture

Hagemann (2002) 0.5◦ (8 km
over
Africa)

MPI-ESM
ICON-ESM

JSBACH4 (Mauritsen et
al. (2019)

Soil albedo

Hagemann (2002) 0.5◦ MPI-ESM
ICON-ESM

JSBACH4 (Mauritsen et
al. (2019)

Field capacity, plant-available soil wa-
ter holding capacity and wilting point
prescribed for ecosystem type

Hagemann et al. (1999) 0.5◦ MPI-ESM
ICON-ESM

JSBACH4 (Mauritsen et
al. (2019)

Volumetric heat capacity and thermal
diffusivity prescribed for five soil types
of the FAO soil map

HWSD
(FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2012)

30′′ GFDL ESM GFDL LM4 (M. Zhao et al.,
2018)

Soil texture classes

HWSD
(FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2012)

30′′ HadCM3
HadGEM2
QUEST

JULES/MOSESvn 5.4
(Best et al., 2011; Clark et
al., 2011)

Soil texture

HWSD
(FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2012)

30′′ CNRM-CM5 SURFEX8.1
(Moigne, 2018)

Soil texture, soil organic matter

IGBP-DIS (Global Soil
Data Task, 2000)

5′ CESM
CCSM
CMCC–CESM
FIO-ESM
FGOALS
(s2,gl,g2)
NorESM1

CLM 3.0 or CLM 4.0 or
CLM 4.5

Soil texture (sand, clay)
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Table 1. Continued.

Dataset Resolution ESM or CM LSM Input soil data

ISRIC-WISE (Batjes,
2006) combined with
NCSD (Hugelius et al.,
2013)

5′, 0.25◦ CESM
CCSM
CMCC–CESM
FIO-ESM
FGOALS
(s2,gl,g2)
NorESM1

CLM 3.0 or CLM 4.0 or
CLM 4.5

Soil organic matter

Lawrence and
Chase (2007)

0.05◦ CESM
CCSM
CMCC–CESM
FIO-ESM
FGOALS
(s2,gl,g2)
NorESM1

CLM 3.0 or CLM 4.0 or
CLM 4.5

Soil colour class

Reynolds et al. (2000) 5′ GLDAS Mosaic (Koster and Suarez,
1992)
Noah (Chen and
Dudhia, 2001)
VIC (Liang et al., 1994)

Soil texture classes

Webb et al. (1993) and
Zöbler (1986)

1◦ GISS-E2 GISS-LSM (Rosenzweig
and Abramopoulos, 1997)

Soil texture

Wilson and Henderson-
Sellers (1985)

1◦ HadCM3
HadGEM2
QUEST

JULES/MOSESvn 5.4
(Best et al., 2011; Clark et
al., 2011)

Soil texture

Zöbler (1986) 1◦ ACCESS-ESM CABLE2.0 (Kowalczyk et
al., 2013)

Soil texture classes

Zöbler (1986) 1◦ SiB (Sellers et al., 1996;
Gurney et al., 2008)

Soil texture classes

Zöbler (1986) 1◦ CFSv2 CFSv2/Noah (Saha et al.,
2014)

Soil texture

Zöbler (1986) 1◦ CSIRO-
Mk3.6.0

CSIRO-Mk3.6.0 (Rotstayn
et al., 2012)

Soil texture classes

Zöbler (1986) 1◦ MIROC (4h,5)
MIROC-ESM

MATSIRO (Takata et al.,
2003)

Soil texture classes

Zöbler (1986);
Reynolds et al. (2000)

1◦, 5′ IPSL-CM6 ORCHIDEE (rev 3977)
(Krinner et al., 2005)

Soil texture classes

ACCESS: Australia Community Climate and Earth System Simulator; BATS: Biosphere-Atmosphere Transfer Scheme; BCC_CSM: Beijing Climate Center Climate System
Model; BCC_AVIM: Beijing Climate Center Atmosphere and Vegetation Interaction Model; BNU_ESM: Beijing Normal University Earth System Model; CABLE:
Community Atmosphere Biosphere Land Exchange; CanESM: Canadian Earth System Model; CAS_ESM: Chinese Academy of Sciences Earth System Model; CCSM:
Community Climate System Model; CESM: Community Earth System Model; CFS: Climate Forecast System; CLASS: Canadian Land Surface Scheme; CLM: Community
Land Model; CMCC–CESM: Euro-Mediterranean Centre on Climate Change Community Earth System Model; CNRM-CM: Centre National de Recherches
Meteorologiques Climate Model; CoLM: Common Land Model; CSIRO-Mk: Commonwealth Scientific and Industrial Research Organization climate system model; CTEM:
Canadian Terrestrial Ecosystem Model; EC-EARTH: European community Earth-System Model; FAO: Food and Agriculture Organization (FAO-UNESCO) digital Soil Map
of the World (SMW) at a 1 : 5 million scale; FGOALS: Flexible Global Ocean-Atmosphere-Land System Model; FIO-ESM: First Institute of Oceanography Earth System
Model; GRAPES: Global/Regional Assimilation Prediction System; GFDL: Geophysical Fluid Dynamics Laboratory; GISS: Goddard Institute for Space Studies; GLDAS:
Global Land Data Assimilation System; GSDE: Global Soil Dataset for Earth System Model; HadCM: Hadley Centre Coupled Model; HadGEM2-ES: Hadley Global
Environment Model 2 – Earth System; HTESSEL: Tiled ECMWF Scheme for Surface Exchanges over Land; HWSD: Harmonized World Soil Database; ICON-ESM:
Icosahedral non-hydrostatic Earth System Model; IGBP-IDS: Data and Information System of International Geosphere-Biosphere Program; IPSL-CM: Institute Pierre Simon
Laplace Climate Model; ISRIC-WISE: World Inventory of Soil Emission Potentials of International Soil Reference and Information Centre; JSBACH: Jena Scheme of
Atmosphere Biosphere Coupling in Hamburg; JULES/MOSES= Joint UK Land Environment Simulator/Met Office Surface Exchange Scheme; MATSIRO: Minimal
Advanced Treatments of Surface Interaction and Runoff; MIROC: Model for Interdisciplinary Research on Climate; MPI-ESM: Max Planck Institute for Meteorology Earth
System Model; Noah-MP: Noah-multiparameterization; NorESM1: Norwegian Earth System Model; NCSD: Northern Circumpolar Soil Carbon Database; ORCHIDEE:
Organising Carbon and Hydrology In Dynamic Ecosystems; QUEST: Quantifying and Understanding the Earth System; RegCM: Regional Climate Model; SiB: Simple
Biosphere Model; STATSGO: State Soil Geographic Database; SURFEX: Surface Externalisée; WRF: Weather Research and Forecasting Model.
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ated the influence of soil textural properties on hydrologic
fluxes by comparing the FAO data and STATSGO2. Fol-
berth et al. (2016) evaluated the impact of soil input data on
yield estimates in a globally gridded crop model. Slevin et
al. (2017) utilized the HWSD to simulate global gross pri-
mary productivity in the JULES land surface model. Trinh et
al. (2018) proposed an approach that can assimilate coarse
global soil data by finer land use and coverage datasets,
which improved the performance of hydrologic modelling at
the watershed scale. Kearney and Maino (2018) incorporated
the new generation of soil data produced by the digital soil
mapping method into a climate model and found that, com-
pared to the old soil information, the soil moisture simula-
tion was improved at a fine spatial and temporal resolution
over Australia. A dataset of globally gridded hydrologic soil
groups (HYSOGs250m) was developed based on soil texture
and depth to bedrock of SoilGrids (Hengl et al., 2017) and
groundwater table depth (Fan et al., 2013) for curve-number-
based runoff modelling of the U.S. Department of Agricul-
ture (Ross et al., 2018).

Except for soil properties, the estimation of underground
boundaries, including the groundwater table depth, the depth
to bedrock (DTB), and depth to regolith, and its implemen-
tation in ESMs, is also a new focus. Fan et al. (2013) com-
piled global observations of water table depth and inferred
the global patterns using a groundwater model. Pelletier et
al. (2016) developed a global DTB dataset using process-
based models for upland and an empirical model for lowland.
This dataset was implemented in CLM4.5, and there were
significant influences on the water and energy simulations
compared to the default constant depth (Brunke et al., 2016).
Shangguan et al. (2017) developed a global DTB by digital
soil mapping based on about 1.7 million observations from
soil profiles and water wells, which has a much higher accu-
racy than the dataset by Pelletier et al. (2016). Vrettas and
Fung (2016) showed that weathered bedrock stores a signif-
icant fraction (more than 30 %) of the total water despite its
low porosity. Jordan et al. (2018) estimated the global per-
meability of the unconsolidated and consolidated Earth for
groundwater modelling. However, due to the lack of data, an
accurate global estimation of depth to regolith is not feasi-
ble. Caution should be used when employing the so-called
soil depth products in ESMs. Soil depth maps are usually
estimated based on observations from soil surveys, and soil
depth (or depth to the R horizon) is assumed to be equal to
DTB. However, these observations are usually less than 2 m
and usually do not reach the DTB (Shangguan et al., 2017).
Thus, soil depth maps based on only soil profiles are signif-
icantly underestimated (1 order of magnitude lower) com-
pared to the actual DTB and should not be taken as the lower
boundary of ESMs.

2.3 Estimating secondary parameters using PTFs

Earth system modellers have employed different PTFs to
estimate soil hydraulic parameters (SHPs), soil thermal pa-
rameters (STPs), and biogeochemical parameters (Dai et al.,
2013; Looy et al., 2017) or used these parameters as model
inputs. Nearly all ESMs incorporated SHPs and STPs esti-
mated by PTFs, but not biogeochemical parameters. PTFs
are the empirical, predictive functions that account for the
relationships between certain soil properties (e.g. hydraulic
conductivity) and more easily obtainable soil properties (e.g.
sand, silt, clay, and organic carbon content). Direct measure-
ment of these parameters is difficult, expensive, and in most
cases impractical for obtaining sufficient samples to reflect
spatial variation. Thus, most soil databases do not contain
these parameters. PTFs provide an alternative means of esti-
mating these parameters. In ESMs, SHPs and STPs are usu-
ally derived using simple PTFs, using only soil texture data
as the input. As more soil properties become globally avail-
able, including gravel, soil organic matter, and bulk density,
more sophisticated PTFs that use additional soil properties
can be employed in ESMs.

PTFs can be expressed as either numerical equations or
by machine-learning methodology, which is more flexible
for simulating the highly non-linear relationship in analysed
data. PTFs can also be developed based on soil processes.
Most research has not indicated where the PTFs can poten-
tially be used, and the accuracy of a PTF outside of its de-
velopment dataset is essentially unknown (McBratney et al.,
2011). PTFs are generally not portable from one region to
another (i.e. locally or regionally validated). Therefore, PTFs
should never be considered an ultimate source of parameters
in soil modelling. Looy et al. (2017) reviewed PTFs exten-
sively in Earth system science and emphasized that PTF de-
velopment must go hand in hand with suitable extrapolation
and upscaling techniques such that the PTFs correctly rep-
resent the spatial heterogeneity of soils in ESMs. Although
the PTFs were evaluated, it is unclear which set of PTFs are
the best for global applications. Due to these limitations, a
better way to estimate these parameters may be to use an en-
semble of PTFs, which can provide the parameter variability.
Dai et al. (2013) derived a global soil hydraulic parameter
database using the ensemble method. Selection of PTFs was
carried out based on the following rules, including a consis-
tent physical definition, an adequately large training sample,
and positive evaluations that are comparable with other PTFs.
The selected PTFs included not only those in equations, but
also machine-learning PTFs. As a result, the modellers could
use these parameters as inputs instead of calculating them in
ESMs every time the model was run.

New generation soil information has already been uti-
lized to derive SHPs and STPs in some studies. Montzka et
al. (2017) produced a global map of SHPs at a 0.25◦ resolu-
tion based on the SoilGrids 1 km dataset. Tóth et al. (2017)
calculated SHPs for Europe with EU-HYDI PTFs (Tóth
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et al., 2015) based on the SoilGrids 250 m dataset. Wu et
al. (2018) used an integrated approach that ensembles PTFs
to map the field capacity of China based on multi-source soil
datasets.

The PTF performance in ESMs has been evaluated in
many studies, although PTFs have not been fully exploited
and integrated into ESMs (Looy et al., 2017). Some exam-
ples are as follows. Chen et al. (2012) incorporated soil or-
ganic matter to estimate soil porosity and thermal parameters
for use in LSMs. H. Zhao et al. (2018) evaluated PTF perfor-
mance to estimate SHPs and STPs for land surface modelling
over the Tibetan Plateau. Zheng et al. (2018) developed PTFs
to estimate the soil optical parameters to derive soil albedo
for the Tibetan Plateau, and the PTFs that were incorporated
into an eco-hydrological model improved the model simu-
lation of a surface energy budget. Looy et al. (2017) envis-
aged two possible approaches to improve parameterization
of ESMs by PTFs. One approach is to replace constant co-
efficients in current ESMs that have spatially distributed val-
ues with PTFs. The other approach is to develop spatially
exploitable PTFs to parameterize specific processes using
knowledge of environmental controls and variations in soil
properties.

3 Comparison of available global soil datasets

For the convenience of ESMs’ application, we compared sev-
eral available soil datasets and evaluated them with soil pro-
files from WoSIS for some of the key variables (sand, clay
content, organic carbon, coarse fragment, and bulk density)
used in ESMs. In addition to the most recently developed soil
datasets, we also included one old dataset (i.e. IGBP) used in
ESMs for the evaluation. It is not necessary to compare all the
old datasets because they are based on similar, limited, and
outdated source data as described in Sect. 2.2. These datasets
have coarser resolutions (Table 1) than the newly developed
soil datasets (Table 2).

We present basic descriptions of the new soil datasets in
Tables 2 and 3. As described in Sect. 2.1, four available
global soil datasets, i.e. HWSD, GSDE, WISE30sec, and
SoilGrids, have been developed in the last several years (Ta-
ble 2). These soil datasets are selected to be shown here be-
cause they have global coverage with key variables used by
ESMs and were developed with relatively good data sources
in recent years; these data are also freely available. Old ver-
sions of these datasets are not shown here. Table 3 shows
the available soil properties of these soil datasets. Except for
WISE30sec, none of these databases contains spatial uncer-
tainty estimations. The explained soil property variance in
SoilGrids is between 56 % and 83 %, while the other datasets
do not offer quantitative accuracy assessments. GSDE has the
largest number of soil properties, while SoilGrids currently
contains 10 primary soil properties defined by the Global-
SoilMap consortium.

The accuracy of the newly developed soil datasets (Soil-
Grids, GSDE, and HWSD) and an old dataset (IGBP) are
evaluated for five key variables using 94 441 soil profiles
from WoSIS (Table 4), though quite a number of the WoSIS
soil profiles were considered in the complication of these
datasets, which means that this evaluation is not an inde-
pendent validation. We used four statistics in the evalua-
tion, including mean error (ME), root mean squared error
(RMSE), coefficient of variation (CV), and coefficient of de-
termination (R2). All soil datasets are evaluated for topsoil
(0–30 cm) and subsoil (30–100 cm). The layer schemes of
soil datasets are different (Table 1) and were converted to
the two layers. Soil datasets are high in resolution and were
converted to a resolution of 10 km by averaging. All datasets
have a relatively small ME. In general, SoilGrids have much
better accuracy than the other three due to RMSE, CV, and
R2, and GSDE ranks second, followed by IGBP and HWSD.
However, IGBP is slightly better than GSDE for bulk den-
sity and organic carbon content of topsoil. Notably, only the
IGBP does not contain coarse fragments, which is needed
when calculating soil carbon stocks. We did not evaluate the
WISE30sec here to save time in data processing, because
previous evaluation using WoSIS showed that WISE30sec
had slightly better accuracy than HWSD (https://github.com/
thengl/SoilGrids250m/tree/master/grids/HWSD, last access:
3 July 2019). This evaluation has some limitations. First, the
datasets developed by the linkage method, which give the
mean value of an SMU, resulted in an abrupt change between
the boundaries of soil polygons, whereas the datasets devel-
oped by digital soil mapping simulated the soil as a contin-
uum with a spatial continuous change in soil properties; thus,
these datasets may not be comparable. Second, the original
resolutions of soil datasets are different, which means that
maps with higher resolutions provide more spatial details,
and we should judge the map quality by not only the ac-
curacy assessment, but also by the resolution. As a result,
datasets with higher resolutions (i.e. HWSD, WISE30sec,
and GSDE) are preferred to those with lower resolutions (i.e.
IGBP) because the higher-resolution datasets have similar
accuracy, especially when the LSMs are run at a high res-
olution such as 1 km. Third, the vertical variation is better
represented by SoilGrids, GSDE, and WISE30sec, with more
than two layers and a depth of over 2 m (Table 2), which will
provide more useful information for ESMs, especially when
they model deeper soils with multiple layers.

The new generation soil dataset produced by the digital
soil mapping method gave a very different distribution of soil
properties from those produced by the linkage method. Fig-
ure 1 shows the soil sand and clay fractions at the surface
0–30 cm layer from SoilGrids, IGBP, and GSDE. Figure 2
shows the SOC and bulk density at the surface 0–30 cm layer
from SoilGrids, IGBP, and GSDE. Significant differences are
visible in these datasets. This difference will lead to differ-
ent modelling results in ESMs. Tifafi et al. (2018) found that
the global SOC stocks down to a depth of 1 m are 3400 Pg
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Table 2. Four new global soil datasets for ESM updates.

Dataset Resolution Number Number Depth to the bottom Mapping
of layers of properties of a layer (cm) method

HWSD 1 km 2 22 30, 100 Linkage method
GSDE 1 km 8 39 4.5, 9.1, 16.6, 28.9, 49.3, 82.9, 138.3, 229.6 Linkage method
WISE30sec 1 km 7 20 20, 40, 60, 80, 100, 150, 200 Linkage method
SoilGrids 250 m 6 7 5, 15, 30, 60, 100, 200 Digital soil mapping

Figure 1. Soil sand and clay fraction at the surface 0–30 cm layer from SoilGrids, IGBP, and GSDE. The difference among them will lead
to different modelling results for ESMs. IGBP is the Data and Information System of the International Geosphere-Biosphere Program and
GSDE is the Global Soil Dataset for Earth System Model.

when estimated by SoilGrids and 2500 according to HWSD,
and the estimates by SoilGrids are closer to the actual obser-
vations, although all datasets underestimated the soil carbon
stocks. Figure 1 of Tifafi et al. (2018) shows the global dis-
tribution of soil carbon stocks by SoilGrids and HWSD.

In general, SoilGrids is preferred for ESMs’ application
because it currently has the highest accuracy and resolu-

tion. When soil properties are not available in SoilGrids,
WISE30sec and GSDE offer alternative options. However,
model sensitivity simulations need to be performed to inves-
tigate the effects of different soil datasets on ESMs in future
studies.
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Table 4. Evaluation statistics of soil datasets using soil profiles from the World Soil Information Service (WoSIS).

Soil property Dataset Topsoil (0–30 cm)* Subsoil (30–100 cm)

ME RMSE CV R2 ME RMSE CV R2

Sand content SoilGrids −0.906 18.6 0.457 0.518 −0.27 19.1 0.501 0.492
(% in weight) GSDE −0.443 23.2 0.571 0.247 −1.31 23.8 0.625 0.211

HWSD 6.64 27.4 0.673 0.014 2.08 27.6 0.725 −0.058
IGBP 3.74 26.3 0.647 0.051 4.06 26.3 0.691 0.055

Clay content SoilGrids 1.34 12.5 0.554 0.339 0.39 13.6 0.485 0.382
(% in weight) GSDE −0.949 14.6 0.643 0.104 −0.79 16.4 0.584 0.105

HWSD 0.77 16.2 0.718 −0.119 1.42 18.9 0.672 −0.182
IGBP 3.27 15.4 0.678 0.044 2.44 16.8 0.597 0.084

Bulk density SoilGrids −79.7 237 0.164 0.338 −33.5 212 0.136 0.327
(kg m−3) GSDE −68.4 279 0.193 0.030 −65.5 269 0.173 −0.043

HWSD −105 298 0.206 −0.033 −168 317 0.204 −0.107
IGBP −55.6 273 0.189 0.050 −112 294 0.189 −0.130

Coarse SoilGrids 1.53 10.1 1.68 0.319 1.23 12.8 1.47 0.335
fragment GSDE 3.2 13.5 2.24 −0.165 3.18 16.8 1.93 −0.115
(% in volume) HWSD 1.8 13.2 2.2 −0.164 −0.40 16.2 1.87 −0.081

Organic carbon SoilGrids 6.21 29.8 1.69 0.218 0.99 23.5 3.32 0.134
(g kg−1) GSDE −0.354 34.5 1.95 −0.095 0.45 27.4 3.87 −0.174

HWSD −3.67 36.2 2.05 −0.194 −1.38 27.4 3.87 −0.172
IGBP 0.61 33.4 1.89 −0.026 1.67 28.5 4.02 −0.268

* Quite a number of WoSIS soil profiles were considered in the compilation of the four products. ME is the mean error. RMSE is the root mean
squared error. CV is the coefficient of variation. R2 is the coefficient of determination.

4 Soil data usage in ESMs and existing challenges

4.1 Model use of soil data derived by the linkage
method

Soil data by the linkage method are derived for each SMU
or land unit and thus are polygon-based, while ESMs are
usually grid-based. However, soil data derived by digital
soil mapping are grid-based. Therefore, the compatibility be-
tween soil data derived by the linkage method and ESMs
must be addressed. In the soil map, an SMU is composed
of more than one component soil unit in most cases, and
thus, a one-to-many relationship exists between the SMU and
profile attributes of the respective soil units. This condition
makes representing the attributes characterizing an SMU a
nontrivial task. To keep the whole soil variation of an SMU,
it is best to use the subgrid method in ESMs (Oleson et
al., 2010), i.e. aggregate values of soil properties, and pro-
vide the area percentage of each value. This will bring about
the problem of mapping the soil subgrids with land cover
(or plant function type) subgrids. A possible solution is to
classify the soil according to the soil properties and obtain
a number of defined soil classes (n classes) such as land
cover types (m classes), overlay the defined soil classes with
land cover types, and obtain n by m combinations assuming
the soil classes and land cover types are independent. How-
ever, this will increase the computing time and complexity

of the ESMs’ structures, which requires implementation the
soil processes over each subgrid soil column within a grid
instead of the entire model grid.

Usually, the compatibility issue is addressed by converting
the SMU-based soil data to grid data using spatial aggrega-
tion. The ESMs uses grid data as input, and each grid cell has
one unique value of a soil property. Three spatial aggregation
methods were proposed to aggregate compositional attributes
in an SMU to a representative value (Batjes, 2006; Shang-
guan et al., 2014). The area-weighting method (method A)
obtains the area-weighting of soil attributes. The dominant
type method (method D) obtains the soil attribute of the dom-
inant type. The dominant binned method (method B) classi-
fies the soil attributes into several preselected classes and ob-
tains the dominant class. All three methods can be applied to
quantitative data, while method D and method B can be ap-
plied to categorical data. The advantages and disadvantages
of these methods have been discussed (Batjes, 2006; Shang-
guan et al., 2014). The choice should be made according to
the specific applications (Hoffmann et al., 2016). Method B
provides binned classes, which are not convenient for mod-
elling, although method B is considered more appropriate to
represent a grid cell. Method A maintains mass conservation,
which can meet most model application demands. However,
method A may be misleading in cases where extreme values
appeared in an SMU. For the linkage method, the uncertainty
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Figure 2. Soil organic carbon and bulk density at the surface 0–30 cm layer from SoilGrids, GSDE, and IGBP.

is usually estimated by obtaining the 5 % and 95 % soil prop-
erties (or other statistics) of the soil profiles that are linked
to an SMU. Because the frequency distribution of the soil
properties within an SMU is usually not a normal distribu-
tion or any other typical statistical distribution, the applica-
tion of statistics such as standard deviation to model use is
not proper. This means that the uncertainty in the soil dataset
derived by the linkage method cannot be incorporated into
ESMs in a straightforward way, and technology such as boot-
strap may be more suitable than methods that make assump-
tions on regarding the distribution.

The basic soil properties are often used to derive the sec-
ondary parameters, including SHPs and STPs by PTFs and
soil carbon stock or other nutrient stocks by certain equa-
tions (Shangguan et al., 2014). This procedure could be per-
formed either before or after the aggregation (referred to here
as “aggregating after” and “aggregating first”). Because the
relationship between the soil basic properties and the derived

soil parameters is usually non-linear, the “aggregating first”
method should be used. This was also proven by case studies
(Romanowicz et al., 2005; Shangguan et al., 2014). However,
some researchers have used the “aggregating after” method
to produce misleading results (Hiederer and Köchy, 2012).

The aggregation smooths the variation in the soil proper-
ties between soil components within a given SMU (Odgers
et al., 2012). To avoid aggregation, the spatial disaggrega-
tion of soil-type maps can be used to determine the location
of the SMU components, although the location error may be
high in some cases (Thompson et al., 2010; Stoorvogel et al.,
2017). This method depends on the high density of soil pro-
files to establish soil and landscape relationships. Folberth
et al. (2016) showed that the correct spatial allocation of
the soil type to the present cropland was very important in
global crop yield simulations. Currently, aggregation is still
the practical method to use at the global scale due to lack of
data.
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4.2 Upscaling detailed soil data for model use

The updated soil datasets derived by both the linkage method
and digital soil mapping are usually at a resolution from 1 km
to 100 m, and upscaling or aggregation is required to de-
rive lower-resolution datasets for model use. The aggrega-
tion methods mentioned above can be used. Moreover, there
are many upscaling methods, such as the window median,
variability-weighted methods (Wang et al., 2004), variogram
method (Oz et al., 2002), fractal theory (Quattrochi et al.,
2001), and the Miller–Miller scaling approach (Montzka et
al., 2017). However, few studies have been devoted to de-
termining the upscaling methods that are suitable for soil
data. A preliminary effort was made by Shangguan (2014).
Five upscaling methods were compared, including the win-
dow average, window median, window modal, arithmetic
average variability-weighted method, and bilinear interpola-
tion method. Differences between aggregation methods var-
ied from 10 % to 100 % for different parameters. The upscal-
ing methods affected the data derived by the linkage method
more than the data derived by digital soil mapping. The
window average, window median, and arithmetic average
variability-weighted method performed similarly in upscal-
ing. The RMSE increased rapidly when the window size was
less than 40 pixels. Similarly to the aggregation of SMUs, the
“aggregating first” method is recommended when secondary
soil parameters are derived. Again, an alternative to avoid the
aggregation into one single value for a grid cell is to use the
subgrid method in ESMs.

The upscaling effect of soil data on the model simulation
has been investigated in previous studies, with controver-
sial conclusions. For example, Melton et al. (2017) used two
linked algorithms to provide tiles of representative soil tex-
tures for subgrids in a terrestrial ecosystem model and found
that the model is relatively insensitive to subgrid soil tex-
tures compared to a simple grid-mean soil texture at a global
scale. However, the treatment without soil subgrid structure
in JULES resulted in soil-moisture-dependent anomalies in
simulated carbon flux (Park et al., 2018). Further research is
necessary to investigate the upscaling effect on models.

4.3 The changing soil properties

There are no global soil property maps in the time series be-
cause we do not have enough available data. In all global
soil property maps, all available soil observations in recent
decades have been used in the development of soil property
maps without considering the changing environment. There-
fore these datasets should be considered to be an average
state. The critical issue for mapping global soil properties
in a time series is to establish a soil profile database with
time stamps and then divide them into two or more groups of
different periods such as the 1950s–1970s. This is still quite
challenging at the global scale because the spatial coverage
of soil profiles is quite uneven for different periods and the

sample size may not be adequately large to derive maps with
satisfactory accuracy.

Soil properties are changing, but we now usually consider
them to be static in ESMs. As some ESMs already simulate
the soil carbon, this may be considered in PTFs used to esti-
mate soil hydraulic and thermal parameters. Other soil prop-
erties affecting soil hydraulic and thermal parameters include
soil texture, bulk density, and soil structure, but the change is
relatively slow. The effect of environmental change on soil
properties is the topic of the quantitative modelling of soil-
forming processes, i.e. soil landscape and pedogenic models
(Gessler et al., 1995; Minasny et al., 2008). If we need to sim-
ulate the change in soil properties, a coupling of ESMs and
soil landscape and pedogenic models will be needed. Other-
wise, we need to predict the soil properties in the future using
soil landscape and pedogenic models, which are small scale
with high uncertainty. The prediction of changing soil prop-
erties may also be performed by digital soil mapping taken
the changing (especially for the future) climate and land use
as covariates, which may be easier and more feasible than
dynamic models.

4.4 Incorporating the uncertainty of soil data into ESMs

Incorporating the uncertainty of soil data into ESMs is in-
creasingly challenging. Except for WISE30sec, all the cur-
rent global soil datasets do not have a corresponding un-
certainty map for a soil property. However, the spatial un-
certainty can be estimated by the methods mentioned in
Sect. 2.1, and soil datasets with uncertainty maps will be
made available sooner or later. It is too expensive to run
multiple ESM simulations that combine the upper and lower
bounds in all possible combinations to quantify the effect of
soil data uncertainty on ESMs. Instead, adaptive surrogate
modelling based on statistical regression and machine learn-
ing can be used to emulate the responses of ESMs to the vari-
ation of soil properties at each location, which uses much
less computing time and proves to be effective and efficient
(Gong et al., 2015; Li et al., 2018).

4.5 Layer schemes and lack of deep layer soil data

The layer scheme of a soil dataset needs to be converted to
that of ESMs for model use. A simple method for this con-
version is the depth-weighting method. When a more accu-
rate conversion is needed, the equal-area quadratic smooth-
ing spline functions can be used, which is advantageous in
predicting the depth function of soil properties (Bishop et
al., 1999). Mass conservation for a soil property of a layer is
guaranteed by this method under the assumption of a contin-
uous vertical variation in soil properties. This method may
produce some negative values that should be set to zero.

The depth of soil observations in the soil survey is usu-
ally less than 2 m and thus results in missing values for the
deep layers of ESMs. For the lack of deep soil data, there is
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no good solution other than extrapolating the values based
on the observations of shallower layers, which will lead to
higher uncertainty of soil properties for deep layers. The ex-
trapolation can be performed by the abovementioned spline
method or simply by assigning the soil properties of the last
layer to the rest of the deeper soil layers. The DTB map
(Shangguan et al., 2017) can be utilized to define the low
boundary of soil layers, and a default set of thermal and hy-
draulic characteristics can be assigned for bedrocks.

5 Summary and outlook

In this paper, the status of soil datasets and their usage in
ESMs is reviewed. Soil physical and chemical properties
serve as model parameters, initial variables, or benchmark
datasets in ESMs. Soil profiles, soil maps, and soil datasets
derived by the linkage method and digital soil mapping are
reviewed at national, regional, and global levels. The soil
datasets derived by digital soil mapping are considered to
provide a more realistic estimation of soils than those derived
by the linkage method, because digital soil mapping provides
spatially continuous estimations of soil properties using spa-
tial prediction models with various soil-related covariates.
Due to the evaluation of soil datasets by WoSIS, SoilGrids
have the most accurate estimation of soil properties. How-
ever, other soil datasets, including GSDE and WISE30sec,
can be considered compensation, and they provide more soil
properties.

The popular soil datasets used in ESMs are outdated and
there are updated soil datasets available. In recent years, ef-
forts have been made to update the soil data in ESMs. The
effects of updated soil properties which are used to estimate
soil hydraulic and thermal parameters were evaluated. Other
major updates include soil reflectance, groundwater tables,
and DTB.

PTFs are employed to estimate secondary soil parameters,
including soil hydraulic and thermal parameters, and biogeo-
chemical parameters. PTFs can take more soil properties (i.e.
SOC, bulk density) as input in addition to soil texture data.
An ensemble of PTFs may be more suitable for providing
secondary soil parameters as direct input to ESMs, because
the ensemble method has a number of benefits and potential
over a single PTF (Looy et al., 2017).

Soil data derived by the linkage methods and high-
resolution data can be aggregated by different methods to be
used in ESMs. The aggregation should be performed after
the secondary parameters are estimated. However, the aggre-
gation will omit the soil property variation. To avoid aggre-
gation, the subgrid method in ESMs is an alternative that in-
creases the model complexity. The effect of different upscal-
ing methods on the performance of ESMs needs to be further
investigated.

Because digital soil mapping has many advantages com-
pared to the traditional linkage method, especially in repre-

senting spatial heterogeneity and quantifying uncertainty in
the predictions, the new generation soil datasets derived by
digital soil mapping need to be tested in ESMs, and some
regional studies have shown that these datasets provide bet-
ter modelling results than products by the linkage method
(Kearney and Maino, 2018; Trinh et al., 2018). Moreover,
many studies from digital soil mapping have identified that
soil maps are not very important for predicting soil properties
and are usually not used as a covariate in most studies (e.g.
Hengl et al., 2014; Viscarra Rossel et al., 2015; Arrouays et
al., 2018). However, the linkage method usually considers
the soil map to be a base map, which essentially affects the
accuracy of the derived soil property maps, especially for ar-
eas without detailed soil maps. As a data-driven method, dig-
ital soil mapping requires soil profile measurements and en-
vironmental covariates (in which the importance of soil maps
is low), and by including more of these data in mapping will
improve the global predictions (Hengl et al., 2017). More
quality assessed data, analysed according to comparable an-
alytical methods, are needed to support such efforts. The soil
data harmonization is undertaken by the work of GSP Pillar
5 (Pillar 5 Working Group, 2017) and WoSIS (Batjes et al.,
2017). Data derived from proximal sensing, although with
higher uncertainty than traditional soil measurements, can be
used in soil mapping (England and Viscarra Rossel, 2018).
To avoid spatial extrapolation, soil profiles should have good
geographical coverage. The temporal variation in global soil
is quite challenging due to a lack of data. Soil image fusion
is also needed to merge the local and global soil maps, and
this fusion considers these maps to be soil variation compo-
nents for ensemble predictions (Hengl et al., 2017). It may
take years before a system for automated soil image fusion is
fully functional in an operational system for global soil data
fusion. Mapping the soil depth and DTB separately at the
global level also remains challenging due to a lack of data
and the understanding of relevant processes. Uncertainty es-
timation, especially spatial uncertainty estimation, should be
included in the soil datasets developed in the future. How-
ever, incorporating the spatial uncertainty of the soil prop-
erties into ESMs is still challenging due to the cost, and an
alternative may be to use adaptive surrogate modelling.

The gap is large between the amount of data that have
been obtained in surveys and the amount of data freely avail-
able. The soil profiles included in global soil databases such
as WoSIS comprise a very small fraction of the soil pits
dug by human beings. For example, there are more than
100 000 soil profiles from the second national soil survey of
China (Zhang et al., 2010) and no more than 9000 were used
to produce the national soil property maps that are freely
available (Shangguan et al., 2013). In the last century, na-
tional soil surveys have been widely accomplished, primar-
ily for agriculture purposes. However, most of these legacy
data are not digitalized and they are usually not made avail-
able to the science community even if digitalized. Obtaining
these hidden soil data will require some mechanism such as
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government-mandated regulations and money investments to
make these data available (Pillar 4 Working Group, 2014;
Pillar 5 Working Group, 2017). Arrouays et al. (2017) re-
ported that about 800 000 soil profiles have been obtained
from the selected countries, although most of these are not
yet freely available to the international community. In ad-
dition, investments in new soil samplings should be made,
especially in the under-represented areas. A good example is
the US, which has the most abundant soil data freely avail-
able (https://ncsslabdatamart.sc.egov.usda.gov/, last access:
3 July 2019), similar to many other data. Censored informa-
tion produces censored maps and so on. If the hidden data
could be made available in any way, science and all human
beings will benefit. A true big data era is waiting for us. The
data compatibility of different analysis methods and differ-
ent description protocols including soil classifications is also
an important issue and data harmonization is necessary when
the data are made available to the public.
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