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Abstract. Spatial information on soil function fulfillment (SFF) is increasingly being used to inform decision-
making in spatial planning programs to support sustainable use of soil resources. Soil function maps visualize
soils abilities to fulfill their functions, e.g., regulating water and nutrient flows, providing habitats, and supporting
biomass production based on soil properties. Such information must be reliable for informed and transparent
decision-making in spatial planning programs. In this study, we add to the transparency of soil function maps by
(1) indicating uncertainties arising from the prediction of soil properties generated by digital soil mapping (DSM)
that are used for soil function assessment (SFA) and (2) showing the response of different SFA methods to the
propagation of uncertainties through the assessment. For a study area of 170 km2 in the Swiss Plateau, we
map 10 static soil sub-functions for agricultural soils for a spatial resolution of 20× 20 m together with their
uncertainties. Mapping the 10 soil sub-functions using simple ordinal assessment scales reveals pronounced
spatial patterns with a high variability of SFF scores across the region, linked to the inherent properties of the soils
and terrain attributes and climate conditions. Uncertainties in soil properties propagated through SFA methods
generally lead to substantial uncertainty in the mapped soil sub-functions. We propose two types of uncertainty
maps that can be readily understood by stakeholders. Cumulative distribution functions of SFF scores indicate
that SFA methods respond differently to the propagated uncertainty of soil properties. Even where methods
are comparable on the level of complexity and assessment scale, their comparability in view of uncertainty
propagation might be different. We conclude that comparable uncertainty indications in soil function maps are
relevant to enable informed and transparent decisions on the sustainable use of soil resources.

Published by Copernicus Publications on behalf of the European Geosciences Union.



124 L. Greiner et al.: Uncertainty indication in soil function maps

1 Introduction

Human wellbeing relies on soil resources, and soil should
therefore be better integrated into ecosystem service frame-
works that inform decision-making and environmental poli-
cies (Dominati et al., 2010). Soil acts in multi-functional
ways, and fulfills many functions in the regulation of the
nutrient and water cycles, in carbon sequestration, or in the
filtering of chemical compounds, providing biodiversity and
habitats for flora and fauna, and it is essential for the produc-
tion of food, fiber, and biomass (Haygarth and Ritz, 2009;
Adhikari and Hartemink, 2016). The capacity of soils to de-
liver ecosystem services is largely determined by its func-
tions, and each individual soil function can be seen as provid-
ing a soil-related contribution to ecosystem services (Bouma,
2014). The concept of soil function has increasingly been
applied to reveal the role played by soils in sustaining the
wellbeing of humans and of society, emphasizing the multi-
functionality of soils and their chemical, physical, and bio-
logical properties (EC, 2006; Haygarth and Ritz, 2009; Tóth
et al., 2013; Dominati et al., 2014; Schulte et al., 2014;
Schwilch et al., 2016; Makó et al., 2017). In general, soil
function assessment (SFA) entails the rating of soils accord-
ing to their capacity to fulfill an individual soil function,
the so-called soil function fulfillment (SFF). Simplified static
SFA methods result in scores that can be integrated into spa-
tial planning procedures (Greiner et al., 2017). Maps that
enable visualization of SFF, so-called soil function maps,
are well suited to communicating the importance of soils to
spatial planners and other disciplines (Sanchez et al., 2009;
Haslmayr et al., 2016) and can inform stakeholders on the
role of soils in society and the environment (Haygarth and
Ritz, 2009; Bouma, 2010; Miller, 2012). In particular, the
European soil protection strategy (EC, 2006), even though
not adopted, brought the domain of soil functions into public
discussions.

In order to allow informed and transparent decision-
making in spatial planning programs, however, balancing
the social aspects of urbanization and environmental factors
(Grêt-Regamey et al., 2017), not only must the state of soils
with regard to their functions be made available, but infor-
mation on the reliability of the soil function maps is also re-
quired. Information on the accuracy of soil function maps
facilitates decision-making for environmental policy, and in-
creases confidence among stakeholders, thereby helping to
avoid poorly informed policy decisions with significant long-
term environmental and social consequences (Maxim and
van der Sluijs, 2011). At the same time, providing informa-
tion on the uncertainty of soil function maps might delay de-
cisions (Höllermann and Evers, 2017) or lead to discussions
and negotiations in the spatial planning process (Taylor et al.,
2015). Nevertheless, the demand for soil information is con-
siderable and stakeholders require not only the state of the
soil in terms of soil quality, but also any indication of uncer-

tainties associated with the soil information (Campbell et al.,
2017).

Various sources of uncertainty can lead to spatially hetero-
geneous degrees of reliability in soil function maps. In gen-
eral, the following types of uncertainties can be distinguished
in assessing and mapping soil functions (Keller et al., 2002):
(i) model uncertainty that might arise from incomplete or in-
correct methodological approaches and incomplete process
descriptions, (ii) informational uncertainty of input data and
model parameters, and (iii) temporal and spatial variation
of soil properties. In the case of SFA, informational uncer-
tainties in input data may result for instance from process-
ing soil legacy data (Nussbaum et al., 2018), prediction of
soil properties using digital soil mapping approaches (DSM;
e.g., Nussbaum et al., 2018; Sanchez et al., 2009; Vaysse and
Lagacherie, 2015), or the application of pedotransfer func-
tions (PTFs; Schaap, 2004; Chirico et al., 2010) to deduce
soil parameters from other soil properties.

We distinguish two SFA approaches that differ in their lev-
els of complexity (Greiner et al., 2017). The static approach
uses simplified empirical methods to assess the capacity of
a soil to fulfill a specific function, neglecting the impacts of
land use and land management practices. The static approach
is particularly suitable for land use planning to support the
sustainable use of soil resources (Lehmann and Stahr, 2010).
The dynamic approach takes into account soil processes and
site-specific environmental factors, as well as land use and
land management practices. Dynamic models exist for nutri-
ent and water cycling, carbon sequestration, crop production,
and other soil sub-functions (Vereecken et al., 2016). The use
of dynamic soil models is both data-demanding and time-
consuming, but it is a powerful means of modeling the im-
pacts of past and future land use and land management prac-
tices on soil functions. The assessment of uncertainties in en-
vironmental (dynamic) modeling has been demonstrated in
numerous studies (Brown et al., 2005; Krayer von Krauss et
al., 2005; Heuvelink et al., 2007, 2010; Lesschen et al., 2007;
Bastin et al., 2013) and various frameworks have been pro-
posed to take into account sources of uncertainty (Heuvelink
et al., 2007; Bastin et al., 2013). Also, uncertainties associ-
ated with the spatial prediction of soil properties using DSM
approaches are usually quantified (FAO, 2017). In contrast,
uncertainties in the assessment of soil functions and rating of
soils according to their function fulfillment have hardly been
accounted for at all.

In this study, we propagate prediction uncertainties in soil
properties (informational uncertainty) through 10 static SFAs
for a case study area in the Swiss Plateau. The SFA meth-
ods used are presented in Greiner et al. (2017) and are cho-
sen to reveal the breadth of multi-functionality of soils. For
SFA, we used soil property maps generated by Nussbaum
et al. (2017). They used a DSM approach that exploits soil
legacy data, which has the advantage that the prediction in-
tervals for soil properties are provided. While the study of
Nussbaum et al. (2017) focused on the spatial prediction of
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Figure 1. Study area in the Swiss Plateau, 672489–715769 X, 228156–259960 Y , GCS_CH1903 (orthophoto study area: SWISSIMAGE
2005, ©swisstopo. Administrative boundaries Europe: NUTS 2010, ©EuroGeographics).

soil properties, the present study aimed at the assessment of
soil functions. The objectives of this paper were to propa-
gate soil property predictions through static SFA, in order to
(1) indicate how accurate the SFA results are in response to
informational uncertainty and spatial variation of soil prop-
erties as quantified by the DSM approach, and (2) to gauge
how sensitive the SFA methods are to predictive distribution
in soil properties.

2 Materials and methods

2.1 Study area

Our study area is located in the Swiss Plateau in the Can-
ton of Zurich around Greifensee, see Fig. 1. The region is
dominated by urban areas and agricultural land (crop pro-
duction, mixed, and dairy farming). We only assessed soils in
use for agriculture. Urban areas, forest, wetlands, parks, and
city gardens are excluded from this study, resulting in a total
study area of 170 km2. Chromic, Calcaric, and Eutric Cam-
bisols (63 % of study area), Stagnic, Reductigleyic, and Cal-
caric Gleysols (20 % of study area), Haptic Luvisols (11 % of
study area), Hemic and Drainic Histosols, and Calcaric and
Eutric Fluvisols or Regosols, have developed in a variable ge-
ology, but in general on molasse or moraine. The region lies
at about 390–840 m above sea level, and the growing season
is approximately 190 days per year. Slopes greater than 35 %
can only be found alongside moraines, otherwise the slopes
are between 10 and 15 % (Jäggli et al., 1998). The shape of

the study area is formed by administrative boundaries in the
southeast and otherwise by APEX spectroscopy flight bands
(www.seon.uzh.ch, last access: 4 May 2018). More details
on the region, its soils, and its extent are provided in Jäggli
et al. (1998) and Nussbaum et al. (2017).

2.2 Soil function assessment

We assessed regulation, habitat, and production functions for
10 soil (sub)-functions (Table 1) as proposed in a previous
review by Greiner et al. (2017). Each SFA method addresses
a certain domain of the soils multi-functionality depicting a
specific assessment criterion, e.g., the nutrient storage capac-
ity of soils for the nutrient cycle. The SFA methods require
data on soil properties and PTFs, as well as other environ-
mental data (Table 1).

2.2.1 Regulation functions

We assessed the regulation of the water cycle (R-water) fol-
lowing the method proposed by (Danner et al., 2003), which
combines the water storage capacity (WSC in mm m−2) of
soils with their saturated hydraulic conductivity (SHC in
cm day−1) for a reference soil depth down to 1 m. The nu-
trient storage capacity (NSC in molc m−2) of soil is one of
its most important parameters, determining the nutrient cycle
(R-nutric). We calculated the NSC according to (Lehmann et
al., 2013), multiplying the fine earth fraction (mass of clay
and silt) and the amount of soil organic matter for each soil

www.soil-journal.net/4/123/2018/ SOIL, 4, 123–139, 2018
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layer with its effective cation exchange capacity (CECeff)
down to a soil depth of 1 m. The method proposed by (Jäg-
gli et al., 1998) evaluates the capacity of soils to prevent the
loss of soil nutrients by runoff and percolation to ground and
surface water (R-nutril). The SFA method takes into account
basic soil properties, the hydromorphic properties of soils
(waterlogging), and environmental site conditions. The ca-
pacity of the soil to filter and buffer trace metals (R-icont)
were assessed for cadmium, copper, and zinc using a method
developed by the German Association of Water, Wastewater
and Waste (DVWK, 1988). to prevent groundwater pollution
by trace elements. The SFA method evaluates the filtering
capacity of topsoils (0–30 cm) to retain trace metal cations
based on sorption sites of organic matter, clay minerals, and
sesquioxides in conjunction with soil pH and redox potential
(DVWK, 1988). In general, agricultural soils receive fertil-
izers, e.g., mineral fertilizers, animal manure, compost, and
waste-derived fertilizers (as well as pesticides), which con-
tain nutrients but also impurities or by-products such as trace
metals. While copper and zinc mainly stem from animal ma-
nure, mineral phosphorus fertilizers might contain remark-
able amounts of cadmium (Keller and Schulin, 2003; Six and
Smolders, 2014; Jensen et al., 2016).

The regulation of organic compounds (R-ocont) is as-
sessed using the method of Litz (1998) for four frequently
used herbicides in Switzerland: glyphosate, pendimethalin,
metamitron, and isoproturon (Franzen et al., 2017). The SFA
method assesses the potential sorption and fixation of an or-
ganic compound on clay and organic material (binding) and
the potential biological activity of a soil to decompose an or-
ganic compound (decomposition). In a second step, both as-
sessment criteria are combined to evaluate the retention po-
tential of a soil for a specific chemical compound (retention).
To account for the ability of soils to buffer acids (R-acid),
we applied the SFA method proposed by (Bechler and Toth,
2010). The method takes into account the amount of clay and
organic matter down to a soil depth of 1 m, and soil pH. To
address the role of soils in the carbon cycle (R-carbon) we
simply calculated the soil carbon stock to 1 m depth.

2.2.2 Habitat and production functions

We used the method proposed by Siemer et al. (2014) to
assess the capacity of soils to provide niches for rare plant
species (H-plant). The method attributes this capacity to pro-
vide niches for rare plant species to sites with extreme soil
properties and shallow soils that lead to relatively dry or
wet soil conditions or low nutrients. As an indicator of the
habitat function we estimate soil biological activity based on
empirical regression functions to estimate microbial biomass
in grassland and arable soils (H-microorg; Oberholzer and
Scheid, 2007). These PTFs were derived by Oberholzer and
Scheid (2007) for hundreds of grassland and arable sites
across Switzerland.

SOIL, 4, 123–139, 2018 www.soil-journal.net/4/123/2018/
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We assessed the agricultural production function (P-agri)
using the method of Jäggli et al. (1998). This SFA method
combines basic soil properties, climate data (climate suit-
ability classes depending on temperature, precipitation, and
length of growing period; BLW, 2012), and site conditions
(slope, topography) to classify soils into 10 classes accord-
ing to their suitability for crop growth.

The results of SFA methods are usually given in physi-
cal or chemical units and transformed to an ordinal scale,
i.e., an SFF score, to facilitate the communication of multi-
functionality to stakeholders. In agreement with other stud-
ies assessing soil functions (e.g., Lehmann and Stahr, 2010;
Miller, 2012; Haslmayr et al., 2016), we applied an ordinal
scale with five levels. We adapted the ordinal scale for each
SFA method to the range of SFA results obtained from about
100 well-documented soil monitoring sites across Switzer-
land (Gubler et al., 2015). Thus, the ordinal scale in this
study represents a rating of soils capacity to function in
relation to a bandwidth of Swiss soils. The five levels of
the ordinal scale were SFF score= 1 (very low/very poor),
SFF= 2 (low/poor), SFF= 3 (medium), SFF= 4 (high/rich),
and SFF= 5 (= very high/very rich).

2.3 Soil property maps and other data

Nussbaum et al. (2017) generated soil property maps using
digital soil mapping (DSM) approaches for the case study
area with a spatial resolution of 20 m raster cells. This re-
sulted in a total of about 450 000 raster cells for the agricul-
tural soils. In the DSM approach Nussbaum et al. (2017) used
a new boosted geoadditive modeling framework (geoGAM)
in which they modeled nonlinear relationships and selected
parsimonious models from a large number of covariates. Ta-
ble 2 presents summary statistics of the modeled soil prop-
erties in our case study for the four soil layers that were dis-
tinguished. The accuracy of the predictions, validated using
independent data, was similar to other DSM studies. Inde-
pendent models were fitted for each soil property and each
soil depth (Nussbaum et al., 2017). To predict soil properties,
harmonized soil legacy data from about 4000 soil profiles
(Walthert et al., 2016) that were investigated during a 1 : 5000
soil mapping survey between 1988 and 1997 in the Canton of
Zurich (Jäggli et al., 1998) were used under a non-public data
license. Details are described in publications by Nussbaum et
al. (2017, 2018). While these publications purely focused on
the prediction of soil properties and the choice of DSM ap-
proaches, our study aimed at the assessment of soil functions
based on this soil property data.

In order to apply the SFA methods, PTFs suitable for di-
verse soil parameters are required (see Table 1). To estimate
soil bulk density we used the PTF of Nussbaum and Pa-
pritz (2015), and for the cation exchange capacity we used
the PTF of Gerber (2014). Both PTFs were developed for
Swiss soils based on soil legacy data. Available water ca-
pacity (AWC) and other soil hydraulic properties were es-

timated using the German soil mapping guidelines (KA5,
2005). Other environmental data such as slope, relief, cli-
mate, geology, geomorphology, properties of organic com-
pounds, and land use were gathered from available databases
(BFS, 2010; BLW, 2012; HADES, 2017; PPDB, 2017; Swis-
stopo, 2008, 2014).

2.4 Indication of uncertainty in mapping soil functions

In this study, we propagated uncertainties for four basic soil
properties, i.e., clay content, soil organic matter (SOM), pH,
and stone content, through the calculation of the 10 static
SFA methods. These four soil properties were treated in the
calculations as random variables for each raster cell and soil
depths 0–10, 10–30, 30–50, and 50–100 cm (Table 2). For the
soil depth of 50–100 cm, SOM was treated as a fixed input
variable (SPm) because its predictive performance was too
low (Nussbaum et al., 2017). For SOM at this depth we used
the median of the available soil data (n= 418). The probabil-
ity distributions of these soil properties (SPd ) were derived
from the DSM approach mentioned above, performing 1000
simulations for each raster cell and soil depth (Nussbaum et
al., 2017). For the calculation of the SFA we drew an in-
dependent set of the four SPd values (drawn and replaced)
N = 1000 times, and compared range, mean, and variance of
the generated SPd set with the original distributions of the
four soil properties predicted using the DSM approach.

We restricted the number of random variables to these
four soil properties due to the required computation time
for such a large number of raster cells (n = 4× 105) with
four soil depths. Therefore, for other soil properties such as
silt content, soil depth, the presence or absence of water-
logged horizons, and drainage class, the mean of the DSM
simulations was used (SPm; Tables 1–2). The presence of
waterlogged soil horizons in the top soil layer (0–30 cm)
was found for about 13 % of the case study area, for the
0–50 cm soil depth the figure was 27 %, and for the depth
0–100 cm, it was 40 % of the area. We assumed there was
no waterlogging for the 0–10 cm depth because this was
rarely observed in the data. About 74 % of the agricultural
soils were well drained (drainage class 1), 11 % were mod-
erately well drained (class 2), and 15 % were poorly drained
(class 3) (Nussbaum et al., 2017).

For the error propagation and the analysis of the uncer-
tainty assessment results we distinguish two different types
of SFA methods depending on how the chosen random vari-
ables are taken into account in the calculation of the SFA
methods. In cases where the SFA method consists of empiri-
cal equations (e.g., regression functions) or continuous PTFs,
the variation of each soil property with probability distribu-
tion, SPd , is fully propagated through this type 1 (equation).
In our study this is the case for methods assessing regula-
tion of nutrient cycle, carbon cycle, and habitat for microor-
ganisms (R-nutric, R-carbon, and H-microorg). SFA meth-
ods assessing soil regulation of water cycle, nutrient losses,
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Table 2. Summary statistics of modeled soil properties generated by the DSM approach by Nussbaum et al. (2017) for the Greifensee study
area.

Soil property Depths Mean SD

(in cm) Q0.1 Q0.5 Q0.9 Q0.1 Q0.5 Q0.9

SPd Clay (%) 0–10 19.4 24.3 29.4 5.5 5.7 5.8
10–30 20.4 25.6 31.2 5.5 5.7 5.8
30–50 20.4 25.4 31.2 6.6 6.8 7.0

50–100 18.9 24.7 30.3 7.3 7.5 7.7

Soil organic matter (%) 0–10 4.4 5.8 8.2 1.7 2.2 3.1
10–30 4.3 5.8 8.5 1.9 2.5 3.7
30–50 1.7 5.9 10.7 6.7 15.5 22.2

Stone content (%) 0–10 3.1 7.6 12.6 3.5 5.8 7.5
10–30 3.4 8.3 13.7 3.7 6.0 7.9
30–50 4.0 9.9 18.1 4.6 7.7 10.5

50–100 5.4 12.6 21.2 6.4 10.2 13.5

pH 0–10 6.2 6.5 7.0 0.5 0.5 0.5
10–30 6.1 6.5 6.9 0.5 0.5 0.5
30–50 6.1 6.5 7.0 0.6 0.6 0.6

50–100 6.2 6.6 7.0 0.6 0.6 0.6

SPm Soil organic matter (%) 50–100 1.0 0

Silt (%) 0–10 34.8 2.2
10–30 35.5 2.3
30–50 32.9 3

50–100 33.6 3.1

Soil depth (cm) – 70.1 14.6

acidification, inorganic contaminants, habitat for plants, and
agricultural production function (R-water, R-nutril, R-acid,
R-icont, H-plant, and P-agri) are partly based on look-up ta-
bles using a classification of soil properties in the calculation,
including PTFs that classify the estimation of secondary soil
properties such as available water capacity (type 2 look-up
tables). In particular, the method assessing soil regulation of
organic contaminants (R-ocont) classifies soil properties at
the very beginning and groups the calculation of the reten-
tion of organic compounds in soils according to this classifi-
cation.

We computed (a) two measures of uncertainty for SFF
scores, (b) two types of maps visualizing uncertainties, and
(c) two measures for overall uncertainty per soil sub-function
in our study area and show (d) uncertainties of SFF scores per
soil sub-function in detail.

a. As a measure of uncertainty of the SFF scores for the
10 SFA methods, we computed the interquartile range
(IQR) for each raster cell, i.e., the difference between
the 75 and 25 % percentiles, and the ratio of IQR to the
median as an approximation of the coefficient of varia-
tion for the ordinal-scaled SFF scores.

b. In order to visualize the uncertainty of the SFF scores in
the soil function maps we generated two different map
types.

We visualized the uncertainty of the SFF scores result-
ing from the uncertainty of the four SPd values with
the aim of facilitating communication in the decision-
making process, and computed the probabilities of < 10,
10–30, and > 30 % that the SFF score of a raster cell
might deviate from the mean SFF score (only SPm used
for SFA) for ±1 or ±2 or more SFF categories. In this
way, stakeholders might gain an overview of the areas
of the case study area for which the SFF scores of indi-
vidual soil sub-functions have more or less confidence,
expressed on the ordinal scale. The other type of maps
allow visualization of SFF scores in a raster cell only
where ≥ 90 % of the 1000 simulated SFF scores were
equal (C90); i.e., ≥ 90 % of the simulated SFF scores
revealed no variation indicating high reliability of the
results, whereas raster cells that do not meet this criteria
are displayed as empty cells on the map. Additionally, 5
and 95 % percentiles are displayed.

c. As a measure of the overall uncertainty of a soil
function, we calculated the median absolute devia-
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tion (MAD) for each raster cell and took the average
of the MAD for all raster cells (MMAD).

d. Finally, for more detailed analysis of the resulting un-
certainty in the SFF scores for each assessed soil func-
tion, we computed the cumulative distribution functions
(cdfs) of the SFF scores including the mean of the devi-
ations from the mean SFF score of a raster cell (MDM)
for the 1000 simulations. The MDM was calculated
separately for (a) all simulations that were larger or
(b) smaller than the mean SFF score.

3 Results and discussion

3.1 Mapping uncertainty of soil sub-functions

Mapping the 10 soil sub-functions for the study area revealed
pronounced spatial patterns, with a high variability of SFF
scores across the region, linked to the inherent properties of
the soils, terrain attributes, and climate conditions. The prop-
agated uncertainties of soil properties SPd as produced by
the SFA methods generally led to substantial uncertainty in
the mapped soil sub-functions, though to a different extent
for individual soil sub-functions and for subregions. Figure 2
presents the mean SFF scores for three selected soil sub-
functions and the associated uncertainties; the same maps for
the other soil sub-functions can be found in the Supplement.
Figure 3 provides a general overview of the range of the SFF
scores for the 10 mapped soil sub-functions and their uncer-
tainties.

For instance, the regulation function for water (R-water)
is in general higher for arable soils in the northeastern
part of the case study area, but is also associated with
larger uncertainties. The water storage capacity (WSC) in
our study area ranges between 44 and 270 mm (10–90 %
quantile, median: 204 mm) and the saturated hydraulic con-
ductivity (SHC) ranges between 17 and 183 cm day−1 (me-
dian: 32 cm day−1). The probability maps indicate that in the
northeastern part, 30 % or more of the N = 1000 simulations
did not receive a “very high” SFF score, but scored one or
two SFF categories lower, i.e., high or medium (Fig. 2). Fur-
thermore, the soils between lakes Greifensee and Zurich in
the western part of the region with predominantly medium
and low SFF scores were quite sensitive to uncertainties in
soil properties. For the majority of soils in this sub-area there
is a relatively high probability that the mean SFF score for
R-water might deviate by ±1 SFF category/class.

As expected, the calculation of the soil carbon pools was
very sensitive to uncertainty in soil organic matter and stone
content data (Fig. 2, R-carbon). Carbon pools in agricultural
soils are very heterogeneous across the case study area, with
low SFF scores mainly in the northern part (< 10 kg m−2),
with medium (13–15 kg m−2) and high SFF scores (15–
21 kg m−2) in the southern part of the region. Mapping the
associated uncertainty of soil carbon pools on an ordinal

scale indicated, across almost the whole case study area, high
probabilities that the SFF scores might deviate for ±1 or
even ±2 SFF categories. In contrast, the agricultural soils of
the case study area showed high nutrient storage capacities
throughout the region (Fig. 2, R-nutric) and therefore SFF
scores of R-nutric were not that sensitive to the propagation
of uncertainties of SPd through this SFA method. Only in the
northeastern area did we observe some probabilities that SFF
scores for R-nutric might be one SFF category lower. Over-
all, the uncertainty of individual soil function maps showed
diverse spatial patterns. Mapping their uncertainty in the or-
dinal scale, as proposed in Fig. 2, may increase the com-
mon understanding of spatially heterogenic uncertainties in
SFF in decision-making in spatial planning programs. Un-
certainty indication adds information on reliability of the soil
function maps used to communicate the value of soils to
spatial planners and other disciplines (Sanchez et al., 2009;
Haslmayr et al., 2016), thus allowing for more confidence in
land use decisions. Moreover, revealing the reliability of soil
function maps might support efforts to strengthen the link be-
tween soil functions and ecosystem services. This link is im-
portant, as ecosystem services are a means of connecting soil
functions to the demands and needs of stakeholders to find
the crucial balance in land use planning between economic,
social, and environmental interests (e.g., Bouma, 2014; Val-
ujeva et al., 2016; Grêt-Regamey et al., 2017).

The responses of the SFF scores for the assessed soil sub-
functions to uncertainty in the four simulated soil properties
depend not only on the SFA method and its ordinal assess-
ment scale. In agreement with the very high nutrient storage
capacity of the soils, the basic soil properties of the grassland
and arable soils are in a range that provides high and very
high retention of trace metals (R-icont) as well, while the re-
tention of organic chemical compounds in soil (R-ocont) is
very low throughout the region (Fig. 3) according to the as-
sessment scale proposed in this SFA method (Litz, 1998).
Accordingly, the SFF scores for R-nutril, R-icont, and R-
ocont are relatively insensitive to uncertainty in soil proper-
ties, and the overall coefficient of variation is very small for
these soil sub-functions. The highest overall coefficient of
variation was found for R-carbon and H-microorg, followed
by R-acid and R-water (Fig. 3). These results raise a ques-
tion about the appropriate classification of SFA results from
physical or chemical units into an ordinal assessment scale,
and the adaption of such a classification for individual soil
sub-functions according to the range of soil properties for
the case study area of interest or according to national ref-
erences. Only where the SFF scores on the ordinal scale of
a certain soil function show substantial spatial variation can
the influence of uncertain soil properties on the SFA results
be investigated.

In this regard, H-plant is a special case for the assessment
of uncertainties because the outcome of this SFA method is
a binomial variable, i.e., it indicates whether the soil pro-
vides niches conditions for rare plant populations or not. The
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Figure 2. Selected soil function maps for the agricultural land of the case study area and indication of their uncertainties in the ordinal scale:
(a) mean SFF scores and (b) probability that the mean SFF score of a raster cell deviates in the ordinal scale for ±1 or (c) ±2 or more SFF
categories/classes (raster cells 20× 20 m2, N = 1000 simulations).

simple SFA revealed that 14 % of the soils in the case study
area are suitable for providing niches for rare plants in terms
of wet or dry soil conditions, low nutrient availability, and
shallow soils. Such extreme soil conditions are mainly deter-
mined by soil depth, soil hydromorphic features, and other
soil properties, and only to some degree by the uncertainty
of the considered soil properties SPd . Therefore, for proper
uncertainty assessment of the SFA method H-plant, not only
must the four soil properties be taken into account, but the

uncertainty of the aforementioned variables should also be
considered.

In addition to the uncertainty maps described above, we
generated supplemental information on the uncertainty of
soil function maps addressing a given quality assurance cri-
terion (Fig. 4). We defined the C90 criteria as follows: the
mean SFF scores for raster cells are displayed if at least 90 %
of the SFF score simulations result in the same SFF category;
otherwise the study area is shown as a grey area. In this way,
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Figure 3. General overview of the resulting range of SFF scores for the 10 mapped soil sub-functions (a), and of their coefficient of variation
(b) expressed as the ratio of the interquartile range (IQR) and the median of the SFF scores for each raster cell. Circles with dots indicate the
median coefficient of variation of the SFF scores across the case study area.

stakeholders can easily gain an overview of those areas for
which the soil function maps are reasonably reliable. Fig-
ure 4 illustrates such supplemental maps and the visual ef-
fect of the C90 criteria for three SFA methods with high (R-
nutril), medium (R-icont), and low reliability (H-microorg).
Independent of the SFF scores, the number of raster cells
displayed decreases for these three soil sub-functions, in the
same order. In sum, the uncertainty analysis shows that R-
nutril and R-nutric fulfill the C90 criteria for most of the as-
sessed agricultural area (85–90 %); P-agri, R-water, R-icont,
R-ocont fulfill them for about 41–51 %; R-acid, H-microorg
and R-carbon apply for less than 5 % of the case study area.
Accordingly, the average MAD of the SFF scores across the
whole region increases noticeably for these three groups in
the same order: < 0.01 for the first group, 0.01–0.07 for the
second, and 0.43–0.88 for the third group. For the last group,
the range of SFF scores (5 and 95 % percentiles for each
raster cell) in terms of SFF categories varies for large areas
from very low to very high, as illustrated for instance for H-
microorg in the northeastern part of the region (see Fig. 4).

3.2 Cumulative distribution functions of SFF scores

Cumulative distribution functions (cdfs) of the SFF scores
for all raster cells provided deeper insight into the sensitivity
of the SFA methods related to the uncertainty of the basic
soil properties SPd with regard to the uncertainty for each
SFF categories/classes for each soil function. In general, we
observed two different patterns in the cdfs of the SFF scores
for type 1 (equation) and type 2 (look-up table) SFA methods
(Figs. 5 and 7).

For type 1 SFA methods the uncertainty in the soil proper-
ties can be propagated entirely through regression functions
and deterministic equations, and cdfs of the corresponding
SFF scores indicate a smooth pattern of mean SFF scores
and their uncertainties from very low to very high SFF scores
(Fig. 5). In contrast, depending on the classification of soil
properties in the look-up tables used in type 2 SFA meth-
ods, the cdf for R-nutril and P-agri show pronounced (and
for P-water and P-acid less pronounced) step functions for
the mean SFF scores. Both of the first two SFA methods
combine information on soils and environmental site con-
ditions (e.g., geology, drainage systems, slope, altitude, and
climate) using various comprehensive look-up tables, lead-
ing to strong differentiation of the final SFF scores for dis-
tinct ranges of soil properties. Therefore, the outcomes of
these SFA methods for a given region is not straightforward.
For example, R-nutril combines texture, stone and soil or-
ganic matter content, bulk density, soil depth, drainage class,
and environmental conditions as input data in various look-
up tables. Thus, other input parameters including soil prop-
erties might also determine the main outcome of R-nutril for
certain SFF categories/classes. For R-nutril and P-agri, soil
depth and drainage class showed strong differentiation be-
tween SFF classes.

Figure 6 indicates that the SFF scores for R-nutril are only
sensitive to some degree to the uncertainty in the soil proper-
ties SPd for high and very high SFF categories/classes, while
for other SFF categories other environmental data are dom-
inant. Interestingly, we observe that certain SFF categories
of the type 2 SFA methods are more or less sensitive to the
propagated uncertainty of soil properties SPd (Fig. 6). This
different response in the uncertainty of the SFF scores for
the type 2 SFA methods was a priori unexpected and high-
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Figure 4. Uncertainty indication for soil function maps of R-nutril, R-icont, and H-microorg: (a) only mean SFF scores for raster cells are
displayed if at least 90 % of the N = 1000 simulations per raster cell revealed the same SFF score (first column). In addition, the range of
SFF scores for each raster cell is shown: (b) 5 and (c) 95 % percentiles of SFF scores, respectively (SFF, soil function fulfillment, in grey;
not C90 or no assessment in light grey; lakes, “Arealstatisik” 2009, 72 classes, ©BFS 2010, GEOSTAT).

lights the importance of such an uncertainty analysis of static
SFA methods. The analysis provides insight in terms of those
SFF categories for which uncertainty in soil property data
plays an important role. For soils with low suitability for food
production the range of soil properties is not important (see
Fig. 6) given that waterlogging or soil depth might be the
dominant factors. However, for soils with medium and high

suitability the range of soil organic matter, clay and stone
content, and soil pH are decisive.

In line with the analysis of the uncertainty maps discussed
above, relatively large uncertainty was found for all raster
cells for R-carbon and H-microorg (Fig. 5). The SFA method
H-microorg, for example, links microbial biomass for grass-
land and arable land use to soil organic matter, pH, and
clay content through a PTF, and is therefore very sensitive
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Figure 5. Cumulative distribution function (cdf) of SFF scores for
type 1 (equation) for R-carbon and H-microorg for agricultural soils
of the case study area and the uncertainty resulting from four ba-
sic soil properties. SFF score: 1 (very low) to 5 (very high); black:
mean SFF score per raster cell; grey: range ±MDM per raster cell,
number of raster cells is about 450 000; total area= 170 km2.

to changes in soil properties. For R-water and P-agri for
medium to very high SFF categories the uncertainty in the
soil properties SPd also leads to SFF scores of rather lower
confidence. Consequently, the analysis suggests on a specific
level that further measurements of basic soil properties are
required in the case study area to reduce the uncertainty in the
spatial prediction of soil properties obtained from the DSM
approach used by Nussbaum et al. (2017).

Moreover, our analysis clearly indicates that SFA results
are not comparable between type 1 and type 2 methods and
among type 2 methods in view of uncertainty indication. One
of the core aspects of the soil function concept is to assess
soil multifunctionality and its effects on humans and the en-
vironment in general, and to support land use decisions (e.g.,
Haygarth and Ritz, 2009; Schulte et al., 2014). However, soil
sub-functions are not directly comparable. The valuation of
soil is more straightforward and transparent for stakeholders
using SFF scores. The comparability of SFA results at the
ordinal scale allows to deliberate on the importance of soil
functions. Deliberation is seen as a promising tool to value
environmental goods or services (Vatn, 2009). Soil function
maps including uncertainty indications can also be used in
multi-criteria decision analysis (MCDA), for instance in spa-
tial planning programs (Grêt-Regamey et al., 2017).

Figure 6. Cumulative distribution function (cdf) of SFF scores for
type 2 (look-up table) for R-water, R-nutril, R-acid, and P-agri for
agricultural soils of the case study area and the uncertainty resulting
from four basic soil properties. SFF score: 1 (very low) to 5 (very
high); black: mean SFF score per raster cell; grey: range ±MDM
per raster cell, number of raster cells for these soil sub-functions
ranged between 420 000 and 445 000; total area= 170 km2.
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3.3 Thoughts on uncertainty indication

Uncertainty is usually expressed as a probability of a state
or an event, and can be presented numerically, verbally, or
graphically (IOM, 2013). Its presentation must fit the needs
of the audience, the circumstances, and the purpose (IOM,
2013). We argue that the easiest way to interpret and the
most suitable way of communicating (un-)certainties to ac-
tors in land use decisions is in the form of maps because
this enables the visualization of spatial variability. Clearly,
for a general overview of the study area, insight into method
behavior or comparisons between soil function, and infor-
mation in the form of a table or a plot may also be suit-
able. In this study, we present readily communicable uncer-
tainty indications for soil function maps. There are many
other possibilities as well, of course, including statistically
advanced methods to display (un)certainties in soil function
maps. Rather than providing statistical measures, however,
we advocate provision of simple uncertainty maps such as
those illustrated in Figs. 3 and 5 as a means of facilitating the
communication of uncertainties with stakeholders who may
not be familiar with soil science and the contribution of soils
to ecosystem services.

Experience of communicating uncertainty in the context
of climate (Budescu, 2016) has shown that the use of sim-
ple phrases such as “very likely” combined with a numeri-
cal score (e.g., > 90 %) are of most value because stakehold-
ers understand this kind of message best. Communication of
uncertainty through phrases has the advantage of capturing
stakeholders’ attention, although it is also somewhat open to
individual interpretation in different contexts. According to
(IOM, 2013), although graphic indications can “capture and
hold people’s attention”, the interpretation may vary among
individuals. A correspondent option to evaluate in the future
would be to communicate a general phrase about the un-
certainty of a soil function map, combined with a map that
shows the details of the spatial variation of the uncertainty.

Depending on the method used, uncertainties in soil in-
formation input in SFA may be more or less disclosed or
obvious, and with this in mind the question itself is then
what degree of uncertainty in data input in SFA should be
transported through the SFA to match the needs of decision-
makers in spatial planning processes. The optimal degree of
uncertainty indication depends on the stakeholders involved
in decision-making and the kind of decisions. The mindsets
of the actors involved influence how the decision can be im-
proved by good quality soil function maps, including uncer-
tainty indications. Time and resources for decision-making
may vary and require a variable quality of information.

4 Conclusions

Decision-making in spatial planning programs should be
well informed about the role of soils in society and the en-
vironment. Mapping of soil functions underpins the contri-

bution of soils to ecosystem services and is appropriate for
communicating the importance of soils to spatial planners
and professionals of other disciplines. Transparency in map-
ping soil functions including their uncertainties adds to the
quality of spatial information used for decision-making. In
this study, we try to foster transparency in two ways. First,
we demonstrate how the reliability of soil function maps can
be presented to allow for informed and transparent decisions
in spatial planning processes, thereby helping to avoid poorly
informed policy decisions with regard to available soil re-
sources. We propose two types of maps for the indication of
uncertainties in SFA, which supplement each other. We ad-
vocate that uncertainties should be made as transparent as
possible and be visualized in easily understandable maps.

Second, taking into account the uncertainty of basic soil
properties, the performed uncertainty analysis for SFA pro-
vides deeper insight into the sensitivity of the SFA methods.
The cumulative distribution functions for the SFF scores of
individual soil functions showed different patterns for SFA
methods based on empirical equations and SFA methods us-
ing simplified look-up tables.

Indeed, soil data availability for the study area was good
in comparison to other areas in Switzerland. To achieve the
same degree of detail in applying this approach for larger
areas without soil sampling could therefore be challenging.

In this study, we restricted the uncertainty propagation
through the SFA methods to four basic soil properties at
four depths, mainly because of computational limitations.
Other sources of uncertainty such as informational uncer-
tainty of other soil properties, environmental variables (such
as climate data), and the reliability of PTFs should be con-
sidered as well. Furthermore, we presume that model un-
certainty arising from methodological simplifications might
cause substantial uncertainties in SFA, for instance, with re-
gard to simplification of process descriptions, reference as-
sessment depth, or calibration of the ordinal scale. On the
other hand, the static SFA approach is in general quite flexi-
ble and modular. A general drawback of the SFA approach is
that SFA results cannot be validated (Calzolari et al., 2016).
Although we used established SFA methods, we still con-
sider further development of applicable SFA methods as a
future challenge, in particular methods that link soil biology
and soil biodiversity to soil functions.

Data availability. Soil property maps used for SFA were presented
in Nussbaum et al. (2017). The underlying soil data were available
under a non-public data license and could not be published.

The Supplement related to this article is available online
at https://doi.org/10.5194/soil-4-123-2018-supplement.
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