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Abstract. Improving the accuracy of pedotransfer functions (PTFs) requires studying how prediction uncer-
tainty can be apportioned to different sources of uncertainty in inputs. In this study, the question addressed
was as follows: which variable input is the main or best complementary predictor of water retention, and at
which water potential? Two approaches were adopted to generate PTFs: multiple linear regressions (MLRs)
for point PTFs and multiple nonlinear regressions (MNLRs) for parametric PTFs. Reliability tests showed
that point PTFs provided better estimates than parametric PTFs (root mean square error, RMSE: 0.0414 and
0.0444 cm3 cm−3, and 0.0613 and 0.0605 cm3 cm−3 at −33 and −1500 kPa, respectively). The local parametric
PTFs provided better estimates than Rosetta PTFs at −33 kPa. No significant difference in accuracy, however,
was found between the parametric PTFs and Rosetta H2 at −1500 kPa with RMSE values of 0.0605 cm3 cm−3

and 0.0636 cm 3 cm−3, respectively. The results of global sensitivity analyses (GSAs) showed that the mathemat-
ical formalism of PTFs and their input variables reacted differently in terms of point pressure and texture. The
point and parametric PTFs were sensitive mainly to the sand fraction in the fine- and medium-textural classes.
The use of clay percentage (C %) and bulk density (BD) as inputs in the medium-textural class improved the
estimation of PTFs at −33 kPa.

1 Introduction

Predictive information on the spatial distribution of soil water
and its availability for plants enables producers to take effec-
tive decisions (e.g. on nutrient management and plant cover)
to maximise profitability. The soil-water balance is central to
many processes that influence plant growth and the degrada-
tion of soil and water resources.

Hydrologists face the situation where soil hydraulic data
such as water retention or hydraulic conductivity are often
missing. Therefore, pedotransfer functions (PTFs) are used
as an alternative to estimate these properties. The extrapo-
lation of PTFs in different agropedoclimatic context limits

their performance (Touil et al., 2016). The development of
local PTFs could be useful in meeting the agricultural re-
quirements for modelling with reasonable accuracy.

Soil water retention (SWR) curves can usually be es-
timated using two approaches: point PTFs and parame-
ter PTFs. With point PTFs, SWR is estimated at defined
pressure points (Pachepsky et al., 1996; Minasny et al.,
1999). One of the most commonly used SWR curves is
the van Genuchten (1980) model. With parameter PTFs,
the parameters of SWR models, such as θs, θr, α and n,
are estimated by fitting them to the data and then relat-
ing them by empirical correlation to basic soil properties
(Vereecken et al., 1992; Wösten et al., 1995; Schaap and
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Figure 1. (a) Texture fractions of the dataset (242 samples), based on the USDA system. (b) Particle size distribution of 53 soil samples
from Algeria according to the FAO textural triangle (FAO, 1990).

Leij, 1998; Minasny and McBratney, 2002; Rawls and Brak-
ensiek, 1985; van Genuchten et al., 1992; Wösten et al.,
2001; Vereecken et al., 2010). Schaap et al. (2001) devel-
oped the Rosetta package based on the artificial neural net-
work (ANN) method, which uses five hierarchical models to
predict the van Genuchten (VG) parameters (θs, θr, α and n)
with only soil texture classes and the input data (texture, bulk
density, BD, and one or two water content values at −33 and
−1500 kPa).

PTFs for point and parametric estimation of SWR from ba-
sic soil properties can be developed using multiple regression
methods (Lin et al., 1999; Mayr and Jarvis, 1999; Tomasella
et al., 2000).

Some 97 % of water retention PTFs for soils in the tropics
are based on multiple linear and polynomial regressions of
nth-order techniques (Botula et al., 2014).

Using PTFs in environments that differ from those
from which they were derived can lead to an under- or
overestimation of SWR. Several studies have shown that
SWR is a complex function of soil structure and composition
(Rawls et al., 1991, 2003; Wösten et al., 2001; Mirus, 2015).
Applying PTFs to different textural or structural classes
could also be a source of uncertainty (Bruand et al., 2002;
Pachepsky and Rawls, 2003). SWR and hydraulic conductiv-
ity vary widely and nonlinearly with soil water potential. Soil
texture is the main determinant of the water-holding charac-
teristics of most agricultural soils (Saxton et al., 1986). The
relationship between the SWR curve and particle size distri-
bution (PSD) has been investigated in many studies (Jonas-
son, 1992; Minasny et al., 2007; Ghanbarian-Alavijeh et al.,
2009; Yang and You, 2013; Lee and Ro, 2014). SWR de-
pends mainly on texture, with other factors such as BD, struc-
ture, organic matter (OM), clay type and hysteresis having a
secondary impact (Williams et al., 1983; Saxton et al., 1986;
Vereecken et al., 1989; Winfield et al., 2006).

The variability in PTF response depends on the variability
and uncertainty of one or more of the input variables. Un-
certainty analysis in the variety of available PTF approaches
is necessary to minimise error in estimation and identify its
source. Recently, sensitivity analysis techniques and uncer-
tainty analysis have begun to receive considerable attention
in PTF studies (Nemes et al., 2006; Kay et al., 1997; Grun-
wald et al., 2001; Deng et al., 2009; Moeys et al., 2012;
Loosvelt et al., 2013). The question is as follows: which
variable input is the main or best complementary predictor
of SWR, and at which potential? Global sensitivity analy-
sis (GSA) enables us to study how uncertainty in the output
of a model can be apportioned to different sources of uncer-
tainty in the model inputs (Saltelli et al., 2000). Generally,
GSA is useful for identifying which variables make the main
contribution to output variables (Jacques et al., 2006).

The objectives of this study were to

– develop and validate two PTF approaches using regres-
sion methods: point PTFs for estimating SWR in Alge-
rian soils at −33 and −1500 kPa and parametric PTFs
for estimating the VG parameters

– study the impact of each input on the PTF responses.

2 Materials and methods

2.1 The database

The soil dataset used for this study was collected from var-
ious regions in Algeria, mainly in the north, which has a
Mediterranean climate. It contained 242 samples, with basic
soil properties: texture fractions (based on the USDA sys-
tem; clay and silty-clayey for most of the soils; Fig. 1a), BD,
OM percentage and water content at −33 and −1500 kPa.
Descriptive statistics of the development and validation
datasets are presented in Table 1. The available database
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Table 1. Soil characteristics of the developed and validated datasets.

PSD VWC (cm3 cm−3)

S Si C BD OM −33 kPa −1500 kPa
(%) (%) (%) (g cm3) (%)

Samples used for deriving PTF (n= 189)

Average 17.81 39.23 42.97 1.71 0.95 0.44 0.27
Standard deviation 10.32 10.76 13.90 0.20 0.93 0.09 0.08
Minimum 1.00 9.20 4.00 0.60 0.08 0.13 0.03
Maximum 50.00 67.00 84.30 2.10 8.40 0.73 0.56
Coefficient of variation 0.58 0.27 0.32 0.12 0.98 0.21 0.31

Samples used for testing PTF (n= 53)

Average 12.50 41.58 45.92 1.49 0.87 0.40 0.21
Standard deviation 14.84 7.62 14.94 0.13 0.50 0.10 0.07
Minimum – 29.00 9.00 1.15 0.20 0.14 0.07
Maximum 59.00 58.00 70.00 1.73 2.74 0.57 0.45
Coefficient of variation 1.19 0.18 0.33 0.09 0.57 0.24 0.35

PSD: particle size distribution, S: sand, Si: silt, C: clay, BD: bulk density, OM: organic matter, VWC: volumetric water
content.

was split into two datasets. Subset 1, which was used to de-
velop the PTFs, contained 78.1 % of the samples. Used as
the calibration set, they were collected from the coastal plain
of Annaba in north-eastern Algeria (13 samples), the Beni
Slimane plain of Media (42 samples), the Kherba El Aba-
dia plain of Ain Defla (54 samples) and the Lower Cheliff
plain in north-western Algeria (80 samples). Subset 2 con-
tained the remaining 21.9 % of the samples. Used to ver-
ify the PTFs, they were collected from Benziane valley in
the lower south-western Cheliff plain. The depth of the two
upper horizons varied from site to site, with a maximum of
30 cm for surface horizons and more than 30 cm for subsur-
face horizons.

Particle size distribution (PSD) analysis was conducted
using the international Robinson’s pipette method (Robin-
son, 1922). Undisturbed soil samples obtained with 500–
1000 cm3 cylinders were used to determine BD. The SWR
values at−33 and−1500 kPa were obtained using Richards’
apparatus (Richards and Fireman, 1943). Undisturbed soil
samples were collected near field capacity with 100 cm3

cylinders. Water content was measured using the gravimetric
method at 105 ◦C (24 h). Organic carbon content was deter-
mined using the wet oxidation method (Walkley and Black,
1934). Variation in soil texture in the dataset is displayed us-
ing the textural triangle proposed by FAO (1990) in Fig. 1b.

The SWR model devised by van Genuchten (1980) is de-
fined as

θ (h)= θr+
θs− θr

(1+ |αh|n)

m

, (1)

where θr and θs are residual and saturated soil-water content
(cm3 cm−3), respectively, and α (cm−1) and n are the shape
factors of the SWR function. The VG parameters were in-

directly estimated for each soil sample from four levels of
measured data inputs: sand, silt and clay percentages, and
BD using the Rosetta model H3 (Schaap et al., 2001). The
m parameter was calculated as follows:

m= 1− 1/n.

2.2 PTF development

Two approaches were used in this study to develop the
PTFs: point PTFs for estimating SWR for particular points
of pressure (h) and parametric PTFs for predicting the VG
parameters. Each water content level at selected water poten-
tials of −33 and −1500 kPa and estimated VG parameters
were related to basic soil properties (i.e. sand, silt, clay con-
tent, OM content and BD) using multiple regression tech-
niques (Table 2). The most significant input variables were
determined using the Pearson correlation (α= 5 %). For the
multiple linear regression (MLR) models, the general form
of the resulting equations was thus expressed as

Y = a0+ b1X1+ b2X2+ b3X3+ b4X4. (2)

For the multiple nonlinear regression (MNLR) models, it was
thus expressed as

Y = a0+ b1X1+ b2X2+ b3X
∧

1 2+ b4X
∧

2 2+ b5X
∧

1 3
+ b6X

∧

2 3+ b7X1 ·X2+ b8X
∧

1 2 ·X2+ b9X1 ·X
∧

2 2, (3)

where Y represents the dependent variable, a0 is the inter-
cept, b1 . . . , bn are the regression coefficients, and X1 to X4
refer to the independent variables representing the basic soil
properties.
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Table 2. Developed pedotransfer functions (PTFs).

Point PTFs

at −33 kPa: θ = 0.0246− 0.0040 S+ 0.0012 C+ 0.2554 BD+ 0.0067 OM
at −1500 kPa: θ =−0.0627− 0.0029 S+ 0.00165 C+ 0.1837 BD+ 0.0017 OM

Parametric PTFs

θs= 0.44− 0.0013369 S+ 0.0002 C+ 0.01771343 BD− 0.0018272 OM
θr= 0.09+ 0.000777943 S− 0.000319883 C+ 0.000063602 S2

+ 0.000012 C2
+ 0.00000093 S3

− 0.0000001 C3

α= 0.003− 0.0001 S+ 0.000089 Si+ 0.0000054 S2
− 0.0000045 Si2− 0.000000073 S3

+ 0.000000045 Si3

+ 0.0000077 S Si− 0.000000031 S2 Si− 0.000000062 S Si2

n= 2.9− 0.00277395 C− 0.09478943 Si− 0.00036644 C2
+ 0.00202592 Si2+ 0.00000249 C3

− 0.000015 Si3+ 0.00028374 C Si+ 0.00000491 C2 Si− 0.00000532 C Si2

S: sand (%), C: clay (%), Si: silt (%), BD: bulk density (g cm−3), OM: organic matter (%), θr and θs are residual and saturated soil-water content
(cm3 cm−3), respectively, and α (cm−1) and n are the shape factors of the of van Genuchten model.

The prediction quality of the point and parametric PTFs
developed from Algerian soils were then compared with
three Rosetta PTFs (H1, H2 and H3). We chose the Rosetta
model because it gives the user flexibility in inputting the
data required (Stumpp et al., 2009), with the option of five
levels based on input data (Schaap et al., 2001):

– H1 is textural classes (USDA system).

– H2 is clay+ silt+ sand.

– H3 is clay+ silt+ sand+BD.

– H4 is clay+ silt+ sand+BD+ volumetric water at
−33 kPa.

– H5 is clay+ silt+ sand+BD+ volumetric water at
−33 kPa+ volumetric water at −1500 kPa.

The artificial neural network models were also chosen be-
cause they have given reasonable predictions in several eval-
uation studies (e.g. Nemes et al., 2003). In our study, the
three Rosetta model levels (H1, H2 and H3) were selected
to compare their performance in the Algerian soils because
they require only texture data and BD as inputs, like locally
developed PTFs do.

2.3 Evaluation criteria

PTFs are regularly assessed by comparing the values that
they predict with the measured values (Pachepsky et al.,
1999; FAO, 1990). In order to assess the validity of the PTFs
developed, we used the following criteria: mean prediction
error (ME) to indicate the bias of the estimate, root mean
square error (RMSE) to assess the quality of the prediction
(it is frequently used in studies on PTFs), and the index of
agreement (d) developed by Willmott and Wicks (1980) and
Willmott (1981) as a standardised measure of the degree of

model prediction error. They were calculated using the fol-
lowing equations, respectively:

ME=
1
N

n∑
i=1

(
θp− θm

)
, (4)

where N is the number of horizons, and θp and θm predicted
and measured volumetric water content, respectively. The es-
timate was better when ME was close to 0′. Negative ME val-
ues indicated an average underestimation of θm, whereas pos-
itive values indicated overestimation.

RMSE=

{
1
n

n∑
i=1

(
θp− θm

)2} 1
2

(5)

Thus, the lower the RMSE the better the estimate.

d = 1−

n∑
i=1

(
θp− θm

)2
n∑
i=1

[∣∣(θp− θm
)∣∣+ ∣∣(θm− θm

)∣∣]2 (6)

The index of agreement varied from 0 to 1, with higher index
values indicating that the modelled values θp were in better
agreement with the observations θm.

2.4 Global sensitivity analysis

Global sensitivity analysis (GSA) involves determining
which part of the variance in model response is due to vari-
ance in which input variables or groups of inputs. The impact
of the parameters is quantified by calculating the global sen-
sitivity indices.

The Sobol method (Sobol, 1990) is an independent GSA
method based on decomposition of the variance. When the
model is nonlinear and non-monotonic, the decomposition
of the output variance is still defined and can be used. The
Sobol model is represented by the following function:

SOIL, 2, 647–657, 2016 www.soil-journal.net/2/647/2016/
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Figure 2. Scatter plots of measured versus predicted soil water retention by Rosetta H2.

Y = f
(
X1,X2,X3, . . ., Xp

)
, (7)

where Y is the model output (or objective function) and
X= (X1, . . . , Xp) is the input variable set.

V (Y )= V (E(Y |X))+E(Var(Y |X)), (8)

where V (Y ) is the total variance in the model, V (E(Y |X))
and E(Var(Y |X)) signify variance in the conditional ex-
pected value and expected value of the conditional variance,
respectively. When the input variables Xi are independent,
the variance decomposition of the model is

V (Y )=
p∑
i=1

Vi +
∑
i

∑
j

Vij +
∑
i

∑
j

∑
p

Vijp + . . .+V1,2,3,...p (9)

Vi = V [E (Y |Xi )]

Vij = V
[
E
(
Y
∣∣XiXj )]−Vi −Vj

Vijp = V
[
E
(
Y
∣∣Xi ,Xj ,Xp )]−Vij −Vip −Vjp −Vi −Vj −Vp,

where Vi is the proportion of variance due to variable Xi .
Dividing Vi by V (Y ) produces the expression of the first-
order sensitivity index (Si), such that

Si =
Vi

V (Y )
=
V
[
E (Y/Xi)

]
V (Y )

. (10)

The term Si is the measure that guarantees an informed
choice in cases where the factors are correlated and interact
(Saltelli and Tarantola, 2002). This index is always between 0
and 1, and represents a proper measurement of the sensitiv-
ity used to classify the input variables in order of importance
(Saltelli and Tarantola, 2002).

In order to quantify variation in the sensitivity index (VSi)
of an input factor Xi , we fixed it at Xi =X∗i (X∗i : the average
when the variable follows the normal distribution and the me-
dian when the variable follows the lognormal distribution).
In order to calculate how much this assumption changed the
variance of Y , we used the following formula:

VSi =

(
V [E(Y/X)]
V (Y )

−
V
[
E
(
Y/Xi =X

∗

i

)]
V (Y )

)
· 100. (11)

Table 3. Evaluation criteria of water retention pedotransfer func-
tions (PTFs) at −33 and −1500 kPa.

−33 kPa −1500 kPa

ME (cm3 cm−3) Point PTF MLR 0.0188 0.0261
Parametric PTF MNLR −0.0016 −0.0020
Rosetta H1 −0.0902 −0.0458

H2 −0.0728 −0.0436
H3 −0.0991 −0.0552

RMSE (cm3 m−3) Point PTF MLR 0.0414 0.0444
Parametric PTF MNLR 0.0613 0.0605
Rosetta H1 0.1170 0.0738

H2 0.0970 0.0636
H3 0.1280 0.0749

d (cm3 cm−3) Point PTF MLR 0.9975 0.9911
Parametric PTF MNLR 0.9938 0.9775
Rosetta H1 0.9623 0.9427

H2 0.9775 0.9597
H3 0.9519 0.9331

In addition, combining the RMSE and Si enabled us to de-
tect the contribution of each variable to improvement in the
quality of prediction of the PTFs.

3 Results and discussion

In Table 3, most of the PTFs underestimated SWR except
for the point PTF at the two pressure points (−33 and
−1500 kPa). The Rosetta H2 model, which considers only
texture as an input, gave ME values closer to zero than
the H1 and H3 models (−0.0728 and −0.0436 cm3 cm−3 at
−33 and −1500 kPa, respectively).

The poor ME values indicated better estimates of PTFs.
They were produced after the application of point PTFs fol-
lowed by parametric PTFs (Fig. 2).

Among the five tested models in the Lower Cheliff soils,
the point PTFs (MLR) derived from a database taken from
some Algerian soils had the lowest RMSE values (0.041 and
0.044 cm3 cm−3 at −33 and −1500 kPa, respectively). Per-
formances equivalent or superior to PTFs derived by multi-
ple regression methods have been reported in some studies

www.soil-journal.net/2/647/2016/ SOIL, 2, 647–657, 2016
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Figure 3. Scatter plots of measured soil water retention versus predicted soil water retention.
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Figure 4. First-order sensitivity index.

(Minasny et al., 1999; Nemes et al., 2003). The nonlinear
models (parametric PTFs), however, gave a better estima-
tion than the Rosetta models based on ANN (RMSE: 0.0613
and 0.0605 cm3 cm−3 at −33 and −1500 kPa, respectively).
The RMSE and ME values of the three Rosetta models also
showed that H2 was better than H1 or H3 (Table 3, Fig. 3).

The index of agreement results showed that point PTFs
were more suitable for Lower Cheliff soils than parametric
PTFs (Table 3) with values of 0.9975 and 0.9911 cm3 cm−3,
respectively. Similar comparisons in different regions were
undertaken by Minasny et al. (1999), Tomasella et al. (2003)
and Ghorbani Dashtaki et al. (2010), who all reported sim-
ilar differences between these two PTF approaches. As Ta-
ble 3 shows, there was no significant difference in RMSE
values between the parametric PTFs and Rosetta H2 at
−1500 kPa (RMSE: 0.0605 cm3 cm−3 and 0.0636 cm3 cm−3,
respectively).

3.1 Sensitivity index before textural grouping

In the development of PTFs, using PSD as an input is the
usual approach (texture as an overall expression of PSD, clay,
silt and sand content) and its contribution is fundamental to
understanding the process of retaining water at different pres-
sure points, although various physical and chemical charac-
teristics are used to describe the SWR curve, such as BD and
OM.

The importance of each input variable was assessed by the
first-order Si . It was clear for the PTFs developed that OM %
and clay percentages (C %) were the variables with the great-

est impact (Fig. 4). For the point PTFs (MLR), the most
sensitive estimations were at two pressure points (Si : 0.821
and 0.782 at −33 kPa, and 0.630 and 0.585 at −1500 kPa
for OM % and C %, respectively. After OM, the percent-
age of silt (Si %) was second in importance in parametric
PTFs (0.576 at −33 kPa) followed by BD and C (Fig. 2).
The Si values placed sand content in third place in the MLR
(0.262; 0.162), indicating that its impact on the paramet-
ric model was almost insignificant, with very low values
(Si : 0.077; 0.017) at −33 and −1500 kPa, respectively).

The prediction quality of point PTFs (MLR) can be ex-
plained, first, by taking into account the basic character-
istics of soil as an input from the textural and structural
information given by the BD. Second, point PTFs (MLR)
are based mainly on these input variables, unlike parameter
PTFs (MNLR), which have inputs other than texture and BD,
as well as other parameters (VG parameters: θr, θs, α, n).

3.2 Sensitivity and uncertainty analysis after the textural
grouping

The sensitivity of the multiple regression methods (linear and
nonlinear) used to develop PTFs from basic soil character-
istics for estimating SWR for different textural classes was
analysed. We grouped the samples into three classes of par-
ticles (Fig. 1b) in line with FAO (1990) guidelines: very fine
(12 samples), fine (31 samples) and medium (10 samples).

The results showed that after the textural grouping, there
was an improvement in the quality estimation of PTFs in
only the medium class. A better prediction at −1500 kPa

SOIL, 2, 647–657, 2016 www.soil-journal.net/2/647/2016/
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Table 4. Variation of first-order sensitivity index (Si ) in the different textural (Tex.) classes.

Tex. Si (%) S (%) C (%) BD (g cm−3) OM (%)

class VSi A.E. VSi A.E. VSi A.E. VSi A.E. VSi A.E.

RML at −33 kPa VF Abs −1.2 −0.4 −50.5 – 4.6
F Abs −43.2 – −10.7 – −39.9 – 0.2
M Abs −103.3 – −27.5 + −44.4 + −5.7

at −1500 kPa VF Abs −0.3 0.9 −27.3 – 1.1
F Abs −46.2 – −20.7 – −41.6 – 0.1
M Abs −86.4 – −52.9 – −22.9 – −2.3

MNLR at −33 kPa VF 0.4 −0.2 0.1 −00.1 −0.05
F −1.6 −40.9 – −1.1 −2.5 −0.1
M 15.0 −5.2 15.1 + 21.6 + 22.3 +

at −1500 kPa VF −4.6 −0.3 −1.8 −1.4 −0.5
F 28.6 + 18.9 – 4.6 0.4 0.1
M −36.7 – −16.7 – −22.6 – 8.9 −8.4

Abs: absent in the model, VSi: variation first sensitivity index, A.E.: improving estimation.

Figure 5. Root mean square error (RMSE) values calculated for the different textural classes.

was provided by point PTFs (RMSE= 0.027 cm3 cm−3) and
parametric PTFs (RMSE= 0.038 cm3 cm−3) at −1500 kPa
(Fig. 5).

3.2.1 Texture

After textural grouping, the MLR and MNLR PTFs devel-
oped were always sensitive, mainly to the sand fraction in
the fine and medium classes (Table 4). The variation in the
first Si in the point PTFs was significantly greater in the
medium-texture class at the two pressure points (−33 and
−1500 kPa). In the MNLR, sand had the most influence,
particularly with regard to the fine class (−40.9, 18.9 %
at −33 and 1500 kPa) and the medium class (−16.7 % at
−1500 kPa).

The Si of a variable quantifies the influence of its uncer-
tainty on the output. This is the part of the variability out-
put explained by the variability input. What was confirmed
after calculating the variation in the first-order Si was that
the PTFs developed were still more influenced by the vari-
ability in sand at −33 kPa than at −1500 kPa. This impact
could be explained by the irregularity of the dispersion of
sand content in the validation database, with a coefficient of

variation (CV) of about 119 % compared with the other input
variables (33, 18, 9 and 57 % for clay, silt, BD and OM, re-
spectively). This heterogeneity in the sand data series clearly
influenced the uncertainty of the PTF response.

Looking at the matrix correlation (Table 5), the clay and
silt fractions were significantly correlated with sand content.
Saltelli and Tarantola (2002) observed that when X1 and X2
were correlated with a third factor, X3, the Si calculated de-
pended on the force of this correlation as well as the distri-
bution of X3. In this case, the index power could be influ-
enced by this statistical association, as it explains the higher
value difference of index variation in the sand percentage
compared with the other variables.

We observed that point PTF (MLR) produced a lower error
of estimation when the variation of the first-order Si for sand
was the most important (MLR in the medium class: RMSE
0.030 and 0.027 cm3 cm−3 with VSi −103 and 86.4 % at
−33 and −1500 kPa, respectively). A negative Si variation
in sand content when the latter was fixed was apparent in all
texture classes (Table 4). This could be explained by the pro-
portional relationship between sand and clay content, partic-
ularly in the validation dataset with a dominant clay texture.
Insignificant sensitivity of sand was recorded for the very fine
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Figure 6. Variation in first sensitivity index with RMSE after textural grouping.

Table 5. Pearson correlation matrix between basic soil characteris-
tics in the validation dataset of 53 soil samples.

Variables Si C S BD OM
(%) (%) (%) (g cm−3) (%)

Si % 1
S % −0.334 1
C % −0.159 −0.878 1
BD (g cm−3) 0.164 −0.185 0.11 1
OM (g/100 g) −0.174 −0.166 0.263 −0.19 1

The values in bold differ from 0 to a level of significance α= 0.05, Si: silt, S: sand,
C: clay, BD: bulk density, OM: organic matter.

texture. Rawls et al. (2003) observed that 10 % of sand pro-
vides an increase in SWR at low clay content and a decrease
in SWR at high clay content of more than 50 %.

The relationship between the SWR curve parameters of
VG (especially n and α) and PSD has been examined in many
studies (e.g. Minasny and McBratney, 2007; Benson et al.,
2014) in order to explain why the sand impact increases in the
fine-texture class in parametric PTFs. It could be explained
by the predominant presence of sand and clay content as in-
puts in parametric PTFs. For soils with clay content between
35 and 70 %, water content is greatly influenced by the per-
centage of sand in the soil (Loosvelt et al., 2013).

In addition, when the sand content of a sample increased to
60 %, the drying rate was faster and water absorbing ability
was weaker than with the low sand content. When sand con-
tent falls to 20 %, the small pores occupy a large part of the
pore structure, making the soil compact (Hao et al., 2015).

In the medium-texture class, there was increasing accuracy
in PTFs at −33 kPa after fixing the clay content. This could
be explained by the reduced clay percentage in the medium
class (mean of clay= 23 %), which produced fewer errors at
−33 kPa.

The accuracy of the PTFs decreased when they were
applied to some soil samples with a clay content> 60 %
(Fig. 5). In the very fine class, insignificant sensitivity was

recorded at all pressures defined in this study. In this class,
the variation in clay was much lower because it is only the
dominant solid fraction, which could explain the smaller
variation in Si after fixing the clay percentage. The greatest
impact of clay (%) was observed at −1500 kPa in the point
and parametric PTFs in different textural classes (Fig. 6). The
clay content of soils is a major predictor for modelling the
permanent wilting point of soils (Minasny et al., 1999).

The silt percentage was introduced as an explanatory vari-
able only in parametric PTFs (MNLR). This fraction is
known for its ability to retain water at high and medium soil
water potentials. The GSA showed that the silt percentage
had a stronger impact on the estimation of parametric PTFs
at −1500 kPa than at −33 kPa with the MNLR model. After
textural grouping, an important variation in the first-order Si
was observed in the medium class (−36.7 % to −1500 kPa).
The lowest values were recorded in the very fine class. It was
clear that the silt percentage has an important role in esti-
mating parameters of VG (α, n), and that its use as an input
influences the estimate in the medium and fine classes. There
was an increasing accuracy, however, in the PTFs recorded
in the fine class at −1500 kPa. With silt and clay as inputs,
there was a better estimation. Plant-available water content
variation is more related to sand and silt than to clay content
(Reichert et al., 2009).

3.2.2 Bulk density

This is the second most influential variable on the point
PTF (MLR) response on all textural class. The important
variation of sensitivity index is noted mainly in the very fine
textural class at −33 kPa (VSi=−50, 5 %). In parametric
PTFs, BD influenced the medium class at −33 kPa. The ac-
curacy of quality estimation at −33 kPa in the medium class
when fixing the BD for the two PTF approaches (Table 4).
The very-fine-textural class represented 16 surface samples
(0–30 cm) with a dominance of clay texture. In a similar
study on clay soils, volumetric water content (VWC) was
highly related to the inverse of BD at field capacity (Bruand
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et al., 1996). The inclusion of BD as an input provides infor-
mation on pore volume, which can influence the performance
of PTFs when applied to soil with high clay content. In ad-
dition, the soil structural information characterised by BD
measurements is an indirect measurement of pore space and
is affected mainly by texture and structure. For structureless
soils, primarily coarse- and medium-textured soils, the pore-
size distribution can be satisfactorily described by PSD. The
medium texture is related in general to pore-size distribution,
as large particles give rise to large pores between them, and
therefore have a major influence on the SWR curve (Arya
and Paris, 1981; Nimmo, 2004). With BD and texture as in-
puts in point PTF (MLR), predicted values very close to the
experimental results are obtained.

3.2.3 Organic matter content

The less insignificant variation in the Si after textural group-
ing is related to OM content. This could be explained,
first, by the poor OM content in the Algerian soil samples.
Lal (1979) did not find any effect of OM content on SWR.
Danalatos et al. (1994) attributed this to the generally low
OM content in their samples. Second, homogeneity of the
data for OM content in every textural class reduced the vari-
ation in PTF response. The increasing accuracy of paramet-
ric PTFs, however, was apparent for medium-textured soils
at −33 kPa, where OM was used as an input to predict θs.
SWR at −33 kPa is affected more strongly by organic car-
bon than at −1500 kPa (Rawls et al., 2003). The sensitiv-
ity analysis conducted by Rawls et al. (2003) to study the
role of OM content as a predictor showed that the SWR of
coarse-textured soils is much more sensitive to changes in or-
ganic carbon than is the case with fine-textured soils. Bauer
and Black (1981) found that the effect of organic carbon on
SWR in disturbed samples was substantial in sandy soil and
marginal in medium- and fine-textured soils.

4 Conclusions

The objective of this study was to analyse the sensitivity of
estimating the SWR properties of Algerian soils using PTFs.
We developed and validated point and parametric PTFs from
basic soil properties using regression techniques and com-
pared their predictive capabilities with the Rosetta models
(H1, H2 and H3). The reliability tests showed that point PTFs
produce more accurate estimations than parametric PTFs.
The derived parametric PTFs, however, provided better es-
timates than the Rosetta models originally developed from a
large intercontinental database.

The GSA showed that the mathematical formalism of the
PTF models and their input variables reacted differently in
terms of point pressure and textural class as follows:

– After textural grouping, the two PTF approaches devel-
oped (MLR and MNLR) were always sensitive primar-

ily to the sand fraction in the fine and medium classes at
−33 kPa, rather than at −1500 kPa.

– The results illustrated the accuracy of estimation at
−33 kPa in the medium class for the two PTF ap-
proaches when fixing the clay percentage (C %) and
BD.

– The accuracy of PTFs decreased when they were ap-
plied to soil samples with a clay content> 60 %.

– The most insignificant variation in the Si after textu-
ral grouping was related to the OM content in Algerian
soils.

5 Data availability

The data are available via the following database: http://hdl.
handle.net/2268/204146. Otherwise, interested parties may
email the corresponding author for datasets.
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