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Abstract. Since the earliest days of soil geography, it has been clear that soils occur in more-or-less clearly
mappable bodies, within which soil forming factors have been either fairly homogeneous or in a regular pattern
within the body, and between which there is usually a clear transition in one or more factors. This has been the
basis for polygon-based soil mapping: make a concept map from landscape elements leading to a mental model
of the landscape, confirm or modify it with strategically placed observations, find the transitions, delineate the
soil bodies, and characterise them. By contrast, common methods of Digital Soil Mapping (DSM) predict per
pixel over a regular grid, from training observations at pedon support. Accuracy assessment of DSM products
has been at this “point” support, ignoring the existence of spatial soil bodies and the relations between pixels.
Different approaches to DSM – datasets, model forms, analyst choices – result in maps with distinctly different
patterns of predicted soil properties or types. Techniques from landscape ecology have been used to characterize
spatial patterns of DSM products. The question remains as to how well these products reproduce the actual
soil patterns at a given cartographic scale and categorical level of detail. Our approach is to help DSM maps
to “speak for themselves” and thereby reveal spatial patterns that have been found by the DSM. We do this by
grouping predictions at the individual pixel level, either (1) by aggregation based on property homogeneity using
the supercells algorithm, or (2) by segmentation based on within-block property pattern similarity, using
the GeoPAT suite of computer programs. Segments can be hierarchically clustered into groups of presumed soil
landscape elements. Supercells and segments can be compared to existing soil maps, other land resource maps,
and expert judgement. To the extent that the presumed soilscape patterns are reproduced, this is evidence that
DSM has identified the soil landscape at the chosen scale. Since map users perceive patterns, and most land
use decisions are for areas rather than pixels, we propose that DSM products be evaluated by their patterns as
revealed by aggregation and segmentation, as well as by pointwise evaluation statistics.

1 Introduction

Digital Soil Mapping (DSM) is a general term for the cre-
ation of digital maps of soil classes or properties by fitting
geostatistical (Webster and Oliver, 2008), statistical learning
(Hastie et al., 2009), or similarity-based (Zhu and Turner,
2022) models between observations of soil classes or proper-
ties at known locations and a set of environmental covariates
representing soil-forming factors. This term has also been ap-

plied to soil maps based on GIS overlay of presumed soil-
forming factors, for example, the eSOTER approach (Dobos
et al., 2019). Some authors follow the review of Scull et al.
(2003) and refer to this as Predictive Soil Mapping (PSM),
although since all soil mapping is by nature predictive, this
seems to be a less specific term. Since its formal introduction
by McBratney et al. (2003) DSM has been applied world-
wide at a wide range of scales and target classes and prop-
erties; see reviews by Mulder et al. (2023), Arrouays et al.
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(2020) and Nenkam et al. (2024) and future perspectives by
Lagacherie (2025). DSM is a semi-automated digital form of
landscape analysis as used in traditional soil survey to iden-
tify distinct soils from environmental covariates (Hole and
Campbell, 1985; Hudson, 1992). However, as DSM predicts
at the pixel level, it ignores spatial relations. As Vaysse and
Lagacherie (2017) aptly state, “DSM products are simplified
representations of more complex and partially unknown pat-
terns of soil variations”, where this “simplification” is reduc-
ing landscapes to individual pixels.

DSM products are routinely and (almost) exclusively
evaluated by point-based evaluation statistics, including the
cross-validation mean error (ME), root-mean squared error
(RMSE), proportion of variance explained (1 : 1 R2) and the
model efficient coefficient (MEC) (Helfenstein et al., 2024,
Eqs. 2–4). These are almost never based on probability or
even representative training (i.e., cross-validation) observa-
tions (Piikki et al., 2021). Point-based evaluation ignores the
existence of soil bodies that form a pattern over the land-
scape. Maps with distinctly different patterns of predicted
soil properties or types can result from different approaches
to DSM, see for example Rossiter et al. (2022) and Poggio
et al. (2010a). We propose to also evaluate DSM products by
their patterns, as revealed by aggregation and segmentation
of the gridded maps into areas with more or less homoge-
neous internal composition of soil properties.

Soil geographers conceive of the soilscape as a contin-
uum in 3D, with the vertical dimension (soil profile) defin-
ing a pedon (Soil Survey Staff, 1999, p. 11). The pedon has a
horizontal dimension sufficient to show the local variability
of horizons and properties, e.g., cyclic or irregular horizons.
Pedons are connected laterally into relatively homogeneous
polypedons (Johnson, 1963), within which the soil-forming
factors and hence the pedons are within some defined lim-
its. The transition zones between polypedons are marked as
borders between natural soil bodies according to those limits,
which may be abrupt or smooth (Lagacherie et al., 1996), ac-
cording to the spatial pattern of the soil-forming factors. Fig-
ure 1 shows a typical conceptual model from a detailed Order
2 soil survey in the USA, design scale 1 : 12 000 (minimum
mappable area 0.576 ha). The transitions between polype-
dons in this scene are due to parent material, topography, and
hydrology.

The pattern of the distribution of polypedons on the land-
scape make up the soilscape. The classic example is the
catena as defined by Milne (1935) as: “a sequence of distinct
but pedogenetically-related soils that are consistently located
on specific slope facets, giving recurrent topographically-
associated soil pattern” (Borden et al., 2020). We would hope
that a DSM-produced map of a catena would clearly show
these elements and their transitions.

In traditional expert-based soil class mapping (Hudson,
1992) the landscape is segmented according to the mapper’s
conceptual model of soil-landscape relations, and by exami-
nation of external clues, notably relief, vegetation, and land

use, and by augering or full profile examination. DSM re-
places the conceptual model with correlative relations with
digital coverages meant to represent, at least in part, one or
more of the seven “SCORPAN” predictive factors of McBrat-
ney et al. (2003). In this widely-cited paper they briefly de-
scribe as these factors as: S: soil, other properties of the soil
at a point; C: climate, climatic properties of the environment
at a point; O: organisms, vegetation or fauna or human activ-
ity; R: topography, landscape attributes; P: parent material,
lithology; A: age, the time factor; N: space, spatial position.
The time factor accounts for the changing climate, organisms
(including human activities) and relief over the time of soil
formation. In practice, the time factor has proven quite dif-
ficult to represent by digital coverages. Note that these are
correlative, not necessarily causative, and are used to build
a predictive model for mapping, not (at first) to understand
pedogenesis. Thus in DSM there is no longer an explicit re-
lation with the soil landscape, but it is hoped that the implicit
correlative relations, based on representative covariates, can
find these.

The concept of areas with distinct patterns of contrasting
soils goes back to the “soilscape fabrics” from the soilscape
analysis of Hole (1978) and the “soil combinations” of Frid-
land (1974). With increasingly-detailed cartographic scales
and categorical definitions of soil types, increasingly-finer
patterns can be shown. Conversely, at coarser scales and
broader categories patterns are necessarily more general. As
Fridland puts it, “Soil combinations consist of elementary
soil areas which are genetically linked to various degrees and
which produce a definite pattern in the soil mantle . . . Multi-
ple spatial repetition of a certain soil combination or several
soil combinations alternating in a definite order creates vari-
ous forms of structures of the soil mantle”. An example of a
fine-scale soil pattern is the pit and mound topography found
on a hillslope in southwest Poland by Pawlik et al. (2024).

In traditional soil mapping, these areas with sufficiently
homogeneous soils or patterns of them at a given carto-
graphic scale are the units that are delineated on the map.
However, as Fridland explains: “The structure of the soil
mantle and soil combinations are in their essence not car-
tographic but genetic-geographic concepts, even though they
constitute a basis for elaborating cartographic units”. This
implies that the resulting soil properties distributed vertically
in the profile, as products of pedogenesis, can be the basis for
map units. Therefore, if at each pixel DSM accurately pre-
dicts a sufficiently rich set of properties over the soil profile,
these should be grouped on the DSM map as recognizable
cartographic units.

Within a mappable soilscape segment, there will of course
be variability, ranging from some smaller deviations from a
central concept (typical soilscape position and pedon), to a
mixture of contrasting pedons, in National Resource Conser-
vation Service (NRCS) soil survey terms a complex. Since
predictions made by DSM are per pixel, it may be possible
to resolve these complexes into their components at the pixel
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Figure 1. Conceptual block diagram, Otsego County NY (USA). Source: https://www.nrcs.usda.gov/publications/NY-2010-09-28-14.png
(last access: 9 October 2025).

scale, if that is fine enough to match the pattern within the
complex. If this is the case, our evaluation of the DSM prod-
uct should identify this.

Digital Soil Mapping (DSM) products show predicted val-
ues of soil properties or classes at each pixel of a regular,
more or less fine grid, either as the centre point or a block
average of the area covered by the pixel. DSM typically pre-
dicts multiple soil properties at a set of standard depth slices.
Although some DSM methods use covariates in areas around
a pixel, they do not enforce any relation between adjacent
pixels. These relations are particularly important in soil hy-
drology models. Thus, the question is to what degree the
pixels of DSM products at various resolutions can be aggre-
gated into groups to realistically represent a soil landscape,
whether the soilscape segment is relatively homogeneous in
its properties or represents an association or complex. Intu-
itively, if the soil-forming factors responsible for a polypedon
are also spatially associated in the covariates used in DSM,
the relations between pixels should occur as a by-product
of per-pixel DSM. More abrupt transitions in the covariates
should be reflected in the predictions. The pattern of the pix-
els should therefore represent the soil landscape. The ques-
tion is, does the DSM product show these relations?

In this study, we examine two methods to assess the
success of DSM in reproducing a soil landscape. The first
method is to aggregate the individual predictions from pixels

into more or less homogeneous contiguous groups of pix-
els referred to supercells, following methods used in image
processing, where these are called superpixels (Nowosad and
Stepinski, 2022). This can be based on single properties and
depth layers, or, more usefully, on the multivariate collection
of DSM-predicted properties at a pixel. We explain the ag-
gregation algorithm in Sect. 2.1.

The second method is applied at coarser scales, where the
homogeneity of properties within some larger area may not
be possible or even desirable. This has led to the concept
of landscape segments, defined by the co-occurrence pattern,
referred to as a signature, of a group of contrasting pixels
of a class map, within a predefined size of the segment.
Segmentation was developed by geographers to find simi-
lar land cover patterns for ecoregionalization (Nowosad and
Stepinski, 2018). In that case, the pixels represent land cover
classes. The aim is not homogeneity of land cover, rather,
homogeneity of the land cover pattern within some analyst-
defined area. The relation to a soil cover pattern is obvious,
and corresponds well to concepts such as the catena or soil
associations.

These two concepts, aggregation and segmentation, can be
related to traditional soil survey practice. Depending on the
scale of the analysis (for DSM, the horizontal resolution, for
traditional soil survey the minimum delineation size) and the
inherent scale of the soil landscape, we may expect to see ho-
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mogeneity at the level of map delineations containing dom-
inantly one soil type within defined limits at a detailed cat-
egorical level (e.g., soil series, the lowest level of Soil Tax-
onomy); this is called a consociation in the US soil survey
(Soil Science Division Staff, 2017). This is where aggrega-
tion is useful, to identify homogeneous components that can
be mapped as separate units. At a coarser scale we may ex-
pect a regular pattern of contrasting soil types forming a soil
association, or a fine-scale pattern of contrasting soils form-
ing a soil complex. This is where segmentation is useful, to
form mapping units with consistent heterogeneous composi-
tion, These terms from the US soil survey are well-explained,
with examples, by Van Wambeke and Forbes (1986).

Segmentation requires that DSM maps of continuous
predictions be classified, i.e., sliced according to analyst-
defined class limits. The classes can correspond to meaning-
ful classes for soil management, or can be based on labo-
ratory precision. They can be wider (more general) or nar-
rower, roughly corresponding to cartographic detail. Clearly,
the classification can greatly influence segmentation. This is
also the case when segmenting land cover classes. We ex-
plain the segmentation algorithm in Sect. 2.2.

Once a segmentation has been performed, the segments
can be clustered according to their similarity of internal pat-
tern, i.e., the signature of the segment. These can then be
examined to find similar soil landscape elements in differ-
ent parts of the map. We explain the clustering procedure in
Sect. 2.3.

The objective of this study is present methods to cre-
ate possible soil landscape units from DSM products, by
both aggregation and segmentation, and then to cluster the
segments to identify similar soil-landscape units within the
map. These proposed units can be characterized statistically
by their composition, internal variability and differentiation
from their neighbours, as well as evaluated visually. We first
describe the methods (Sect. 2) and then apply them to three
case studies (Sect. 3 BIS-4D Netherlands, Sect. 4 SoilGrids
v2.0 global, Sect. 5 SOLUS 100 m USA) corresponding to
different DSM projects at various resolutions and extents. Fi-
nally, we discuss (Sect. 6) how these methods can be used in
the evaluation of DSM products.

2 Methods

We contrast two approaches to helping the map to “speak
for itself”: aggregation based on homogeneity of properties
(Sect. 2.1), and segmentation based on patterns of classified
properties within segments (Sect. 2.2).

2.1 Aggregation

Aggregation seeks to find contiguous groups of pixels with
relatively homogeneous property values, either single or mul-
tivariate. This is implemented by the supercells R pack-
age (Nowosad, 2025), which uses the Simple Linear Iterative

Clustering (SLIC) image-processing algorithm (Nowosad
and Stepinski, 2022), with the improvement that an appro-
priate data distance measure and function for cluster aver-
aging can be defined by the analyst. For multivariate aggre-
gation there must be a distance measure defined in multi-
variate space. A common choice, used here, is the Jensen-
Shannon divergence (Lin, 1991), which quantifies the dis-
tance between two histograms by the deviation between the
Shannon entropy of the combination of two uni- or multivari-
ate histograms and the mean of their individual entropies.

The supercells function is controlled by several pa-
rameters that have a large effect on the results. First and
most important is compactness, which trades off internal ho-
mogeneity of the supercells with their geometric compact-
ness. The absolute compactness value depends on the range
of input pixel values and the selected distance measure. A
large value prioritizes spatial distances between pixels and
superpixel centres (more geometric compactness), whereas
a smaller value prioritizes distances in feature space (more
property homogeneity). Second is the approximate number
of supercells, k. This should correspond to the number of
landscape segments expected in the study area, at the design
scale of the corresponding polygon map. Third is the min-
imum supercell size, minarea. This should correspond to a
minimum mappable area or a minimum size needed for an
application, e.g., land management or stratified sampling.

The quality of the aggregation can be evaluated by the
standard deviation or coefficient of variability of each prop-
erty in the supercell. As supercells decrease in size, these
measures will necessarily have smaller values.

2.2 Segmentation

Segmentation seeks to find contiguous groups of blocks of
grid cells with similar internal patterns of pixels, which rep-
resent soil classes or properties, either univariate or multi-
variate. The GeoPAT implementation of segmentation com-
pares patterns within square blocks of at least 10× 10 pixels
and then joins adjacent blocks with similar internal patterns
into rectilinear segments. Larger blocks can be specified by
the analyst, according to the desired scale of the analysis.

Segmentation proceeds as follows. The first step is to se-
lect classified soil properties and their depth slices to repre-
sent soil individuals at each pixel. The second step is to find
the co-occurrence pattern of the pixels within pre-defined
grid cells. The third step is to aggregate grid cells with simi-
lar internal spatial patterns into larger units, sufficiently dis-
tinct from neighbouring units in terms of their internal spa-
tial patterns. Finally, the result is evaluated by its segmen-
tation statistics, namely, inhomogeneity within the segment
and isolation of the segment from its neighbours. The seg-
mentation can be inspected by expert judgement, perhaps
comparing with conventional soil maps, to evaluate how well
it represents the soil landscape at the selected cartographic
scale.
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For segmentation, we use the GeoPAT suite of stand-alone
Unix programs (Jasiewicz et al., 2015). These are invoked in
sequence, via the R system function, to obtain a segmenta-
tion and an evaluation of its quality. GeoPAT has been used
successfully to segment categorical rasters such as land cover
maps (Jasiewicz et al., 2018) and for global ecoregionaliza-
tion based on multiple environmental factors (Nowosad and
Stepinski, 2018). Figure 2 shows the segmentation workflow
using GeoPAT.

Several parameters control the signature computation of
the gpat_gridhis “create a binary grid of signatures”
program. Two related parameters are size and motifel.
The first is the size of the output grid cell of the segmented
map. This must be at least 10×10 pixels of the source DSM.
Thus, the segmentation is of similar patterns within an output
grid cell and its neighbours. This dictates the largest equiv-
alent map scale at which soilscape patterns (groups of out-
put grid cells) can be discerned. The second is the “Mo-
tif Element”, referred to as the motifel, defined as the size
of the window within which the pattern will be computed.
This must be at least as large as the size, but could be
larger to account for edge effects in the pattern. Two im-
portant threshold parameters for joining grid cells into seg-
ments are lthreshold to control the sizes of segments and
uthreshold to prevent the growth of inhomogeneous seg-
ments.

Another important option for gpat_gridhis is the sig-
nature type within each grid cell, default cooc, “spatial
co-occurrence of categories”. This characterizes signatures
with a “colour” co-occurrence histogram, a variant of the
Gray-Level Co-occurrence Matrix (GLCM) used to charac-
terise texture in greyscale images (Haralick et al., 1973; Hall-
Beyer, 2017). In GeoPAT, discrete greyscale numbers, as in
GLCM, are replaced by cell classes. A separation of one
pixel is used to calculate the co-occurrence histogram, which
then represents the spatial pattern within a grid cell. Related
to this is the normalization type, default pdf “probability
distribution function”, which is recommended for the cooc
signature type. This harmonizes the signatures from different
motifels.

Grid creation requires the selection of grid sizes. To eval-
uate DSM products we select these based on their correspon-
dence to nominal map scales, using the Vink definition of a
minimum legible delineation (MLD), i.e., the smallest area
that can be displayed on a printed map, of 0.25 cm2 at map
scale, i.e., a grid cell side of 0.5 cm (Vink, 1963). The Op-
timal Legible Delineation (OLD) is conventionally defined
as 4×MLD (Forbes et al., 1982). This is a delineation size
which is easily legible and still small enough to be rela-
tively homogeneous. In conventional mapping the map scale
should be set so that the soil pattern is on average able to be
shown by OLD-sized polygons. In segmenting DSM prod-
ucts we hope that most segments are at least as large as the
OLD.

To determine the Minimum Legible Area (MLA) and cor-
responding side on the ground, the MLD is multiplied by
the scale number (denominator of the scale ratio). For ex-
ample, at 1 : 200 000 the MLA is 100 ha, with a side of 1 km.
Signature computation requires at least 100 pixels from the
DSM map in order to produce a reliable signature, i.e., the
minimum edge of the segmentation grid (the “shift” param-
eter) must be 10 times the original DSM resolution. For ex-
ample, a 25× 25 m DSM product can only be segmented at
250× 250 m or coarser (6.25 ha), corresponding to the MLA
of a 1 : 50 000 scale map. To match a 1 : 200 000 map (MLA
100 ha), the 25× 25 m pixel must be aggregated 40 times
per side, i.e., 1 km× 1 km. These concepts are comparable
to concept of soil survey orders in the USA soil survey (Soil
Science Division Staff, 2017, Chap. 4) and the “resolutions
and extents for DSM” of (McBratney et al., 2003, Table 1).

The segmentation phase in GeoPAT is implemented by the
gpat_segment “segment a grid-of-scenes” program. This
groups grid cells based on their motifel signatures computed
by gpat_gridhis. Segments have a “brick” topology, in
which square grid cells are arranged in alternating layers with
each layer is shifted by one-half the size of the motifel. Thus,
the analysed area (i.e., the MLA) is four times the motifel
size.

Segment homogeneity is characterised by their normalised
Shannon entropy H , defined as:

H =−

ny∑
i=1

pi lognz
pi (1)

where pi is the proportion of the segment in class i, nz is the
number of possible classes, and these are summed over all ny

pixels in the grid cell. Using the logarithm to base nz normal-
izes the entropy to the unit range regardless of the number of
possible classes, so that 0 indicates complete homogeneity,
i.e., one class for the entire segment. By contrast, 1 indicates
maximum heterogeneity, i.e., all classes are equally repre-
sented in the segment. This only depends on class compo-
sition, not on pattern, even though the latter is the basis for
segmentation.

Segmentation quality is measured with the
gpat_segquality “compute quality metrics of a
segmentation” program. This produces two quality mea-
sures: (1) the inhomogeneity within each segment, and (2)
the isolation of each segment from its neighbours. Inhomo-
geneity measures the degree of mutual dissimilarity between
a segment’s motifels, on a [0. . .1] scale, where smaller values
correspond to more homogeneous and less internally diverse
segments. Isolation is the average dissimilarity between a
segment and its immediate neighbours, on a [0. . .1] scale,
where larger values correspond to segments that are more
isolated from their neighbours. These measures depend on
the pattern, not just the class composition, of segments.
The most successful segmentation would have the smallest
inhomogeneity and largest isolation.
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Figure 2. GeoPAT segmentation workflow. gpat_gridhis: “create a binary grid of signatures’; gpat_segment “segment a grid-of-
scenes”; gpat_segquality “compute quality metrics of a segmentation”; gpat_gridts not used. Source: (Netzel et al., 2018).

2.3 Clustering

Once segments are created, their internal patterns can be
characterised by the same signature methods used to perform
the segmentation. Figure 3 shows the workflow for cluster-
ing in GeoPAT. The gpat_polygons “calculate numer-
ical signatures of irregular regions” program computes the
signature within each segment. The distance between these
signatures is then computed by the gpat_distmtx “com-
pute a distance matrix between a collection of scenes” pro-
gram. Here we used the default Jensen-Shannon divergence,
because it is easily interpretable on a [0. . .1] scale and is
not sensitive to extreme values (Lin, 1991). The segments
can then be clustered on the basis of their distance mea-
sures by many clustering algorithms; see the comprehensive
description in Gan et al. (2021). Here we use hierarchical
clustering, as implemented by the R function hclust using
Ward’s linkage with squared distances to produce a dendro-
gram. This is cut at an analyst-determined number of classes
to represent groups of internal homogeneity of segments. We
chose Ward’s with squared distances (Ward’s D2) to mini-
mize within-cluster variance. This minimizes the loss of in-
formation associated with each merging as the dendrogram
is built bottom-up. There other choices in both the distance
measurement and clustering linkage method, here we want
to illustrate the clustering concept, not compare clustering
methods.

3 Case Study 1 – BIS-4D (Netherlands)

BIS-4D (“Bodeninformatiesysteem 4-Dimensional”)
(Helfenstein et al., 2024) is a high-resolution (25 m horizon-
tal, six depth slices vertical) soil modelling and mapping
platform for the Netherlands. The 3D are geographic space
and depth along the soil profile. The fourth dimension is
time, applied only to soil organic matter (SOM), which
we ignore here by using only the most recent SOM map.
Predicted properties are clay, silt, sand and SOM concentra-
tions %, bulk density g cm−3, pH in KCl, total N mg kg−1,
oxalate-extractable P mmol kg−1, and cation exchange
capacity mmol(c) kg−1. Depth slices are the GlobalSoilMap
standard 0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm
(Science Committee, 2015). Each map is accompanied by
uncertainties (quantiles and 90 % prediction interval). We
did not use these in this analysis, only the mean predictions.
Coverages in the GeoTIFF format are free to download and
use, and can be directly read into the terra R package
(Hijmans et al., 2025).

BIS-4D is fairly accurate at point support, as assessed by
cross-validation (Helfenstein et al., 2024, Tables 7, 8), due
to a very dense sampling network and the country-specific
covariates used in the DSM. For example, the 10-fold cross-
validation average for all predictions of pH had a median ME
of−0.023 pH, median RMSE of 0.72 pH, and a median MEC
of 0.72. For clay these accuracy statistics are 0.42 %, 7.7 %,
and 0.78, respectively. Visual inspection of layers agrees well
with traditional 1 : 50 000 scale polygon soil maps (Steur and
Heijink, 1980; Brouwer et al., 2021) and expert views of the
soil landscape.
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Figure 3. GeoPAT clustering workflow. gpat_polygons “calculate numerical signatures of irregular regions”; gpat_distmtx “com-
pute a distance matrix between a collection of scenes”. Source: (Netzel et al., 2018).

We selected a 40× 40 km test area (Fig. 4), because of its
diverse soil-forming environments, including river clays of
various ages and compositions, sandy push moraines, organic
soils in glacial depressions, and coversands.

3.1 Aggregation

The supercells algorithm can work directly on raster
stacks of the terra package. All 54 maps (nine prop-
erties, each with six depth layers) were combined in a
SpatRaster raster stack. Since the values and ranges are
not compatible, the Jensen-Shannon divergence was used to
evaluate the distance in feature space between pixels and su-
percell centres. In this landscape there are non-compact (ex-
tended) features parallel to the river, in the fen areas and
along the push moraines, so after some experimentation a
low compactness value (0.2) was selected. We selected a
minimum mappable area of 10 ha, equivalent to the 1 : 50 000
design scale of the Dutch conventional soil map, using the
Cornell definition of 0.4 cm2 minimum legible area on the
map (Forbes et al., 1982). Thus the minarea parameter was
set to 1600 pixels, each of 25 m× 25 m.

Figure 5 shows the supercells (outlined in black) with sev-
eral properties as a background. Note that the supercells in
all maps are the same, but the mean values of each property
within the supercells are different. The median size of the
270 supercells was 433 ha, ranging from 104 to 5044 ha, with
a strongly right-skewed distribution. Aggregation clearly
shows the differences between soil bodies, with some prop-
erties being more prominent in certain supercells.

To evaluate the quality of the aggregation, we computed
the standard deviation of each property within each supercell
(Fig. 6). These are quite low for clay and SOM, and for pH
with some small areas with notable exceptions. Bulk density

is less successfully aggregated. The high standard deviations
in a supercell occur when that property has a small contribu-
tion to the computation of Jensen-Shannon divergence in that
supercell.

3.2 Segmentation

Since gpat_gridhis requires class maps, to illustrate
this method we classified the soil property maps as follows:
bulk density by 0.1 g cm−3, CEC by 25 mmol(c) kg−1, clay,
silt, sand concentrations by 5 %, Pox by 4 mmol kg−1, pH
by 0.1 units, SOM concentration by 4 %, and total N by
1000 mg kg−1. In practice, the map evaluator would select
class limits to correspond to the desired precision and thresh-
olds for interpretations or models. The class widths can not
be finer than the precision of the corresponding laboratory
analyses, which usually are more precise than the precision
needed for applications. For example, the guidelines for lim-
ing in New York State (Ketterings and Workman, 2023) rec-
ommend based on a precision of 0.1 pH, although the recom-
mended laboratory method has a precision of 0.01 pH. An-
other consideration is the precision of the DSM. In this exam-
ple pH was predicted with an overall RMSE of 0.72 pH, so
perhaps the classes should have been defined more coarsely
than the selected 0.1 pH.

The minimum grid size for segmentation (10× 10 pixels)
is 250× 250 m (62.5 ha), corresponding to a 1 : 158 000 scale
map by the Vink definition, or 1 : 125 000 by the Cornell def-
inition, as explained in Sect. 2.2. Segmentation at this reso-
lution is expected to more closely match the 1 : 200 000 gen-
eralised soil map of the Netherlands (Haans, 1965) than the
1 : 50 000 semi-detailed map shown in Fig. 3.
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Figure 4. Semi-detailed soil map of the Netherlands, design scale 1 : 50 000 (part). Source and detailed legend: Ministerie van Volkshuisvest-
ing en Ruimtelijke Ordening (2024). General legend: Dark and medium green: river clays with different clay concentrations; Light green:
glacial depression sediments; Brown, pink: push moraines with varying sand and gravel sizes; Yellow: wind-blown sands; Purple: peat.

3.2.1 Univariate segmentation of individual maps

To examine the effect of grid size, we segmented all prop-
erties at all depths, individually, at the minimum possible
grid cell size, i.e., 10× 10 and at several multiples cor-
responding to nominal map scales 1 : 100 000, 1 : 200 000,
1 : 400 000, and 1 : 800 000, respectively. The next coarser
resolution (1 : 1 600 000) resulted in only one or two seg-
ments and so was not used in this test area, only for the
entire Netherlands (Sect. 3.2.4, below). Table 1 shows the
results for one run of the segmentation process. Note that be-
cause of the random aspects in the algorithm other runs give
slightly different results. Comparing the finest segmentation
to the single grid cell at resolution, 0.625 km2, we see that
many segments were of one or two grid cells. This pattern
was mostly very fine, with a few large segments for most
single properties. Each quadrupling of the grid area resulted
in larger segments, but these were not simply groupings of
the previous segments. In general, the various depth slices of
pH were the least successfully grouped into larger segments,
whereas Pox and SOM were able to form large segments.
The clay and silt particle-size classes, CEC, and bulk density
were intermediate. This may be in part to the selected class

limits for the properties, as well as intrinsic spatial variabil-
ity.

3.2.2 Multivariate segmentation of individual properties,
all depth slices

We then performed a multivariate segmentation using all
depth slices of single properties. By default, GeoPAT nor-
malizes each layer and by default weights them equally. In
this mode, a motifel must meet the threshold conditions for
all input layers to be joined to a segment. In this way the
segmentation is meaningful for the whole profile. Because of
the different spatial structures of the properties at each depth
slice, it was expected that the segmentation would be finer
at each scale than for individual depth slices, i.e., it would
be more difficult to merge grid cells. The results for one run
of the segmentation process are shown in Table 2. Contrary
to our expectations, the median number of segments were
all smaller than those for the corresponding property’s single
depth slice segmentations. This shows that using the multi-
variate measure of similarity with the same model parameters
allows for larger areas with the same internal pattern. Again,
the maps of pH and sand could only be grouped into small
segments, and SOM into the largest segments.
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Figure 5. Results for selected properties of aggregation by supercells algorithm using all properties and layers.

Table 1. Results of univariate segmentation: each property at each depth slice separately (54 segmentations). nmax: maximum number of
segments found by all properties; nmin: number of segments found for the “minimum segments” property; nmedian: median number of
segments found by all properties.

Cell size nominal scale maximum segments nmax minimum segments nmin nmedian median area
property property km2

10× 10 1 : 100 000 pH 5–15 cm 3867 SOM 15–30 cm 534 2366 0.68
20× 20 1 : 200 000 pH 5–15 cm 832 Pox 60–100 cm 138 621 2.58
40× 40 1 : 400 000 sand 5–15 cm 205 SOM 15–30 cm 30 153 10.46
80× 80 1 : 800 000 sand 60–100 cm 52 SOM 30–60 cm 8 40 40.00

Figure 7 shows the segmentation based on whole-profile
bulk density at the finest scale (nominal 1 : 100 000), overlaid
on the six depth slices. There is a clear landscape pattern. The
sandy areas with higher bulk density, as well as the medium
bulk densities in the older river clays, are mostly collected
into large polygons.The fine details in peat areas and younger
river sediments are also captured.

Figure 8 compares the segment boundaries for the multi-
variate segmentation by bulk density over the whole profile,
at four resolutions overlaid on the Dutch 1 : 50 000 soil sur-
vey polygons. It is clear that the necessarily larger polygons
resulting from the coarser segmentations miss important dif-
ferences, and that the 1 : 100 000 segmentation finds quite
small areas, mostly just one grid cell, within soil bodies. The

1 : 200 000 segmentation (i.e., shift size 20, i.e., 0.5 km2 grid
cells) matches well with many soil map boundaries. Note
however that the Dutch soil survey map units are defined by
many properties, not just bulk density.

Figure 9 shows the success of the segmentation based on
bulk density over the whole profile at two design scales. This
is evaluated by the internal inhomogeneity of each segment
and the difference of this from its neighbours, i.e., the iso-
lation. For example, at both scales the polygon at upper left,
representing part of the sandy uplands (the Utrechtse Heuvel-
rug), has low inhomogeneity (similar internal composition
of the bulk density profiles of its pixels), and high isolation,
i.e., its internal composition is quite different from that of its
neighbours. This landscape segment has been well-identified
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Figure 6. Standard deviations for selected properties of aggregation by supercells algorithm using all properties and layers.

Table 2. Results of multivariate segmentation: all depth slices for each property (9 segmentations). nmax: maximum number of segments
found by all properties; nmin: number of segments found for the “minimum segments” property; nmedian: median number of segments found
by all properties.

Cell size nominal scale maximum segments nmax minimum segments nmin nmedian average area
property property km2

10× 10 1 : 100 000 pH 3114 SOM 162 1633 0.98
20× 20 1 : 200 000 pH 668 SOM 38 403 3.97
40× 40 1 : 400 000 sand 174 SOM 12 111 14.41
80× 80 1 : 800 000 sand 44 SOM 5 37 43.24

at both scales, because it has such a distinctive bulk density
profile (very high throughout) in contrast to its neighbours.

Table 3 shows that as the segmentation becomes coarser
the inhomogeneity and isolation both decrease, i.e., segments
are internally more consistent in their internal patterns and
less isolated from their neighbours. This illustrates the effect
of geographic generalisation.

3.2.3 Multivariate segmentation with selected properties
and depth slices

Although BIS-4D predicts each property separately, the soil
as a natural body is of course more than a stack of individ-
ual properties, and this is recognized by the concept of diag-
nostic horizons and properties in modern soil classification

systems, and soil series in detailed conventional soil map-
ping. To see if segmentation of BIS-4D can identify these,
we selected properties and depth slices to represent the pro-
file. These were selected to match with expected diagnostic
horizons and series differences in the test area. In other con-
texts the choices would be linked to the key soil properties
and depth slices which differentiate the major soil types in
that area. Using all 54 layers results in an impractical Jensen-
Shannon divergence, hence we selected key properties at key
depths: (1) pH, clay, silt, SOM at 0–5 cm; (2) clay and bulk
density at 15–30 cm; (3) CEC at 30–60 cm; and (4) sand and
SOM at 100–200 cm. The reason for including SOM of the
deepest layer was to distinguish thick peats, and for sand of
that same layer is to distinguish thick dune sands.
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Figure 7. Segmentation based on whole-profile bulk density at the finest scale (nominal 1 : 100 000), overlaid on the bulk density values at
six depth slices.

Table 3. Results of segmentation based on the bulk density profile.

Cell size nominal scale number of segments inhomogeneity isolation average area km2

10× 10 1 : 100 000 985 0.105 0.277 1.62
20× 20 1 : 200 000 277 0.085 0.250 5.78
40× 40 1 : 400 000 77 0.081 0.199 20.78
80× 80 1 : 800 000 22 0.086 0.184 72.73

Table 4 shows the results for one run of the segmentation
process. The segment counts at each scale are much smaller,
and thus the segment areas are larger, than for individual
properties and depth slices, and also for individual proper-
ties over the whole profile, compare with Table 3. This fol-
lows the tendency observed for using full profiles of single
properties, compared to single depth slices (Sect. 3.2.2).

Figure 10 shows the segment boundaries from this seg-
mentation at the 1 : 400 000 design scale, overlaid on the
properties and depth slices used to compute the segmenta-
tion. Many of the segments correspond to landscape fea-
tures shown in the conventional soil map of Fig. 4, al-
though constrained to the rectilinear shape and minimum
grid cell size. For example, segment 2 covers both the sandy
push moraines, and segment 5 most of the lower Rhine
floodplain. However, because the different properties and

depths have different segmentations when considered in-
dependently, some obvious soil landscapes are not well-
represented because the segmentation must consider all the
properties and depths. For example, the areas with thick peat
as shown on the 100–200 cm SOM map are not separated
into segments, but rather included in larger segments. This
suggests that the algorithm will have difficulty segmenting
on the basis of multiple properties which are selected to rep-
resent major profile types.

3.2.4 Segmentation over a large area

To determine whether segmentation could be applied over
a larger area than the 40× 40 km test area, we segmented
the BIS-4D product for the entire land area of the Nether-
lands (≈ 33 240 km2) using all depth slices for three proper-
ties, at the three most general scales. The results are shown in
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Figure 8. Segmentation based on bulk density over the whole profile (red lines), overlaid on soil map polygons (grey lines). Design scales
left to right, top to bottom: 1 : 100 000, 1 : 400 000, 1 : 800 000, 1 : 1 600 000.

Table 4. Results of multivariate segmentation: with selected properties and depth slices.

Cell size nominal scale number of segments inhomogeneity isolation average area km2

10× 10 1 : 100 000 525 0.431 0.630 3.05
20× 20 1 : 200 000 118 0.366 0.574 13.56
40× 40 1 : 400 000 40 0.365 0.566 40.00
80× 80 1 : 800 000 6 0.414 0.569 266.67
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Figure 9. Evaluation of segmentation based on bulk density over the whole profile at the 1 : 100 000 (top) and 1 : 400 000 (bottom) design
scales. Note the different colour ramps for the two scales.

Table 5. Results of multivariate segmentation: all depth slices for
selected properties, entire Netherlands. n= number of segments.

Property n, 40× 40 n, 80× 80 n, 160× 160

pH 2240 601 161
Bulk density 1344 358 100
Clay concentration 1444 462 143

Table 5. Interestingly, there is quite some difference in seg-
ment numbers among these properties. Bulk density (classi-
fied units of 0.1 kg m−3) forms the fewest segments, whereas
pH (classified in units of 0.1 pH) forms the most segments.
These results are partly due to the classification precision, as
well as the spatial pattern of the properties.

Figure 11 shows the segmentation by pH (classified in
units of 0.1 pH) of the entire Netherlands at the two most gen-
eral scales. For this extent the coarsest segmentation seems
most useful for understanding the generalized country-wide
soil pattern. For example, the two push-moraine sand ridges
(Utrechtse Heuvelrug and De Veluwe) are identified as
one segment, as is most of the reclaimed marine clays of

Flevoland. The complex pattern of low and medium pH in
North Brabant is also identified as one generalized soil land-
scape.

3.2.5 Segmentation parameters

Segmentation is greatly affected by the two thresholds. Table
6 shows the results for one run of the segmentation process
using all depth slices for clay concentration with the default
lower and upper thresholds (0.1 and 0.3, respectively), com-
pared with a more liberal (easier segmentation) thresholds
(0.3 and 0.8, respectively), at several resolution. Using these
liberal segmentation parameters reduces the number of seg-
ments between two- and three-fold. In effect, the more liberal
segmentation at a finer scale is comparable to the more con-
servative one at the next-coarser scale.

This is illustrated in Fig. 12, which shows the multivariate
segmentation of the test area on the basis of clay concentra-
tion at all depth slices at nominal 1 : 100 000 and 1 : 200 000
scale with default and more liberal thresholds. The thresholds
can be adjusted by the analyst to match known soil-landscape
components. This is an example of “helping” the DSM prod-
uct to “speak for itself”.
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Figure 10. Segmentation based on selected properties and depth slices, overlaid on DSM of selected soil properties, 1 : 400 000 design scale.
Legends not shown. Scale is from yellow (low values of the property) to dark blue (high values). Segments are labelled with their numbers.

Table 6. Conservative and liberal segmentation, all depth slices of clay concentration.

Cell size nominal scale n (conservative) n (liberal) reduction factor

10× 10 1 : 100 000 1175 563 2.09
20× 20 1 : 200 000 481 157 3.06
40× 40 1 : 400 000 143 61 2.34
80× 80 1 : 800 000 40 12 3.33
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Figure 11. Segmentation by whole-profile pH of the Netherlands at 1 : 800 000 (left) and 1 : 1 600 000 (right) nominal scales, overlaid on the
pH 15–30 cm DSM product.

3.3 Clustering

Hierarchical clustering was applied to the segments of
Fig. 10, i.e., based on properties and depth slices selected
to represent the profiles of the major soil types. The resulting
dendrogram is shown in Fig. 13. Note the large separation in
internal patterns between the two top-level branches (height
2.5). Comparing to the segment numbers shown in Fig. 10, it
is clear that these represent the river clay landscape, Gelderse
Vallei depression, and lower terraces (left branch, e.g., seg-
ments 5 and 17) and the sandy uplands (right branch, e.g.,
segments 1 and 2). At the second level of the right branch
(height 1.2) the separation is between small areas with more
heterogenous segments (right branch, e.g., segments 4, 6, 9)
and the larger more homogeneous areas of the sandy uplands
(left branch, e.g., segments 1 and 2). While not a perfect sep-
aration, the clustering does separate the principal soil land-
scape components and their internal heterogeneity.

From an examination of the heights at which groups of
segments are joined, it seems that cutting the tree at height
0.8 into five clusters forms the most useful general grouping.
This is shown in Fig. 13 by boxes around the sets of segments
in each cluster. These generalised clusters are shown on the
nine properties in Fig. 14. They group similar segments well
and could serve as landscape management units.

3.4 Evaluation

By using the algorithms with analyst-selected parameters,
the BIS-4D product was able “speak for itself” quite well,
revealing both compact units of homogeneous soils and seg-
ments with similar heterogeneous patterns of soil classes.
Aggregation based on properties and depths selected to rep-
resent the results of the principal soil forming factors delin-
eates patches (Fig. 5) that closely correspond to polygons
of the conventional soil map with design scale 1 : 50 000
(Fig. 4), generalized to about 1 : 100 000 design scale, al-
though with some variations in form. Segmentation was most
successful with grid cells of 1 000 ha, corresponding to nom-
inal map scale 1 : 400 000. This grouped patterns of pix-
els with different internal patterns of classes. Hierarchical
clustering of these segments found groups of similar pat-
terns within the map. These represent separate segments
of the same landscape component. These results increase
confidence in the BIS-4D DSM product. This is perhaps a
best case, due to the high quality of the source data (train-
ing points and covariates), the conventional map which can
be used for comparison with aggregation and segmentation,
and sophisticated modelling approach specific to the Nether-
lands, as explained by Helfenstein et al. (2024).

4 Case Study 2 – SoilGrids v2.0 (Global)

At the other extreme from the country-specific DSM exer-
cise based on a large quality-controlled and spatially com-
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Figure 12. Segmentation by whole-profile clay at 1 : 100 000 (top) and 1 : 200 000 (bottom) with default thresholds (left) and liberal thresh-
olds (right), overlaid on the clay 0–5 cm DSM product.

plete training set (Sect. 3) is a global DSM exercise based
on a heterogeneous and spatially-unbalanced training points,
using only covariates with global coverage. For this case we
selected SoilGrids v2.0 (Poggio et al., 2021) from ISRIC-
World Soil Information. This is a set of predictive maps of
soil properties for the entire globe at 250 m nominal spa-
tial resolution. Aggregations to 1 and 5 km resolutions are
provided for modelling at coarser scales. It is a globally-
consistent product that uses all available point data from
the World Soil Information Service (WoSIS) database (Bat-
jes et al., 2024), also from ISRIC-World Soil Information,
and covariates with global coverage. Political boundaries are

nowhere visible, except where one or more covariates match
these. In this it follows the concept of the pioneering FAO-
UNESCO Soil Map of the World (FAO – UNESCO, 1971–
1979; FAO, 1990).

SoilGrids provides both predictions and their uncertainty,
via quantile random forest machine-learning models. It
closely follows the GlobalSoilMap specifications of prop-
erties and depth slices (Science Committee, 2015). It also
predicts the derived property SOC stocks from 0–30 cm, in
T ha−1, computed from SOC concentration and bulk density.

We selected SOC stock because it is a high priority for
global modelling, as evidenced by the efforts of the FAO
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Figure 13. Hierarchical clustering of the segments shown in Fig. 10.

to produce a global map from national contributions in the
Global Soil Organic Carbon Map (GSOCmap) project (FAO,
2018, see a portion of this map in Fig. 30, below). It is a high
priority due to its key role in soil functions and its impor-
tance in policy applications. It is a primary target for DSM
over various spatial extents. How can the diverse SOC dig-
ital soil maps be evaluated? We propose the spatial pattern
and its relation to the soil landscape, as revealed (we hope)
by aggregation and segmentation.

Poggio et al. (2021, Table 4) shows that SoilGrids predic-
tions had a median global cross-validation RMSE of 3.97 %
SOC concentration and 0.19 g cm−3 bulk density, averaged
over the three layers which contribute to SoilGrids SOC
stock estimates. We selected a transnational study area with
lower-left corner (−109.99° E, 27.86° N) and upper-right
corner (−100.03° E, 35.64° N). This covers most of Chi-
huahua and Coahuila and part of Sonora States (México) and
portions of Texas and New Mexico States (USA). Figure 15
shows this area, with the SOC stocks over the 0–30 cm depth
slice. The higher stocks are in mountains and wetlands along
the Rio Grande, the lower in high deserts.

Individual 2× 2° tiles of the 250 m product were down-
loaded in the GeoTIFF format from the interactive Soil-
Grids site (ISRIC-World Soil Information, 2024b), imported
into R with the terra package, mosaicked, projected from
the original geographic coordinates to a local Albers Equal
Area projection, and trimmed to 3270× 3610 6.25 km2 pix-
els, covering 737 793.8 km2. The global map of the 1 km
product was downloaded in the GeoTIFF format from the
ISRIC WebDAV repository (ISRIC-World Soil Information,

2024a), projected from the original Homolosine coordinate
reference system to the same local Albers Equal Area pro-
jection, and trimmed to 900× 900 1 km2 pixels, covering
810 000 km2.

Predicted SOC stocks per pixel in the study area ranged
from 0 to 83, median 28 T ha−1 for the 250 m product, and
7 to 76, median 29 T ha−1 for the 1 km product, showing the
smoothing effect of upscaling. These distributions are moder-
ately right-skewed (skewness 0.468 and 0.488, respectively).

4.1 Aggregation

We applied the supercells algorithm to the SOC stocks
250 m resolution layer. To limit processing time and memory
requirements, we selected a small test area of 80× 80 km,
i.e., 640 000 ha, centred on (−105° E, 32° N) at the Texas
(N)/New Mexico (S) border, near Dell City TX (Fig. 16).
The centre pivot irrigated fields at the centre-left are≈ 800×
800 m and should thus be resolvable on the SoilGrids map.
This area includes a wide range of the SOC stocks (Fig. 17
left), with high values in the Guadalupe Mountains to the east
and very low values in the salt flats in the centre of the area.

After some experimentation, a medium value (0.5) for
compactness was selected. We did not set a minimum map-
pable area minarea, rather a number of proposed super-
cells k ≈ 400 supercells, corresponding to an average area of
1600 ha and 1 cm2 on a 1 : 400 000 map. This is much larger
than the area of single centre-pivot irrigated fields, so we did
not expect these to be individually resolved.
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Figure 14. Generalised clusters of the segmentation of Fig. 10, based on slicing the clustering dendrogram shown in Fig. 13. The same
segmentation is shown for nine selected property-depth combinations. Clusters shown by colour and number.

Figure 17 (right) shows the computed supercells. Median
size of the 412 supercells was 1388 ha, ranging from 431 to
5462 ha, with a strongly right-skewed distribution. This ag-
gregation clearly groups the pixels with similar SOC con-
centrations. However, the shapes do not seem to correspond
to natural landscape boundaries. We attempted other combi-
nations of compactness and supercell numbers, with poorer
results.

The quality of the aggregation can be measured by
the standard deviation of the property within each super-

cell (Fig. 18). These ranged from 0.34 to 6.08, median
1.18 T ha−1, with corresponding coefficients of variation
from 1.36 to 26.61, median 4.39 %. The highest heterogene-
ity was in the pivot irrigation area, where the minimum super-
cell size forced pixels with a wide range of values together.

4.2 Segmentation

Segmentation was applied to the SOC stock map of the
full study area, for both resolution SoilGrids DSM products.
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Figure 15. SoilGrids v2.0; SOC stock 0–30 cm, T ha−1. Test area
for aggregation (Sect. 4.1) shown as a red square.

Figure 16. Test area for aggregation, centred on (−105° E, 32° N).
Source: © Google Earth.

Since gpat_gridhis requires class maps, SOC stocks
were classified in 19 (250 m) and 18 (1 km) equal intervals
of 4 T ha−1, with from 31 to 1 956 813 (250 m) and 14 to
128 549 (1 km) pixels per class. The minimum grid resolu-
tion for the 250 m product is here 2.5× 2.5 km. This map
was segmented at this resolution, and also four coarser reso-
lutions: 5× 5 km, 10× 10 km, 20× 20 km, and 40× 40 km,
corresponding to map scales 1 : 1 000 000, 1 : 2 000 000,

1 : 4 000 000, 1 : 8 000 000, and 1 : 16 000 000, respectively.
Table 7 shows the results. As expected, the segments are in-
creasingly heterogeneous as the cell size increases: both the
median standard deviation within the segments and their en-
tropy increase.

Figure 19 shows the results of the four finest segmenta-
tions. The level of detail is apparent, but many segments at
the finest segmentation contain only one SOC class, and thus
have no internal pattern. The increasing generalisations find
increasing heterogenous segments, with a clearer relation to
the soil landscape with each increase.

The 1 km resolution product was also segmented at the
four finest possible cell sizes. Again as expected, the seg-
ments are increasingly heterogeneous as the cell size in-
creases: both the median standard deviation within the seg-
ments and their entropy increase. Table 8 shows the results.
Comparing with Table 7, we see that at comparable nomi-
nal resolutions the numbers of segments are comparable, al-
though there are somewhat fewer segments from the 1 km
product, consistent with its generalisation.

Figure 20 shows these segmentations of the 1 km product.
As minimum segment size increases, broader landscape pat-
terns are increasingly apparent, within the constraint of the
rectangular blocks. The coarsest segmentation (80×80) sep-
arates the large low-SOC plateaus from the basin-and-range
mountains with alternating high and low SOC. The entire Rio
Grande valley is one segment. The next coarsest (40× 40)
separates these into segments with somewhat more uniform
internal patterns. This resolution will be used for clustering
(Sect. 4.3, below).

Figure 21 shows the entropy for each segment of the
1 : 16 000 000 nominal resolution map from the 1 km prod-
uct. This is a measure of the internal class homogeneity of
each segment, although not the spatial pattern of the classes.
The highest entropies are found in the segments with mixed
high and low terrain, shown as contrasting purple and light
blue colours.

4.3 Clustering

Figure 22 (left) shows the 39 segments signatures from the
1 km product, using motifel size 40 cells, and Fig. 22 (right)
shows the assignment to seven generalised clusters. Figure
23 shows the dendrogram for the clustering of the 39 segment
signatures.

The co-occurrence pattern of classes is similar within each
general cluster. The clusters should group similar soil land-
scapes, at least with respect to the SOC concentration. For
example, cluster 1 groups mountainous terrain with high
SOC interspersed with basins with medium SOC in an intri-
cate pattern, whereas cluster 5 groups the low-SOC plateau
areas. Cluster 2 contains most of the upper Rio Grande val-
ley, but includes some plateau areas to its west.

Figure 24 shows the Jensen-Shannon divergence with the
first segment, which necessarily has no divergence. This dis-
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Figure 17. SoilGrids v2.0 250 m SOC stock 0–30 cm, T ha−1 (left) and its aggregation into supercells (right).

Table 7. Results of segmentation of SoilGrids 250 m resolution SOC stock T ha−1; normalized entropy [0. . .1].

Cell size nominal scale number of segments median standard deviation median normalized entropy average area km2

10× 10 1 : 1 000 000 6612 2.36 0.31 122
20× 20 1 : 2 000 000 1718 3.07 0.37 471
40× 40 1 : 4 000 000 485 3.86 0.43 1670
80× 80 1 : 8 000 000 117 4.46 0.47 6923
160× 160 1 : 16 000 000 35 6.42 0.60 23 142

tance does not directly correspond to cluster distance in the
dendrogram unless clustering is by single linkage; here we
used clustering by Ward’s D2. These range from 0.14 (seg-
ment 30, in the same cluster 1 as the target segment, although
on a different branch at height 0.45) to 0.94 (segment 28, in
widely-separated cluster 3, different at branch height 1.45).
These distances can be used to find the soil patterns that are
most similar to any segment, independently of cluster mem-
bership.

4.4 Evaluation

Aggregation was able to form compact groups of pixels with
similar SOC stocks, which could be useful for, e.g., stratified
sampling. However the polygons did not seem to correspond
to landscape units. Segmentation was more successful. At
several increasingly-general scales it grouped distinctive pat-
terns of SOC stocks, corresponding to large landscape units.
This was most apparent at the 1 : 16 000 000 nominal resolu-
tion (Fig. 22). Among the most obvious are the Chihuahuan
basin-and-range mountains (segment 29 of Fig. 22), the up-
per Rio Grande valley near Socorro NM (segment 2), and
the west Texas/eastern New Mexico plateau (segment 13).

Some segments include several physiographic units, which
nonetheless apparently had similar patterns of SOC, for ex-
ample segment 23 which includes some west Texas uplands,
the Rio Grande valley below El Paso, and uplands in east-
ern Chihuahua. Clustering was then able to identify general
groups of landscape units, and the Jensen-Shannon diver-
gence identified the segments most similar to a selected seg-
ment.

5 Case Study 3 – SOLUS100 (USA)

The third case study is intermediate to the first two. Like the
BIS-4D study it is of one country and with training points
from one source, but (1) it covers a much wider and more
diverse area but can’t use covariates that are only available
for part of the area, and (2) it is based on numerous tradi-
tional soil surveys of varying age and quality control, as well
as training points, which can be used to some extent for eval-
uation.

SOLUS100 (“Soil Landscapes of the United States 100-
meter”) is a recent DSM product from the USDA-NRCS
(Nauman et al., 2024). It contains predicted values, high and
low estimates, and prediction intervals for soil properties at
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Figure 18. Standard deviation within supercells; SoilGrids v2.0 250 m SOC stock 0–30 cm, T ha−1, rounded to 0.1 precision.

Table 8. Results of segmentation of SoilGrids 1 km resolution SOC stock T ha−1.

Cell size nominal scale number of segments median standard deviation median normalized entropy average area km2

10× 10 1 : 4 000 000 581 3.44 0.42 1394
20× 20 1 : 8 000 000 151 4.51 0.50 5364
40× 40 1 : 16 000 000 39 6.08 0.61 20 769
80× 80 1 : 32 000 000 6 7.98 0.69 135 000

the GlobalSoilMap standard depths, at 100 m horizontal res-
olution (i.e., 1 ha pixels) over the entire conterminous United
States (CONUS). The maps are available in GeoTIFF format
(Nauman, 2024). SOLUS can be compared to the Gridded
Soil Survey Geographic Database (gSSURGO) digital prod-
uct from the NRCS (NRCS Soils, 2022), which was created
by digitising the polygons from traditional soil-landscape
survey, with its linked relational database of polygons, map

units, components, horizons, and soil properties. NRCS has
been working on updates to source maps as well as harmon-
ising map unit names and boundaries across different survey
areas since 2013, although this work is not complete. These
updates are then used in new versions of gSSURGO. Ag-
gregation and segmentation of SOLUS can be compared to
gSSURGO, a product based on expert judgement and field-
based soil survey. However, gSSURGO is quite heteroge-
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Figure 19. Segmentation of the SoilGrids v2.0 250 m resolution SOC stock map (part) at (left to right, top to bottom) 1 : 1 000 000,
1 : 2 000 000, 1 : 4 000 000 and 1 : 8 000 000 nominal resolutions. Units are T ha−1.

neous in the age and quality of the soil surveys on which it
is based, and so must be approached with caution and prefer-
ably with the judgement of a local experienced soil surveyor
as to the reliability of gSSURGO.

We selected a 570 km2 test area in Wayne (Higgins,
1978) and Ontario (Pearson, 1958) Counties NY, originally
published in 1978 and 1958 as Order 2, 1 : 15 840 and
1 : 20 000 scale surveys, respectively, on an unrectified air-
photo base, and later digitised on a topographic base map by
the NRCS (D’Avelo and McLeese, 1998) and incorporated
into gSSURGO. This area has a distinctive pattern of NNW–
SSE orientated drumlins of various sizes and shapes, and
inter-drumlin depressions. Some of the depressions devel-
oped into peatlands, with drained areas used for agriculture
and undrained areas used as wildlife reserves. All soils have

developed since the final retreat of the Laurentide Ice Sheet
around 12 000 years before present. The main soils are clas-
sified in US Soil Taxonomy as Glossic and Oxyaquic Hap-
ludalfs at the tops and sides of the drumlins, and Mollic and
Histic Haplaquepts and Medisaprists in the depressions (Soil
Survey Staff, 2022). The genesis of this soil landscape has
been studied for more than a century (Menzies et al., 2016).
A topographic map of a representative portion is shown in
Fig. 25.

We selected clay concentration and SOC as the properties
to analyze. This is because these vary considerably in the area
and shows excellent relation with the landscape. Specifically,
the inter-drumlin swamps have high SOC and low clay, with
the reverse for the drumlins. Accuracy statistics are not avail-
able for this area, however, for clay concentration of the 0–
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Figure 20. Segmentation of the SoilGrids v2.0 1 km resolution SOC stock map (part) at (left to right, top to bottom) 1 : 2 000 000,
1 : 4 000 000, 1 : 8 000 000, and 1 : 16 000 000 nominal resolutions. Units are T ha−1.

5 cm layer over the entire CONUS (Nauman et al., 2024, Ta-
ble S1) reports spatial cross-validation statistics of 6.481 %
RMSE, −0.003 % ME, and 0.672 R2, based on all 484 258
observations. When compared to only the 37 992 observa-
tions that were analyzed in the NRCS Soil Characterization
Laboratory these results were substantially worse: 8.382 %
RMSE, 0.011 % ME, and 0.544 R2. For SOC of the sur-
face layer the statistics are 7.507 % RMSE, 0.213 % ME, and
0.716 R2 for all observations, and 4.218 % RMSE, 0.062 %
ME, and 0.220 R2 for the laboratory observations. Thus the
point accuracy of SOLUS for this property is only moderate,
but our interest is in the spatial pattern.

Figure 26 shows the predicted surface layer clay concen-
tration for the original soil survey, as compiled in gSSURGO,
and for SOLUS. Notice the different legend scales and colour
ramps, otherwise the SOLUS map would not clearly show its
pattern, since SOLUS predicts a narrower range of concen-
trations. This is typical of DSM products made with statis-
tical learning methods (Hastie et al., 2009). It is obvious by
visual inspection that SOLUS misses much of the fine pat-
tern, and especially that it does not identify most of the or-
ganic soils with very low clay concentrations (dark blue on
the gSSURGO map). There is some hint of the pattern in the
southeastern corner of the study area.
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Figure 21. Normalized Shannon Entropy of segments of the v2.0
1 km resolution SOC stock map (part) at 1 : 16 000 000 nominal res-
olution. Colour scale from white (lowest entropy) to dark purples
(highest entropy).

5.1 Aggregation

Aggregation with the supercells algorithm requires pa-
rameterization. We set the minimum area minarea to be
comparable to the Minimum Legible Delineation (MLD)
(Forbes et al., 1982) at original design scales, 1 : 15 840 and
1 : 20 000 for the two counties. We set the reference scale to
be a bit smaller, i.e., 1 : 24 000, so that the MLD was set to
2.304 ha, and increased slightly to three SOLUS cells. Ag-
gregation complexity is also controlled by the target number
of supercells. This should be comparable to the number of
gSSURGO polygons in this study area. This was to evalu-
ate how well SOLUS in this area can match the traditional
soil survey for this property. In this area there are 14 949
gSSURGO polygons, with a median area of 2.43 ha, corre-
sponding very well to the MLD. We reduced this slightly
to a target of 14 000 supercells. However, the mean area is
5.30 ha, because of some large polygons of organic soils.

We first aggregated clay concentration of the surface layer
with a range of compactness values from 0.2 to 2. The re-
sulting number of supercells was much lower than the target,
ranging from 6364 for compactness 0.2, to 8422 for compact-
ness 2.0. As expected, compactness 0.2 produced the map
with the most elongated features and 2.0 the least. However
the orientation of the supercells did not match the generally
NNW-SSE pattern of the drumlin field (Fig. 27).

We then aggregated based on clay concentration of all lay-
ers, i.e., the full profile, again with a range of compactness.

The number of supercells was more consistent than with a
single layer, ranging from 7306 for compactness 0.2, to 8238
for compactness 2.0. The larger number at the lowest com-
pactness is because the algorithm could not find as much ho-
mogeneity in adjacent grid cells when considering all layers.
Again, the spatial pattern of the supercells did not resemble
the pattern shown by gSSURGO and the topographic map.

From this we conclude that aggregation based on this SO-
LUS layer does not represent the actual soil pattern. After
examining the supercells pattern and the source map, it is
unclear to us what the SOLUS model is “seeing” in this area.

5.2 Segmentation

SOLUS resolution is 100 m, so that the minimum shift is
10 i.e., 1000 m= 1 km, corresponding to 1 : 250 000 nomi-
nal scale. Thus we did not expect to reproduce the fine pat-
tern, but rather to group these into regions. We segmented
with raster stacks of single properties at all depth slices, and
with a raster stack of seven properties (clay, silt, and soil or-
ganic carbon weight concentrations, coarse fragments vol-
ume, pH measured at 1 : 1 in water, CEC, bulk density) at
one depth slice. The continuous properties were converted to
classes, as required by the GeoPAT segmentation algorithm:
particle-size separates in units of 4 %, pH in units of 0.2 pH,
CEC in units of 10 meq (100 g)−1, bulk density in units of
0.1 kg m−3, and SOC in units of 0.2 % up to 6 % and then in
units of 5 % to the maximum of 30 %.

Figure 28 shows the segmentation based on all depth slices
of SOC concentration, overlaid on the concentration at two
depth slices. Some segments are well-separated, notably the
depressions with swamps and organic soils, as well as sec-
tions with different intensities of drumlins. By contrast, Fig.
29 shows the segmentation based on all depth slices of clay
concentration, overlaid on the concentration at two depth
slices. The segments are quite large and do not identify col-
lections of the main landscape elements, i.e., drumlins and
depressions.

Similar and even worse results were found with other
properties, as well as with an attempt to use all properties
at one depth slice.

5.3 Clustering

Because of the poor results of segmentation, we do not
present the results of clustering for this case study.

5.4 Evaluation

The two algorithms applied to SOLUS100, with appropriate
parameters, allowed the product “speak for itself”, but the
message was not clear and even misleading. Notably, the at-
tempts to aggregate and segment based on a representation of
the profile resulted in unrealistic polygon maps. In this area
the landscape pattern is striking and easy to map by conven-
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Figure 22. (left) Segmentation of the SoilGrids v2.0 1 km resolution SOC stock map, motifel size 40 cells, units are T ha−1; (right) assign-
ment of segments to five generalised clusters, legend is cluster number.

Figure 23. Dendrogram of segment signatures, SoilGrids v2.0 1 km SOC stock map, motifel size 40 cells, with five general clusters.

tional methods. SOLUS was unable to approximate the con-
ventional map in this area, let alone improve its resolution.
This is likely because SOLUS lacks locally-important covari-
ates to represent this recently-glaciated soil landscape with
its characteristic drumlins. This is not meant to be a condem-
nation of SOLUS as a useful product overall. All DSM mod-
els trained over a wide area have difficulty when applied to
a local area with idiosyncratic soil-landscape relations which

are not reflected in the covariates available over the entire
training area, or which have locally-specific relations with
the wider-area covariates. This is a general “global model
applied to locally-idiosyncratic landscapes” issue, which is
being addressed by adaptive methods, see for example Fan
et al. (2022). This problem was already recognized early on
in DSM exercises. For example Poggio et al. (2010b) discov-
ered that soil available water capacity models used different
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Figure 24. Jensen-Shannon divergence from Segment 1. Heat
colours from red (most similar) to white (least similar).

significant covariates according to the level in a hierarchy
of national (Scotland), regional and catchment, and recom-
mended fitting models at the target extent. So in this study
area, perhaps fitting the SOLUS model locally would have
been more successful in reproducing the soil landscape pat-
tern, even without local covariates related to glaciation.

6 Discussion

We first discuss how the two methods performed when ap-
plied in the test cases (Sect. 6.1), as well as their strengths
and limitations, and then discuss how they could be incorpo-
rated into evaluating DSM products (Sect. 6.2).

6.1 How did the methods perform?

The supercells algorithm was able to delineate relatively
homogeneous soils, based on all soil properties and layers
in the BIS-4D example and the SoilGrids SOC example, but
failed completely with SOLUS. A limitation of this approach
is that there is no objective way to adjust the compactness and
supercell number parameters, other than the expert opinion
on which choice looks most “realistic”. However, the mini-
mum size parameter can be set to match a minimum legible
delineation corresponding to a desired map scale.

The GeoPAT algorithm was able to segment DSM prod-
ucts into objectively-defined areas made up of fixed-size
blocks, each relatively homogeneous in its pattern internally
and relatively isolated from its neighbours. Segmentation
was quite successful on appropriate scales for BIS-4D and

the test area and property of SoilGrids v2.0, but much less
successful for the test area of SOLUS100. The class compo-
sition of segments, although not their internal spatial pattern,
were well-characterised by normalized Shannon Entropy.

A limitation of the GeoPAT approach is the requirement
for relatively large numbers of pixels per grid cell, and the
rectangular shape of the grid cells that are combined into seg-
ments. Thus, the segment boundaries can not follow complex
natural boundaries. Also, the landscape segments are at much
more general scale than the source map.

An obvious question is how to parameterise the two ap-
proaches. In this paper we compared several choices of pa-
rameters in each case study on an at hoc basis. It may be pos-
sible to systematise this with sensitivity analysis, to quantify
the changes in results as parameters change. This was outside
the scope of this paper.

The question remains as to the relation of the supercells or
segments with the actual soil landscape at the several scales.
There are two related questions. (1) For aggregation, do the
relatively homogeneous (according to the supercells al-
gorithm) groups of pixels correspond to landscape elements?
These would correspond to polypedons or consociations. (2)
For segmentation, do the patterns of pixels within the seg-
ment correspond to finer-scale patterns at the design scale of
the segmentation? These would correspond to associations or
complexes.

In the case of BIS-4D and the detailed traditional Dutch
soil survey, the degree to which the aggregation matches the
published map (Fig. 4) is likely sufficient. The success of
segmentation was discussed in Sect. 3.2. It is not clear which
segmentation scale is the most appropriate.

In the case of SoilGrids, the “true” soil landscape pattern
in the test area is not so clear. When comparing SoilGrids
with the USA, a problem is that the detailed gSSURGO
map (NRCS Soils, 2022) has been compiled from multi-
ple survey areas, mapped over many years, and with imper-
fect correlation between areas. This is compiled from tradi-
tional surveys at design scales from 1 : 12 000 to 1 : 24 000
in most areas, but somewhat coarser in less populated areas
in the western USA. The INEGI map in México is a consis-
tent 1 : 250 000 national product (Instituto Nacional de Es-
tadística, Geografía e Informática, 2024), which can show
a minimum delineation of 250 ha. Figure 30 shows a SOC
stock maps of the study area, compiled from the above-
mentioned USA and Mexican sources by the FAO as part
of the Global Soil Organic Carbon Map (GSOCmap) project
(FAO, 2018). Version 1.6.1 of this product was downloaded
from the FAO’s Global Soil Information System (GloSIS)
(FAO, 2024). The inconsistency in values and pattern be-
tween México and the USA is obvious, as are several sharp
boundaries between survey areas in the USA. So it is diffi-
cult to evaluate how well SoilGrids identifies supercells or
segments.

In the SOLUS example, the geomorphology and soil pat-
tern of the test area is well understood and has been mapped

SOIL, 11, 849–881, 2025 https://doi.org/10.5194/soil-11-849-2025



D. G. Rossiter and L. Poggio: Finding soil landscapes in DSM products 875

Figure 25. Representative portion of the SOLUS100 test area. Source: USGS topographic map, Lyons NY quadrangle, 2016, scale 1 : 24 000.
Contour interval 10 ft. (approx. 3.048 m). Projection and marginal coördinates UTM Zone 18N. The centre swamp contains Typic Medis-
aprists; drumlin tops are Glossic Hapludalfs.

in detail. Of the SOLUS layers only soil organic carbon and
coarse fragment volume showed a relation with known pat-
terns in the test area. Aggregation based on multiple proper-
ties completely failed to find landscape units. Segmentation
based on multiple properties failed to find more general units
with consistent internal patterns.

6.2 Evaluating a DSM product

So, how should aggregation and segmentation be used in
an overall evaluation of a DSM product? The common use
of point evaluation statistics by cross-validation or repeated
data splitting is still important, as long as the representa-
tiveness in both geographic and feature space is clear to the
map user. There is a large difference between these statis-
tics applied to legacy observations that were opportunis-
tically located (e.g., farmer-supplied observations), purpo-
sively located (e.g., at “typical” locations for soil series), or
placed by a method meant to cover feature space, e.g., condi-

tioned Latin hypercube sampling (Minasny and McBratney,
2006) or geographic space, e.g., spatial coverage sampling
(Walvoort et al., 2009). But as explained in the Introduction
(Sect. 1), these do not account for spatial patterns.

An obvious evaluation of aggregation and segmentation
can be the expert opinion of the soil geographer familiar with
the mapped area. Notable soil-landscape features should be
identified either by aggregation for relatively homogeneous
areas such as swamps and salt flats, or segmentation for het-
erogeneous areas at the design scale, for example prairie pot-
hole topography (Kiss et al., 2022) at scales where individual
potholes can not be shown. Although subjective, this can be
supported by the geographer’s conceptual model (Hudson,
1992) based on field experience and known landscape ex-
pression. An example is the discussion of the SOLUS map in
the well-understood soil landscape of Case Study 3 (Sect. 5).
All soil surveyors and most field scientists using soil maps
soon recognise that some conventional maps are more reli-
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Figure 26. Clay concentration % of the 0–5 cm layer, gSSURGO (left), SOLUS 100 m (right).

Figure 27. Supercells derived from the clay concentration % of the 0–5 cm layer from SOLUS 100 m overlaid by the polygon boundaries
(in red) from gSSURGO. Compactness parameter 0.2 (left), 2.0 (right). Projection is UTM18N on WGS84, compare with Fig. 25.

able than others, that is, some delineations are more reliably
identified than others. So just matching a conventional map
at the appropriate degree of generalisation is not always ap-
propriate. In Case Study 3 the landscape and soil patterns are
highly distinctive so that the original surveyors could hardly
make mistakes – the only problem could be digitizing from
the unrectified photo base used for the original survey to a

correct topographic base for incorporation in SSURGO. In
other contexts the soil-landscape relation and soil boundaries
may not be so clear and so difficult to represent (Lagacherie
et al., 1996), and in others the conventional map may have
been made by less-skilled surveyors. No general solution can
be given – this is a separate level of expert opinion, i.e., the
reliability of the traditional map.
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Figure 28. Segmentation based on all depth slices of SOLUS-predicted SOC concentration, nominal scale 1 : 400 000, 1000×%. Note the
slightly different colour scales.

Figure 29. Segmentation based on all depth slices of clay concentration, nominal scale 1 : 400 000, %. Note the slightly different colour
scales.
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Figure 30. Global Soil Organic Carbon (GSOC) map (part).
Boundary is between México (south) and the USA (north). Values
are T ha−1 SOC stock. Source and legend: FAO (2024).

The starting point in any evaluation is the intended use(s)
of the map. Then its fitness for use can be assessed accord-
ing to the requirements to support those uses. Pattern-based
evaluation is indicated if be map be used to represent soil ge-
ography, for example, to help map users assess the relation of
soils with the landscape. It is also indicated if the map user
will need to identify landscape components, for example for
ecological zoning of a protected area. The degree of internal
heterogeneity as revealed by the segmentation can be used to
assess connectivity, for example in catchment hydrological
models.

One application where segmentation analysis can be used
is identifying areas similar in their internal spatial pattern to
a known area where the pattern has been characterized. This
has been applied to land cover (Nowosad, 2018) but can ap-
ply equally well to soil patterns. For example, in every re-
gion there are areas with high sampling density and well-
characterized soils, and others with less information. Once
the segments are established over the whole area, specific
segments in the high-density area can be matched to those
in the low-density area, where the soil pattern is expected to
be similar. This is the “Homosoil” concept (Nenkam et al.,
2022) applied to areas. The clustering of segments in the
BIS-4D (Sect. 3) and SoilGrids (Sect. 4) case studies shows
one way to do this. The Jensen-Shannon distance from a tar-
get segment can also be used to identify the most similar seg-
ments.

7 Conclusions

The methods presented in this paper are part of an effort to
evaluate DSM products based on how well they represent the
soil landscape. The approach taken here complements pat-
tern analysis of the DSM product, which characterises the
map without attempting aggregation or segmentation, as in
Rossiter et al. (2022).

Both the aggregation and segmentation approaches were
able to allow the DSM product “speak for itself”, with the
assistance of the analyst’s choices of parameters. Individ-
ual predictions in pixels were combined into possible soil-
landscape elements, which could be evaluated statistically
and by expert judgment. Both of these approaches require the
intervention of the analyst to select scales and parameters, of-
ten with large differences in resulting patterns. This has the
advantage that the analyst can match desired scales of land-
scape analysis, and indeed can perform a multi-resolution
evaluation. The analysis of the resulting maps is a signifi-
cant addition to the commonly-used “point”-based evalua-
tion statistics, which (1) do not evaluate the full map, (2) even
at point support, do not take into account the spatial relation
between evaluation points. We hope that this will stimulate
digital soil mappers to evaluate their own products in this
light. This should lead to clearer communication with DSM
users, so that digital soil maps become more widely accepted
and properly used.

Code and data availability. The GeoPAT modules are available
at its GitHub repository (https://github.com/Nowosad/geopat2,
Jasiewicz et al., 2015). The superpixels R package is
available at CRAN (https://cran.r-project.org/web/packages/
supercells/index.html, last access: 11 October 2025) and
must be installed from within the R environment. The anal-
ysis code for this paper is available in a GitLab repository
(https://git.wur.nl/isric/scientific-publications/Rossiter-2025-Soil_
landscapes_from_DSM, last access: 13 October 2025;
https://doi.org/10.17027/F6VF-9R15, Rossiter and Poggio,
2025). The datasets used in case studies can be obtained from the
websites referenced in the text. Please refer to Helfenstein et al.
(2024) for case study 1; ISRIC-World Soil Information (2024b) for
case study 2; or Nauman (2024) for case study 3.
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