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Abstract. Simulation models are potentially useful tools to test our understanding of the processes involved
in the turnover of soil organic carbon (SOC) and to evaluate the role of management practices in maintaining
stocks of SOC. We describe here a simple model of SOC turnover at the soil profile scale that accounts for two
key processes determining SOC persistence (i.e. microbial energy limitation and physical protection due to soil
aggregation). We tested the model and evaluated the identifiability of key parameters using topsoil SOC contents
measured in three treatments with contrasting organic matter inputs (i.e. fallow, mineral fertilized and cropped,
with and without straw addition) in a long-term field trial. The estimated total input of organic matter (OM) in the
treatment with straw added was roughly three times that of the treatment without straw addition, but only 12 % of
the additional OM input remained in the soil after 54 years. By taking microbial energy limitation and enhanced
physical protection of root residues into account, the model could explain the differences in C persistence among
the three treatments, whilst also accurately matching the time-courses of SOC contents using the same set of
model parameters. Models that do not explicitly consider microbial energy limitation and physical protection
would need to adjust their parameter values (either decomposition rate constants or the retention coefficient) to
match this data.

We also performed a sensitivity analysis to identify the most influential parameters in the model determining
soil profile stocks of OM at steady-state. Input distributions for soil and crop parameters in the model were de-
fined for the agricultural production region in east-central Sweden that includes Uppsala. This analysis showed
that model parameters affecting SOC decomposition rates, including the rate constant for microbial-processed
SOC and the parameters regulating physical protection and microbial energy limitation, are more sensitive than
parameters determining OM inputs. The development of pedotransfer approaches to estimate SOC decompo-
sition rates from soil properties would therefore support predictive applications of the model at larger spatial
scales.

1 Introduction

Adopting soil and crop management practices that increase
stocks of soil organic carbon (SOC) is one promising way
to mitigate climate change, whilst simultaneously improving
soil health (Paustian et al., 2016; Baveye et al., 2020). In con-
junction with long-term field experiments, simulation models
are useful tools for testing our understanding of the processes

involved in the turnover of SOC and for evaluating the poten-
tial of management practices to enhance SOC sequestration.
Most model applications to date have focused on cultivated
topsoil, which is clearly of major importance with respect to
the effects of soil management on SOC and soil health. How-
ever, subsoils contain a large proportion of the total stock of
SOC (Batjes, 1996; Jobbágy and Jackson, 2000; Poeplau et
al., 2020) and residence times are also much longer (Rumpel
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and Kögel-Knabner, 2011; Sierra et al., 2024; Button et al.,
2022). This may indicate a significant potential for long-term
C sequestration of root-derived OM in subsoils, which could
be of substantial benefit in mitigating climate change.

Several detailed mechanistic models have been developed
that describe a wide range of processes affecting C stocks at
the scale of the entire soil profile, including soil water flow,
transport of dissolved organic carbon by advection-diffusion
and bioturbation, as well as descriptions of SOC decomposi-
tion explicitly accounting for microbial processes (e.g. Izaur-
ralde et al., 2006; Braakhekke et al., 2011; Riley et al., 2014;
Ahrens et al., 2015; Camino-Serrano et al., 2018; Hicks Pries
et al., 2018; Keyvanshokouhi et al., 2019; Yu et al., 2020).
Such mechanistic models are useful tools for improving pro-
cess understanding (Smith et al., 2018; Derrien et al., 2023),
but parameter uncertainty and the ever-present likelihood of
equifinality means that predictive model applications may
be problematic (Braakhekke et al., 2013). Simpler empiri-
cal (phenomenological) models of SOC turnover and storage
may have an advantage in this respect because they require
fewer parameters (Derrien et al, 2023).

Although simple models are in principle well suited to
policy and management applications, their validation status
is generally poor: many have been extensively calibrated
against field observations, but their reliability in extrapola-
tion (i.e. prediction of independent data) has not yet been
convincingly demonstrated (Garsia et al., 2023; Le Noë et
al., 2023). This is because these models have often been
tested against limited datasets (i.e. observations of topsoil
C dynamics at a single site and treatment) which increases
the likelihood of equifinality despite the small number of
parameters (e.g. Juston et al., 2010; Luo et al., 2017). This
may be overcome by simultaneous calibration of the model
against data for two or more contrasting treatments, for ex-
ample with respect to the type and quantity of organic mat-
ter inputs (e.g. Meurer et al., 2020) or by multi-site calibra-
tion at larger scales using data from long-term field trials at
locations with contrasting soils and management practices
(e.g. Juston et al., 2010; Dechow et al., 2019). Testing model
predictions for entire soil profiles remains however difficult
and is therefore rarely done, because fewer measurements
are made in subsoils and the turnover of organic C in sub-
soil is very slow, so datasets will rarely be long enough to
detect any changes (Balesdent et al., 2018). Additional data
sources may also help to alleviate problems arising from
equifinality. One possibility is to make use of 14C concen-
trations as a measure of SOC age (e.g. Braakhekke et al.,
2014; Ahrens et al., 2015; Sierra et al., 2018) or concentra-
tions of natural stable isotopes of C (Balesdent and Mariotti,
1987), their ratio 12C / 13C in C3–C4 vegetation chronose-
quences (Schiedung et al., 2017; Balesdent et al., 2018) or
labelled material (Sanaullah et al., 2011). If such data is miss-
ing, an alternative approach to model validation is to compare
model predictions against spatial (soil survey) datasets either
at catchment, regional or national scales. This has often been

done for the topsoil (e.g. Sleutel et al., 2006; Yagasaki and
Shirato, 2014), but to our knowledge there are no examples
of this approach in the published literature dealing with total
stocks of organic C in the profile.

Ideally, a model that is intended for predictive manage-
ment applications at the soil profile scale should combine the
advantages of simplicity with descriptions that adequately
capture or mimic the most important processes determin-
ing SOC stocks (Campbell and Paustian, 2015). In this re-
spect, using a more complex process-oriented model, Sierra
et al. (2024) recently concluded that DOC transport and bio-
turbation are generally only of limited importance for sub-
soil SOC stocks, which are instead largely determined by
the balance between root-derived inputs and decomposition
rates. In turn, experimental evidence suggests that decom-
position rates of SOC are affected mostly by bioavailabil-
ity (i.e. soil properties controlling adsorption; Mathieu et al.,
2015), physical protection (e.g. Killham et al., 1993; Strong
et al., 2004; Salomé et al., 2010) and the amount of SOC as it
provides energy for microbial biomass growth, maintenance
and activity (e.g. Fontaine et al., 2007; Don et al., 2013; Wut-
zler and Reichstein, 2013). We are not aware of any relatively
parsimonious (or minimalist) model that has been shown to
capture the effects of these key processes on SOC stocks at
the scale of an entire soil profile.

The overall aim of this study is to demonstrate the utility of
a simple soil C turnover model that is specifically designed to
fill this gap by accounting for the nexus of soil management,
soil structure and microbial activity that critically determines
C mineralization and stabilization at the scale of a soil pro-
file. The model structure is based on ICBM (Introductory
Carbon Balance Model; Andrén and Kätterer, 1997), which
contains two C pools (young particulate and old microbial
processed SOC). This simple model based on first-order ki-
netics was further developed by Meurer et al. (2020) to ac-
count for the interactions of soil organic matter (SOM) with
soil physical properties to enable simulation of physical pro-
tection due to soil aggregation. More recently, Coucheney et
al. (2024) further developed the model to account for the ef-
fects of SOC stocks on decomposition rates due to microbial
energy limitation (i.e. positive and negative priming) follow-
ing an approach originally proposed by Wutzler and Reich-
stein (2013). Compared with the original ICBM model (An-
drén and Kätterer, 1997), this new model only requires two
additional parameters, one to account for physical protection
and one for microbial energy limitation.

Coucheney et al. (2024) introduced this simple model of
SOC turnover into the new soil-crop model USSF (Uppsala
model of Soil Structure and Function; Jarvis et al., 2024)
and used it to evaluate the potential of winter wheat ideo-
types with improved root system characteristics to enhance
SOC stocks in a structured clay soil in Uppsala. In doing so,
Coucheney et al. (2024) parameterized the SOC model from
literature information, as the available site data was thought
to be insufficient to unequivocally identify the model param-
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eters. Here, we first describe the SOC model. Secondly, we
present a test of model predictions and an analysis of parame-
ter identifiability using organic C concentrations measured in
the topsoil of three treatments with strongly contrasting OM
inputs in a long-term field experiment in Uppsala. Finally,
we perform a Monte Carlo sensitivity analysis to identify the
most influential parameters in the model determining esti-
mates of total stocks of SOC in the soil profile at steady-state.
Input distributions for soil and crop parameters were defined
for an agricultural production area in east-central Sweden
that encompasses Uppsala. Geo-referenced data that would
enable a spatially explicit test of the model for this region
was not available. Instead, aggregated regional-scale soil sur-
vey data was used as a qualitative “reality-check”, assuming
that profiles of SOC are approximately at steady-state.

2 Materials and methods

In the following, we first describe a new parsimonious model
of OM turnover applicable to a single topsoil horizon, which
we test using data from three contrasting cropping and fer-
tilization treatments in the Ultuna Long-Term Soil Organic
Matter Experiment. We then derive a steady-state solution of
the model and also show how it can be extended to describe
OM storage and turnover in a complete soil profile. Finally,
these profile-scale steady-state solutions are used to support
a regional-scale sensitivity analysis and reality-check.

2.1 Model description

2.1.1 SOM turnover and storage in a single soil horizon

A dual-porosity model describing the two-way interac-
tions between soil physical properties and SOM stocks and
turnover was described by Meurer et al. (2020). In this
model, SOM contents influence the total porosity and its par-
titioning between two pore regions in the soil (i.e. mesopores
and micropores) using a simple model that describes how
SOM affects aggregation. In turn, the pore size distribution
determines the partitioning of root-derived inputs of OM be-
tween the two pore regions. This means that compared with a
sandy soil, a larger proportion of the root OM input will enter
the micropore region in a clay soil, as it predominantly con-
sists of smaller pores. The soil pore size distribution also reg-
ulates decomposition rates with slower decomposition rates
of OM stored in microporous regions of the soil. Compared
with sandy soils, clay soils therefore have a greater potential
for physical protection of soil C. Coucheney et al. (2024) in-
troduced a description of the effects of microbial energy lim-
itation according to the “LimUptake” variant of the model
suite described by Wutzler and Reichstein (2013) into the
SOM model described by Meurer et al. (2020). They also
simplified the description of the transfer of SOM between the
two pore regions by tillage, making the assumption that there
is always a net transfer of SOM from micropore to mesopore

regions. This should give more realistic simulations of the
effects of tillage on SOM and also has the added benefit of
allowing a straightforward solution of the model for steady-
state conditions.

The model tracks four pools of SOM, two pools of young
OM (MY(mic)) andMY(mes) and two pools of older microbial-
processed SOM (MO(mic) and MO(mes)) (see Fig. 1). For both
types, one part is stored in microporous regions of the soil
(subscript “mic”) where it is partially protected from decom-
position, while the remainder is stored in regions of the soil
in contact with larger mesopores (subscript “mes”), which
facilitates faster decomposition (see Fig. 1). Changes in the
mass of SOM in the four pools (kg m−2) in a horizon are
given by:

dMY(mes)

dt
= Ia+ Ir

(
1− fr,mic

)
− kYku(mes)MY(mes)

+ ktillMY(mic) (1)
dMO(mes)

dt
=
(
εkYku(mes)MY(mes)

)
−
(
(1− ε)kOku(mes)MO(mes)

)
+ ktillMO(mic) (2)

dMY(mic)

dt
= Irfr,mic− kYku(mic)FpMY(mic)− ktillMY(mic) (3)

dMO(mic)

dt
=
(
εkYku(mic)FpMY(mic)

)
−
(
(1− ε)kOku(mic)FpMO(mic)

)
− ktillMO(mic) (4)

where Ia and Ir (kg m−2 yr−1) are the supply of OM from
above-ground residues and roots respectively, fr,mic (–) is the
proportion of the root-derived OM added to the micropore re-
gion, ε (–) is the SOM retention coefficient, kY and kO (yr−1)
are reference rate constants for the decomposition of young
and old SOM, ktill (yr−1) is a rate constant regulating the
transfer of SOM between pore regions by tillage, Fp (–) is a
factor varying from zero to unity that reduces OM decompo-
sition rates in the micropore region to account for physical
protection and ku(mes) and ku(mic) (–) are microbial energy
limitation factors given by the simple model described by
Wutzler and Reichstein (2013), which they derived from a
simplified steady-state solution of a microbial growth model:

ku(mes) =max

0;

1−
Aa

ε
(
kY

(
MY(mes)
1z

)
+ ko

(
MO(mes)
1z

))
 (5)

ku(mic) =max

0;

1−
Aa

εFp

(
kY

(
MY(mic)
1z

)
+ ko

(
MO(mic)
1z

))
 (6)

where Aa (kg m−3 yr−1) is a composite microbial parameter
that represents a minimum C uptake flux that can support
an active microbial biomass and 1z is the horizon thick-
ness (m). It can be seen from Eqs. (1) and (3) that ploughed-
down above-ground crop residues are presumed to lack phys-
ical protection, being incorporated into the young OM pool
in contact with the larger mesopores. In contrast, some roots
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Figure 1. Schematic diagram of the organic matter (OM) pools (M=mass, Y= young; O= old) and fluxes and the main external factors
affecting OM inputs to the soil (for definitions see Eqs. 1 to 6, 10 to 13 and 20 to 24). The grey boxes with dashed lines indicate tilled and
subsoil horizons in the soil profile, both partitioned between two pore regions (micropores and mesopores). This partitioning is estimated
from the soil clay content using pedotransfer functions (Eqs. 10 to 13). OM located in the micropores is partially physically protected from
decomposition (by a factor Fp see Eqs. 3 and 4). In tilled horizons, OM from the above-ground crop residues is added only to the mesopore
region and a fraction of OM located in the micropores is transferred by tillage. Root-derived OM is added to both pore regions as a function
of pore size distribution and soil strength through effects on root distribution in the soil profile (see Eqs. 21–24). The sizes of the boxes and
arrows illustrate that OM contents and fluxes are generally smaller in subsoil as a result of lower OM inputs, which, in turn, leads to greater
energy limitation (Eqs. 5 and 6).

will grow through microporous soil regions, thereby supply-
ing OM to the young pool on root death, as well as by root
exudation.

Soil bulk density, γb (kg m−3) and OM content
fsom (kg kg−1) are calculated from the stocks of OM as inter-
linked variables (Meurer et al., 2020):

γb =
Mtot+ (1zminγm (1−φmin))

1z
(7)

fsom =
Mtot

1zγb
(8)

where Mtot (kg m−2) is the total OM stock (=MY(mes)+

MO(mes)+MY(mic)+MO(mic)), γm (kg m−3) is the density of
mineral matter in soil and ϕmin is the textural porosity in
soil (m3 m−3). The horizon thickness in Eqs. (5)–(8) varies
due to soil aggregation (Meurer et al., 2020):

1z=1zmin+

{(
1+ fagg

)(Mtot

γo

)}
(9)
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where fagg (m3 m−3) is the aggregation factor, γo (kg m−3)
is the density of SOM and 1zmin (m) is the minimum layer
thickness in a soil without SOM and aggregation porosity.

Meurer et al. (2020) equated fr,mic in Eqs. (1) and (3)
with the micropore fraction of the soil pore space, which var-
ied with changes in OM stocks in each pore region. Here,
in order to derive a solution for OM stocks at steady-state
(see “Steady-state solution for SOM stocks”), the fraction of
the root-derived OM added to the micropore region (fr,mic
in Eqs. 1 and 3) is assumed to be a constant and is calcu-
lated from a micropore fraction of the pore space fmic (–)
estimated from the soil clay content, weighted by a dimen-
sionless constant w (0≤ w ≤ 1) to account for the effects of
soil strength on the distribution of roots between the two pore
regions. Using a power law function for the pore size distri-
bution gives:

fr,mic = wfmic = w

(
ψae

ψmic

)λ
(10)

where ψae and ψmic are the air-entry pressure head (m) and
the pressure head (m) equivalent to the largest micropore in
the soil respectively and λ (–) is the pore size distribution in-
dex (Brooks and Corey, 1964), which is here estimated from
soil clay contentfclay (kg kg−1) using the pedotransfer func-
tions for field capacity θfc and wilting point θw (m3 m−3) de-
rived from a database of water retention curves for Swedish
agricultural soils by Kätterer et al. (2006):

λ=
log

(
θw
θfc

)
log

(
0.5
150

) (11)

θfc = 0.27+ 0.325fclay (12)
θw = 0.004+ 0.5fclay. (13)

Thus, in this simpler version of the model described by
Meurer et al. (2020), changes in SOM contents affect the
porosity and bulk density but not the pore size distribution.

2.1.2 Steady-state solution for SOM stocks

From Eqs. (1)–(4), steady-state SOM stocks in the four pools
are given as:

MY(mic) =

(
Irfr,mic{

kYFpku,mic
}
+ ktill

)
(14)

MY(mes) =

(
Ia+ Ir

(
1− fr,mic

)
+
{
ktillMY(mic)

}
kYku,mes

)
(15)

MO(mic) =

(
εkYku,micFpMY(mic){

(1− ε)kOFpku,mic
}
+ ktill

)
(16)

MO(mes) =

({
εkYku,mesMY(mes)

}
+ ktillMO,mic

(1− ε)kOku,mes

)
. (17)

Equations (14)–(17) show that the steady-state stocks de-
pend on ku, while ku, in turn, depends on the stocks (Eqs. 5
and 6). An iterative procedure is first used to derive a
value of ku(mic) at steady-state that simultaneously satisfies
Eqs. (6), (14) and (16). The steady-state stocks in the meso-
pore region (Eqs. 15 and 17) depend on the value of ku,mes at
steady-state. This can now be calculated directly by substi-
tuting Eqs. (15) and (17) into Eq. (5):

ku,mes =
1

1+

 Aa1z

ε

(
i∗+

(
εi∗+ktillMO(mic)

1−ε

))


(18)

where i∗ is the input of OM to the mesopore region given by:

i∗ = Ia+ Ir
(
1− fr,mic

)
+ ktillMY(mic). (19)

2.1.3 Application of the model to a soil profile

The model can be applied to a soil profile consisting of two or
more soil horizons by expressing ktill, Ia, Ir, and w as a func-
tion of soil depth, keeping all the other parameters constant.
For the sake of simplicity, the textural porosity ϕmin (Eq. 7)
is assumed to take a constant value here, even though it could
vary with depth in the soil. Tillage is here assumed to affect
SOM turnover only in the uppermost horizon, with ktill set
to zero for all other horizons. Above-ground crop residues Ia
are given by:

Ia = Y

(
1

HI
− 1

)
finc (20)

where Y is the yield (kg m−2), HI (–) is the harvest index (the
ratio of yield to total above-ground biomass) and finc is the
proportion of the above-ground residues incorporated into
soil. The partitioning of Ia among the soil horizons can be de-
fined by the user, but should reflect tillage systems and depths
of cultivation. The total input of root-derived OM, Ir is given
by:

Ir =
Yfbg

HI
(
1− fbg

) (21)

where fbg is the proportion of net primary production that
is allocated below-ground, including both root growth and
exudates. Root-derived OM is added to the soil horizons in
the profile according to a two-parameter logistic function,
which represents the distribution of roots with depth in the
soil (e.g. Schenk and Jackson, 2002; Fan et al., 2016):

P =
1

1+
(

z
D50

)c (22)

where P is the fraction of the total root biomass found above
a depth z, representing the lower boundary of the horizon in
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question, c is a root distribution parameter and D50 is the
depth above which 50 % of the root biomass is recovered,
which is given by:

D50 =
D95(

1
0.95 − 1

) 1
c

(23)

whereD95 is the depth (m) above which 95 % of the total root
biomass is recovered. With this function, a small fraction of
the root biomass is found below the depth of the soil profile.
This additional fraction of the root biomass is added to the
upper two horizons in equal amounts.

Finally, the weighting function to account for the effects
of soil strength on the distribution of roots between the two
pore regions is given by:

w = EXP(−ws (z− z1)) (24)

where the constantws (m−1) reflects the effects of increasing
soil strength with depth on the distribution of roots between
soil micropore and mesopore regions and z1 is the depth to
the lower boundary of the uppermost soil horizon. It can be
seen from Eq. (24) that w = 1 for the uppermost horizon, so
that the root-derived OM in this layer is partitioned between
the pore regions directly proportional to their estimated re-
spective partial volumes.

2.2 Model applications

2.2.1 Long-term transient simulations of SOC under
contrasting cropping and fertilization

We performed a test of the model described by Eqs. (1)–
(13) using data from the Ultuna Long-Term Soil Organic
Matter Experiment located at Uppsala, east-central Sweden
(59.8° N, 17.7° E; Fig. 2; Pold et al., 2025). The mean annual
temperature at Ultuna is 7 °C and the mean annual precipita-
tion is 570 mm. The texture in the uppermost 20 cm of soil is
clay loam (37 % clay, 41 % silt and 22 % sand). In this study,
we make use of SOC contents measured in the topsoil (0–
20 cm depth) from the start of the trial in 1956 until 2010
in three treatments with contrasting inputs of organic matter:
an uncropped fallow treatment (“Fallow”) and two cropped
treatments (“N fertilized” and “N fertilized+ straw”), both
of which are supplied with Ca(NO3)2 every year at the time
of sowing at a rate of 80 kg N ha−1 yr−1. Most (ca. 95 %) of
the above-ground crop residues are removed at harvest in au-
tumn and straw is applied biennially to the treatment “N fer-
tilized+ straw” after harvest at an equivalent annual rate of
4.2 t ha−1. Maize (Zea mays) has been grown on the cropped
plots since 2000. Before 2000, the crop rotation included bar-
ley (Hordeum vulgare), oats (Avena sativa), beets (Beta vul-
garis) (prior to 1967) and rape (Brassica napus). All the plots
are dug by hand after harvest each year to a depth of 20 cm
to simulate ploughing as the plots are too small (4 m2) to be
managed in the same way as a farmer’s field. We refer readers

to Persson and Kirchmann (1994) and Kätterer et al. (2011)
for more details of the design of the field experiment.

Inputs of OM from above-ground crop residues and root-
derived OM were estimated following Kätterer et al. (2011),
who made use of the allocation functions dependent on crop
yields derived by Bolinder et al. (2007), together with a
Michaelis-Menten function to estimate the proportion of the
root-derived OM that was presumed to have been input to the
topsoil (0–20 cm). Here, we simplified this method by using
average OM inputs in each treatment for the experimental pe-
riod (1956–2010) based on annual values calculated for the
different crops in the rotation.

The model was simultaneously calibrated to the measure-
ments of total SOC from the three treatments using the Gen-
eralized Likelihood Uncertainty Estimation (GLUE) method
(Beven, 2006; Beven and Binley, 2014; Juston et al., 2010).
This is because we wanted to critically test the model to see if
it was possible to obtain acceptable parameterizations com-
mon to all three of the treatments. Inspection of the model
equations led us to expect to encounter significant equifinal-
ity. Therefore, only six of the fifteen parameters were in-
cluded in the GLUE analysis, with their prior uncertainty
ranges shown in Table 1. The OM supply prior to the start of
the experiment and the fraction of this OM supplied as straw,
were included in the calibration process to help initialize
the SOM pools during a common 5000-year spin-up period.
The four other parameters, which were considered difficult
to identify “a priori” from experimentation, but which were
expected to be sensitive and therefore potentially identifiable
by calibration, were treated as uncertain (Table 1). We ran
12 000 simulations using Latin Hypercube Sampling to sam-
ple uniform distributions between the minimum and maxi-
mum values for the six uncertain parameters (Table 1). The
remaining nine parameters were set to fixed values (Table 2)
as they could be estimated from measurements (e.g. fclay,
fagg, Fp) or they were not expected to be sensitive (e.g. kY,
Andrén and Kätterer, 1997; Juston et al., 2010; Meurer et
al., 2020), or both (e.g. ψae, ψmic, ϕmin, γo, γm). These fixed
parameters included the soil physical properties, since an
analysis of soil structure dynamics was not the main fo-
cus of this modelling study, which employs a slightly sim-
plified description of the interactions between soil aggre-
gation and SOM. It can be noted that the final bulk den-
sities for the 30 best simulations (see below) derived using
the fixed parameter values shown in Table 2 varied between
1.2 and 1.3 g cm−3 (with “N fertilized+ straw”< “N fertil-
ized”< “Fallow”). This matched reasonably well the magni-
tude and order of the measured values reported for the three
treatments in Kätterer et al. (2011), which were 1.43, 1.28
and 1.21 g cm−3 respectively.
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Table 1. Six model parameters selected for the calibration to the Ultuna Long-Term Soil Organic Matter Experiment and their initial param-
eter uncertainty ranges.

Parameter Symbol Units Prior
uncertainty

ranges

Total OM input during spin-up Ia+ Ir kg m−2 yr−1 0.25–0.45
Straw fraction of OM input during spin-up Ia/(Ia+ Ir) – 0.65–0.85
Rate constant for OM transfer by tillage between pore regions ktill y−1 0.00–0.01
Reference decomposition rate constant for old OM ko y−1 0.06–0.10
OM retention coefficient ε – 0.20–0.45
Microbial energy limitation factor Aa kg m−3 yr−1 0.10–0.30

Table 2. Nine model parameters fixed at constant values during the calibration based on field measurements at Ultuna or literature data.

Parameter Symbol Units Value Source

Clay content fclay kg kg−1 0.36 Persson and Kirchmann (1994),
Pold et al. (2025)

Density of organic matter γo kg m−3 1200 Meurer et al. (2020),
Coucheney et al. (2024)

Density of mineral matter γm kg m−3 2700 Meurer et al. (2020),
Coucheney et al. (2024)

Textural porosity ϕmin m3 m−3 0.5 Coucheney et al. (2024)

Aggregation factor fagg m3 m−3 3 Meurer et al. (2020)

Physical protection factor Fp – 0.2 Kravchenko et al. (2015)

Air-entry pressure head ψae m −0.2 Coucheney et al. (2024)

Pressure head equivalent to the largest micropore in soil ψmic m −6.0 Killham et al. (1993),
Strong et al. (2004),
Ruamps et al. (2011)

Reference decomposition rate constant for young OM ky y−1 0.8 Andrén and Kätterer (1997)

The model efficiency EF was used as the likelihood func-
tion in GLUE:

EF= 1−

n∑
i=1

(Oi −Pi)2

n∑
i=1

(
Oi −O

)2 (25)

where O and P are observed and predicted values, O is the
mean of the observations and n is the number of observa-
tions. The maximum value of EF is one, when predictions
and observations are identical, while a negative value implies
a poor model, since it means that taking the average of the
observations would give a better prediction. For each simu-
lation, individual model efficiencies were calculated for each
treatment and the mean EF value for the three treatments was
used as a metric to identify acceptable parameters sets. This
was done to obtain a robust parameterization by selecting pa-

rameter sets that simultaneously fitted all three treatments
well. The number of acceptable parameter sets was deter-
mined such that the range of variation of their predictions
approximately covered the variations observed in the mea-
surements. With this criterion, 30 of the 12 000 parameter
sets were identified as acceptable. Note that this low accep-
tance rate is a consequence of the inefficient sampling inher-
ent to the GLUE method and says nothing about the quality
of the model.

2.2.2 Steady-state calculations: sensitivity analysis and
reality-check

We performed a Monte Carlo sensitivity and uncertainty
analysis to assess the relative importance of the model pa-
rameters for predictions of the steady-state stocks of SOM in
the soil profile (Eqs. 7–24; Table 3). The analysis was based,
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Figure 2. Map of Sweden (in white) showing the location of the
Ultuna Long-term Soil Organic Matter Experiment (Uppsala, Swe-
den) and the extent of the production area 4 (shaded area in grey).
Drawn by Anna Lindahl, SLU, from Esri, TomTom, Garmin, FAO,
NOAA, and USGS

to the extent possible, on data and information available for
the Ultuna field site as well as soil survey and cropping data
(e.g. crop yields, soil clay content) for the agricultural pro-
duction area number 4 in east-central Sweden (i.e. the region
in which Ultuna is located; Fig. 2). Literature information
was used to determine parameter distributions in the absence
of data at the local or regional scale (Table 3). Of all the
model parameters, only ψae was fixed at a constant value, as
there is no “a priori” physical reason to expect that its value
should vary among different soils. We assumed normal dis-
tributions when the data was considered sufficient to support
such a distribution. Uniform distributions were used other-
wise (Table 3). One thousand parameter sets were generated
from these distributions by random sampling.

Calculations were performed for a soil profile 120 cm in
depth, divided into four soil horizons (0–20, 20–40, 40–
60 and 60–120 cm). We added 80 % of the above-ground
residues Ia (Eq. 20) to the uppermost horizon in the soil pro-
file and the remaining 20 % to the horizon below. For all
1000 parameter sets, we calculated the SOM stock in each
horizon and in the whole soil profile at steady-state. For each
soil horizon, we also calculated the steady-state bulk den-
sity and SOM contents as well as the mean residence time of
SOM as the steady-state SOM stock divided by the input/out-
put flux.

We used a multiple linear regression model to characterize
variations in the steady-state SOM stocks in the profile (y),
such that the normalized coefficients (β1, β2 . . . βn) can be
used as a metric of sensitivity to variation in the parameters
(x1, x2 . . . xn) (Saltelli and Annoni, 2010):

y = β0+β1x1+β2x2+ . . .βnxn. (26)

Aggregated data for SOC contents measured at three depth
intervals (0–20, 20–40 and 40–60 cm depth) for soils in pro-
duction area number 4 (Fig. 2; n= 611, 100 and 100 respec-
tively) were extracted from the national soil and crop inven-
tory carried out from 2001 to 2007 (Eriksson et al., 2010)
and used as a qualitative “reality-check” for the model cal-
culations. Note that, as a consequence of simulating links
to soil physical properties, the model calculates SOM con-
tents, whereas SOC was measured. In converting from one to
the other, we assumed that organic C constituted 50 % of the
SOM. Likewise, calculated bulk densities at zero to 20 cm
and 40 to 60 cm depth were compared with data available
for soil profiles (n= 54) located in production area 4 (Klöf-
fel et al., 2024). The model parameters required to convert
calculated SOM stocks to estimates of SOM contents using
Eqs. (7)–(9) were set to the fixed values used in the model
calibration (Table 2), with the exception of the textural poros-
ity which was reduced from 0.5 to 0.4, as the latter value was
considered to be more representative for most soils (Klöffel
et al., 2024). Note that the textural porosity was also assumed
to be constant with depth in the soil.
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Table 3. Parameter input distributions in the sensitivity analysis. In the case of uniform distributions, minimal and maximal values are
shown (Min.; Max.) while in the case of normal distribution the mean and standard deviation are shown (Mean; St. dev.).

Group Parameters (symbol, unit) Distribution Source

Crop growth and residue
inputs

Yield (Y , kg m−2) Normal (0.50;
0.05)

SCB, Statistics Sweden:
https://www.statistikdatabasen.scb.se/pxweb/
en/ssd/START__JO__JO0601/SkordarL2/ (last
access: 24 September 2025)

Harvest index (HI, –) Normal
(0.40; 0.05)

Hay (1995), Kätterer et al. (1997), Coucheney
et al. (2024)

Fraction of net primary
production allocated
belowground (fbg, –)

Normal
(0.200; 0.025)

Bolinder et al. (2007), Kätterer et al. (2011)

Fraction of aboveground crop
residues incorporated (finc, –)

Normal
(0.65; 0.10)

Smerald et al. (2023)

Root depth (D95, m) Uniform
(0.8; 1.2)

Jackson et al. (1996), Kätterer et al. (2011),
Fan et al. (2016)

Root distribution factor (c, –) Uniform
(−1.2; −0.9)

Fan et al. (2016)

Tillage Rate constant for OM transfer
between pore regions (ktill,
yr−1)

Uniform
(0.000; 0.006)

This study

Organic matter turnover Reference decomposition rate
constant for young organic
matter (kY, yr−1)

Uniform
(0.6; 1.0)

Andrén and Kätterer (1997)

Reference decomposition rate
constant for old organic matter
(kO , yr−1)

Uniform
(0.06; 0.10)

This study

OM retention coefficient (ε, –) Uniform
(0.30; 0.35)

This study

Physical protection factor (Fp,
–)

Uniform
(0.1; 0.3)

Kravchenko et al. (2015)

Microbial energy limitation
factor (Aa, kg m−3 yr−1)

Uniform
(0.1; 0.3)

This study

Soil physical properties Clay content (fclay, kg kg−1) Normal
(0.3; 0.1)

Eriksson et al. (2010)

Factor for soil strength effects
on root distribution between
pore regions (ws, m−1)

Uniform
(2; 4)

This study

Pressure head defining the
largest micropore (ψmic, m)

Uniform
(−30; −6)

Killham et al. (1993), Strong et al. (2004),
Ruamps et al. (2011)

3 Results and discussion

3.1 Long-term transient simulations

Figure 3 shows that the model could be calibrated to match
simultaneously the changes in SOC contents measured in the
three treatments at the Ultuna Long-Term Soil Organic Mat-
ter Experiment during the 50 year period, with the spread

of the simulations from the 30 best parameter sets approxi-
mately matching the observed variation in SOC among the
four replicate plots. Table 4 shows simulated SOM balances
for the three treatments. The total input of crop residues in
the “N fertilized+ straw” treatment is roughly three times
that of the “N-fertilized” treatment without straw addition.
The calculated inputs of OM derived from roots were similar
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Figure 3. Comparisons of measured SOC contents (symbols are the means of four replicates and the bars are standard deviations) with the
30 best simulations from the GLUE analysis (the dashed lines indicate ranges).

(Table 4), so that larger inputs of straw accounted for almost
all of the difference in OM inputs between these two treat-
ments. However, according to the simulations, almost 88 %
of the additional OM input in the “N fertilized+ straw” treat-
ment was lost as a consequence of enhanced mineralization,
with only 12 % remaining in the soil. While above-ground
crop residues are thought to be less persistent in soil than
root-derived residues, the relative importance of several po-
tential underlying mechanisms that could explain this finding
is still unclear (e.g. Rasse et al., 2005; Kätterer et al., 2011). It
can be noted here that the model does not consider any differ-
ences in the quality of root- and straw-derived OM. Instead,
the model suggests that the comparatively small difference in
OM stocks at the end of the experiment in the two treatments
in relation to the large difference in OM inputs is a result
of two processes: firstly, straw incorporated in the “N fertil-
ized+ straw” treatment is solely added to the mesopore re-
gion, which does not afford any physical protection. In con-
trast, a certain proportion, fmic, of root-derived OM is added
to the physically-protected micropore region. Secondly, min-
eralization rates in the “N-fertilized” treatment without straw
addition are reduced by microbial energy limitation as a con-
sequence of an overall decrease in OM stocks due to the near
total removal of above-ground crop residues. Taking both
these processes into account (physical protection and micro-
bial energy limitation; see Eqs. 1–6) enabled the model to
reproduce the time-courses of SOC contents in the two treat-
ments with identical parameterizations. Models that do not
consider these processes would need to adjust their parame-
ter values (either decomposition rate constants or the reten-
tion coefficient) to match this data (e.g. Poeplau et al., 2015).

Figure 4 shows that only one of the parameters included
in the calibration procedure (the OM retention coefficient, ε)
was well constrained by the data, with acceptable values ly-
ing within a narrow range (ca. 0.30 to 0.35). In contrast, for
the other five parameters, simulations with large model ef-

Table 4. Simulated mass balances (kg m−2) for SOM for the 55-
year experimental period (1956 to 2010) at the Ultuna Long-Term
Soil Organic Matter Experiment. Values shown for mineralization
are the means and standard deviations (in brackets) for the 30 best
simulations. Values for change of stocks in brackets are the percent-
age changes in relation to the original stock of SOM.

Component Treatment

Fallow N fertilized N fertilized
+ straw

Inputs

– Below-ground residues∗ 0.44 9.85 10.67
– Above-ground residues 0.00 1.82 22.94
– Total crop residue input 0.44 11.67 33.61

Outputs

– Mineralization in soil 3.01 12.53 31.75
(0.18) (0.16) (0.20)

Change of SOM stock −2.57 −0.86 1.86
(−35.1 %) (−11.7 %) (+25.4 %)

∗ estimated using the algorithms presented by Bolinder et al. (2007) and Kätterer et al. (2011).

ficiencies could be found across almost the entire prior un-
certainty ranges (Fig. 4). An inspection of the mathematical
structure of the model suggests that such a high degree of
equifinality should be expected, as many of the key parame-
ters should be strongly correlated (Coucheney et al., 2024).
For the 30 best parameter sets, Fig. 5 demonstrates that this
is indeed the case for the four parameters regulating decom-
position rates in the model (ε, ko, Aa and ktill). These strong
correlations of ko, Aa and ktill with ε mean that, in practice,
all four parameters are well constrained by the calibration.
The acceptable ranges for these four parameters shown in
Fig. 5 were utilized in the sensitivity analysis (Table 3).
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Figure 4. Mean model efficiencies for each parameter set (only simulations with model efficiencies larger than zero are shown) plotted
against the values for the six parameters in the GLUE analysis (refer to Table 1 for parameter definitions and descriptions; OM= organic
matter, AG= above-ground).

3.2 Steady-state calculations

A qualitative comparison with soil survey data for agricul-
tural land in east-central Sweden (production area number 4)
suggests that despite its simplicity the model estimates of
steady-state SOC and bulk density in the soil profile lie
mostly within the range of variation encountered in the re-
gion (Figs. 6 and A1). Nevertheless, quantile-quantile plots
show that the distributions of simulated and measured val-
ues of SOC and bulk density are different; especially at the

tails, due to the much larger spread in the measurements com-
pared with the calculations and especially the occurrence of
a number of outliers with large values of organic carbon con-
tents and small values of bulk density. This is not surpris-
ing because the calculations do not include the effects of all
factors affecting SOC and bulk density. The large values of
SOC content (and small values of bulk density) almost cer-
tainly correspond to locations in the region with wet soils due
to topography (i.e. flood plains, depressions). The model, as
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Figure 5. Inter-relationships among four of the six model parameters included in the calibration procedure (Aa is the microbial energy
limitation factor, ko is the reference rate constant for decomposition of old OM, ε is the OM retention co-efficient and ktill is the rate constant
for OM transfer by tillage between pore regions). Relationships are shown for the 30 best parameter sets identified in the GLUE analysis
(refer to Table 1 for parameter definitions and descriptions).

it is formulated here, does not include the effects of excess
soil moisture on decomposition rates. As a further qualitative
“reality check”, Fig. 7 shows distributions of the mean resi-
dence times of SOM calculated for the four horizons in the
soil profile. Median values (ca. 20 years) and distributions of
residence times estimated for the topsoil are similar to those
estimated by Poeplau et al. (2021) for German agricultural
soils, and they also lie at the high end of the range in the
global analysis reported by Chen et al. (2020) for croplands
(mean= 9.5 years, standard deviation= 6 years, n= 217).
Taken together with Fig. 6, this gives us confidence that the
results of the sensitivity analysis presented in the following
should be reasonably well grounded in reality. As also shown
by Coucheney et al. (2024), the model simulates much longer
mean residence times in subsoil horizons, due to microbial
energy limitation and physical protection, with median val-
ues of ca. 300 years (Fig. 7). These model estimates of mean
OM residence times in the subsoil are also similar to the me-
dian age of soil organic carbon estimated from isotope data
in the global analysis of Balesdent et al. (2018) for tropical
forests and grasslands.

Table 5 shows that the most sensitive parameters in the
model are those determining decomposition rates of SOM,
especially the rate constant for microbial-processed OM, ko,

Table 5. Parameter sensitivity (βi = normalized regression coeffi-
cients, see Eq. 26).

Parameter βi

ko Decomposition rate constant (old OM) −0.833
Fp Physical protection factor −0.695
Aa Microbial energy limitation factor 0.606
HI Harvest index −0.513
Y Crop Yield 0.401
ε OM retention coefficient 0.329
fbg Fraction of NPP allocated below-ground 0.291
ky Decomposition rate constant (young OM) −0.174
fclay Clay content 0.128
finc Fraction of above-ground residues incorporated 0.127
ktill Tillage transfer coefficient −0.045
ws Factor for soil strength effects on root distribution 0.035
D95 Root depth −0.023
ψmic Pressure head defining micropore region −0.015
c Root depth distribution factor −0.009

the parameter regulating microbial energy limitation,Aa, and
the parameter regulating the degree of physical protection of
OM stored in micropores, Fp. The soil clay content, which
together with Fp, determines the extent to which physical
protection is expressed in soils of contrasting texture, is also
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Figure 6. Comparison of the distributions of SOC contents (a–c) and soil bulk density (d, e) measured at three and two depths respectively,
for soil profiles located in east-central Sweden (production area number 4; Eriksson et al., 2010) with distributions calculated in the model
sensitivity analysis. Horizontal lines show median values, the box defines the inter-quartile range, error bars define 10th and 90th percentiles
and solid symbols indicate 5th and 95th percentiles. Note the differences in the y-axis scales for soil organic carbon contents.

Figure 7. Distributions of mean residence times for SOM calcu-
lated in the sensitivity analysis for four depths in the soil profiles
of production area 4 in east-central Sweden. Horizontal lines show
median values, the box defines the inter-quartile range, error bars
define 10th and 90th percentiles and solid symbols indicate 5th and
95th percentiles.

a relatively sensitive model parameter (Table 5). Along with
the OM retention coefficient, ε, the three parameters deter-
mining inputs of above-ground crop residues (i.e. the frac-
tion incorporated, finc, and crop yields and harvest index)
also exert a strong control on SOM stocks in the soil pro-
file (Table 5). The results of the sensitivity analysis also il-
lustrate the importance of below-ground production for soil
profile C stocks calculated by the model (parameter fbg, frac-

tion of NPP allocated below-ground; Table 5), reflecting the
assumptions in the model concerning the greater persistence
of root-derived OM discussed earlier. An increase of 25 % in
the fraction of NPP allocated to roots, fbg, increases steady-
state SOM stocks by ca. 8 %. Transient simulations run with
the USSF model for winter wheat grown on Ultuna clay soil
presented by Coucheney et al. (2024) illustrate what might
be achievable in a shorter 30-year time perspective in the
context of climate change mitigation: for the same 25 % in-
crease in below-ground C allocation, the USSF model simu-
lated increases in C stocks of ca. 1.4 %. In contrast to below-
ground production, the sensitivity analysis suggests that root
depth and distribution would have little impact on soil pro-
file stocks of OM (Table 5). However, in comparison with
soil-crop models such as USSF, the limitations of the sim-
pler model described here should be borne in mind, in par-
ticular the lack of any feedback between root system devel-
opment and crop growth, and thus residue production. In re-
ality, root depth and distribution may play a larger role for
soil C stocks. Thus, the transient simulations performed with
the full USSF soil-crop model for winter wheat on Ultuna
clay soil by Coucheney et al. (2024) suggested that deeper
rooting would increase water uptake and crop growth in dry
summers, leading to 3 %–5 % increases in SOM stocks in a
30-year perspective. Table 5 suggests that tillage is one of the
least sensitive factors affecting SOM stocks at steady-state:
doubling the tillage intensity parameter in the model, ktill,
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only reduces SOM stocks by 4 % to 5 %. It must be admitted,
however, that the simple description of tillage effects in the
model is yet to be rigorously and systematically tested. Nev-
ertheless, in a meta-analysis of long-term experiments in bo-
real/temperate climates, Haddaway et al. (2017) and Meurer
et al. (2018) found larger SOC stocks under no-till compared
with conventional tillage in the topsoil, but no significant dif-
ferences in total SOC stocks in these two tillage systems in
soil profiles to 60 cm depth.

4 Conclusions

We presented here a novel parsimonious or “minimalist”
model that simulates the emergent effects of soil texture and
soil structure on C stocks and turnover rates in soil profiles
by mimicking two of the key processes involved in C stabi-
lization (i.e. physical protection and microbial energy lim-
itation). Parameters controlling these processes were also
found to be among the most sensitive in the model. However,
the decomposition rate constant for old microbial-processed
OM, ko was the most sensitive parameter in the model. Al-
though ko should be considered as a lumped parameter re-
flecting the influence of various processes, the available ex-
perimental evidence suggests that the strength of adsorption
and OM-mineral interactions controlling the bioavailability
of the substrate (i.e. chemical protection) should be the most
important factor underlying its variation (e.g. Lehmann and
Kleber, 2015; Mathieu et al., 2015; Doetterl et al., 2015). The
development of pedotransfer approaches (Van Looy et al.,
2017) to estimate ko using soil properties such as clay content
and clay mineralogy, pH and Al and Fe oxides (e.g. Mathieu
et al., 2015; Rasmussen et al., 2018; Fukumasu et al., 2021)
would therefore be helpful in supporting predictive model
applications at larger scales.

The comparisons of model simulations with local- and
regional-scale data confirm that it shows promise. Despite
equifinality, the parameters regulating decomposition in the
model could be identified within reasonably narrow ranges
using data from a long-term field experiment with three treat-
ments characterized by strongly contrasting OM inputs for
more than 50 years. Ideally, the model should now be fur-
ther tested at multiple sites using data from long-term field
experiments, including comparisons of alternative cropping
systems and tillage management (i.e. no-till vs. conventional
systems).
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Appendix A

Figure A1. Q–Q plots for SOC contents (a–c) and soil bulk density (d, e) measured at three and two depths respectively, for soil profiles
located in east-central Sweden (production area number 4; Eriksson et al., 2010) with calculated values obtained in the model sensitivity
analysis. Note the differences in the y-axis scales for soil organic carbon contents.
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