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Abstract. This study explores the relationship between soil magnetic susceptibility (κ) and cation exchange
capacity (CEC) across diverse European soils, aiming to enhance pedotransfer functions (PTFs) for soil CEC
using near-surface electromagnetic geophysics. We hypothesize that soil κ , can improve the prediction of CEC
by reflecting the soil’s mineralogical composition, particularly in sandy soils.

We collected data from 49 soil samples in vertical profiles across Belgium, the Netherlands, and Serbia,
including κ in situ conditions (κ∗), low and high frequency κ in the laboratory, in-site electrical conductivity
(σ ), iron content, soil texture, humus content, bulk density, water content, water pH, and CEC. We used these
properties as features to develop univariable and multivariable (in pairs) polynomial regressions to predict CEC
for sandy and clayey soils.

Results indicate that κ∗ significantly improves CEC predictions in sandy soils, independent of clay content,
with a combined κ∗-σ model achieving the highest predictive performance (R2

= 0.94). In contrast, laboratory-
measured κ was less effective, likely due to sample disturbance.

This study presents a novel CEC PTF based on σ and κ∗, offering a rapid, cost-effective method for estimating
CEC in field conditions. While our findings underscore the value of integrating geophysical measurements into
soil characterization, further research is needed to refine the κ–CEC relationship and develop a more widely
applicable model.

1 Introduction

Modern strategies for soil characterization are crucial for ad-
dressing the global challenges of soil degradation and pol-
lution. Near-surface electromagnetic geophysics, in particu-
lar, facilitates rapid quantitative assessment of soils, offering
insights into subsurface electrical conductivity (σ ), dielec-
tric permittivity (ε), and magnetic susceptibility (κ) (Garré
et al., 2022; Romero-Ruiz et al., 2018). Data collected on
these electromagnetic properties can be used for direct qual-
itative soil survey interpretations or for more comprehensive
quantitative analyses involving pedophysical models (PMs)
and pedotransfer functions.

PMs link depth-specific geophysical properties with com-
mon soil properties. The need for developing such models is
growing due to the demand for high-precision soil charac-
terization (Romero-Ruiz et al., 2018; Verhegge et al., 2021;
Wunderlich et al., 2013). Pedotransfer functions (PTFs) are
models used to predict soil properties that are typically costly
to obtain and are therefore determined less frequently than
soil attributes that can be characterized more effectively (Van
Looy et al., 2017).

An important indicator of soil health and fertility, which is
also crucial in most PMs and PTFs, is the cation exchange ca-
pacity (CEC) (Glover, 2015; Mendoza Veirana et al., 2023).
CEC, which refers to a soil’s capacity to retain and exchange
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positively charged ions (Khaledian et al., 2017), is highly
correlated with the soil clay content due to a larger col-
loid surface for particle exchanges. Furthermore, it is influ-
enced by the soil’s physical (e.g., texture), chemical (e.g., pH,
mineralogy), and biological properties (e.g., organic matter);
thus, CEC integrates aspects from all three main indicator
groups commonly used to assess soil quality (Khaledian et
al., 2017). Several PMs for soil σ prediction include CEC
due to the significant influence of free charges on σ , despite
the contribution of other properties such as water content (θ )
and salinity or bulk soil σ (Glover, 2015). Soil charges can
be either permanent or variable, depending primarily on soil
pH (Chapman, 1965; Sumner and Miller, 2018). The rela-
tionship between clay content and CEC can be highly vari-
able due to its dependence on clay mineralogy (ranging from
3–15 meq/100 g for kaolinite to 100–150 meq/100 g for ver-
miculite), and the relative proportion of variable and perma-
nent CEC varies among clay minerals (Miller, 1970; Sey-
bold et al., 2005). To standardize CEC measurements un-
der varying soil conditions, it is common to use the CEC
in neutral pH conditions (= 7), CEC7. However, conven-
tional analytical methods for measuring CEC, such as the
sodium saturation method, are time-consuming and expen-
sive (Busenberg and Clemency, 1973). Due to the critical
importance of CEC, its measurement cost, and its correla-
tion with other soil properties, numerous PTFs (Khaledian et
al., 2017) and worldwide hybrid models (Poggio et al., 2021)
for CEC7 have been developed. Commonly, CEC PTFs are
expressed as a function of clay content and humus, and less
frequently pH and soil depth (Khaledian et al., 2017; Seybold
et al., 2005). While CEC PTFs are often multivariate polyno-
mial regressions, machine learning methods such as artifi-
cial neural networks (Ghorbani et al., 2015) and genetic ex-
pression programming and multivariate adaptive regression
splines (Emamgolizadeh et al., 2015) have been used in the
last decade when large datasets have been available. How-
ever, when working with small datasets, polynomial regres-
sions are often preferred. Additionally, results have shown
that σ and soil κ are independent (Maier et al., 2006), even
though they generally correlate well with CEC.

Soil magnetic susceptibility has been correlated positively
with CEC in studies focusing on soil type identification
(Mello et al., 2020) (Pearson’s correlation 0.4), soil charac-
terization (Siqueira et al., 2010) (Pearson’s correlation 0.68),
paleoclimatic reconstruction (Maher, 1998) (Pearson’s cor-
relation 0.95 for Podsol and 0.73 for Cambisol samples),
and electromagnetic induction applications (McLachlan et
al., 2022). The magnetic susceptibility, κ , describes a ma-
terial’s ability to become magnetized when subjected to an
external magnetic field. It quantifies the degree of magneti-
zation induced in the substance relative to the strength of the
applied magnetic field. The composition of the parent mate-
rial, and consequently the mineralogy of the rocks and sed-
iments that formed the soils, are the main parameters influ-
encing soil magnetic properties (Jordanova, 2017). Formally,

κ is defined as κ =H/M , where M is the induced magne-
tization of the material and H is the applied magnetic field.
Soil and sediment κ measurements are widely used to detect
the presence of pedogenic ferrimagnetic minerals (Dearing
et al., 1996).

Soil clay content and soil κ are correlated positively due to
the presence of ferrimagnetic minerals (such as maghemite)
in the clay fraction, originating either from the parent mate-
rial or through pedogenesis (Mello et al., 2020) (Pearson’s
correlation 0.26). Consequently, it has been suggested that
the observed correlation between κ and CEC is actually due
to their mutual correlation with clay content, indicating that
κ may not have a direct effect on CEC (Mello et al., 2020).

To the best of our knowledge, the κ–CEC relationship has
not been studied beyond the site level (Siqueira et al., 2010).
This limited scope represents a significant research gap, as
the broader applicability of κ for CEC prediction remains
largely unexplored across diverse soil types and conditions.

The main hypothesis is that soil κ can support character-
izing soil mineralogy, which also influences the permanent
component of CEC. Therefore, soil κ may significantly en-
hance the accuracy of CEC PTFs. This study directly ad-
dresses the identified gap by systematically examining the
κ–CEC relationship using a new comprehensive dataset. The
potential to develop more robust, widely applicable CEC
PTFs underscores the significance of this work, with implica-
tions for sustainable land management, precision agriculture,
and environmental monitoring.

To improve predictions of field CEC by integrating soil κ ,
this study focuses on developing and testing uni- and multi-
variate polynomial PTFs based on data of diverse soil types
sampled in Europe. In addition, we explore soil κ measured
in situ and in the laboratory at different frequencies to give
insights into the κ–CEC relationship and investigate how
clay content affects the relationship between κ and CEC.
While the methodology of this study focuses on soil and geo-
physical data collection, data analysis, and model develop-
ment, delving into the underlying physicochemical mecha-
nisms of soil mineralogy that would link κ and CEC is out
of scope but is highlighted as an important direction for fu-
ture research. To ensure transparency and reproducibility, all
the collected data and developed code for this work is pub-
licly available in an open source Python software: Mendoza
Veirana (2024).

2 Methods

2.1 Study area, field measurements, and soil analysis

From eight sites in Belgium, the Netherlands and Serbia, 49
soil samples were collected across a wide range of USDA
soil textures from sand to clay, and WRB (IUSS Working
Group WRB, 2022) soil types (Fig. 1 and Table 1, see also
Mendoza Veirana et al., 2023). Specifically, six sites in Bel-
gium contributed 38 samples, one site in the Netherlands
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contributed 6 samples, and one site in Serbia contributed 5
samples. This distribution ensures representation of diverse
soil types and textures across the three countries. At each
site, test pits were dug to identify and sample different soil
horizons. For each soil horizon and within a vertical soil
profile, the soil field κ was measured (κ∗) (5 to 11 mea-
surements per site, 49 in total) using a kappa meter SM30
(ZH Instruments, Brno, Czech Republic) at 8 kHz. The sen-
sor measures soil κ with a penetration depth of 2 cm and a
sensitivity of 10−7 SI units. The sensor was placed against
the soil’s profile wall for a measurement, followed by an ad-
ditional measurement taken in open air away from the pro-
file to obtain a reference zero κ value for measurement cali-
bration (ZH Instruments, 2022). Additionally, a HydraProbe
sensor (Stevens, Water Monitoring Systems) was employed
to measure σ along the profile wall. The correction proposed
by Logsdon et al. (2010) was applied to improve the quality
of these readings.

Undisturbed soil samples (100 cm3) were collected manu-
ally by pushing standard steel rings horizontally into the soil
profile wall at the same locations where κ∗ was measured.
After the cores were weighed fresh and oven-dried for 24 h at
105 °C, volumetric water content (θ ) was calculated from the
water-mass loss divided by the core volume, and bulk den-
sity (bd) from the oven-dry mass divided by the same volume
(Grossman and Reinsch, 2002).

Disturbed soil samples of about 250 g were collected
around the undisturbed samples. They were air-dried, ho-
mogenized in an agate mortar, and sieved using a 2 mm
mesh for determination of texture and chemical and magnetic
soil properties. Clay, silt, and sand content (expressed in %)
was measured following the pipette method (NF X31-107,
2003) after sieving at 2 mm. The humus content was calcu-
lated from the organic carbon content (conversion factor of
2), which was determined by dry combustion according to
NF ISO 10694. CEC was determined by the CoHex method
(Ciesielski et al., 1997a, b).

Magnetic susceptibility κ was measured using a Kap-
pabridge MKF1-FA (AGICO Instruments, Brno, Czech Re-
public), in addition to the field κ measurements. Prior to
these laboratory measurements, corrections were made to
eliminate the influence of the diamagnetic sample holder.
Samples were placed in 10 cm3 plastic holders, and the
in-phase κ was recorded at both low frequency (κlf) and
high frequency (κhf) (976 and 15 616 Hz, respectively). Thus,
the percentage frequency dependent magnetic susceptibility
(κfd) was calculated as

κfd =
κlf− κhf

κlf
× 100 [%] (1)

Additionally, the absolute difference (κfd abs = κlf− κhf)
was calculated. Such measurements are used to detect the
presence of superparamagnetic ferrimagnetic minerals oc-
curring as ultrafine (< 0.03 µm) crystals (mostly ultrafine
magnetite and maghemite) produced largely by pedogenic

biochemical processes in soil (Dearing, 1994). Samples
where ultrafine minerals are present will show increased
frequency-dependent magnetic susceptibility; samples with-
out such minerals will show identical κ values at the two fre-
quencies.

To support magnetic observations, elemental analyses
were performed to evaluate the total iron content concentra-
tion (Fe) of all samples through X-ray fluorescence (XRF,
Niton XL3t GOLDD+, Thermo Fisher Scientific Inc., USA)
on samples that passed a 0.5 mm sieve and were placed in
capsules covered with 4−6 m cellophane. Three consecutive
XRF measurements were performed and averaged for each
sample.

2.2 Model development

The absence of previous attempts at developing a CEC PTF
using soil κ data that can be generalized beyond the site-
specific highlights the importance of thorough data explo-
ration. We chose to build polynomial models due to their
interpretability, simplicity, and the use of only one tuning
parameter (polynomial degree), which is suitable given the
relatively small dataset (n= 49).

Field and laboratory measured soil properties were used
as features for predicting CEC (target variable). These are
soil depth, water pH, humus, clay, silt, sand, bd, σ , κ∗, κlf,
κfd, κfd abs, and Fe. All (13) features were used to develop
univariable polynomial regressions, and multivariable mod-
els were created by combining features in pairs, resulting in
91 feature combinations. The top four combinations in terms
of test performance were compared to the standard combina-
tion of clay and humus content; additionally, single features
were considered (clay, σ , and κ∗).

Since model performance was largely dependent on clay
content, the samples were divided into sandy (n= 25) and
clayey (n= 24) groups, using the median clay content
(16.1 %) as a threshold. Both input datasets were split ran-
domly into training (70 %) and testing (30 %) subsets, with-
out consideration of any soil characteristics. This approach
ensured that samples from different sites, soil horizons, and
physicochemical properties were mixed during data splitting.
To further ensure an unbiased model evaluation, the training
and testing process was repeated 100 times. The best poly-
nomial degree (linear or quadratic) was determined by the
highest median of the R2 test scores over the 100 repeti-
tions (Tibshirani et al., 2001). Finally, model implementation
was performed after tuning and feature selection using all the
samples of each subset.

2.3 Statistical analysis

Predicting CEC based on soil properties, particularly focus-
ing on magnetic characteristics, is a multivariate problem.
Commonly, many variables are linearly correlated with CEC,
such as clay, κ , Fe, humus, and σ . The challenge lies in dis-
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Table 1. Minimum and maximum intervals of soil and magnetic properties for each explored site. Data ranges reflect the diversity of soil
types and conditions across various sites. NA: not available.

Samples Soil type Depth Sand Clay κ∗ κlf κfd Fe Humus σ CEC
[cm] [%] [%] [10−5] [10−5] [–] [ppm] [%] [mS m−1] [meq/100 g]

A 5 Luvisols [4, 106] [9, 16] [9, 13] [14, 32] [14, 40] [5.2, 8.1] [14, 21] [0.1, 2.3] [12, 35] [6, 9]
DREN 5 NA [72, 252] [18, 35] [27, 39] [47, 66] [51, 70] [6.2, 9.1] [31, 38] [0.6, 1.6] [30, 53] [20, 25]
E 5 Cambisols [20, 110] [24, 35] [20, 25] [7.2, 14] [8, 15] [3.5, 5.5] [19, 25] [0.8, 2.6] [38, 50] [9, 12]
EH2 5 Phaeozems [20, 94] [10, 54] [17, 53] [12, 20] [13, 38] [3.2, 6.7] [42, 50] [0.3, 5.7] [55, 66] [16, 39]
HOEKE 11 Cambisols [28, 258] [9, 45] [16, 32] [4.5, 116] [6.8, 127] [4.4, 8.1] [17, 34] [0.5, 11] [27, 59] [8, 30]
P 7 Retisols [32, 144] [42, 80] [8, 11] [2.6, 12] [4.5, 16] [2.9, 8.5] [5.9, 12] [0, 2] [8, 17] [1.6, 11]
S 5 Arenosols [28, 130] [83, 93] [5, 7] [3, 20] [2.9, 73] [3.3, 9.2] [3.6, 16] [0, 2] [11, 29] [2, 5]
VALTHE 6 Podzol [10, 60] [91, 95] [3, 4] [0.8, 12] [1.2, 19] [3.9, 9.7] [1, 2.5] [0, 2.2] [0.5, 1] [1.6]

All 49 [4, 252] [9, 95] [3, 53] [0.8, 116] [1.2, 127] [2.9, 9.7] [1, 50] [0, 11] [0, 66] [1.6, 39]

Figure 1. Locations of the study sites. Background shows dominant surface texture (European Soil Database v2.0, 2004). Colors represent
the texture of the sites: sandy in yellowish, silty in blueish, and clayey in reddish. The United States Department of Agriculture (USDA)
texture triangle shows the particle size distribution categorized by sampling site (adapted from Mendoza Veirana et al., 2023).

tinguishing between independent and masked effects. Impor-
tantly, the positive correlation between κ and CEC may be
due to the strong correlation between clay content and both
CEC and κ (Mello et al., 2020).

To address this, we quantified the independent correla-
tion between κ and CEC, irrespective of the effects of clay,
by calculating the partial correlation, that is, the correlation
between the residuals of the linear fitting of the covariable
(clay) with the variables (κ and CEC).

3 Results and discussion

3.1 Data exploration

A general variable exploration analysis is presented in this
section, which is fundamental for the model development
in the next section. Spearman’s rank correlations between
all the features mentioned and target can be seen in Fig. 2.
As expected, soil κ is less correlated to CEC than common
soil properties such as clay and sand, water pH, and θ , while
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Fe and σ correlate strongly with CEC. Additionally, consis-
tent with the findings of Mello et al. (2020) and Ayoubi et
al. (2018), there is a positive correlation between clay and κ
(both κ∗ and κlf). Also in line with Maier et al. (2006), σ is
not correlated significantly to κ . Conversely, sand correlates
negatively with both κ and Fe.

Comparing soil κ∗ to κlf reveals a similar trend across
the entire range of observations (10−5 to 10−3) (see Fig. 3).
This trend persists despite κ∗ being measured in undisturbed
soil structures with field bulk density, while κlf was obtained
from repacked samples that do not preserve the field structure
and density. Additionally, the measurement frequency for κ∗
(8 kHz) differs from that of κlf (∼ 1 kHz).

3.2 CEC modeling

Model training and testing was performed in sandy and
clayey groups independently. The predictors for CEC, with
the best overall model performance, turned out to be highly
dependent on the group. Notably, using σ and κ∗ provided
the best prediction results on the sandy group, with train-
ing and testing median R2 values of 0.95 and 0.85, respec-
tively (see Fig. 4). This performance is significantly higher
than that achieved with the commonly used features, such as
clay and humus content, which had a median test R2

= 0.38.
Additionally, the combination of sand and pH performed
equally well, followed closely by combinations of κ∗ and κlf
features.

The strong performance of σ and κ∗ as predictors of CEC
in sandy soils (median test R2

= 0.85) is particularly note-
worthy. It is known that σ is influenced by several factors
including soil water content, salinity, and the concentration
of dissolved ions, which collectively can reflect the variable
component of CEC (Glover, 2015). In sandy soils, which typ-
ically have lower water and nutrient retention capacities, σ
can provide a dynamic measure of the available exchange-
able cations at a given time. Concurrently, the strong pre-
dictive capacity of κ∗ suggests it captures a different, yet
complementary, aspect of CEC. In soils with low clay con-
tent, and therefore limited colloid surface area, the permanent
component of CEC is likely more affected by minerals. The
fact that κ∗, measured in situ, performed better than labo-
ratory κ suggests that the undisturbed soil structure and field
conditions are crucial for this relationship, possibly reflecting
the spatial arrangement and contact of these minerals within
the soil matrix. Additionally, both σ and κ∗ can be quickly
measured in field conditions without the need for invasive
sampling. Therefore, after implementing the best CEC PTF
for sandy samples (see Fig. 5),

CEC= 1.233+ 14 000 · κ∗− 0.00861 · σ

− 5.91× 107
· κ2
∗ + 1350 · κ∗ · θ · σ

+ 0.000624 · σ 2
; R2

= 0.94 (2)

where κ∗ is unitless, σ is in mS m−1, and CEC is in
meq/100 g.

For clayey samples, σ and clay features resulted in the best
performance with the training and testing R2 equal to 0.89
and 0.82, respectively. This result is in line with the literature
since the link between CEC, σ , and clay is well documented
(Glover, 2015; Wunderlich et al., 2013). For clayey samples,
κ was not an outstanding feature, likely due to the influence
of a larger colloid surface that may not be effectively charac-
terized by κ .

κ∗–CEC statistics

The partial correlation between κ∗ and CEC, while control-
ling for (removing the effect of) clay, was found to be 0.61
for sandy samples, and −0.14 for clayey samples. This indi-
cates that in sandy samples, κ∗ is only partially influenced by
clay. For clayey samples, however, κ∗ is heavily influenced
by the soil’s clay content, making the correlation between
κ∗ and CEC minor if the effect of clay is removed. Conse-
quently, predicting CEC using clay alone is as effective as
using both clay and κ∗ (median testing R2 of 0.66 and 0.64,
respectively), while κ∗ alone is a poor predictor (see Fig. 4).

4 Limitations and further directions

The current study, while providing novel insights, has several
limitations that also point towards important future research
directions.

First, the main limitation of the analyzed results is related
to the dataset size, which, although diverse in terms of Eu-
ropean soil types, is relatively small. A larger sample size
could improve the statistical relevance of the findings and
improve the robustness and generalizability of the developed
PTFs (Van Looy et al., 2017). Future work should aim to ex-
pand the database with more samples covering an even wider
range of soil properties and parent materials.

Second, all collected samples come from nontropical re-
gions, where organic matter content and bacterial activity do
not significantly influence soil κ . In contrast, these factors
may contribute substantially to higher soil CEC in other en-
vironments (Seybold et al., 2005). Therefore, the results are
valid for the sampled sites that belong to European soils, and
applications to scenarios beyond this range of soils should be
approached with caution.

Third, a significant limitation is the lack of direct miner-
alogical analysis, especially for clay and iron oxide fractions.
While κ offers an indirect proxy for ferrimagnetic mineral-
ogy, detailed characterization (e.g., via X-ray diffraction) is
needed for a causal understanding of the κ–CEC link. Identi-
fying specific clay minerals (like kaolinite vs. smectite) and
their abundance would clarify their CEC contributions and
interactions with magnetic minerals. This is a crucial step to
move beyond empirical correlations toward a process-based
understanding.
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Figure 2. Spearman rank correlation heatmap showing significant P -values≤ 0.005 for the 49 soil samples; missing correlations have P -
values> 0.005.

Figure 3. Logarithmic scatter plot showing the in situ ob-
tained magnetic susceptibility (κ∗) vs. the laboratory-observed low-
frequency magnetic susceptibility (κlf).

Fourth, while field-measured κ proved useful, the reasons
for its superiority over laboratory-measured κlf or κfd in the
PTFs warrant further exploration. This could involve inves-
tigating the effects of soil structure and moisture content

(which are preserved in in situ κ measurements). A deeper
understanding of how these factors influence different κ mea-
surements could lead to optimized measurement strategies.

Finally, the model shown in Eq. (2) is valid for samples
with clay content between 2.9 % and 16.1 %, σ between
0.55 and 39 mS m−1, κ∗ between 8 and 320 µ, and CEC be-
tween 1.6 and 8.7 meq/100 g. As larger and more compre-
hensive datasets become available, exploring advanced mod-
eling techniques, such as machine learning algorithms, may
capture more complex, nonlinear relationships. Assessing the
scalability of the κ–CEC relationship from point measure-
ments to field-scale predictions using proximal sensing plat-
forms, for example, vehicle-mounted EMI sensors providing
dense κ data (McLachlan et al., 2022), would be beneficial.

5 Conclusions

For the first time, the link between soil κ and CEC has been
explored using data that extends beyond the site level. By
analyzing soil samples across Europe, encompassing a range
of diverse soil physicochemical properties, we found that κ∗
significantly contributes to predicting soil CEC, particularly
in sandy samples, and this contribution is linearly indepen-
dent of the soil clay content. Conversely, soil κ measured in
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Figure 4. Horizontal bar plot showing test model performances of CEC prediction based on different features (vertical axis) for sandy and
clayey samples. Features shown here are the top four in performance (bottom), and κ∗, σ , clay, and the pair clay, humus.

Figure 5. Implemented CEC PTF for sandy samples (clay< 16.1) (Eq. 2) with R2
= 0.94. The model is colored in vertical axis from red to

blue to visualize its shape. Colored dots represent the samples used in the sandy group, belonging to different sites that match the colors in
Fig. 1.

the laboratory was less effective, likely due to the disturbance
of soil structure and soil density.

Based on these findings, we proposed a novel PTF for
CEC in sandy samples, with a R2 of 0.94, based on σ and
κ∗, which likely relate to the variable and permanent com-
ponents of CEC, respectively. This PTF is valuable because
both σ and κ∗ are quick and inexpensive to measure in the
field, making it straightforward to predict CEC under field
conditions. For instance, it can be used to quickly assess the
fertility of sandy soils across agricultural fields.

Further research, along with expanding the existing
database, could enhance CEC modeling and provide deeper
insights into the κ∗–CEC relationship. These advances could
help integrate independent geophysical properties, such as σ
and κ , to quantify key soil properties such as CEC, advancing
a more holistic approach towards soil characterization.
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