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Abstract. Healthy soils provide multiple functions that contribute importantly to human wellbeing, including
in primary production, climate and water regulation, and supporting biodiversity. These functions can partially
be combined, and some functions also clearly trade off: this motivates soil multifunctionality research. Society
needs scientists to help assess which soils are best for which soil functions and to determine appropriate long-
term management of any given soil for optimal function delivery. However, for both tasks science lacks coherent
tools, and, in this paper, I propose a way forward.

Critically, we lack a common measurement framework that pins soil functioning measurements on a common
scale. Currently the field is divided with respect to the methods we use to measure and assess soil functioning
and indicators thereof. Only three indicator variables (soil organic matter (SOM), acidity, and available P) were
commonly measured (> 70 % of schemes) across 65 schemes that aim to measure soil health or quality, and
no biological measure is implemented in more than 30 % of the 65 schemes. This status quo prevents us from
systematically comparing across and within soils; we lack a soil multifunctionality benchmark.

We can address these limitations systematically by setting a common measurement system. To do this, I
propose to use latent-variable modelling, based on a common set of functional measurements, to develop a
common “IQ test for soils”. I treat soil functions as latent variables; because they are complex processes that
cannot be measured directly, we can only detect drivers and consequences of these complex processes. Latent-
variable modelling has a long history in social, economic, and psychometric fields, where it is known as factor
analysis. Factor analysis aims to derive common descriptors — the factors — of hypothesized constructs by linking
measurable response variables together on a common scale.

Here, I explain why such a new approach to soil multifunctionality and soil health is needed and how it can be
operationalized. The framework developed here is an initial proposal; the issue of soil multifunctionality is too
complex and too important to be addressed in one go. It needs to be resolved iteratively by groups of scientist
working intensively together. We need to bring our best scientists together, in a collaborative effort, to develop
progressively more refined ways of sustainably managing one of humanity’s most precious resources: our soils.

1 Introduction

Human actions are perturbing the Earth system beyond its
planetary boundaries, particularly in terms of biodiversity,
climate, and flows of phosphorus and nitrogen, while we
also need to provide sustainable social livelihoods across
the globe (Fanning et al., 2022; Lade et al., 2020; Stef-

fen et al., 2015). Agricultural production is a main driver
of environmental problems due to land use change, deple-
tion of freshwater resources, and pollution of aquatic and
terrestrial ecosystems (Springmann et al., 2018). In addi-
tion, modern agriculture will have to adapt to global lim-
its on mineral phosphorus supply (Blackwell et al., 2019)
and increasing regulation of pesticide use (Tang and Maggi,

Published by Copernicus Publications on behalf of the European Geosciences Union.




610

2021). This means land-bound agriculture will have to in-
creasingly rely on the internal functional capacity of soils —
e.g. to recycle nutrients and suppress diseases — and, thus,
on soil health. Likewise, regulation of the climate through
carbon sequestration and reducing greenhouse gas emissions
(Lehmann et al., 2020) and the provision of habitats for
aboveground biodiversity to bend the curve of biodiversity
loss (Leclere et al., 2020) are directly and indirectly linked
to soil health. Furthermore, soil biodiversity contributes im-
portantly to climate change adaptation by facilitating wa-
ter storage in soils through modifying soil organic matter
(Lal, 2020) and achieving ONE Health through removal of
contaminants and by preventing disease spread (Wall et al.,
2015). Indeed, soil and soil health are at the heart of achiev-
ing many of the UN Sustainable Development Goals for 2030
(Keesstra et al., 2016; Lal et al., 2021) and the European
Green Deal (Montanarella and Panagos, 2021).

Soil health, defined here as the continuing capacity of soils
to deliver the multiple soil functions on which society de-
pends, takes centre stage in policy and practice with respect
to soils worldwide (Van der Putten et al., 2023; Veerman et
al., 2020), and I use the term interchangeably with soil mul-
tifunctionality. However, currently the field is divided with
respect to the methods we use to measure and assess soil
functioning and indicators thereof. Only three indicator vari-
ables (soil organic matter (SOM), acidity, and available P)
were commonly measured (> 70 % of schemes) across 65
schemes that aim to measure soil health or quality, and no
biological measure is implemented in more than 30 % of the
65 schemes (Biinemann et al., 2018). Indeed, until very re-
cently, there was no national- or European-level monitoring
system that could address the key functions of soils compre-
hensively (Creamer et al., 2022; Van Leeuwen et al., 2017),
although steps in this direction are now being taken (Norris
et al., 2020; Orgiazzi et al., 2022; Zwetsloot et al., 2021),
for instance in the EU’s Soil Health Benchmarks project
(https://soilhealthbenchmarks.eu, last access: 20 May 2025).
It is clear that further harmonization in methods and quantifi-
cation is urgently needed.

Partly, I think this plethora of methods and approaches
stems from an oversimplified, often correlational understand-
ing of the causal linkages driving soil multifunctionality,
equipment availability in the laboratories involved, and a
decades-old policy pressure to deliver easy-to-implement in-
dicators fast (Creamer et al., 2022), which prevented the
zooming-out needed to better understand the soil systemat-
ically (Harris et al., 2022). Indeed, what we need are “new
analytical and conceptual approaches... that capture sys-
tems characteristics of soil health, in order to operational-
ize ... monitoring soil health” (Lehmann et al., 2020). How-
ever, systemic perspectives that integrate soil functions and
responses are in their infancy (Vogel et al., 2018). It is un-
clear how to manage the soil functions (Baveye et al., 2016)
and how to link functions to soil processes (Vogel et al.,
2018, but see Creamer et al., 2022). Integrating all soil pro-

SOIL, 11, 609-628, 2025

E. R. J. Wubs: Benchmarking soil multifunctionality

cesses is highly complex because soil properties are spa-
tially heterogenous, and the interactions in soil are typi-
cally non-linear (Vogel et al., 2018). Soil biology is a key
missing ingredient, and its complexity is paralysing the soil
health literature (Creamer et al., 2022; Lehmann et al., 2020;
Van Leeuwen et al., 2017). We know that soil biodiver-
sity drives soil multifunctionality (Delgado-Baquerizo et al.,
2016; Wagg et al., 2014), but the causal relation to soil func-
tioning for many organisms is not clear (Creamer et al.,
2022). Many soil microbial variables measured are hard to
interpret and are insufficiently benchmarked to allow infer-
ences about soil health (Fierer et al., 2021). Furthermore,
most research focusses on soil health in an agricultural con-
text (Debeljak et al., 2019; Fierer et al., 2021), but we also
need to understand and quantify it in forestry, nature man-
agement, drinking-water production areas, and industrial and
urban areas, which are strongly underrepresented (Norris et
al., 2020; Orgiazzi et al., 2022).

To move forward, we first need to know what kind of in-
formation society needs from soil science. In this context, I
think the main research tasks are as follows:

1. Determine which soils are best for which function (FAO
and ITPS, 2015) and which functions can be combined
(synergies) and which cannot (trade-offs).

2. Determine the functional shape of the interrelations
among soil functions.

3. Determine the mechanistic drivers of the multiple func-
tions of soils over a long-term timescale.

4. Determine how multifunctionality of individual soils
can be optimized.

5. Develop a simple and effective indicator set to monitor
the status and trends of soil functions and multifunction-
ality.

When we know these, we can start the spatial optimization of
multifunctional soil use (van Wijnen et al., 2012), and if we
understand the long-term impacts and dynamics with respect
to the functions and their drivers, we can do so for long-term
sustainable use.

To do these tasks well, we need to get organized as a sci-
entific community. First and foremost, we need to set a com-
mon measurement system for the multiple functions of soil.
We need a balanced set of indicators that reflect soil biology,
chemistry, and physics but that are geared towards soil func-
tioning (Lehmann et al., 2020). So far, selection of soil bi-
ological indicators was driven by well-known methods, fea-
sibility in general laboratories, and costs, but this should be
based on a sound understanding of how the indicators link
to soil functioning mechanistically (Creamer et al., 2022;
Lehmann et al., 2020; Vogel et al., 2018). New proposals
typically try to go from soil processes to functions in one go,
but soil is complex (Young and Crawford, 2004), and, so far,
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this approach has been defeated by this complexity. In many
cases, the drivers of soil functions, either direct or indirect,
are used implicitly or explicitly as proxies for the functions
themselves. For example, soil nutrient content is used as a
proxy for soil fertility (Daou and Shipley, 2019), and micro-
bial biomass is used as a proxy for carbon storage (Wies-
meier et al., 2019); in both cases, these do contribute to the
function but are not nearly a complete description of it. We
can take steps forward by formally separating the causes and
consequences and/or the predictors and the indicators of soil
functioning and by linking them to the underlying processes
and environmental and management context. I propose that
we can do so by applying latent-variable models and struc-
tural causal modelling to soil multifunctionality research.

My aim with this paper is to propose a new methodology
for measuring soil functioning and soil multifunctionality. It
is based on the well-established technique of latent-variable
modelling commonly used in psychometry, economics, and
the social sciences at large. In parallel to my work presented
here, Maaz et al. (2023) have also used latent-variable mod-
els to represent soil health; however, our approaches are quite
distinct. They rely on a mixture of stocks, environmental con-
ditions, and properties as indicators for soil health, while my
aim is to link to the soil functions themselves. The next step
after setting a valid measurement framework will be to de-
velop a causal model of how trade-offs and synergies among
soil functions are mechanistically regulated. If we define soil
health as the continuing capacity of soils to deliver the mul-
tiple soil functions on which society depends then what are
soil functions? Here, I define soil functions as soil processes,
physical, chemical, or biological in nature, acting singly or
in combination. These functions can be beneficial for human
society but can also be involved in the internal functioning
of ecosystems without direct human benefits, i.e. soil func-
tioning for the sake of the ecosystem itself. For consistency,
perhaps “soil functions on which society depends” should be
called “soil services” as a specific form of ecosystem ser-
vices.

2 Conceptual approach to soil multifunctionality

Great mathematical frameworks now exist to combine mul-
tiple functions into one aggregate measure of multifunction-
ality (Byrnes et al., 2014, 2023), and they could be used to
signal that “something is wrong” with soil functioning. How-
ever, understanding which soils perform all functions best in
aggregate, e.g. the highest average soil function, is not in-
formative enough to guide sustainable use of soils (Bradford
et al., 2014; Lehmann et al., 2020). We need to know which
soils perform which functions well and to what extend the
functions can be combined or not in a single soil. So instead
of focussing on univariate summary statistics of multifunc-
tionality, we need to come up with a multivariate, but still
simple and communicable, representation for soil multifunc-
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tionality (Lehmann et al., 2020; Zwetsloot et al., 2021). Mul-
tivariate models of multifunctionality have been developed,
including network approaches that can be valuable in ex-
ploratory investigations (Siwicka et al., 2021). Others devel-
oped elegant multivariate models to estimate the influence of
different drivers on functions and interrelations among func-
tions (Dooley et al., 2015). However, all these approaches are
correlational in nature, leaving the causal relationships that
induced these correlations potentially unexamined (Shipley,
2016). I think this is problematic, because of (1) potential
paradoxes in the data that no amount of big data can resolve
(e.g. Simpson’s paradox) and (2) difficulties in generalizing
the results of analyses to other contexts. Posing a mechanis-
tic model that links soil functions a priori, which is itera-
tively improved in the face of new data, can resolve both of
these issues. In addition, hypothesizing about such mechanis-
tic models will help in stabilizing the set of measured “func-
tions” now rampant in the literature by excluding those in-
dicators that are actually stocks or ecosystem properties and
not processes (Garland et al., 2021; Lehmann et al., 2020).
Confronting the hypothesized models with data and propos-
ing improvements can be done with structural equation mod-
elling (Box 1). However, how should the complexity of soils
and soil functioning be organized into one model?
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Box 1. Causal inference, structural equation modelling, and latent variables — a short introduction

“Correlation is not causation” is a central piece of endemic wisdom we scientists throw at one another on a regular basis.
However, its complement, “causation implies correlation”, is much less known due to Karl Pearson’s (Pearson, 1911) crusade
on causality. Nevertheless, it is the central concept in modern causal analysis (Pearl, 2009; Shipley, 2016). The modern causal
revolution arose from the pioneering work of population geneticist Sewall Wright, who developed path analysis (Wright, 1921,
1934), a method to estimate causal effects from observational data. His method was ignored by statisticians and biologists for
decades because it did not fit with the views of the dominant schools of statistics headed by Karl Pearson and Ronald A. Fisher
(Shipley, 2016). Instead, the method was refined within economics, sociology, political science, and psychology (e.g. Joreskog,
1967).

Path analysis was transformed into structural equation modelling (SEM), which uses maximum likelihood (ML) estimation
to test causal multivariate hypotheses. The multivariate hypotheses are specified as a graph, specifically a directed acyclical
graph, which captures the hypothesized causal relationships among the variables involved. The central idea is beautifully
simple: if the specified causal hypothesis is true then we can predict which variables should be correlated and which should not
be; the latter are considered to be conditionally independent. In fact, the method depends on predicting the covariance matrix of
the variables, comparing it to the observed covariance matrix and testing the model fit (using an ML x 2 test). If the model does
not fit the data (e.g. x2p < 0.05) then the hypothesized causal graph is rejected. If there is no lack of fit then one concludes
that the data are consistent with the causal processes hypothesized (until, in the next paper, someone else proves you wrong,
of course). For SEM to work, it needs to assume linear relationships and multivariate normal distributions of the variables
involved, but it comes with the major advantage that it can estimate latent variables. Latent variables (LVs) are variables that
were not measured or even cannot be measured. LVs are a way to measure the unmeasurable!

LVs are extremely important concepts as many things cannot be measured (Shipley, 2016). For instance, we cannot measure
air temperature, which is the average kinetic energy of the molecules in the air; we can only measure its effects on, for
example, the expansion of mercury in a capillary column (a mercury thermometer) or the change in electrical voltage in a
thermocouple. These observed variables are of course causally linked to the latent quantity temperature, but they are observed
with measurement error. Misspecifying this dependence relation in a causal model, thus conflating air temperature (‘“heat”)
with the readings of your thermometer (translated to °C), can lead to an erroneous test of the causal model because it leads to
a different expected covariance structure and, thus, different conditional independence claims. Latent-variable models (LVMs)
are a way to get around this problem by specifying that the observed variable (thermocouple voltage) is caused by the latent
quantity of interest (air temperature), but it is observed with error and therefore correlated but not identical. This situation is
treated by “measurement models” (Fig. 1), a subsection of LVMs developed in the social sciences. To parameterize and test a
single LV, four indicator variables need to be measured to have sufficient degrees of freedom, although this can be relaxed if
the model entails multiple causally related LVs. LVs are also used to represent more hypothetical variables; e.g. concepts such
as genes, atoms, and intelligence are examples of latent variables. These examples are successful latent concepts; there are also
problematic ones, such as “ether”. Choosing, developing, and justifying latent variables are, perhaps, the most difficult aspects
of structural equation modelling.

Recently, the SEM toolbox was expanded with a new estimation and testing method based on d-separation. D-separation
is a criterion used to derive conditional independence claims, specifying which variables should not be correlated given the a
priori specified causal model (Shipley, 2000, 2016). The d-separation-based approach is flexible and can fully accommodate
non-normal data, non-linear functional relationships, and nested sampling structures as it works not with the whole covariance
matrix but instead looks at each d-separation independence claim separately (using partial correlations in its most simple form)
and combines this to test the whole causal model using a Fisher’s exact C test (C for combined, the d-sep test; Shipley, 2000).
The logic is the same as for ML-based SEM. Given an a priori causal model, one tests for the conditional independence of
variables predicted by the model.

Note, the methods of SEM and LVMs are implemented mathematically as regression models, but it is important to realize
that the interpretation of SEM is much stronger than for ordinary regression models. Ordinary regression models are simple
tools aiming only to predict the effect of X on Y. The goal is prediction, not primarily understanding, although the latter
is often attempted. Causal interpretation of regression models is problematic because parameter estimates and significance
depend strongly on the included variables and even their order. In fact, misrepresenting the underlying causal structure can
easily lead to entirely the wrong qualitative conclusions, e.g. in the situation called Simpson’s paradox (see the supplementary
code at https://github.com/JasperWubs/SoilMFvO0.1, last access: 20 May 2025), which no amount of data will resolve. SEM,
however, is different. It is different not because of its mathematics; rather, it is different because it relies on an a priori causal
hypothesis to be tested with data. The a priori is crucial: when SEM software is used to find the “best’-fitting model by means
of model selection tools (e.g. the Akaike information criterion (AIC)) then Wright’s philosophy falls apart, and SEM becomes
just another regression tool only to be used for explorative data analysis and hypothesis generation. So, as an analyst using
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Figure 1. The two parts of the full soil functioning model. (a) The two parts of the full soil functioning model including drivers (D1-Dy)
and response variables (V1,j—V4,j), their error variances (Ei,j), and the latent variable representing a single soil function (SFj). See Box 1 for
an introduction to structural equation modelling and latent-variable modelling. Part 1 concerns the latent-variable measurement submodel
involving i indicators measured on each of the j soils for each soil function (SF). For example, in the case of primary production, the
indicators are the growth responses (RGRij) of four different species used to estimate values for the latent variable of generalized soil fertility
(FG;j). The E’s represent mutually independent measurement errors. See the Supplement for an implementation of the model on Dutch
soil samples. Part 2 concerns the structural equation submodel. It consists of specifying the causal structure linking the y soil and non-soil
variables and drivers (D1 to Dy) that cause SF. For soil fertility, for example, this could be NO3 concentration, water-holding capacity, and
compaction. (b) Analogy of the soil function metrics to quantifying temperature of a waterbody as a latent variable using four differently
operating thermometers. The latent “temperature” is estimated using a measurement model based on readings from a liquid-alcohol and a
mercury thermometer based on column height measurements; a resistance thermometer, which responds to temperature by means of a change
in electrical resistance; and a thermocouple, which responds to temperature by means of a change in electrical voltage. By combining these
different measurements, a more accurate picture for temperature can be generated, given they are all adequate measures of temperature. Note,
combining a good indicator with a poor indicator does not lead to improved accuracy; this is why indicators in LVMs need to be correlated
to a good extent. This figure and the example are adapted from Daou and Shipley (2019).

SEM, you get one, and only one, epistemologically sound shot at testing your causal hypothesis. Of course, upon arduously
collecting data and then rejecting your model, there is immense temptation to update the model by including new, not a priori
specified, causal relationships and to present the updated model in the resultant paper as if it were the original a priori model.
This is a posteriori discovery and, again, is only suitable for exploration and hypothesis generation and not for direct causal
interpretation. Therefore, I am strongly in favour of implementing a strict requirement that SEM used for causal hypothesis
testing is preceded by the publication of the a priori model in a curated, time-stamped repository. Any updates to the model
should be fully reported in the paper because newly discovered links require further testing. In this way, our causal models can
be transparently developed and updated. For both SEM and LVMs, excellent textbooks, reviews, and manuals exist (see Grace,
2006; Grace et al., 2010, 2012; Shipley, 2016); this is also the case for other tools in the causal analysis toolkit (Pearl, 2009).
This summary is a condensed version of the key points in Shipley (2016).
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Before we can model interacting soil functions mechanis-
tically, we need a common framework to measure them. For
this we have to move beyond using simple indicators since
the processes driving the different functions of soils are com-
plex. Soil fertility, for instance, is a complex soil function
that drives the process of primary production. It is complex
because many factors contribute to it (Daou and Shipley,
2019), and it changes through time. Higher nutrient avail-
ability but also water content and soil texture and structure
interact to shape how well plants grow in a soil. Further-
more, plant species and cultivars respond differently to the
different drivers of soil fertility; for example, some prefer
nitrate over ammonium, others are salt- or drought-tolerant,
some can puncture compacted soils, and other species cannot
(Grime, 2001). So, while it is possible to build a soil fertility
model for individual crops by accounting for their limiting
factors for growth and estimating the functional relationships
to these factors, this is much more difficult to quantify in gen-
eral with predictive values for all plant and crop species in a
community simultaneously (Daou and Shipley, 2019).

Nevertheless, we can borrow the data analytic machinery
used in the social sciences to estimate these complex soil
traits. In psychology, economy, and other social disciplines,
complex properties are measured using latent-variable mod-
els — specifically a subsection called “measurement mod-
els” — that allow an analyst to infer the status of the com-
plex property by modelling the responses that the property
induces (Fig. 1). A well-known example is the IQ test that
aims to quantify the complex and hard-to-measure trait in-
telligence (Spearman, 1904). It does this by fitting a mea-
surement model to the measurable outcomes of intelligence,
namely a person’s ability to solve particular puzzles in a lim-
ited time. Daou and Shipley have successfully adapted this
methodology for quantifying generalized soil fertility (Daou
et al., 2021; Daou and Shipley, 2019, 2020), and I propose
that we expand their framework to include all major func-
tions of soil so we can study soil multifunctionality more
systematically; I propose an IQ test for soils.

3 Selecting soil functions and boundary conditions

Following the functional land management (FLM) frame-
work (Debeljak et al., 2019; Schulte et al., 2014; Zwetsloot
et al., 2021), I focus on four main soil functions of direct
importance to society (Fig. 2). The IQ test for soils will fo-
cus on the following soil functions: (1) primary production,
driven by soil fertility; (2) climate regulation, consisting of
carbon storage and reducing greenhouse gas (GHG) emis-
sions (or net GHG consumption by soil); (3) water regula-
tion, composed of water storage and purification of contam-
inants; and, finally, (4) provision of habitat for biodiversity,
focussing initially on plant diversity. See proposals for ex-
pansion to other species groups in the Discussion section. I
exclude nutrient cycling, which is included in the FLM, be-
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cause I think it is not a soil function beneficial to society in
and of itself. Instead, I see it as a structuring principle; nu-
trient cycling determines where nutrients are “invested” and
thus which functions “thrive” (see also Schroder et al., 2016).
Additionally, direct issues with nutrients for society, e.g. low
soil fertility and nitrate leaching, are captured under the other
soil functions — respectively, primary production and water
purification in these examples.

Climate and water regulation are, respectively, further di-
vided into the carbon storage and reducing greenhouse gas
(GHG) emission subfunctions and water storage and purifi-
cation subfunctions (light-blue circles) because of the very
different causal mechanisms in play. The four soil func-
tions are all interrelated — some trading off and others act-
ing in synergy — because they all depend on the same ba-
sic resources (nutrients, energy, water). [ hypothesize that the
soil’s plant—-microbe—soil stoichiometry (green oval with or-
ange operator sign) determines which functions are preferen-
tially expressed by any given soil. How this regulation plays
out is conditional on the geochemistry of the soil, mainly its
mineralogy. Measuring the functions on a common scale and
studying their interrelations using a common causal frame-
work will help us determine how to manage soils for optimal
multifunctionality.

The FLM framework was originally designed to integrate
over relatively large spatial scales (Schreefel et al., 2022;
Schulte et al., 2014) and uses decision trees, partly based on
expert judgement, to generate assessments of the different
soil functions on a semi-quantitative scale (low—medium—
high; Soil Navigator Decision Support System, DSS; De-
beljak et al., 2019). In addition, the assessment of different
functions is partly based on the same information (Zwet-
sloot et al., 2021); e.g. SOM is a component in four out of
five functions. How those pre-specified modelling relations
affect the observed trade-offs and synergies among func-
tions is unclear. While I think the efforts made using FLM
(and the associated Soil Navigator Decision Support Sys-
tem, https://soilnavigator.eu/, last access: 20 May 2025) have
great value for society in recommending changes based on
the best knowledge today, I also believe we need to deepen
our mechanistic understanding of the interrelations of the soil
functioning and how they can be optimized. For this, I pro-
pose that we need a measurement and modelling framework
that (1) allows quantitative assessment of soil functions based
on independent data and (2) assesses functions and drivers at
low spatial and temporal resolutions (Bradford et al., 2016,
2017; Fierer et al., 2021).

Many processes in soil depend on factors external to soil,
such as temperature and water inputs. This contributes to
the challenge in using many biological soil health indicators
(Fierer et al., 2021) as they can become highly variable in
time and space. To get around that, it was proposed that soils
be incubated under standard conditions so that only factors
internal to a soil would contribute to the observed function-
ing (Daou and Shipley, 2019). This is the approach I take
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Figure 2. Soils support human wellbeing in four main areas (blue circles), excluding direct and indirect contributions to human health.

here as well, and, as such, the proposed measurement system
is focussed on estimating potential soil functioning and mul-
tifunctionality under a set of soil-external conditions optimal
for plant growth. Below, I provide suggestions on how to link
these measures to actual in situ rates of soil functioning. Nev-
ertheless, I think this focus on the intrinsic — although not
time-invariant — potential soil functioning is important as it
can give the method predictive value for expected in situ soil
functioning irrespective of the weather conditions that mate-
rialize during the growing season.

4 The IQ test for soils — a proposal

Here, I outline a proposal for a standardized soil multi-
functionality assay that addresses the key soil functions in
the functional land management framework (Schulte et al.,
2014). The method is based on incubations of intact soil
cores, subjected to several treatments, and measuring re-
sponses that are indicative of the underlying soil functions
(Fig. 3; Table 1). The methods assume that all soils are sam-
pled in the same way and incubated under standardized con-
ditions, including temperature, light, watering regime, and
air humidity, to ensure comparability (see Table 2 for a pro-
posal). The goal is to estimate the intrinsic capacity of each
soil for performing each soil function.

A soil sampling team will collect 32 soil monoliths
(60 mm x 25cm deep, ~22.6L soil) per soil. The mono-
liths are used to quantify primary production (a — eight green
monoliths, two per bio-assay plant species), climate regula-
tion (b — four orange monoliths, one for each substrate ad-
dition treatment), and water regulation (c — four blue mono-
liths for water storage and purification measurements) and
for supporting plant biodiversity (d — 16 coloured monoliths,
with each colour representing an indicator plant; this is the
same as in (a), for which direct and indirect plant—soil feed-
back (PSF) is estimated in phase 2 (P2) in each of the four
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soils conditioned during phase 1 (P1)). The monoliths are
incubated for 90 d under standard incubation conditions (Ta-
ble 2). As such, the measurements target the capacity of a
soil to deliver key soil functions under optimal conditions
for plant growth. For both primary production and biodiver-
sity functions, plant harvest days are fixed (indicated in days
after the species name) and based on plant dry mass. Like-
wise, upon substrate addition (z0), gaseous efflux of CO3,
N>O, and CHy are measured on fixed days, with intensive
sampling in the first 14 d and then less frequent sampling un-
til day 90. In addition, microbial C and C in soil fractions
(aggregates) are measured after 70 and 90 d. The water regu-
lation measurements can be done independently in this setup
and can potentially be shifted in time but are now placed
at the end of the 90d period to spread the workload over
time. However, infiltration and leaching measurements will
be conducted over a fixed time period.

4.1  Primary production

For primary production, I follow the method developed by
Daou and Shipley (2019), with which they assessed gener-
alized soil fertility. They used four plant species as standard
bio-assay indicators that span a wide range of ecological life
history strategies (Table S1 in the Supplement). Using in-
tact soil cores incubated under fixed environmental condi-
tions in a growth cabinet, they estimated the relative growth
rates (RGRs) of each of the species in each soil. They used
that information to fit a measurement model, a specific type
of latent-variable model, which estimates the values of the
latent variable of generalized soil fertility (Fg). The mea-
surement model can be thought of as a kind of principal
components analysis but with more constraints imposed on
the solution; e.g. there is one common axis that all four in-
dicator species map onto. The aforementioned authors have
applied their method successfully to Canadian and French
soils with herbaceous plant communities (Daou et al., 2021;
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Table 1. Proposed approach to standardized quantification of the multiple functions of soils. The proposed indicators for each (sub-)function are used to fit an LVM that approximates
the generalized soil function. RGR denotes relative growth rate (g ml_ d1),andC / N is the carbon / nitrogen ratio.

Function

Subfunction

Method

Specifications

Challenges

External validation

Citation

Primary production

Soil fertility

Bio-assays with four indicator
plant species selected across
plant trait space using two
harvest dry mass RGRs are
determined

Four bio-assay species:
— Festuca rubra

— Trifolium pratense

— Arabidopsis thaliana
— Triticum aestivum
Up to 50d

Current species all high-light,
salt-intolerant species

Biomass production
using ingrowth cores in
the field

Daou and
Shipley (2019, 2020)

Climate regulation

Carbon
stabilization

Soil incubation with four
substrates that differ in terms
of C /N ratio

Measures:

— respiration

— microbial biomass C by
chloroform
fumigation—extraction (after
70d)

— C content in bulk soil and
water stable aggregate fractions
(after 90 d)

GHG emission
reduction

Measuring N> O and CHy
— indicators are fluxes in the
four substrate treatments

Four substrates:

—sawdust (C /N > 100)

— legume (common bean, C /N
~20-25)

— farmyard manure (C /N
~30-40)

— control

Gas exchange, measuring ¢0,
2-3, 4-6, 14 d intensively and
then to 90d less frequently

Standardization of substrate
quality

— C content in bulk soil
and aggregate fractions

— Microbial biomass C
by chloroform
fumigation—extraction

Doetterl et al. (2015),
Laub et al. (2022),
Vance et al. (1987)
This study

GHG emissions in situ

Gentile et al. (2008)
This study

Water regulation

‘Water storage

— Water infiltration

— Water retention curves using
suction cups

— Water repellency using water
drop penetration time (WDPT)
method

— Add fixed volume of water
into cylinder on top of soil,
measuring time to infiltration
— Add water to saturation and
lower moisture content using
suction cups

— Place drops on soil surface
and measure time to
penetration

Well established

Field-based water
content

Doerr et al. (2000)
This study

Water
purification

— Leachate collected after
induced leaching event

— Measure contaminant
quantity in chemical lab

— Optional: measure
ecotoxicity of leachate (and
soil)

Four treatments:

— nutrients: NO3+ POy

— heavy metals: Cd 4 Pb
— pesticides: glyphosate +
fluopyram

Safe laboratory procedures for
personnel and safe disposal of
toxic waste

Field-based lysimeter
experiment

Enell et al. (2016);
Lehmann et al. (2020),
Schulte et al. (2014)
This study

Biodiversity

Plant diversity

Phase 1: relative abundance
(contribution to evenness)
Phase 2: bipartite /5 coefficient
and dominant eigenvalue
among all of the species

Twice —45d

Are four plant species
sufficient?

Measure PSF in growth
cores and observe
biodiversity

Bever (2003); Mack et
al. (2019), Mack and
Bever (2014)

This study
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Figure 3. Design diagram of the soil function measurement setup, version 0.1.

Table 2. Proposal for standardized incubation conditions and mesocosm setup.

Factor Settings

Light 16 : 8 h day : night, 225 umol light quanta mZslat plant level
Temperature 26.5°C £ 2°C (mean & SD)

Air relative humidity 31% £8 %

Watering Add 20 mL water three times per week: Monday, Wednesday, Friday
Soil corer Gouge augur, 60 mm diameter, > 25 cm long

Container PVC tube, 60 mm x 25 cm (707 cm3)

Containers per soil

32 soil cores equalling containers

Daou and Shipley, 2019), showing that their Fg metric out-
performs other metrics as predictors of primary plant produc-
tion in mixed communities. With the help of Judith Nugteren
(then intern at NIOO-KNAW), we applied their method to
Dutch grassland soils, and our analysis confirms key aspects
of their method (see the Supplement). We found that soils
expected to be more fertile based on prior knowledge score
higher on the generalized fertility index (Fg), and the scores
are on the same numerical scale as those of Daou and Shipley
(2019); the fertility score is sensitive to fertilizer treatments
(Hoagland solution), and replicate soil samples give similar
scores, indicating a good level of repeatability.

To be representative of generalized soil fertility and, thus,
primary productivity, the indicator species have to be as eco-
logically different as possible in order to capture the maxi-
mum diversity in responses while being able to grow them
together in the same abiotic conditions (light, temperature,
soil water levels). Daou and Shipley used herbaceous species
of open grassland habitats and chose phytometer species that
(1) were as different as possible according to their ecology
and taxonomy; (2) have seeds that are easy to acquire by re-
searchers worldwide; and (3) have seeds from recognizable,
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reproducible, and stabilized varieties. The selected species
(Table S1) cover an interesting gradient of plants, with dif-
ferent root-associated mutualists, growth rates, and lifespans.
However, all of them require high light, are salt intolerant,
and do not reflect extreme soil acidities (Lamontagne and
Shipley, 2022). The question is, thus, if, indeed, these four
species are the optimal ones to select when used in an in-
tegrated assessment of soil multifunctionality aiming to be
applied worldwide.

4.2 Climate regulation

Climate regulation as a soil function has to be split into two
subfunctions (Table 1) due to the large differences in soil pro-
cesses involved: on the one hand, carbon storage and, on the
other hand, preventing emissions of other greenhouse gases
(mainly N,O and CHy4; Van de Broek et al., 2019). Car-
bon is stabilized long term in the soil when it is fixed to a
mineral particle matrix or bound in aggregates by microbes
(Cotrufo et al., 2019; Lavallee et al., 2020; Lehmann and
Kleber, 2015). This happens through microbial biochemical
transformations of rhizodeposits, litter, and microbial necro-
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mass (Kou et al., 2023; Sokol et al., 2022). The extent to
which this happens depends on the physico-chemical quality
of substrate inputs and the soil matrix properties (Georgiou et
al., 2022). Nitrous oxide emissions mainly result from micro-
bial transformations of fertilizers containing reactive nitro-
gen (Tian et al., 2020; Van de Broek et al., 2019; Zhou et al.,
2017), while methane emissions mainly occur under anaer-
obic conditions when soils are waterlogged and methanogen
activity is high (Dalal and Allen, 2008; Levy et al., 2012).
However, soils can also be sinks of methane and nitrous ox-
ide through methanotrophy and nitrous oxide consumption
(Dutaur and Verchot, 2007; Gatica et al., 2020; Tian et al.,
2020).

I think we can estimate both subfunctions using a single
incubation setup (Table 1, Fig. 3), where we use substrate
additions to elicit soil responses. We can estimate carbon
stabilization and, thus, storage capacity by incubating a set
of four standard substrates that vary widely in their biogeo-
chemical quality. High N substrates will also induce N>O
efflux. From low to high quality, I propose using sawdust
(C/N >100), farmyard manure (FYM; C/N ~ 30-40),
common bean (Phaseolus vulgaris, C /N ~20-25), and a
control where nothing is added (only basal respiration). Upon
substrate addition, the soils will be incubated at the same
conditions as above (Table 2), and gas efflux will be regu-
larly sampled for ~90d, with intensive sampling for the first
14 d. Using a gas chromatograph also suitable for quantifying
CO3, N7O, and CHy, all three major greenhouse gases could
be monitored simultaneously. Since CO; efflux may not re-
flect the longer-term C fate, I also propose measuring soil
microbial C using chloroform fumigation—extraction (Vance
et al., 1987) and the C content of soil fractions (bulk soil,
large macroaggregates (LMAs, > 2 mm), small macroaggre-
gates (SMAs, 2-0.25 mm), micro-aggregates (MiAs, 0.25—
0.053 mm), and free particles of the silt and clay fraction
(SiCl, < 0.053 mm) not included in aggregates (Laub et al.,
2022; Six et al., 2000). Microbial C and C in soil fractions
will be determined for samples taken on day 70 and 90, re-
spectively (Laub et al., 2022), and will be analysed using a
CN analyser. For substantial CH4 production to occur, anaer-
obic conditions are needed, and so sampling for CHy efflux
will need to be combined with the water storage measure-
ments where soil cores are wetted till saturation.

A key challenge here is how to standardize the substrates.
The best way would be to implement a standard protocol to
purposely cultivate the needed substrates directly, e.g. grow-
ing common bean in potting soil under standard conditions,
harvesting, drying, and applying on a mass basis. For saw-
dust and farmyard manure, this is less straightforward. In-
stead of FYM, compost may be an alternative; however, for
both, nutrient content varies among suppliers. Alternatively,
a set of synthetically produced compounds varying in terms
of their C /N ratio could be used to better standardize the
substrate input, but they need to have sufficient complexity
to reflect real-world conditions.
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4.3 Water regulation

Water regulation has been defined as “the capacity of the
soil to remove harmful compounds and the capacity of the
soil to receive, store, and conduct water for subsequent use
and to prevent droughts, flooding, and erosion” (Wall et al.,
2020). Water storage is the result of a balance between infil-
tration and runoff during precipitation events, holding water
in the soil matrix, and losses to evapotranspiration and perco-
lation to deeper soil layers and aquifers. Water purification is
concentrated on the breakdown and sequestration of harmful
compounds (Keesstra et al., 2012; Wall et al., 2020).

For water storage capacity, I propose measuring infiltra-
tion rate and water repellence (hydrophobicity) and estimat-
ing the water retention curve, including water-holding capac-
ity. Infiltration is the key input for water in most systems, but
a lack of infiltration may also importantly impact soil func-
tioning by generating horizontal soil runoff and erosion and,
alternatively, by waterlogging. To capture these elements a
substantial water influx needs to be tested. Water repellence
can easily be tested using the water drop penetration time
(WDPT) method (Doerr et al., 2000) and reflects an impor-
tant soil property when it is extremely dry or upon burning,
preventing infiltration (Stoof et al., 2011). The water reten-
tion curve can be estimated using standard protocols (see,
for example, ISO 11274:2019, https://www.iso.org/standard/
68256.html, last access: 20 May 2025), e.g. estimating pa-
rameters of the non-linear van Genuchten model. Based
on the retention curves, estimated values for field capacity
(—33 kPa) and permanent wilting point Py, (—1500 kPa) will
be used in the fitting of a latent-variable model for water stor-
age capacity.

With respect to purification (natural attenuation), the EU
Water Framework Directive focusses on nutrients, pesticides,
and trace elements for groundwater-mediated contamination
(European Parliament and the Council, 2006). Following
Lehmann et al. (2020) and Wall et al. (2020), I propose mea-
suring NO3 (Nolan and Stoner, 2000), NH4, and P in the
leachate collected after applying a standardized amount of
polluted water to the soil core to estimate nutrient retention
capacity. The scale used will be the percentage recovery of
the introduced amount of each nutrient upon measurement
using a continuous flow analysis AutoAnalyzer. For purifica-
tion and retention of pesticides (Froger et al., 2023; Tang and
Maggi, 2021), water polluted with glyphosate and fluopyram
will be added to the soil cores and concentrations measured
in the collected leachate. Glyphosate (https://sitem.herts.ac.
uk/aeru/ppdb/en/Reports/373.htm, last access: 20 May 2025)
is a commonly used herbicide. It is the most leached pesticide
globally (Tang and Maggi, 2021) and was dominantly found
in a French national survey (Froger et al., 2023) despite being
characterized as relatively immobile and of low leachabil-
ity in soils. It is moderately toxic to earthworms, fish, crus-
taceans, and birds but is still approved for used in the EU.
Also, its major biodegradation product, aminomethylphos-
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phonic (AMPA), needs to be quantified as it is also toxic to
earthworms. Fluopyram (https://sitem.herts.ac.uk/aeru/ppdb/
en/Reports/1362.htm, last access: 20 May 2025) is a fungi-
cide with nematicidal side effects and is highly leachable
and moderately toxic to aquatic life and earthworms. It is
approved in the EU and was frequently found in France
(Froger et al., 2023). Both pesticides can be quantified us-
ing reversed-phase high-performance liquid chromatography
coupled to a quadrupole mass spectrometer (HPLC-MS/MS;
Froger et al., 2023). To estimate heavy-metal retention I pro-
pose measuring Pb and Cd concentrations in leachate col-
lected upon the application of standardized polluted water
to the soil cores. These two elements can be used to predict
cation heavy-metal behaviour, known to negatively affect soil
organisms and plants (Nagajyoti et al., 2010; de Vries et al.,
2007) in general. Both can be estimated using flame atomic
absorption spectrometry (FAAS; America Public Health As-
sociation, 2017). The required input concentrations of the
pollutants for sensitive indicator use need to be derived em-
pirically.

While I think the response quantification (the indicators)
should best be done by assessment of the chemical concen-
trations in the leachate, this can be expensive and unfeasible
for less resource-rich labs. As an alternative, I propose con-
ducting bio-assays on aquatic life. For instance, algal growth
can be used to quantify responses to nutrient leaching, and
ecotoxicology protocols (e.g. using Daphnia spp.) can be
used to assess the toxic potential of the soil leachate. I think
the nutrient leachate needs to contain all assessed nutrients
in combination to avoid specific nutrient limitations for the
algae. For the toxicity tests, each compound (heavy metal,
pesticide) needs to be tested separately to estimate their pure
impact. However, it is known that mixtures are most toxic for
soil biodiversity (Beaumelle et al., 2023), and so a treatment
where aliquots of each contaminant are mixed may be critical
for extrapolation to field conditions. Furthermore, how direct
chemical quantification and ecotoxicology tests need to be
compared across studies requires further study. Likewise, it
is an open question as to whether responses to such differ-
ent chemicals can be captured effectively by a single latent
variable. Luckily, measurement model evaluation procedures
will quickly inform the researcher if a further division into
subfunctions is needed.

The impacts of leached contaminants also depend on the
subsoil characteristics (Brookfield et al., 2021), and so the
topsoil flux estimated here does not inform us regarding the
whole impact of a soil on its aqueous surroundings. Indeed,
models are needed that predict the fate of such leached con-
taminants in a given soil and landscape. Luckily, subsoils are
primarily governed by abiotic properties and processes, less
so by biological processes, and modelling could thus be more
straightforward.
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4.4 Supporting biodiversity

For biodiversity, I focus on a soil’s potential for support-
ing plant diversity. Plant diversity within a given location,
on the scale of the interacting plants (Casper et al., 2003),
is maintained by preventing or delaying competitive exclu-
sion (Fukami and Nakajima, 2013; Hardin, 1960). In most
terrestrial communities, this is importantly mediated by soil-
borne antagonists (Bever et al., 2015; Mack et al., 2019),
the net effects of which can be quantified by measuring the
soil’s plant—soil feedback (Bever, 2003; Van der Putten et al.,
2013).

Plant—soil feedback (PSF) is typically measured using a
two-phase greenhouse experiment. In the first phase, plants
are grown to condition the soil; i.e. they change the soil com-
munity and abiotic conditions in their species-specific way
(Van der Putten et al., 2013). In particular, they increase the
abundance of their associated soil-borne antagonists and mu-
tualists. In the second or feedback phase, individuals from
the same species or a different species are grown in the soil,
and the difference in biomass they produce across differently
conditioned soils provides information on the net plant—soil
feedback. Such data can be used to predict the long-term
coexistence of species using relatively simple mathematical
models that have recently been extended from pairwise to
multispecies models (Bever et al., 1997; Mack et al., 2019).
These models can be parameterized by measuring PSF in a
full-factorial soil conditioning and feedback design. Here, 1
propose implementing such a design for an artificial commu-
nity of four plant species with two growth phases of 45 d each
(Fig. 3). From the model we can estimate the net pairwise in-
teraction coefficient (/) among the species pairs but also the
real part of the dominant eigenvalue among all of the species,
which is a predictive measure for coexistence and stability in
the face of local species extinctions (Mack et al., 2019).

4.5 A new measurement framework for soil
multifunctionality

Once the selected indicators of the multiple soil functions
have been measured under standardized conditions for a
range of soils, we can start evaluating the adequacy of the
latent-variable model for each function. Measurement mod-
els for the soil function latent variables can be fit using stan-
dard tools used in the social sciences under the term fac-
tor analysis (Grace, 2006; Shipley, 2016); this includes ML-
based estimation in R package lavaan (Rosseel, 2012). Model
fit should first be assessed for the component measurement
models.

One of the key steps to ensure comparability across labs
will be to use internal benchmarks. Benchmarks are used
for temperature — for instance, by fixing the high and low
end of the scale to the boiling and freezing point of wa-
ter, respectively. We can do the same for soil function-
ing. For instance, for primary production, I propose us-
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Figure 4. Use of internal controls to benchmark the estimated latent
variables representing soil functions. Here, potting soil and poor
sand were used to benchmark the high and low ends of the general-
ized soil fertility scale, respectively. The samples included 30 soils
selected from within the Netherlands with contrasting fertility. Soil
samples were taken as field homogenates and incubated in a green-
house for 50d. Unless explicitly stated otherwise, Judith Nugteren
and I followed the procedures of Daou and Shipley (2019). Four
indicator plant species were grown in separate pots for each soil
and harvested, dried, and weighed at two points in time per plant
species. From these data, the relative growth rates per species and
soil were estimated and used to fit a measurement model from which
a single latent variable was extracted, called generalized soil fertil-
ity (Fg). See the Supplement for a detailed protocol, results, and a
discussion.

ing pure bare sand (e.g. standard sand used for testing
cement; ISO 679:2009(en); https://www.iso.org/standard/
45568.html, last access: 20 May 2025) for the low end of the
scale, while high-quality potting soil (growing medium) can
be used for the high end of the scale (Fig. 4). I also predict
that the subfunctions of water storage and purification and
carbon storage capacity will be meaningfully mapped using
these two internal benchmarks. Whether biodiversity regula-
tion also maps to these two extremes needs to be explored.
Another key step will be external validation of the pro-
posed soil function measurement instruments. For this, we
can leverage long-term established field experiments and re-
search networks such as the ILTER sites for arable systems
(Trajanov et al., 2019) and the Nutrient Network for (semi-
)natural grasslands (Borer et al., 2017). Within these net-
works important soil functions are measured, often over time,
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and provide a good context for comparing the ex situ soil
function assessments, quantifying soil potential for soil func-
tioning, proposed here with actual in situ measurements. I
wonder to what extend the same approaches as those I work
out here (Sect. 4) can be used to assess in situ soil functioning
as well. Primary productivity and biodiversity regulation can
be tested in the field by using in-growth cores in the field di-
rectly or by using camera systems (rhizotrons; Downie et al.,
2015). Lysimeters can be installed to assess leachate contam-
inations, and GHG emissions can be measured in response
to substrate additions. This would allow for an explicit 1 : 1
linkage with the ex situ soil potential measurements, allow-
ing for cross-global comparability, and in-situ measurements
that estimate real-world soil performance. This crucial step
can help us build up the causal machinery to link soil intrin-
sic and extrinsic factors together in a common model to ex-
plain and predict soil multifunctionality and, thus, soil health
in reality.

With this proposal to measure the four key soil functions
in hand, we can put the assessment of soil multifunctional-
ity on a common foundation. Naturally, this is an initial pro-
posal, and, through discussion and collaboration, I think it
will need to be refined (see Sect. 5 for several key concerns
and points of improvement). In Fig. 3, there is a schematic
representation of the experimental setup needed to imple-
ment the proposed scheme. The whole process involves tak-
ing 32 soil cores per target soil and incubating them together
for 90 d and taking various samples and measurements in the
meantime. The setup replies on simple equipment as much
as possible. However, critical infrastructure is the incubation
facility, e.g. controlled growth cabinets or greenhouses. In
addition, a gas chromatograph, CN analyser, AutoAnalyzer,
HPLC, and FAAS are needed. For labs without access to this
high-end equipment, collaborations with larger labs need to
be set up to conduct these analyses. For pollutants, using eco-
toxicology approaches represents a low-cost alternative, but
that needs to be calibrated to the analytical chemistry data. It
will be clear that the setup is not feasible for regular soil test-
ing for commercial services, given the long-term incubation
period, but that is not the intent.

5 Practical implementation in science and beyond

Generally, the practical and logistical choices for method se-
lection in soil quality assessments vary depending on the ob-
jectives: mechanistic understanding, functional land manage-
ment, and/or large-spatial-scale monitoring (Creamer et al.,
2022). However, the scheme I propose here aims to strike
a balance between these three objectives. The use of mea-
surement models linked to functions important to land man-
agement, standardized measurements that can be compared
across labs and thus potentially scaled up, and a flexible
framework that allows the integrated study of underlying
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mechanisms make this three-way integration possible. The
question is this: how well will it do all three?

Currently, I propose that samples be collected as intact soil
cores to preserve soil structure and macroscopic features of
soil so that the real vertical and horizontal variations are re-
flected in the measurements. These replicate cores need to
come from small homogeneous areas, accounting for varia-
tions in microclimate, soil type, and land use and manage-
ment. However, it was shown that intact cores and homoge-
nized soils generate almost identical pictures of soil fertility
(Daou and Shipley, 2020), which would make for much eas-
ier sample collection and handling. Similarly, earlier studies
using substrate additions sometimes incubate as little as 80 g
of soil (Doetterl et al., 2015); this would strongly minimize
substrate and soil requirements and may be an improvement
over what I propose here. Likewise, Daou and Shipley (2019)
conduct their work in a highly controlled growth cabinet, but
could the data still be measured with acceptable error vari-
ances in a glasshouse, a screenhouse, or a common garden
setup? In a common garden, of course, temperature and light
cannot be controlled, but maybe their impact can effectively
be approximated by using growing degree days as measured
by a local weather station or temperature loggers?

Loosening up this constraint will be important for appli-
cation of the method in the Global South where high-tech
facilities are strongly limiting. In general, the approach may
be challenging to implement “as is” in the Global South and
potentially in other labs as well. Currently, the method re-
lies on some advanced lab analytical equipment to get all the
required measurements. Further work needs to focus on gain-
ing meaningful measurements using simpler approaches, but
they need to be validated against the robust methods identi-
fied here.

What about sampling time? Do we need to include sea-
sonal dynamics, e.g. reflecting the massive turnover of bac-
terial and fungal communities over the year (Schadt et al.,
2003), or can we select a single most predictive period? I
think it would be most valuable if we could sample in the
seasonally cold and/or dry period when plant growth is most
limited. Then we could compare in situ soil functioning data
in the field during the subsequent growing season to our prior
off-season ex situ estimates. These linkages could be used to
build predictive models. An alternative would be to sample
during the peak season, but then, often, (1) farmers are busy
on their field, (2) crops are damaged by sampling and walk-
ing, and (3) researchers are occupied with other field experi-
ments and observations.

Here, 1 propose incubating soils under standard soil-
external conditions optimal for plant growth (see Table 2).
However, can these conditions be applied to all soils? What
about soils that experience regular waterlogging? What about
soils from low- or high-temperature conditions: will the shift
to mesic conditions cause unnatural behaviour of these soils?
Can we shorten the protocol? For biodiversity regulation, I
propose conducting two-phase plant—soil feedback experi-
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ments (Bever, 1994; Van der Putten et al., 2013), but from
the first phase alone, we can also use the shoot biomass data
to get an initial idea of the soil’s ability to support plant di-
versity by looking at the evenness of the relative abundances
(Pielou, 1966). Could that be predictive of phase-2 competi-
tive hierarchies?

I am strongly in favour of reporting on the measured soil
functions separately so that fellow scientists, policymakers,
and the public can make their own assessment and overlay
their own priorities with respect to the multiple functions of
soil. However, can these measure not be combined into a sin-
gle indicator? If they are combined with reports of the indi-
vidual functions, I think they can be. There is a huge body of
literature on multi-objective optimization methods (Pereira
et al., 2022) where combining objectives is operationalized
using explicit rules and criteria. Such optimization should be
done with maximum transparency about how functions are
weighted and combined for the aggregate index to have any
practical use. Also, the weighing should be informed by in-
volving multiple stakeholder group consultations, e.g. using
focus group discussions (Bampa et al., 2019; Schulte et al.,
2019).

The methods I propose are too cumbersome to be used di-
rectly in commercial soil testing but are crucial to advance
our foundational understanding. In order to be useful, indi-
cators need to be conceptually relevant; sensitive to changes;
informative for management; and effective, e.g. cheap and
fast (Lehmann et al., 2020). I argue that my method is con-
ceptually relevant and sensitive and that, when the measure-
ments are explicitly linked to environmental and manage-
ment data, the results can be used to inform management de-
cisions. The effectiveness is something requiring further test-
ing; see the preceding discussion for steps I want to take. Ad-
ditionally, we should explore how these soil functioning mea-
surements can be approximated by high-throughput screen-
ing techniques such as near-infrared spectroscopy, X-ray flu-
orescence, and potentially eco-acoustics and environmental
DNA.

Finally, to scale up and inform spatial planning and man-
agement choices worldwide, the measurements need to be
integrated into a strong framework, explaining the potential,
the synergies, and the trade-offs among functions mechanis-
tically (Fierer et al., 2021). Including biology in these mod-
els is key (Creamer et al., 2022; Fierer et al., 2021). As re-
cently as 2004, a map of known soil threats and degrada-
tions published by Science listed only physical and chemical
forms of soil degradation and was solely focussed on agri-
cultural production (AAAS, 2004). We have moved on but
into unknown territory. The mechanistic machinery is, for an
important part, there in the literature but needs to be con-
ceptually brought together, e.g. by using plant-microbe—soil
stoichiometry as an organizing principle.
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6 Discussion

In the wake of the Green Revolution, seeing widespread ap-
plication of chemical fertilizers and pesticide control, the im-
portance of soil science has dwindled. Now, due to the threats
exerted on human societies by climate change and biodiver-
sity loss, soil has been revalued as a central nexus integrating
many aspects of human wellbeing (Sigl et al., 2023). I be-
lieve that the study of soil multifunctionality and, thus, soil
health should lie at the heart of this new valuation of soil
and soil biodiversity and should be a key focus area in order
to bring humanity within the planetary boundaries (Steffen et
al., 2015) while simultaneously developing sustainable liveli-
hoods for all (Dearing et al., 2014; Fanning et al., 2022). This
also means that we have to put the study of soil multifunc-
tionality on solid empirical and theoretical footing, for which
this paper develops a concrete proposal (Sect. 4; Fig. 3).

A key improvement is that I separated the causes and
consequences of the soil functions. Focussing on the con-
sequences allows standardized measurements that can be
adopted across laboratories, both foundational and applied
research oriented, and allows them to be linked flexibly,
via the estimated latent variables, to competing mechanistic
frameworks through structural equation models. Linking the
ex situ functional measurements by mechanistic causal mod-
els is also important to understand the results within their
environmental context. It is well known that soil health indi-
cators need to be interpreted in site-specific ways (Creamer
et al., 2022; Vogel et al., 2018), and that means that a global
understanding needs to account for the relevant site speci-
ficities. For instance, clay content determines what range of
values to expect for organic matter content (Lehmann et al.,
2020), while soil texture shapes ecosystem recovery trajecto-
ries (Bach et al., 2010). A key question will be “how unique
are the properties and functions in this soil?” compared to the
soils in our reference set. To what extent can we extrapolate
our results meaningfully and based on which (minimum) set
of parameters? To answer these questions we need to bring
soil functional and contextual measurements together in a
common global database.

6.1 Outlook

There is a strong need to adjust our spatial planning of land
use to best fit to the natural capabilities of soils, for which we
need to know which soils do what functions best (Lehmann
and Stahr, 2010). In addition, for optimal management, we
need to know which functions can be combined for any given
soil and at what level of performance. When both of these
aspects are combined we can perform spatial optimization
where the service delivery capacity of our soils is explicitly
linked to the service provision required by society, e.g. un-
der different climate and socio-economic scenarios (Pereira
et al., 2010). In this way, we can also get beyond the chal-
lenge of different valuation of functions by individual stake-
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holders (Allan et al., 2015; Lehmann et al., 2020; Manning et
al., 2018) by organizing around societal needs in aggregate.
Here, I limited the soil function set to the four key func-
tions from the land management framework (Debeljak et al.,
2019; Schulte et al., 2014; Zwetsloot et al., 2021); how-
ever, soils are involved in more functions so should we ex-
pand the set? What about the quality of the plants produced?
Could we measure tissue N and vitamin content to indicate
food and feed quality? What about direct and indirect con-
tributions to human health (Sun et al., 2023; Wall et al.,
2015)? Can the soil suppress zoonoses and human disease
agents? Does a well-managed soil strengthen the human-
associated microbiome and immune systems? Does it re-
duce allergies? Is it a better source of therapeutics (Thiele-
Bruhn, 2021)? What about crop-associated disease suppres-
sion (Sagova-Mareckova et al., 2022)? To some extent, this
will be reflected in the primary production and biodiversity
functions, but disease agents are often host specific. How
can we generate an overall picture of the general and spe-
cific disease suppressiveness of a given soil? Can this be
done only through sequencing or can bio-assays of repre-
sentative pathogens reflect the activity of broad suites of or-
ganisms? And what about habitats for soil life or the larval
stages of aboveground arthropods? Can we find four indica-
tor species to derive simple tests, such as for plant diversity?
Do we need eDNA sequencing to predict belowground diver-
sity and composition? What about the predictive capabilities
of these measurements? How quickly does their predictive
capacity decline over time (Petchey et al., 2015)? What about
resistance and resilience to disturbance? Should experimen-
tal treatments be included in the setup (Harris et al., 2022)?
I suppose an additional period of tier-2 testing can be imple-
mented once the main measurements have been taken.

7 Conclusions

Here, I have worked out a simple but causally consistent
methodology to quantify soil multifunctionality and, thus,
soil health. The system is based on latent-variable modelling
(LVM), with each LV capturing one crucial soil function: pri-
mary production, climate regulation (split into carbon stor-
age and GHG emission reduction), water regulation (split
into water storage and purification capacity), and biodiver-
sity regulation (captured as plant diversity potential). This
system makes explicit the fact that soil functions are com-
plex soil properties, contingent on many drivers, that can-
not be measured directly using any device. It also explicitly
separates the causes and consequences of each soil function.
Using the consequences as indicators, we can estimate the
LV factors that approximate the soil intrinsic capacity to per-
form each function. For example, we can estimate soil fertil-
ity from plant growth. I hope this can be a common point of
departure in the soil health field to allow scientists to band to-
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gether and to organize soil multifunctionality and soil health
research more mechanistically.

Code availability. The R code to fit the soil multi-
functionality measurement models and to analyse the
Dutch generalized soil fertility model is available on
GitHub at  https://github.com/JasperWubs/SoilMFv(0.1  and
https://doi.org/10.5281/zenodo.16946924 (Wubs, 2025, last access:
26 August 2025). This also includes code simulating Simpson’s
paradox.

Data availability. The data for the generalized soil fertil-
ity test in Dutch soils are available as supplementary data
at  https://doi.org/10.6084/m9.figshare.29132744 (Wubs and
Nugteren, 2025, last access: 26 August 2025).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/s0il-11-609-2025-supplement.

Author contributions. I developed the concept from the earlier
work of Laurent Daou and Bill Shipley. I worked out the measure-
ment framework and led the Dutch generalized soil fertility index
experiment and analysed the data. I wrote the paper.

Competing interests. The author has declared that there are no
competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. I dedicate this paper to Sewall Wright FRS
for having invented path analysis and for the difficulties he expe-
rienced in having his method accepted. This paper is the result of
many interactions with colleagues, for which I am very grateful. In
particular, I want to thank Bill Shipley (University of Sherbrooke)
for introducing me to the concept of measurement models during his
Wageningen structural equation modelling course. I want to thank
Johan Six (ETH Ziirich) and Paul Bodelier (NIOO-KNAW) for
their thoughts on measuring soil carbon storage and greenhouse gas
emissions from soils. Walter Schenkeveld (WUR), Bert-Jan Groe-
nenberg (WUR), and Michiel Rutgers (RIVM) helped with the dis-
cussions on measuring the soil’s capacity for purification of pollu-
tants. Thanks also to Ciska Veen, Wim van der Putten, and Mer-
lijn Schram (all NIOO-KNAW), who provided general reflections
on quantifying soil multifunctionality and framing the story. Judith
Nugteren (then HAS Green Academy) helped me apply the general-
ized soil fertility index and some extensions to Dutch soils (Fig. 4)

https://doi.org/10.5194/s0il-11-609-2025

623

— thanks are given for her enthusiasm and diligent work. Finally, I
gratefully thank my partner, Ruth van Werven, and my family for
all of their efforts to support me during good and bad times.

Financial support. This research was funded by the European
Union (MSCA Postdoctoral Fellowship, MultiSol project, grant no.
101066007 to E. R. Jasper Wubs). The views and opinions ex-
pressed in this paper are, however, those of the author only and do
not necessarily reflect those of the European Union or the European
Research Executive Agency (REA). Neither the European Union
nor the granting authority can be held responsible for them. The
granting authority had no influence over the content of the work.

Review statement. This paper was edited by Luis Merino-Martin
and reviewed by Julien Demenois and one anonymous referee.

References

AAAS: Soil and Trouble, Science, 304, 1614-1615,
https://doi.org/10.1126/science.304.5677.1614, 2004.

Allan, E., Manning, P., Alt, F, Binkenstein, J., Blaser, S.,
Bliithgen, N., Bohm, S., Grassein, F., Holzel, N., Klaus, V.
H., Kleinebecker, T., Morris, E. K., Oelmann, Y., Prati, D.,
Renner, S. C., Rillig, M. C., Schaefer, M., Schloter, M.,
Schmitt, B., Schoning, 1., Schrumpf, M., Solly, E., Sorkau, E.,
Steckel, J., Steffen-Dewenter, 1., Stempfhuber, B., Tschapka,
M., Weiner, C. N., Weisser, W. W., Werner, M., Westphal,
C., Wilcke, W., and Fischer, M.: Land use intensification al-
ters ecosystem multifunctionality via loss of biodiversity and
changes to functional composition, Ecol. Lett., 18, 834-843,
https://doi.org/10.1111/ele.12469, 2015.

America Public Health Association: 3111 metals by flame
atomic absorption spectrometry, in: Standard Methods
For the Examination of Water and Wastewater, Amer-
ican Public Health Association, Washington DC, USA,
https://doi.org/10.2105/SMWW.2882.043, 2017.

Bach, E. M., Baer, S. G., Meyer, C. K., and Six, J.: Soil
texture affects soil microbial and structural recovery during
grassland restoration, Soil Biol. Biochem., 42, 2182-2191,
https://doi.org/10.1016/].s0ilbi0.2010.08.014, 2010.

Bampa, F., O’Sullivan, L., Madena, K., Sandén, T., Spiegel, H.,
Henriksen, C. B., Ghaley, B. B., Jones, A., Staes, J., Sturel, S.,
Trajanov, A., Creamer, R. E., and Debeljak, M.: Harvesting Eu-
ropean knowledge on soil functions and land management us-
ing multi-criteria decision analysis, Soil Use Manag., 35, 6-20,
https://doi.org/10.1111/sum.12506, 2019.

Baveye, P. C., Baveye, J., and Gowdy, J.: Soil “Ecosys-
tem” Services and Natural Capital: Critical Appraisal of
Research on Uncertain Ground, Front. Environ. Sci., 4,
https://doi.org/10.3389/fenvs.2016.00041, 2016.

Beaumelle, L., Tison, L., Eisenhauer, N., Hines, J., Malladi, S.,
Pelosi, C., Thouvenot, L., and Phillips, H. R. P.: Pesticide effects
on soil fauna communities — A meta-analysis, J. Appl. Ecol., 60,
1239-1253, https://doi.org/10.1111/1365-2664.14437, 2023.

SOIL, 11, 609-628, 2025



https://github.com/JasperWubs/SoilMFv0.1
https://doi.org/10.5281/zenodo.16946924
https://doi.org/10.6084/m9.figshare.29132744
https://doi.org/10.5194/soil-11-609-2025-supplement
https://doi.org/10.1126/science.304.5677.1614
https://doi.org/10.1111/ele.12469
https://doi.org/10.2105/SMWW.2882.043
https://doi.org/10.1016/j.soilbio.2010.08.014
https://doi.org/10.1111/sum.12506
https://doi.org/10.3389/fenvs.2016.00041
https://doi.org/10.1111/1365-2664.14437

624

Bever, J. D.: Feedback between plants and their soil commu-
nities in an old field community, Ecology, 75, 1965-1977,
https://doi.org/10.2307/1941601, 1994.

Bever, J. D.: Soil community feedback and the coexistence
of competitors: conceptual frameworks and empirical tests,
New Phytol., 157, 465-473, https://doi.org/10.1046/j.1469-
8137.2003.00714.x, 2003.

Bever, J. D., Westover, K. M., and Antonovics, J.: Incorporating the
soil community into plant population dynamics: the utility of the
feedback approach, J. Ecol., 85, 561-573, 1997.

Bever, J. D., Mangan, S., and Alexander, H. M.: Mainte-
nance of plant species diversity by pathogens, Annu. Rev.
Ecol. Evol. Syst., 46, 305-325, https://doi.org/10.1146/annurev-
ecolsys-112414-054306, 2015.

Blackwell, M. S. A., Darch, T., and Haslam, R. P.: Phospho-
rus Use Efficiency and Fertilizers: future opportunities for im-
provements, Front. Agric. Sci. Eng. — FASE, 6, 332-340,
https://doi.org/10.15302/J-FASE-2019274, 2019.

Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S., and
Seabloom, E. W.: A decade of insights into grassland ecosystem
responses to global environmental change, Nat. Ecol. Evol., 1,
0118, https://doi.org/10.1038/s41559-017-0118, 2017.

Bradford, M. A., Wood, S. A., Bardgett, R. D., Black, H. L.
J., Bonkowski, M., Eggers, T., Grayston, S. J., Kandeler, E.,
Manning, P., Setild, H., and Jones, T. H.: Reply to Byrnes et
al.: Aggregation can obscure understanding of ecosystem mul-
tifunctionality, P. Natl. Acad. Sci. USA, 111, E5491-E5491,
https://doi.org/10.1073/pnas.1421203112, 2014.

Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W.
R., and Wood, S. A.: Understanding the dominant con-
trols on litter decomposition, J. Ecol., 104, 229-238,
https://doi.org/10.1111/1365-2745.12507, 2016.

Bradford, M. A., Veen, G. F., Bonis, A., Bradford, E. M., Classen,
A. T., Cornelissen, J. H. C., Crowther, T. W, Long, J. R. D,
Freschet, G. T., Kardol, P., Manrubia-Freixa, M., Maynard, D.
S., Newman, G. S., Logtestijn, R. S. P., Viketoft, M., Wardle, D.
A., Wieder, W. R., Wood, S. A., and van der Putten, W. H.: A
test of the hierarchical model of litter decomposition, Nat. Ecol.
Evol., 1, 18361845, https://doi.org/10.1038/s41559-017-0367-
4,2017.

Brookfield, A. E., Hansen, A. T., Sullivan, P. L., Czuba, J.
A., Kirk, M. F., Li, L., Newcomer, M. E., and Wilkin-
son, G.: Predicting algal blooms: Are we overlook-
ing groundwater?, Sci. Total Environ., 769, 144442,
https://doi.org/10.1016/j.scitotenv.2020.144442, 2021.

Biinemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E,
De Deyn, G., de Goede, R., Fleskens, L., Geissen, V.,
Kuyper, T. W., Mider, P., Pulleman, M., Sukkel, W.,
van Groenigen, J. W., and Brussaard, L.: Soil quality
— A critical review, Soil Biol. Biochem., 120, 105-125,
https://doi.org/10.1016/j.s0ilbio.2018.01.030, 2018.

Bymes, J. E. K., Gamfeldt, L., Isbell, F., Lefcheck, J. S., Griffin,
J. N., Hector, A., Cardinale, B. J., Hooper, D. U., Dee, L. E.,
and Duffy, J. E.: Investigating the relationship between biodiver-
sity and ecosystem multifunctionality: challenges and solutions,
Methods Ecol. Evol., 5, 111-124, https://doi.org/10.1111/2041-
210X.12143, 2014.

SOIL, 11, 609-628, 2025

E. R. J. Wubs: Benchmarking soil multifunctionality

Byrnes, J. E. K., Roger, F., and Bagchi, R.: Understandable multi-
functionality measures using Hill numbers, Oikos, 2023, 09402,
https://doi.org/10.1111/0ik.09402, 2023.

Casper, B. B., Schenk, H. J., and Jackson, R. B.: Defining a
plant’s belowground zone of influence, Ecology, 84, 2313-2321,
https://doi.org/10.1890/02-0287, 2003.

Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and
Lugato, E.: Soil carbon storage informed by particulate and
mineral-associated organic matter, Nat. Geosci., 12, 989-994,
https://doi.org/10.1038/s41561-019-0484-6, 2019.

Creamer, R. E., Barel, J. M., Bongiorno, G., and Zwet-
sloot, M. J.: The life of soils: Integrating the who and
how of multifunctionality, Soil Biol. Biochem., 166, 108561,
https://doi.org/10.1016/j.s0ilbio.2022.108561, 2022.

Dalal, R. C. and Allen, D. E.: Greenhouse gas fluxes
from natural ecosystems, Aust. J. Bot., 56, 369-407,
https://doi.org/10.1071/BT07128, 2008.

Daou, L. and Shipley, B.: The measurement and quan-
tification of generalized gradients of soil fertility rele-
vant to plant community ecology, Ecology, 100, 02549,
https://doi.org/10.1002/ecy.2549, 2019.

Daou, L. and Shipley, B.: Simplifying the protocol for the
quantification of generalized soil fertility gradients in
grassland community ecology, Plant Soil, 457, 457468,
https://doi.org/10.1007/s11104-020-04729-4, 2020.

Daou, L., Garnier, E., and Shipley, B.: Quantifying the relationship
linking the community-weighted means of plant traits and soil
fertility, Ecology, 102, e03454, https://doi.org/10.1002/ecy.3454,
2021.

Dearing, J. A., Wang, R., Zhang, K., Dyke, J. G., Haberl, H., Hos-
sain, Md. S., Langdon, P. G., Lenton, T. M., Raworth, K., Brown,
S., Carstensen, J., Cole, M. J., Cornell, S. E., Dawson, T. P., Don-
caster, C. P, Eigenbrod, F., Florke, M., Jeffers, E., Mackay, A.
W., Nykvist, B., and Poppy, G. M.: Safe and just operating spaces
for regional social-ecological systems, Glob. Environ. Change,
28, 227-238, https://doi.org/10.1016/j.gloenvcha.2014.06.012,
2014.

Debeljak, M., Trajanov, A., Kuzmanovski, V., Schroder, J., Sandén,
T., Spiegel, H., Wall, D. P., Van de Broek, M., Rutgers, M.,
Bampa, F.,, Creamer, R. E., and Henriksen, C. B.: A Field-
Scale Decision Support System for Assessment and Man-
agement of Soil Functions, Front. Environ. Sci.,, 7, 115,
https://doi.org/10.3389/fenvs.2019.00115, 2019.

Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries,
T. C., Gaitan, J. J., Encinar, D., Berdugo, M., Campbell, C.
D., and Singh, B. K.: Microbial diversity drives multifunc-
tionality in terrestrial ecosystems, Nat. Commun., 7, 10541,
https://doi.org/10.1038/ncomms 10541, 2016.

Doerr, S. H., Shakesby, R. A., and Walsh, R. P. D.: Soil
water repellency: its causes, characteristics and hydro-
geomorphological significance, Earth-Sci. Rev., 51, 33-65,
https://doi.org/10.1016/S0012-8252(00)00011-8, 2000.

Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K.,
Casanova Pinto, M., Casanova-Katny, A., Muiioz, C., Boudin,
M., Zagal Venegas, E., and Boeckx, P.: Soil carbon storage con-
trolled by interactions between geochemistry and climate, Nat.
Geosci., 8, 780-783, https://doi.org/10.1038/nge02516, 2015.

Dooley, A., Isbell, F., Kirwan, L., Connolly, J., Finn, J. A., and Bro-
phy, C.: Testing the effects of diversity on ecosystem multifunc-

https://doi.org/10.5194/s0il-11-609-2025


https://doi.org/10.2307/1941601
https://doi.org/10.1046/j.1469-8137.2003.00714.x
https://doi.org/10.1046/j.1469-8137.2003.00714.x
https://doi.org/10.1146/annurev-ecolsys-112414-054306
https://doi.org/10.1146/annurev-ecolsys-112414-054306
https://doi.org/10.15302/J-FASE-2019274
https://doi.org/10.1038/s41559-017-0118
https://doi.org/10.1073/pnas.1421203112
https://doi.org/10.1111/1365-2745.12507
https://doi.org/10.1038/s41559-017-0367-4
https://doi.org/10.1038/s41559-017-0367-4
https://doi.org/10.1016/j.scitotenv.2020.144442
https://doi.org/10.1016/j.soilbio.2018.01.030
https://doi.org/10.1111/2041-210X.12143
https://doi.org/10.1111/2041-210X.12143
https://doi.org/10.1111/oik.09402
https://doi.org/10.1890/02-0287
https://doi.org/10.1038/s41561-019-0484-6
https://doi.org/10.1016/j.soilbio.2022.108561
https://doi.org/10.1071/BT07128
https://doi.org/10.1002/ecy.2549
https://doi.org/10.1007/s11104-020-04729-4
https://doi.org/10.1002/ecy.3454
https://doi.org/10.1016/j.gloenvcha.2014.06.012
https://doi.org/10.3389/fenvs.2019.00115
https://doi.org/10.1038/ncomms10541
https://doi.org/10.1016/S0012-8252(00)00011-8
https://doi.org/10.1038/ngeo2516

E. R. J. Wubs: Benchmarking soil multifunctionality

tionality using a multivariate model, Ecol. Lett., 18, 1242-1251,
https://doi.org/10.1111/ele. 12504, 2015.

Downie, H. F., Adu, M. O., Schmidt, S., Otten, W., Dupuy, L. X.,
White, P. J., and Valentine, T. A.: Challenges and opportuni-
ties for quantifying roots and rhizosphere interactions through
imaging and image analysis, Plant Cell Environ., 38, 1213-1232,
https://doi.org/10.1111/pce.12448, 2015.

Dutaur, L. and Verchot, L. V.. A global inventory of the
soil CHy sink, Global Biogeochem. Cy., 21, GB4013,
https://doi.org/10.1029/2006GB002734, 2007.

Enell, A., Lundstedt, S., Arp, H. P. H., Josefsson, S., Cor-
nelissen, G., Wik, O., and Berggren Kleja, D.: Combin-
ing Leaching and Passive Sampling To Measure the Mo-
bility and Distribution between Porewater, DOC, and Col-
loids of Native Oxy-PAHs, N-PACs, and PAHs in Historically
Contaminated Soil, Environ. Sci. Technol., 50, 11797-11805,
https://doi.org/10.1021/acs.est.6b02774, 2016.

European Parliament and the Council: Directive 2006/118/EC of the
European Parliament and of the Council of 12 December 2006 on
the protection of groundwater against pollution and deterioration,
Official Journal of the European Union, L372, 19-31, 2006.

Fanning, A. L., O’Neill, D. W., Hickel, J., and Roux, N.: The social
shortfall and ecological overshoot of nations, Nat. Sustain., 5,
26-36, https://doi.org/10.1038/s41893-021-00799-z, 2022.

FAO and ITPS: Status of the World’s Soil Resources (SWSR) —
Main Report, Food and Agriculture Organization of the United
Nations and Intergovernmental Technical Panel on Soils, Rome,
Italy, ISBN 978-92-5-109004-6, 2015.

Fierer, N., Wood, S. A., and Bueno de Mesquita, C.
P.: How microbes can, and cannot, be used to as-
sess soil health, Soil Biol. Biochem., 153, 108111,
https://doi.org/10.1016/j.s0ilbi0.2020.108111, 2021.

Froger, C., Jolivet, C., Budzinski, H., Pierdet, M., Caria,
G., Saby, N. P. A, Arrouvays, D., and Bispo, A.: Pes-
ticide Residues in French Soils: Occurrence, Risks,
and Persistence, Environ. Sci. Technol.,, 57, 7818-7827,
https://doi.org/10.1021/acs.est.2c09591, 2023.

Fukami, T. and Nakajima, M.: Complex plant—soil interactions
enhance plant species diversity by delaying community con-
vergence, J. Ecol., 101, 316-324, https://doi.org/10.1111/1365-
2745.12048, 2013.

Garland, G., Banerjee, S., Edlinger, A., Oliveira, E. M., Her-
zog, C., Wittwer, R., Philippot, L., Maestre, F. T., and Heij-
den, M. G. A. van der: A closer look at the functions behind
ecosystem multifunctionality: A review, J. Ecol., 109, 600-613,
https://doi.org/10.1111/1365-2745.13511, 2021.

Gatica, G., Ferniandez, M. E., Juliarena, M. P., and Gyenge,
J.:  Environmental and anthropogenic drivers of soil
methane fluxes in forests: Global patterns and among-
biomes differences, Glob. Change Biol., 26, 6604-6615,
https://doi.org/10.1111/gcb.15331, 2020.

Gentile, R., Vanlauwe, B., Chivenge, P., and Six, J.: Interactive ef-
fects from combining fertilizer and organic residue inputs on
nitrogen transformations, Soil Biol. Biochem., 40, 2375-2384,
https://doi.org/10.1016/j.50ilbio.2008.05.018, 2008.

Georgiou, K., Jackson, R. B., Vinduskova, O., Abramoff, R. Z.,
Ahlstrom, A., Feng, W., Harden, J. W., Pellegrini, A. F. A., Pol-
ley, H. W, Soong, J. L., Riley, W. J., and Torn, M. S.: Global
stocks and capacity of mineral-associated soil organic carbon,

https://doi.org/10.5194/s0il-11-609-2025

625

Nat. Commun., 13, 3797, https://doi.org/10.1038/s41467-022-
31540-9, 2022.

Grace, J. B.: Structural equation modeling and
natural systems, Cambridge University Press,
https://doi.org/10.1017/CB09780511617799, 2006.

Grace, J. B., Anderson, T. M., OIff, H., and Scheiner, S. M.: On
the specification of structural equation models for ecological
systems, Ecol. Monogr., 80, 67-87, https://doi.org/10.1890/09-
0464.1, 2010.

Grace, J. B., Schoolmaster, D. R., Guntenspergen, G. R., Little, A.
M., Mitchell, B. R., Miller, K. M., and Schweiger, E. W.: Guide-
lines for a graph-theoretic implementation of structural equa-
tion modeling, Ecosphere, 3, 73, https://doi.org/10.1890/ES12-
00048.1, 2012.

Grime, P. J.: Plant strategies, vegetation processes, and ecosys-
tem properties, 2nd Edn., John Wiley & Sons, Chichester, UK,
ISBN 978-0-470-85040-4, 2001.

Hardin, G.: The competitive exclusion principle, Science, 131,
1292-1297, 1960.

Harris, J. A., Evans, D. L., and Mooney, S. J.: A new
theory for soil health, Eur. J. Soil Sci., 73, el13292,
https://doi.org/10.1111/ejss.13292, 2022.

Joreskog, K. G.: Some contributions to maximum likelihood factor
analysis, Psychometrika, 32, 443-482, 1967.

Keesstra, S., Geissen, V., Mosse, K., Piiranen, S., Scudiero,
E., Leistra, M., and van Schaik, L.: Soil as a filter for
groundwater quality, Curr. Opin. Environ. Sustain., 4, 507-516,
https://doi.org/10.1016/j.cosust.2012.10.007, 2012.

Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith,
P, Cerda, A., Montanarella, L., Quinton, J. N., Pachepsky,
Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S.,
Mol, G., Jansen, B., and Fresco, L. O.: The significance
of soils and soil science towards realization of the United
Nations Sustainable Development Goals, SOIL, 2, 111-128,
https://doi.org/10.5194/s0il-2-111-2016, 2016.

Kou, X., Morrién, E., Tian, Y., Zhang, X., Lu, C., Xie, H., Liang,
W., Li, Q., and Liang, C.: Exogenous carbon turnover within the
soil food web strengthens soil carbon sequestration through mi-
crobial necromass accumulation, Glob. Change Biol., 29, 4069—
4080, https://doi.org/10.1111/gcb.16749, 2023.

Lade, S. J., Steffen, W., de Vries, W., Carpenter, S. R., Donges,
J. F., Gerten, D., Hoff, H., Newbold, T., Richardson, K., and
Rockstrom, J.: Human impacts on planetary boundaries ampli-
fied by Earth system interactions, Nat. Sustain., 3, 119-128,
https://doi.org/10.1038/541893-019-0454-4, 2020.

Lal, R.: Soil organic matter and water retention, Agron. J., 112,
3265-3277, https://doi.org/10.1002/agj2.20282, 2020.

Lal, R., Bouma, J., Brevik, E., Dawson, L., Field, D. J., Glaser,
B., Hatano, R., Hartemink, A. E., Kosaki, T., Lascelles, B.,
Monger, C., Muggler, C., Ndzana, G. M., Norra, S., Pan, X.,
Paradelo, R., Reyes-Sanchez, L. B., Sandén, T., Singh, B. R,
Spiegel, H., Yanai, J., and Zhang, J.: Soils and sustainable
development goals of the United Nations: An International
Union of Soil Sciences perspective, Geoderma Reg., 25, e00398,
https://doi.org/10.1016/j.geodrs.2021.e00398, 2021.

Lamontagne, X. and Shipley, B.: A measure of generalized soil fer-
tility that is largely independent of species identity, Ann. Bot.,
129, 29-36, https://doi.org/10.1093/aob/mcab121, 2022.

SOIL, 11, 609-628, 2025



https://doi.org/10.1111/ele.12504
https://doi.org/10.1111/pce.12448
https://doi.org/10.1029/2006GB002734
https://doi.org/10.1021/acs.est.6b02774
https://doi.org/10.1038/s41893-021-00799-z
https://doi.org/10.1016/j.soilbio.2020.108111
https://doi.org/10.1021/acs.est.2c09591
https://doi.org/10.1111/1365-2745.12048
https://doi.org/10.1111/1365-2745.12048
https://doi.org/10.1111/1365-2745.13511
https://doi.org/10.1111/gcb.15331
https://doi.org/10.1016/j.soilbio.2008.05.018
https://doi.org/10.1038/s41467-022-31540-9
https://doi.org/10.1038/s41467-022-31540-9
https://doi.org/10.1017/CBO9780511617799
https://doi.org/10.1890/09-0464.1
https://doi.org/10.1890/09-0464.1
https://doi.org/10.1890/ES12-00048.1
https://doi.org/10.1890/ES12-00048.1
https://doi.org/10.1111/ejss.13292
https://doi.org/10.1016/j.cosust.2012.10.007
https://doi.org/10.5194/soil-2-111-2016
https://doi.org/10.1111/gcb.16749
https://doi.org/10.1038/s41893-019-0454-4
https://doi.org/10.1002/agj2.20282
https://doi.org/10.1016/j.geodrs.2021.e00398
https://doi.org/10.1093/aob/mcab121

626

Laub, M., Schlichenmeier, S., Vityakon, P., and Cadisch, G.: Lit-
ter Quality and Microbes Explain Aggregation Differences in
a Tropical Sandy Soil, J. Soil Sci. Plant Nutr., 22, 848-860,
https://doi.org/10.1007/s42729-021-00696-6, 2022.

Lavallee, J. M., Soong, J. L., and Cotrufo, M. E.: Conceptualizing
soil organic matter into particulate and mineral-associated forms
to address global change in the 21st century, Glob. Change Biol.,
26, 261-273, https://doi.org/10.1111/gcb.14859, 2020.

Leclere, D., Obersteiner, M., Barrett, M., Butchart, S. H. M., Chaud-
hary, A., De Palma, A., DeClerck, F. A. J., Di Marco, M., Doel-
man, J. C., Diirauer, M., Freeman, R., Harfoot, M., Hasegawa,
T., Hellweg, S., Hilbers, J. P, Hill, S. L. L., Humpendoder, F., Jen-
nings, N., Krisztin, T., Mace, G. M., Ohashi, H., Popp, A., Purvis,
A., Schipper, A. M., Tabeau, A., Valin, H., van Meijl, H., van
Zeist, W.-]., Visconti, P.,, Alkemade, R., Almond, R., Bunting, G.,
Burgess, N. D., Cornell, S. E., Di Fulvio, F, Ferrier, S., Fritz, S.,
Fujimori, S., Grooten, M., Harwood, T., Havlik, P., Herrero, M.,
Hoskins, A. J., Jung, M., Kram, T., Lotze-Campen, H., Matsui,
T., Meyer, C., Nel, D., Newbold, T., Schmidt-Traub, G., Stehfest,
E., Strassburg, B. B. N., van Vuuren, D. P., Ware, C., Watson, J.
E. M., Wu, W,, and Young, L.: Bending the curve of terrestrial
biodiversity needs an integrated strategy, Nature, 585, 551-556,
https://doi.org/10.1038/s41586-020-2705-y, 2020.

Lehmann, A. and Stahr, K.: The potential of soil func-
tions and planner-oriented soil evaluation to achieve sus-
tainable land wuse, J. Soils Sediments, 10, 1092-1102,
https://doi.org/10.1007/s11368-010-0207-5, 2010.

Lehmann, J. and Kleber, M.: The contentious nature of soil organic
matter, Nature, 528, 60—68, https://doi.org/10.1038/nature 16069,
2015.

Lehmann, J., Bossio, D. A., Kogel-Knabner, I., and Rillig, M.
C.: The concept and future prospects of soil health, Nat. Rev.
Earth Environ., 1-10, https://doi.org/10.1038/s43017-020-0080-
8, 2020.

Levy, P. E., Burden, A., Cooper, M. D. A., Dinsmore, K. J.,
Drewer, J., Evans, C., Fowler, D., Gaiawyn, J., Gray, A., Jones,
S. K., Jones, T., McNamara, N. P., Mills, R., Ostle, N., Shep-
pard, L. J., Skiba, U., Sowerby, A., Ward, S. E., and Zielifiski,
P.: Methane emissions from soils: synthesis and analysis of
a large UK data set, Glob. Change Biol., 18, 1657-1669,
https://doi.org/10.1111/j.1365-2486.2011.02616.x, 2012.

Maaz, T. M., Heck, R. H., Glazer, C. T., Loo, M. K., Zayas, J.
R., Krenz, A., Beckstrom, T., Crow, S. E., and Deenik, J. L.:
Measuring the immeasurable: A structural equation modeling ap-
proach to assessing soil health, Sci. Total Environ., 870, 161900,
https://doi.org/10.1016/j.scitotenv.2023.161900, 2023.

Mack, K. M. L. and Bever, J. D.: Coexistence and relative abun-
dance in plant communities are determined by feedbacks when
the scale of feedback and dispersal is local, J. Ecol., 102, 1195—
1201, https://doi.org/10.1111/1365-2745.12269, 2014.

Mack, K. M. L., Eppinga, M. B., and Bever, J. D.: Plant-
soil feedbacks promote coexistence and resilience in
multi-species communities, PLOS ONE, 14, e0211572,
https://doi.org/10.1371/journal.pone.0211572, 2019.

Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre,
F. T., Mace, G., Whittingham, M. J., and Fischer, M.: Re-
defining ecosystem multifunctionality, Nat. Ecol. Evol., 2, 427,
https://doi.org/10.1017/CB0O9780511803161, 2018.

SOIL, 11, 609-628, 2025

E. R. J. Wubs: Benchmarking soil multifunctionality

Montanarella, L. and Panagos, P.: The relevance of sustainable soil
management within the European Green Deal, Land Use Policy,
100, 104950, https://doi.org/10.1016/j.1andusepol.2020.104950,
2021.

Nagajyoti, P. C., Lee, K. D., and Sreekanth, T. V. M.: Heavy met-
als, occurrence and toxicity for plants: a review, Environ. Chem.
Lett., 8, 199-216, https://doi.org/10.1007/s10311-010-0297-8,
2010.

Nolan, B. T. and Stoner, J. D.: Nutrients in Groundwaters of the
Conterminous United States, 1992—-1995, Environ. Sci. Technol.,
34, 1156-1165, https://doi.org/10.1021/es9907663, 2000.

Norris, C. E., Bean, G. M., Cappellazzi, S. B., Cope, M., Greub, K.
L. H., Liptzin, D., Rieke, E. L., Tracy, P. W., Morgan, C. L. S.,
and Honeycutt, C. W.: Introducing the North American project to
evaluate soil health measurements, Agron. J., 112, 3195-3215,
https://doi.org/10.1002/agj2.20234, 2020.

Orgiazzi, A., Panagos, P, Ferndndez-Ugalde, O., Wojda, P,
Labouyrie, M., Ballabio, C., Franco, A., Pistocchi, A.,
Montanarella, L., and Jones, A.: LUCAS Soil Biodiver-
sity and LUCAS Soil Pesticides, new tools for research
and policy development, Eur. J. Soil Sci., 73, e13299,
https://doi.org/10.1111/ejss.13299, 2022.

Pearl, J.: Causality, Cambridge University Press, 487 pp.,
https://doi.org/10.1017/CB09780511803161, 2009.

Pearson, K.: The grammar of science, 3rd Edn., Adam & Charles
Black, London, 567 pp., 1911.

Pereira, H. M., Leadley, P. W., Proenca, V., Alkemade, R., Scharle-
mann, J. P. W., Fernandez-Manjarrés, J. F., Aratjo, M. B., Bal-
vanera, P., Biggs, R., Cheung, W. W. L., Chini, L., Cooper, H.
D., Gilman, E. L., Guénette, S., Hurtt, G. C., Huntington, H.
P., Mace, G. M., Oberdorff, T., Revenga, C., Rodrigues, P., Sc-
holes, R. J., Sumaila, U. R., and Walpole, M.: Scenarios for
Global Biodiversity in the 21st Century, Science, 330, 1496—
1501, https://doi.org/10.1126/science.1196624, 2010.

Pereira, J. L. J., Oliver, G. A., Francisco, M. B., Cunha, S.
S., and Gomes, G. F.: A Review of Multi-objective Opti-
mization: Methods and Algorithms in Mechanical Engineer-
ing Problems, Arch. Comput. Methods Eng., 29, 2285-2308,
https://doi.org/10.1007/s11831-021-09663-x, 2022.

Petchey, O. L., Pontarp, M., Massie, T. M., Kéfi, S., Ozgul, A.,
Weilenmann, M., Palamara, G. M., Altermatt, F., Matthews,
B., Levine, J. M., Childs, D. Z., McGill, B. J., Schaepman,
M. E., Schmid, B., Spaak, P., Beckerman, A. P., Pennekamp,
F., and Pearse, 1. S.: The ecological forecast horizon, and ex-
amples of its uses and determinants, Ecol. Lett., 18, 597-611,
https://doi.org/10.1111/ele.12443, 2015.

Pielou, E. C.. The measurement of diversity in different
types of biological collections, J. Theor. Biol., 13, 131-144,
https://doi.org/10.1016/0022-5193(66)90013-0, 1966.

Rosseel, Y. lavaan: An R Package for Structural
Equation = Modeling, J.  Stat.  Softw., 48, 1-36,
https://doi.org/10.18637/jss.v048.102, 2012.

Sagova-Mareckova, M., Omelka, M., and Kopecky, J.: The
Golden Goal of Soil Management: Disease-Suppressive
Soils, Phytopathology®, PHYTO-09-22-0324-KD,
https://doi.org/10.1094/PHY TO-09-22-0324-KD, 2022.

Schadt, C. W., Martin, A. P, Lipson, D. A., and Schmidt,
S. K.: Seasonal dynamics of previously unknown fun-

https://doi.org/10.5194/s0il-11-609-2025


https://doi.org/10.1007/s42729-021-00696-6
https://doi.org/10.1111/gcb.14859
https://doi.org/10.1038/s41586-020-2705-y
https://doi.org/10.1007/s11368-010-0207-5
https://doi.org/10.1038/nature16069
https://doi.org/10.1038/s43017-020-0080-8
https://doi.org/10.1038/s43017-020-0080-8
https://doi.org/10.1111/j.1365-2486.2011.02616.x
https://doi.org/10.1016/j.scitotenv.2023.161900
https://doi.org/10.1111/1365-2745.12269
https://doi.org/10.1371/journal.pone.0211572
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1016/j.landusepol.2020.104950
https://doi.org/10.1007/s10311-010-0297-8
https://doi.org/10.1021/es9907663
https://doi.org/10.1002/agj2.20234
https://doi.org/10.1111/ejss.13299
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1126/science.1196624
https://doi.org/10.1007/s11831-021-09663-x
https://doi.org/10.1111/ele.12443
https://doi.org/10.1016/0022-5193(66)90013-0
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.1094/PHYTO-09-22-0324-KD

E. R. J. Wubs: Benchmarking soil multifunctionality

gal lineages in tundra soils, Science, 301,
https://doi.org/10.1126/science.1086940, 2003.
Schreefel, L., de Boer, 1. J. M., Timler, C. J., Groot, J. C. J., Zwet-

sloot, M. J., Creamer, R. E., Schrijver, A. P, van Zanten, H. H. E.,
and Schulte, R. P. O.: How to make regenerative practices work
on the farm: A modelling framework, Agric. Syst., 198, 103371,

https://doi.org/10.1016/j.agsy.2022.103371, 2022.

Schroder, J. J., Schulte, R. P. O., Creamer, R. E., Delgado, A.,
Leeuwen, J. van, Lehtinen, T., Rutgers, M., Spiegel, H., Staes,
J., Téth, G., and Wall, D. P.: The elusive role of soil quality
in nutrient cycling: a review, Soil Use Manag., 32, 476-486,
https://doi.org/10.1111/sum.12288, 2016.

Schulte, R. P. O., Creamer, R. E., Donnellan, T., Far-
relly, N., Fealy, R., O’Donoghue, C., and O’hUallachain,
D.: Functional land management: A framework for man-
aging soil-based ecosystem services for the sustainable in-
tensification of agriculture, Environ. Sci. Policy, 38, 45-58,
https://doi.org/10.1016/j.envsci.2013.10.002, 2014.

Schulte, R. P. O., O’Sullivan, L., Vrebos, D., Bampa, F,
Jones, A., and Staes, J.: Demands on land: Mapping com-
peting societal expectations for the functionality of agricul-
tural soils in Europe, Environ. Sci. Policy, 100, 113-125,
https://doi.org/10.1016/j.envsci.2019.06.011, 2019.

Shipley, B.: A New Inferential Test for Path Models Based on Di-
rected Acyclic Graphs, Struct. Equ. Model. Multidiscip. J., 7,
206-218, https://doi.org/10.1207/S15328007SEM0702_4, 2000.

Shipley, B.: Cause and correlation in biology: a user’s guide
to path analysis, structural equations, and causal inference
with R, Cambridge University Press, Cambridge, UK, 229 pp.,
https://doi.org/10.1017/CB0O9781139979573, 2016.

Sigl, L., Falkenberg, R., and Fochler, M.: Changing articulations
of relevance in soil science: Diversity and (potential) synergy of
epistemic commitments in a scientific discipline, Stud. Hist. Phi-
los. Sci., 97, 79-90, https://doi.org/10.1016/j.shpsa.2022.12.004,
2023.

Siwicka, E., Gladstone-Gallagher, R., Hewitt, J. E., and Thrush,
S. F.: Beyond the single index: Investigating ecological
mechanisms  underpinning  ecosystem  multifunctional-
ity with network analysis, Ecol. Evol., 11, 12401-12412,
https://doi.org/10.1002/ece3.7987, 2021.

Six, J., Elliott, E. T., and Paustian, K.: Soil macroaggregate turnover
and microaggregate formation: a mechanism for C sequestration
under no-tillage agriculture, Soil Biol. Biochem., 32, 2099-2103,
https://doi.org/10.1016/S0038-0717(00)00179-6, 2000.

Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A.,
Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley,
M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone,
B. W., Sullivan, M. B., Zablocki, O., and Pett-Ridge, J.:
Life and death in the soil microbiome: how ecological pro-
cesses influence biogeochemistry, Nat. Rev. Microbiol., 1-16,
https://doi.org/10.1038/s41579-022-00695-z, 2022.

Spearman, C.: General Intelligence objectively determined and
measured., Am. J. Psychol., 15, 201-93, 1904.

Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K.,
Bodirsky, B. L., Lassaletta, L., de Vries, W., Vermeulen, S.
J., Herrero, M., Carlson, K. M., Jonell, M., Troell, M., De-
Clerck, F., Gordon, L. J., Zurayk, R., Scarborough, P., Rayner,
M., Loken, B., Fanzo, J., Godfray, H. C. J., Tilman, D.,
Rockstrom, J., and Willett, W.: Options for keeping the food

1359-1361,

https://doi.org/10.5194/s0il-11-609-2025

627

system within environmental limits, Nature, 562, 519-525,
https://doi.org/10.1038/s41586-018-0594-0, 2018.

Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E., Fetzer, L.,
Bennett, E. M., Biggs, R., Carpenter, S. R., Vries, W. de, Wit, C.
A. de, Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L.
M., Ramanathan, V., Reyers, B., and Sorlin, S.: Planetary bound-
aries: Guiding human development on a changing planet, Sci-
ence, 347, 1259855, https://doi.org/10.1126/science.1259855,
2015.

Stoof, C. R., Moore, D., Ritsema, C. J., and Dekker, L. W.:
Natural and fire-induced soil water repellency in a Por-
tuguese shrubland, Soil Sci. Soc. Am. J., 75, 2283-2295,
https://doi.org/10.2136/ss52j2011.0046, 2011.

Sun, X., Liddicoat, C., Tiunov, A., Wang, B., Zhang, Y., Lu, C,, Li,
Z., Scheu, S., Breed, M. F., Geisen, S., and Zhu, Y.-G.: Harness-
ing soil biodiversity to promote human health in cities, Npj Ur-
ban Sustain., 3, 1-8, https://doi.org/10.1038/s42949-023-00086-
0, 2023.

Tang, F. H. M. and Maggi, F.: Pesticide mixtures in
soil: a global outlook, Environ. Res. Lett., 16, 044051,
https://doi.org/10.1088/1748-9326/abe5d6, 2021.

Thiele-Bruhn, S.: The role of soils in provision of genetic, medicinal
and biochemical resources, Philos. Trans. R. Soc. B Biol. Sci.,
376, 20200183, https://doi.org/10.1098/rstb.2020.0183, 2021.

Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W.,
Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B.,
Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan,
S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F,,
Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. E,,
Buitenhuis, E. T., Chang, J., Chipperfield, M. P., Dangal, S.R. S.,
Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B., Hall, B., Ito,
A., Joos, F., Krummel, P. B., Landolfi, A., Laruelle, G. G., Lauer-
wald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet,
D. B., Olin, S., Patra, P. K., Prinn, R. G., Raymond, P. A., Ruiz,
D. J,, van der Werf, G. R., Vuichard, N., Wang, J., Weiss, R. E,,
Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A comprehen-
sive quantification of global nitrous oxide sources and sinks, Na-
ture, 586, 248-256, https://doi.org/10.1038/s41586-020-2780-0,
2020.

Trajanov, A., Spiegel, H., Debeljak, M., and Sandén, T.: Using
data mining techniques to model primary productivity from in-
ternational long-term ecological research (ILTER) agricultural
experiments in Austria, Reg. Environ. Change, 19, 325-337,
https://doi.org/10.1007/s10113-018-1361-3, 2019.

Van de Broek, M., Henriksen, C. B., Ghaley, B. B., Lugato,
E., Kuzmanovski, V., Trajanov, A., Debeljak, M., Sandén,
T., Spiegel, H., Decock, C., Creamer, R., and Six, J.:
Assessing the Climate Regulation Potential of Agricultural
Soils Using a Decision Support Tool Adapted to Stakehold-
ers” Needs and Possibilities, Front. Environ. Sci., 7, art131,
https://doi.org/10.3389/fenvs.2019.00131, 2019.

Van der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer,
T. M., Casper, B. B., Fukami, T., Kardol, P., Klironomos, J.
N., Kulmatiski, A., Schweitzer, J. A., Suding, K. N., Van de
Voorde, T. F. J., and Wardle, D. A.: Plant-soil feedbacks: the
past, the present and future challenges, J. Ecol., 101, 265-276,
https://doi.org/10.1111/1365-2745.12054, 2013.

Van der Putten, W. H., Bardgett, R. D., Farfan, M., Mon-
tanarella, L., Six, J., and Wall, D. H.: Soil biodiver-

SOIL, 11, 609-628, 2025



https://doi.org/10.1126/science.1086940
https://doi.org/10.1016/j.agsy.2022.103371
https://doi.org/10.1111/sum.12288
https://doi.org/10.1016/j.envsci.2013.10.002
https://doi.org/10.1016/j.envsci.2019.06.011
https://doi.org/10.1207/S15328007SEM0702_4
https://doi.org/10.1017/CBO9781139979573
https://doi.org/10.1016/j.shpsa.2022.12.004
https://doi.org/10.1002/ece3.7987
https://doi.org/10.1016/S0038-0717(00)00179-6
https://doi.org/10.1038/s41579-022-00695-z
https://doi.org/10.1038/s41586-018-0594-0
https://doi.org/10.1126/science.1259855
https://doi.org/10.2136/sssaj2011.0046
https://doi.org/10.1038/s42949-023-00086-0
https://doi.org/10.1038/s42949-023-00086-0
https://doi.org/10.1088/1748-9326/abe5d6
https://doi.org/10.1098/rstb.2020.0183
https://doi.org/10.1038/s41586-020-2780-0
https://doi.org/10.1007/s10113-018-1361-3
https://doi.org/10.3389/fenvs.2019.00131
https://doi.org/10.1111/1365-2745.12054

628

sity needs policy without borders, Science, 379, 32-34,
https://doi.org/10.1126/science.abn7248, 2023.

Van Leeuwen, J. P., Saby, N. P. A., Jones, A., Louwagie, G.,
Micheli, E., Rutgers, M., Schulte, R. P. O., Spiegel, H., Toth,
G., and Creamer, R. E.: Gap assessment in current soil mon-
itoring networks across Europe for measuring soil functions,
Environ. Res. Lett., 12, 124007, https://doi.org/10.1088/1748-
9326/aa%¢5c, 2017.

Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An ex-
traction method for measuring soil microbial biomass C,
Soil Biol. Biochem., 19, 703-707, https://doi.org/10.1016/0038-
0717(87)90052-6, 1987.

Veerman, C., Pinto Correia, T., Bastioli, C., Biro, B., Bouma, J.,
Emmett, B., Frison, E. A., Grand, A., Hristov Filchew, L., Kri-
aucitiniené, Z., Pogrzeba, M., Soussana, J.-F., Vela Olmo, C.,
and Wittkowski, R.: Caring for soil is caring for life — Ensure
75 % of soils are healthy by 2030 for food, people, nature and
climate, European Commission, https://doi.org/10.2777/611303,
Brussels, 2020.

Vogel, H.-J., Bartke, S., Daedlow, K., Helming, K., Kégel-Knabner,
L., Lang, B., Rabot, E., Russell, D., StoBel, B., Weller, U., Wies-
meier, M., and Wollschlédger, U.: A systemic approach for model-
ing soil functions, SOIL, 4, 83-92, https://doi.org/10.5194/s0il-
4-83-2018, 2018.

de Vries, W., Lofts, S., Tipping, E., Meili, M., Groenenberg, J. E.,
and Schiitze, G.: Impact of Soil Properties on Critical Concentra-
tions of Cadmium, Lead, Copper, Zinc, and Mercury in Soil and
Soil Solution in View of Ecotoxicological Effects, in: Reviews
of Environmental Contamination and Toxicology, Springer, New
York, NY, 47-89, https://doi.org/10.1007/978-0-387-69163-3_3,
2007.

Wagg, C., Bender, S. F.,, Widmer, F., and Heijden, M. G. A. van
der: Soil biodiversity and soil community composition deter-
mine ecosystem multifunctionality, P. Natl. Acad. Sci. USA, 111,
5266-5270, https://doi.org/10.1073/pnas.1320054111, 2014.

Wall, D. H., Nielsen, U. N., and Six, J.: Soil biodiversity and human
health, Nature, 528, 6976, https://doi.org/10.1038/nature15744,
2015.

Wall, D. P, Delgado, A., O’Sullivan, L., Creamer, R. E., Tra-
janov, A., Kuzmanovski, V., Bugge Henriksen, C., and De-
beljak, M.: A Decision Support Model for Assessing the
Water Regulation and Purification Potential of Agricultural
Soils Across Europe, Front. Sustain. Food Syst., 4, 115,
https://doi.org/10.3389/fsufs.2020.00115, 2020.

SOIL, 11, 609-628, 2025

E. R. J. Wubs: Benchmarking soil multifunctionality

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Liitzow,
M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Lie}, M.,
Garcia-Franco, N., Wollschliger, U., Vogel, H.-J., and Kogel-
Knabner, I.: Soil organic carbon storage as a key function of soils
— A review of drivers and indicators at various scales, Geoderma,
333, 149-162, https://doi.org/10.1016/j.geoderma.2018.07.026,
2019.

Van Wijnen, H. J., Rutgers, M., Schouten, A. J., Mulder, C., de
Zwart, D., and Breure, A. M.: How to calculate the spatial
distribution of ecosystem services — Natural attenuation as ex-
ample from The Netherlands, Sci. Total Environ., 415, 49-55,
https://doi.org/10.1016/j.scitotenv.2011.05.058, 2012.

Wright, S.: Correlation and causation, J. Agric. Res., 20, 557-585,
1921.

Wright, S.: The Method of Path Coefficients, Ann. Math. Stat., 5,
161-215, 1934.

Waubs, E. R. J. SoilMFv0.1, [code],
https://doi.org/10.5281/zenodo.16946924, 2025.
Wubs, E. R. J. and Nugteren, J.: Data for the general-
ized soil fertility test in Dutch soils, figshare [data set],

https://doi.org/10.6084/m9.figshare.29132744.v1, 2025.

Young, I. M. and Crawford, J. W.: Interactions and Self-
Organization in the Soil-Microbe Complex, Science, 304, 1634—
1637, https://doi.org/10.1126/science.1097394, 2004.

Zhou, M., Zhu, B., Wang, S., Zhu, X., Vereecken, H., and Briigge-
mann, N.: Stimulation of NoO emission by manure applica-
tion to agricultural soils may largely offset carbon benefits:
a global meta-analysis, Glob. Change Biol., 23, 4068—4083,
https://doi.org/10.1111/gcb.13648, 2017.

Zwetsloot, M. J., Leeuwen, J. van, Hemerik, L., Martens, H., Josa,
I. S., Broek, M. V. de, Debeljak, M., Rutgers, M., Sandén,
T., Wall, D. P, Jones, A., and Creamer, R. E.: Soil mul-
tifunctionality: Synergies and trade-offs across European cli-
matic zones and land uses, Eur. J. Soil Sci., 72, 1640-1654,
https://doi.org/10.1111/ejss. 13051, 2021.

Zenodo,

https://doi.org/10.5194/s0il-11-609-2025


https://doi.org/10.1126/science.abn7248
https://doi.org/10.1088/1748-9326/aa9c5c
https://doi.org/10.1088/1748-9326/aa9c5c
https://doi.org/10.1016/0038-0717(87)90052-6
https://doi.org/10.1016/0038-0717(87)90052-6
https://doi.org/10.2777/611303
https://doi.org/10.5194/soil-4-83-2018
https://doi.org/10.5194/soil-4-83-2018
https://doi.org/10.1007/978-0-387-69163-3_3
https://doi.org/10.1073/pnas.1320054111
https://doi.org/10.1038/nature15744
https://doi.org/10.3389/fsufs.2020.00115
https://doi.org/10.1016/j.geoderma.2018.07.026
https://doi.org/10.1016/j.scitotenv.2011.05.058
https://doi.org/10.5281/zenodo.16946924
https://doi.org/10.6084/m9.figshare.29132744.v1
https://doi.org/10.1126/science.1097394
https://doi.org/10.1111/gcb.13648
https://doi.org/10.1111/ejss.13051

	Abstract
	Introduction
	Conceptual approach to soil multifunctionality
	Selecting soil functions and boundary conditions
	The IQ test for soils – a proposal
	Primary production
	Climate regulation
	Water regulation
	Supporting biodiversity
	A new measurement framework for soil multifunctionality

	Practical implementation in science and beyond
	Discussion
	Outlook

	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

