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Abstract. Uncertainty quantification is a crucial step in the practical application of soil spectral models, par-
ticularly in supporting real-world decision making and risk assessment. While machine learning has made re-
markable strides in predicting various physiochemical properties of soils using spectroscopy, its practical utility
in decision making remains limited without quantified uncertainty. Despite its importance, uncertainty quan-
tification is rarely incorporated into soil spectral models, with existing methods facing significant limitations.
Existing methods are either computationally demanding, fail to achieve the desired coverage of observed data,
or struggle to handle out-of-domain uncertainty. This study introduces an innovative application of Monte Carlo
conformal prediction (MC-CP) to quantify uncertainty in deep-learning models for predicting clay content from
mid-infrared spectroscopy. We compared MC-CP with two established methods: (1) Monte Carlo dropout and
(2) conformal prediction. Monte Carlo dropout generates prediction intervals for each sample and can address
larger uncertainties associated with out-of-domain data. Conformal prediction, on the other hand, guarantees
ideal coverage of true values but generates unnecessarily wide prediction intervals, making it overly conserva-
tive for many practical applications. Using 39 177 samples from the mid-infrared spectral library of the Kellogg
Soil Survey Laboratory to build convolutional neural networks, we found that Monte Carlo dropout itself falls
short in achieving the desired coverage – its 90 % prediction intervals only covered the observed values in 74 %
of the cases, well below the expected 90 % coverage. In contrast, MC-CP successfully combines the strengths
of both methods. It achieved a prediction interval coverage probability of 91 %, closely matching the expected
90 % coverage and far surpassing the performance of the Monte Carlo dropout. Additionally, the mean predic-
tion interval width for MC-CP was 9.05 %, narrower than the conformal prediction’s 11.11 %. The success of
MC-CP enhances the real-world applicability of soil spectral models, paving the way for their integration into
large-scale machine learning models, such as soil inference systems, and further transforming decision making
and risk assessment in soil science.

1 Introduction

In the recent developments of soil science, machine learn-
ing has been widely used in applications such as soil spec-
troscopy, proximal sensing, carbon stock modelling, and dig-
ital soil mapping (Ng et al., 2019; Wadoux et al., 2020).
These studies are characterised by the use of large soil
datasets and require an efficient way of extracting informa-
tion to predict target attributes. Hence, machine learning is
favoured because these algorithms can generate prediction

models with high accuracy for various purposes (Padarian
et al., 2020; Minasny et al., 2024). For example, in soil
spectroscopy, visible and near-infrared (Vis-NIR) and mid-
infrared (MIR) spectroscopy has been used with machine
learning to predict soil properties such as soil organic car-
bon (SOC), texture, and cation exchange capacity (CEC).
Padarian et al. (2019) applied convolutional neural networks
(CNNs) to predict soil properties with Vis-NIR spectra, using
the European Land Use/Cover Area Frame Statistical Survey
(LUCAS) dataset, which contained about 20 000 samples.
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In the SOC prediction of their study, the multi-task CNN
outperformed conventional algorithms, such as partial least-
squares (PLS) regression and Cubist, by reducing the root
mean square error (RMSE) by more than 60 %. Addition-
ally, Ng et al. (2019) used the Kellogg Soil Survey Labora-
tory (KSSL) database with around 15 000 samples from the
United States (US) with both Vis-NIR and MIR spectra to
build a multi-task CNN. Their model achieved a coefficient
of determination (R2) of over 0.90 for total carbon, SOC,
CEC, clay, sand, and pH.

Despite the significant success of machine learning in pre-
dicting soil properties, uncertainty quantification of the pre-
diction remains an underexplored area in soil spectroscopy
(Omondiagbe et al., 2024). The growing demand for prac-
tical applications of soil spectral models requires users to
know the uncertainty accompanying the model prediction in
order to assess the quality of the predictions (Bellon-Maurel
et al., 2010). Additionally, deep learning (DL), as a branch
of machine learning, is increasingly being applied to soil sci-
ence to explore its ability to extract information from large
datasets. In the data-intensive context of deep learning, un-
certainty analysis is critical in evaluating models for deci-
sion making and risk management, and predictions without
uncertainty are neither practicable nor applicable (Begoli et
al., 2019). Hence, it is crucial to establish an effective way of
evaluating the uncertainty of machine learning models.

An ideal uncertainty quantification method is expected to
satisfy the following criteria:

1. The method is computationally efficient.

2. The prediction interval coverage probability (PICP)
must meet the expected coverage. That is, p% cover-
age is expected for a p% prediction interval, with the
narrowest mean prediction interval width (MPIW).

3. The prediction intervals should be able to address the
greater uncertainty for samples significantly different
from the training set (i.e. out-of-domain samples).

Several methods have been used to generate intervals for
each prediction to characterise uncertainty. One commonly
used approach is bootstrapping, in which several models are
trained with subsets generated by drawing samples with re-
placements from the same dataset (Efron and Tibshirani,
1994). The mean of all the models is considered the final
prediction, and an interval can be derived from the quan-
tiles of multiple predictions. However, one drawback of boot-
strapping is the time-consuming nature of training numer-
ous bootstrapping models. In addition, bootstrapping primar-
ily addresses the model uncertainty and derives confidence
intervals rather than prediction intervals (Heuvelink, 2014;
Wadoux, 2019). A comprehensive uncertainty quantification
using methods such as Markov chain Monte Carlo can bet-
ter evaluate the parameter uncertainty involved in the model
(Minasny et al., 2011).

The diverse nature of models enabled the development
of different methods. For example, quantile regression (QR)
uses a set of regression models to estimate the quantile of
target variables, and the prediction interval can later be de-
fined by the upper and lower quantiles (Kasraei et al., 2021).
Additionally, quantile regression forests (QRFs) and quan-
tile regression neural networks (QRNNs) are extensions of
quantile regression that apply similar principles to gener-
ate prediction intervals (Schmidinger and Heuvelink, 2023).
Heuvelink et al. (2021) utilised QRFs to predict the SOC
for soils in Argentina with quantified uncertainty, and the
0.05 and 0.95 quantiles were used to generate the 90 % pre-
diction interval. However, QR is not yet available for every
DL model. On the other hand, Omondiagbe et al. (2024)
compared bootstrapped PLS, generalised additive models
(GAMs), and Bayesian CNNs for their ability to quantify
uncertainty. They found that GAMs and Bayesian CNNs out-
performed bootstrapped PLS by having a PICP close to the
ideal 90 % value. Moreover, the MPIW of Bayesian CNNs is
mostly lower than that of GAMs, suggesting a more accurate
estimation of uncertainty (Omondiagbe et al., 2024). How-
ever, Bayesian neural networks are more intensive in com-
putation compared to standard CNNs (Bethell et al., 2024;
Omondiagbe et al., 2024).

An alternative method for evaluating model uncertainty
in DL is Monte Carlo dropout (MC dropout) by Gal and
Ghahramani (2016), in which a CNN model is trained with
multiple dropout layers that randomly deactivate neurons
during prediction, resulting in different predictions across
iterations. Multiple predictions from a single MC dropout
CNN model form a distribution, and prediction intervals can
be obtained by assessing the quantiles of the predictions. This
approach reduced the training time compared to bootstrap-
ping.

The performance of bootstrapping and MC dropout was
compared by Padarian et al. (2022), in which CNN mod-
els were trained to predict SOC with Vis-NIR spectra using
the LUCAS dataset through (1) 100 times bootstrapping and
(2) MC dropout. Additionally, CNN models were trained on
mineral soils with a threshold of< 20 % SOC and then tested
separately on in-domain data (mineral soils, SOC< 20 %)
and out-of-domain data (organic soils, SOC> 20 %). This
was to test the model’s response to samples significantly dif-
ferent from the training set. A good uncertainty quantifica-
tion should indicate the larger uncertainty when predicting
out-of-domain data. When facing in-domain data, both boot-
strapping and MC dropout generated reasonable prediction
intervals. However, when facing out-of-domain data, the pre-
diction interval of MC dropout increased significantly com-
pared to bootstrapping, indicating that the uncertainty in-
creased when the testing samples were markedly different
from the training data. In other words, the model was aware
of its uncertainty for out-of-domain data and can reflect this
situation by generating a wider prediction interval. Such
analysis is particularly useful when assessing risk manage-
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ment, as predictions with higher uncertainty must be treated
cautiously. However, both bootstrapping and MC dropout un-
derestimated the uncertainty and were overconfident in their
study. The 90 % PICP of bootstrapping and MC dropout in
their study were both under 80 %, while the expected cover-
age was 90 %. This was not practical in real-world situations
and left room for improvement.

A relatively easy method for generating prediction inter-
vals with expected coverage is conformal prediction (CP),
which uses an independent calibration set to estimate the pre-
diction interval and can be performed on any model (Shafer
and Vovk, 2008). CP can therefore be integrated with meth-
ods such as QR and MC dropout. Kakhani et al. (2024)
utilised CP to generate prediction intervals for SOC map-
ping in Europe with the LUCAS dataset and found that CP
outperformed other methods by generating the most accu-
rate PICP and a reasonably sized prediction interval. Singh
et al. (2024) applied CP with ML in Earth observation data,
and CP successfully generated prediction intervals of canopy
height. Despite these advantages, a key limitation of CP is its
inability to generate sample-specific prediction intervals. In-
stead, it produces a uniform interval for all samples. In other
words, CP does not account for increased uncertainty in out-
of-domain samples. As a result, CP is known as a conserva-
tive method that provides overly broad prediction intervals.
This empirical method is similar to the UNEEC (uncertainty
estimation based on local errors and clustering) method of
Solomatine and Shrestha (2009). UNEEC derived upper and
lower prediction intervals based on the distribution of model
errors grouped by predictors. Malone et al. (2011) modified
the UNEEC method to deal with out-of-domain predictions
using fuzzy k-means with extra grades. However, as with CP,
the method is highly dependent on the training data. Con-
sequently, no uncertainty quantification method applied in
soil spectroscopy has combined computational efficiency, ex-
pected coverage with a narrow MPIW, and the ability to ad-
dress out-of-domain uncertainty.

In this study, we applied Monte Carlo conformal predic-
tion (MC-CP), a method introduced by Bethell et al. (2024)
to improve the PICP of MC dropout while maintaining its
advantages in characterising out-of-domain uncertainty. Also
known as conformalised Monte Carlo prediction, MC-CP not
only retains the structure of the MC dropout to generate dif-
ferent prediction intervals for each sample but also extends
the prediction interval with CP to achieve the expected cov-
erage. In other words, MC-CP can ensure expected cover-
age while accounting for the uncertainty associated with each
sample. Bethell et al. (2024) demonstrated the effectiveness
of MC-CP in both regression and classification tasks using
benchmark datasets and showed that MC-CP was signifi-
cantly improved from the original MC dropout. Hence, MC-
CP is a promising method for soil science and can address
the uncertainty involved in prediction using DL models.

This study aimed to explore the use of MC-CP as a po-
tential method for quantifying the uncertainty of DL mod-

els in soil spectroscopy. Specifically, the goal was to vali-
date whether MC-CP preserves the advantages of both MC
dropout and CP. Therefore, the objectives of this study are
to (1) test whether MC-CP can generate prediction intervals
that reach the expected PICP and (2) evaluate whether MC-
CP can address the uncertainty of out-of-domain samples.

2 Materials and methods

2.1 Dataset

The soil samples from the KSSL dataset were used in this
study. They contained the MIR spectra and physiochemical
properties of over 17 000 soil profiles and 70 000 soil sam-
ples across the US (Soil Survey Staff, 2014). Soil clay con-
tent was selected as the target variable to predict with MIR
spectra in this study, as the prediction of clay has been a well-
established method for MIR spectroscopy (Seybold et al.,
2019; Ng et al., 2022). The database contains 45 339 samples
which have measured MIR spectra and particle size analyses.
Since the spectra of mineral and organic soils behave differ-
ently, samples with SOC> 10 % were excluded, resulting in
the removal of 1808 samples. Additionally, extreme values
for clay content were filtered by excluding data below the
5th percentile and above the 95th percentile, further remov-
ing 4354 samples. This resulted in a total number of 39 177
samples.

Here we created a model based on the in-domain data,
and a threshold of 40 % clay content was chosen to sepa-
rate the in-domain and out-of-domain samples. A clay con-
tent of 40 % is the minimum threshold for a soil to be clas-
sified as “clay” according to the US Department of Agri-
culture’s soil texture classification (Soil Science Division
Staff, 2017). Using this criterion, approximately 10 % of
the samples were categorised as out-of-domain (clay> 40 %,
N = 3686), while the remaining in-domain samples had a
clay content below 40 % (N = 35 491). The in-domain sam-
ples would be used for model training, validation, and test-
ing. The in-domain data were further randomly separated
into 85 % training, 5 % validation, 5 % calibration for confor-
mal prediction, and 5 % testing. Only the training and valida-
tion data were used in building the model. The out-of-domain
samples were not involved in any of the training processes
and were only used to test the performance of models when
facing out-of-domain situations.

The MIR spectra in the range 4000–600 cm−1 were used to
predict the clay content. The full procedure of MIR spectral
analysis can be found in the Soil Survey Staff (2014) manual.
No other pre-processing was applied to the raw spectra, as it
has been proven that CNNs are able to deal with spectra with-
out pre-processing (Ng et al., 2019; Padarian et al., 2019). To
train the CNN model, the clay contents were scaled to a range
of 0–1 using the maximum and minimum of the training set
(see Sect. 2.3).
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2.2 Uncertainty quantification methods

2.2.1 Monte Carlo dropout (MC dropout)

MC dropout was introduced by Gal and Ghahramani (2016)
based on dropout layers, which are commonly used in DL
models to prevent overfitting (Srivastava et al., 2014). In
each dropout layer, a certain portion of the neurons is ran-
domly deactivated (weights set to zero) during both training
and testing. By randomly dropping neurons and their connec-
tions, the dropout layer helps prevent the model from over-
fitting the training dataset. As a result of the dropout layers,
each prediction result is different, and multiple predictions
generate a distribution. Gal and Ghahramani (2016) demon-
strated that MC dropout can be used to approximate Bayesian
inference in deep Gaussian processes, and the standard devi-
ation of the prediction can thus be used to assess the uncer-
tainty (Bethell et al., 2024). For a detailed rationale, readers
are referred to the paper by Gal and Ghahramani (2016).

In practice, a CNN model with dropout layers was trained
and performed 100 forward passes with dropout layers ac-
tivated to generate a predictive distribution (Bethell et al.,
2024). In Eq. (1), Xi represents an individual input sample.
The 90 % prediction interval of the MC dropout (CMC,90) of
each sample i would be defined by the 5th quantile (q̂5(Xi))
and the 95th quantile (q̂95(Xi)) of the predictions (Eq. 1):

CMC, 90 (Xi)=
[
q̂5(Xi), q̂95(Xi)

]
. (1)

2.2.2 Conformal prediction (CP)

CP is a model-agnostic method, which means that it can be
used to evaluate the uncertainty of any model (Shafer and
Vovk, 2008). Consider (Xi, Yi) , i = 1,2, . . .n to be pairs of
features (inputs) and responses (outputs), where α is the de-
sired error level. A regression model f is constructed us-
ing the training dataset, and f (Xi) is the prediction of the
observed value Yi . The goal is to generate prediction inter-
vals C (Xi) such that the probability of the observed value Yi
being contained within C (Xi) is approximately 1−α (An-
gelopoulos and Bates, 2022). The procedure can be separated
into three steps:

1. Start with nonconformity scores. The nonconformity
measure is the foundation of CP, which quantifies
the difference between the predicted values and the
observed values (Shafer and Vovk, 2008). In a re-
gression scenario, the nonconformity measure is typ-
ically defined as the absolute value of residuals ri =
|f (Xi)−Yi |. Here, ri represents the nonconformity
scores of the ith data point. The first step is to calculate
these nonconformity scores using a calibration dataset
and rank the nonconformity scores from low to high.
Table 1 shows an example dataset of 100 samples with
ri in the order from minimum to maximum.

2. Get the adjusted quantile. Using the ranked nonconfor-
mity scores, CP computes the adjusted quantile to deter-
mine the prediction interval. Specifically, it selects the
d(1−α)(n+1)e

n
th quantile of the nonconformity scores ri

as q̂. The de symbol indicates the ceiling function, and
this equation corrects the quantile for the size of the cal-
ibration dataset (Angelopoulos and Bates, 2022). In the
example, if we set α = 0.1 with a total of 100 samples,
q̂ will be the 92nd quantile of ri , which is 2.2 (marked
as bold in Table 1).

3. Generate prediction intervals. The prediction intervals
are constructed as in Eq. (2):

CCP (Xi)=
[
f (Xi)− q̂, f (Xi)+ q̂

]
. (2)

The width of each prediction interval is fixed to 2
times the value of q̂, centred around the model predic-
tion f (Xi). In the example from Table 1, the predic-
tion interval covers the observed values from samples
1 through 92, indicating that 92 % of the samples are
covered within the prediction interval. This q̂ will be
applied to the test set to generate prediction intervals
for unknown data. The key advantage of CP is that it
can be applied to any model regardless of correctness,
assumptions, or structure of the model while providing
guaranteed coverage for the specified confidence level
(Angelopoulos and Bates, 2022). However, the fixed in-
terval width for all of the data points and the guaranteed
coverage also make CP an overly conservative method
that generates unnecessarily wide intervals (Bethell et
al., 2024).

2.2.3 Monte Carlo conformal prediction (MC-CP)

MC-CP is a novel uncertainty quantification method devel-
oped by Bethell et al. (2024). As its name suggests, MC-
CP combines MC and CP to estimate uncertainty. Instead of
using CP to generate a prediction interval, MC-CP extends
the prediction interval from an MC method. The original pa-
per by Bethell et al. (2024) used deep quantile regression to
generate prediction intervals, while this study introduces the
CNN with dropout layers. The CNN model with dropout lay-
ers was trained in the same way as the MC dropout method
to predict the calibration set 100 times. For each sample i
in the calibration set, the 5th quantile (q̂5(Xi)) and the 95th
quantile (q̂95(Xi)) of the 100 predictions are calculated, and
the nonconformity score Ei is defined as in Eq. (3):

Ei :=Max
{
q̂5 (Xi)−Yi,Yi − q̂95(Xi)

}
. (3)

According to Eq. (3), the nonconformity scores are calcu-
lated as the largest distance between the observed value and
the boundary of the MC dropout interval. The d(1−α)(n+1)e

n
th

quantile of the nonconformity score Ei will then be selected
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Table 1. Example dataset of conformal prediction containing 100 samples. The nonconformity scores are ranked from minimum to maxi-
mum.

N f (Xi ) Yi r = |f (Xi )−Yi | C (Xi )=
[
f (Xi )

(nonconformity scores) −q̂, f (Xi )+ q̂
]

1 96 95.9 0.1 [93.8, 98.2]
2 3 3.2 0.2 [0.8, 5.2]
3 96 95.7 0.3 [93.8, 98.2]
4 18 18.4 0.4 [15.8, 20.2]
5 71 70.5 0.5 [68.8, 73.2]
6 99 99.6 0.6 [96.8, 101.2]
7 38 37.3 0.7 [35.8, 40.2]
8 11 11.8 0.8 [8.8, 13.2]
9 74 73.1 0.9 [71.8, 76.2]
10 54 55 1.0 [51.8, 56.2]

. . .

91 24 21.9 2.1 [21.8, 26.2]
92 56 58.2 2.2 [53.8, 58.2]
93 48 45.5 2.5 [45.8, 50.2]
94 19 21.8 2.8 [16.8, 21.2]
95 90 86.9 3.1 [87.8, 92.2]
96 27 30.2 3.2 [24.8, 29.2]
97 70 66.6 3.4 [67.8, 72.2]
98 66 69.9 3.9 [63.8, 68.2]
99 21 16.8 4.2 [18.8, 23.2]
100 80 84.5 4.5 [77.8, 82.2]

as Q̂. The adjusted prediction interval of MC-CP will be cal-
culated as in Eq. (4):

CMC-CP, 90 (Xi)=
[
q̂5 (Xi)− Q̂, q̂95(Xi)+ Q̂

]
. (4)

In MC-CP, the prediction interval of the MC dropout
method will be extended by 2 times Q̂. For unknown test-
ing data, the prediction interval will first be calculated in the
same way as the MC method and then extended by 2 times Q̂,
which is calculated from the calibration set. This will result
in sample-dependent prediction intervals, guaranteed cover-
age, and less conservative intervals than CP.

2.3 Model architecture and training data

A 1D CNN was constructed with five trainable layers, i.e.
four convolutional layers and one fully connected (dense)
layer. A detailed description of the layers is presented in Ta-
ble 2. A fixed filter size of five was used for all of the convo-
lutional layers, and the filter size for the max-pooling layer
was fixed at two. The number of filters started at 32 and in-
creased to 256. Every convolutional layer was followed by a
max-pooling layer and an MC dropout layer, resulting in a
total of four dropout layers with a fixed 20 % dropout rate.
Dropout rates, including 10 %, 20 %, and 30 %, were tested
and optimised. The network was trained with a batch size of
300, a maximum number of epochs of 500, and early stop-
ping on the validation set, with a patience of 60. The initial
learning rate was set to 0.001, and the learning rate reduction

Table 2. Architecture of the convolutional neural network. ReLU
stands for rectified linear unit.

Layer type Filter size Filters Activation

Convolutional 5 32 ReLU
Max pooling 2
MC dropout (0.2)

Convolutional 5 64 ReLU
Max pooling 2
MC dropout (0.2)

Convolutional 5 128 ReLU
Max pooling 2
MC dropout (0.2)

Convolutional 5 256 ReLU
Max pooling 2
MC dropout (0.2)

Flatten
Fully connected Linear

factor was set to 0.1, with a patience of 50. These hyperpa-
rameters were also tested and optimised for this dataset. All
of the analyses were performed in Python v3.12.3 using Ten-
sorflow v2.16.1 (Abadi et al., 2015; Python Software Foun-
dation, 2024).
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Table 3. Results of the convolutional neural network modelling. R2

stands for the coefficient of determination, and RMSE stands for the
root mean square error.

In-domain test Out-of-domain set
set (n= 1775) (n= 3686)

R2 0.90 −6.64
RMSE (%) 3.39 9.65

2.4 Model evaluation

The model performance was evaluated using the coefficients
of determination (R2, Eq. 5) and RMSE (Eq. 6) (Ng et al.,
2022):

R2
= 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − yi)2 , (5)

RMSE=

√∑n
i=1(yi − ŷi)2

n
. (6)

The results of the uncertainty quantification were evaluated
using the PICP (Eq. 7) and the MPIW (Eq. 8) following
Shrestha and Solomatine (2006):

PICP=
1
n

count j

j : PLL
i ≤ yi ≤ PLU

i , (7)

MPIW=
1
n

∑n

i=1

[
PLU

i −PLL
i

]
, (8)

where n is the total number of observations and j is the num-
ber of samples for which the observed value yi is covered in
the prediction interval. PLL

i and PLU
i are the lower and up-

per bounds of the prediction interval of the ith sample. PICP
calculates the proportion where the true value is covered by
the interval, while MPIW calculates the average length of the
prediction intervals.

3 Results and discussion

3.1 Model performance

The DL model demonstrated good performance in predict-
ing the clay content of the in-domain test set (clay < 40 %),
with R2 0.90 and RMSE 3.39 % (Table 3). The results were
comparable to those of the multi-task CNN models of Ng et
al. (2019), which used part of the current dataset. For out-
of-domain samples, a negative R2 value indicates that the
model performs worse than simply using the mean predic-
tion (Fig. 1; Table 3). Such a result for out-of-domain sam-
ples was expected, as the model lacked knowledge of soils
with clay content exceeding 40 %, resulting in most out-of-
domain predictions falling below 40 % clay.

Figure 1. Relationship between the observed and predicted clay
content (%) of the convolutional neural network model for the in-
domain test set and out-of-domain samples.

3.2 Uncertainty quantification

Uncertainty quantification serves as a means of evaluating
prediction intervals. When a model predicts with higher un-
certainty (in the case of out-of-domain samples), the models
are expected to generate a wider MPIW to indicate their lack
of knowledge. Padarian et al. (2022) demonstrated that MC
dropout possessed the ability to “know what they know” and
produced prediction intervals for out-of-domain samples that
were 5 times larger than in-domain samples.

Prediction intervals were generated by making 100 predic-
tions of each sample (Fig. 2), and PICP refers to the probabil-
ity of this interval covering the observed value. The expected
coverage of a p% prediction interval is p%, which is indi-
cated by the dotted line in Fig. 3 (Shrestha and Solomatine,
2006). In the current study, the MC dropout continuously un-
derestimated the uncertainty through all prediction intervals
(Fig. 3). This trend was similar to the finding of Padarian et
al. (2022). In contrast, the PICP values of CP and MC-CP
for in-domain samples were both close to the expected cov-
erage (Fig. 3). This is attributed to the guaranteed-coverage
features of CP, and MC-CP provides an augmented effect.
However, the PICP for out-of-domain samples was low. This
was because the CNN model lacked information about the
out-of-domain samples.

For the 90 % prediction intervals, the MC dropout method
achieved 74 % coverage for the in-domain samples (Table 4),
indicating an overconfident interval. The MPIW of MC
dropout for the in-domain testing samples was 5.56 %, the
narrowest of all three methods (Table 4). This is further sup-
ported by the distribution of MPIW in Fig. 4. When encoun-
tering the out-of-domain samples, the MPIW of MC dropout
was 6.93 %, i.e. 25 % higher than the MPIW of the in-domain
samples. This demonstrated the ability of MC dropout to gen-
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Figure 2. Examples of the distribution of 100 predictions for an in-domain sample and an out-of-domain sample using MC dropout. The
shaded areas are the 90 % prediction interval. The 90 % prediction interval of the in-domain example covered the observed value, while the
90 % prediction interval of the out-of-domain example did not cover the observed value.

Figure 3. Prediction interval coverage probability (PICP) of in-domain and out-of-domain samples at different prediction intervals for Monte
Carlo dropout, conformal prediction, and Monte Carlo conformal prediction.

erate wider intervals when encountering samples they are not
familiar with (Padarian et al., 2022). However, the extended
MPIW was insufficient for fully addressing the differences
between out-of-domain samples and in-domain training sam-
ples, and the 90 % PICP for MC dropout was only 11 %.

On the other hand, both CP and MC-CP were able to
achieve a coverage of 91 % (Fig. 3; Table 4) from the ex-
pected coverage of 90 %. This implied that 91 % of the pre-
diction interval contained the true observed clay content,

making the prediction interval reliable. However, the MPIWs
of CP and MC-CP were higher than those of MC, indicat-
ing a trade-off between narrower intervals and coverage. The
MPIW of CP (11.11 %) was the largest of the three methods,
twice that of MC dropout (5.56 %) (Fig. 4; Table 4), making
it overly conservative. Additionally, the interval of CP was
constant, which prohibited CP from addressing the different
uncertainties as guaranteed coverage was the main objective
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Table 4. Results of uncertainty quantification by Monte Carlo dropout, conformal prediction, and Monte Carlo conformal prediction. PICP
stands for prediction interval coverage probability, and MPIW stands for mean prediction interval width.

Method 90 % PICP MPIW (%) 90 % PICP MPIW (%)
in-domain in-domain out-of-domain out-of-domain

Monte Carlo dropout 74 % 5.56 11 % 6.90
Conformal prediction 91 % 11.11 32 % 11.11
Monte Carlo conformal prediction 91 % 9.05 26 % 10.43

Figure 4. Distribution of the prediction interval widths of Monte Carlo dropout, conformal prediction, and Monte Carlo conformal prediction
for in-domain and out-of-domain samples.

of this method. In other words, CP generated wide prediction
intervals that were unnecessary.

The MC-CP method achieved a balance between MC
dropout and CP, which produced an MPIW between MC
dropout and CP while still reaching the expected coverage.
The MPIW of MC-CP was 9.05 %, which was 1.6 times the
MPIW of MC (Table 4) but achieved 91 % coverage from
the expected coverage of 90 %. Additionally, MC-CP re-
tained the ability to address the uncertainty of out-of-domain
samples, as the MPIW for out-of-domain samples (10.43 %)
was larger than the MPIW for in-domain samples (9.05 %)
(Fig. 4; Table 4). Hence, MC-CP is an adequate compromise
between (1) coverage of observed values, (2) addressing out-
of-domain uncertainty, and (3) a reasonably sized MPIW.

However, when facing out-of-domain samples, MC-CP
achieved only 26 % coverage in the 90 % prediction interval.
The MPIW for out-of-domain samples (10.43 %) was 1.38
higher than that for in-domain samples (9.05 %), represent-
ing a 15 % increase in the width. The difference was insuffi-
cient to fully account for out-of-domain uncertainty, leading
to the low coverage. Similarly, Liu et al. (2021) found that
Bayesian neural networks and MC dropout were unable to
assign high uncertainty to out-of-domain samples, indicat-

ing overconfidence in predicting unknown data. Zadorozhny
et al. (2021) also highlighted the tendency of neural net-
works to overgeneralise from training data when predict-
ing out-of-domain samples, potentially leading to overcon-
fidence. When out-of-domain sample inputs closely resem-
ble in-domain sample inputs, MC dropout may assign sim-
ilar confidence levels to out-of-domain samples, failing to
capture the true uncertainty. The MIR spectra of clayey soils
were not as distinct from those of sandy soils as the spectra
of high-SOC soils were from low-SOC soils (Ng et al., 2022;
Zhang et al., 2022). For example, peaks at 2930–2850 cm−1

serve as a distinction between mineral soils and organic soils
(Tinti et al., 2015; Ng et al., 2022). Thus, the difference be-
tween the MPIW of in-domain and out-of-domain samples
was not as significant as in the study of Padarian et al. (2022),
in which 20 % SOC was used as the separation between in-
domain and out-of-domain samples.

3.3 Limitations and future applications

The MC-CP method was able to quantify the uncertainty and
generate prediction intervals with sufficient coverage of true
values. However, one obvious difference between MC-CP
and MC is that MC-CP requires calibration samples to es-
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tablish nonconformity scores. However, only a small number
of calibration samples was required compared to the training
samples, which can be easily achieved by dividing a portion
of the training sample. For instance, the size of the calibration
set in the MC-CP regression example presented by Bethell et
al. (2024) was only 2 % of the testing samples. Future studies
could explore the determination of the optimal size of the cal-
ibration sets. Another potential enhancement of CP is the use
of clustering to assign different PIWs to distinct groups. For
example, Malone et al. (2011) applied fuzzy clustering prior
to implementing UNEEC, which is similar to CP in calcu-
lation. With this means, the out-of-domain samples can be
addressed by introducing an extra-grade cluster. Addition-
ally, asymmetric PIWs, where the upper and lower bounds
differ in width, could be explored in the MC-CP framework
to account for potential imbalance in prediction errors.

While CP is model-agnostic, MC dropout is restricted
to deep neural networks since it requires the inclusion of
dropout layers in the model architecture (Gal and Ghahra-
mani, 2016). Hence, MC-CP is also model-specific and can
only be used on deep neural networks. Neural networks have
been widely applied in soil spectroscopy, with several studies
reporting accurate prediction results (Ng et al., 2019; Padar-
ian et al., 2019; Javadi et al., 2021). MC-CP offers a reli-
able method for generating prediction uncertainty without
the computational burden associated with the Bayesian ap-
proach. Future investigations should compare these uncer-
tainty quantification methods in terms of computational ef-
ficiency and MPIW.

Schmidinger and Heuvelink (2023) raised the issue of
PICP ignoring the one-sided bias in prediction, in which
90 % of the interval covers the observed value but the prob-
ability outside the boundaries is asymmetrically distributed.
Other parameters, such as quantile coverage probability and
probability integral transform, are thus needed to evaluate the
uncertainty quantification in the future. In the present study,
out-of-domain samples exhibited a higher clay content than
in-domain samples, with the predicted values tending to be
lower than the real value (Fig. 1). Consequently, observed
values were more frequently above the 95 % quantile of the
prediction distribution, as illustrated by the out-of-domain
example in Fig. 2. This one-sided bias arises from the sep-
aration of out-of-domain samples.

The efficiency allows MC-CP to be applied to large mod-
els such as soil inference systems (McBratney et al., 2002), in
which multiple pedotransfer functions are coupled together
to predict complicated soil properties using basic soil proper-
ties that can be assessed by soil spectroscopy. Adding uncer-
tainty analysis to model evaluation will increase the practi-
cality of models and bring them one step closer to real-world
applications.

4 Conclusions

The study aimed to assess the uncertainty in predicting clay
content using convolutional neural networks through three
uncertainty quantification techniques: Monte Carlo (MC)
dropout, conformal prediction (CP), and MC-CP. The mid-
infrared (MIR) spectra from the KSSL database were divided
into two categories:

– in-domain samples and

– out-of-domain samples: this division tested the model’s
ability to handle samples that differ significantly from
the training data.

The following methods were compared.

– MC dropout:

- This produced the lowest prediction interval cover-
age probability (PICP).

- It generated the narrowest mean prediction interval
width (MPIW), indicating overconfidence in pre-
dictions.

– Conformal prediction (CP):

- This achieved the ideal PICP but had a fixed MPIW
and the largest MPIW among the methods.

– MC-CP:

- This balanced the strengths of the other methods,
achieving 91 % PICP (for a 90 % expected PICP)
with a moderate MPIW.

The advantages of MC-CP are as follows:

– It provides a balance between MC dropout and CP.

– It exhibits

1. a high coverage probability of true values,

2. variable prediction intervals that adapt to out-of-
domain samples, and

3. a moderate MPIW for balanced uncertainty repre-
sentation.

The main implications are as follows:

– MC-CP demonstrates the potential for quantifying un-
certainty in DL models for soil property prediction.

– The method allows for computationally efficient uncer-
tainty quantification and production of prediction inter-
vals that reliably cover the true values.

Future directions:
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– Integration of MC-CP into large-scale prediction sys-
tems, such as soil inference models, to enhance predic-
tion accuracy and support decision making in real-world
applications.
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