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Abstract. Future global change is likely to give rise to novel combinations of the factors which enhance or in-
hibit soil erosion by water. Thus, there is a need for erosion models, necessarily process-focused ones, which are
able to reliably represent the rates and extents of soil erosion under unprecedented circumstances. The process-
focused cellular automaton erosion model RillGrow is, given initial soil surface microtopography for a plot-
sized area, able to predict the emergent patterns produced by runoff and erosion. This study explores the use of
structure-from-motion photogrammetry as a means to calibrate and evaluate this model by capturing detailed,
time-lapsed data for soil surface height changes during erosion events.

Temporally high-resolution monitoring capabilities (i.e. 3D models of elevation change at 0.1 Hz frequency)
permit the evaluation of erosion models in terms of the sequence of the formation of erosional features. Here,
multiple objective functions using three different spatio-temporal averaging approaches are assessed for their
suitability in calibrating and evaluating the model’s output. We used two sets of data from field- and laboratory-
based rainfall simulation experiments lasting 90 and 30 min, respectively. By integrating 10 different calibration
metrics, the outputs of 2000 and 2400 RillGrow runs for, respectively, the field and laboratory experiments were
analysed. No single model run was able to adequately replicate all aspects of either the field or the laboratory
experiments. The multiple objective function approaches highlight different aspects of model performance, indi-
cating that no single objective function can capture the full complexity of erosion processes. They also highlight
different strengths and weaknesses of the model. Depending on the focus of the evaluation, an ensemble of
objective functions may not always be necessary.

These results underscore the need for more nuanced evaluation of erosion models, e.g. by incorporating
spatial-pattern comparison techniques to provide a deeper understanding of the model’s capabilities. Such cali-
brations are an essential complement to the development of erosion models which are able to forecast the impacts
of future global change. For the first time, we use data with a very high spatio-temporal resolution to calibrate a
soil erosion model.
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1 Introduction

Soil erosion by water is an environmental problem of global
significance (e.g. Nearing et al., 2017; Quinton and Fiener,
2024). In the future, it is likely to become more pressing
in locations where anthropogenically driven climate change
brings about more and/or more intense rainfall and/or where
changes in land usage (resulting from changes in climate,
economic factors, and/or other drivers) operate to leave soil
unprotected by vegetation during times of heavy rainfall (e.g.
Boardman et al., 1990; Favis-Mortlock and Boardman, 1995;
Li and Fang, 2016; Dunkerley, 2019; Chen et al., 2024; Zhao
et al., 2024). Such future changes are likely to result in novel
combinations of the factors which cause or inhibit erosion
(Foucher et al., 2024).

To manage soil erosion by water, quantification of the rate
and extent of erosion is essential. Modelling is a primary tool
for such quantification. However, when aiming to model ero-
sion under novel circumstances, it is unwise to make use of
models which work in a wholly “black-box” manner, that
is by extrapolating from previously encountered combina-
tions of erosion-causing and/or erosion-inhibiting factors.
Such models (e.g. Wischmeier, 1976; Renard et al., 1991;
Panagos et al., 2015) cannot represent the impacts upon ero-
sion rates and extents due to currently unknown thresholds
of or non-linearities in the response to the erosion-causing
and/or erosion-inhibiting factors. It is these thresholds and
non-linearities which will provide the greatest surprises with
regard to future erosion. Thus, there is a vital scientific need
to improve and to continue to improve our understanding
of the processes of soil erosion by water and to incorporate
this understanding into quantitative process-focused models,
with (at the same time) such models ideally making use of
readily available data sources. This is a considerable chal-
lenge, but only by doing this will we be able to satisfactorily
manage future soil erosion by water.

While there are many process-focused models which sim-
ulate the effects of soil erosion by water (e.g. Jetten et al.,
1999; Batista et al., 2019; Raza et al., 2021; Rose and Hadad-
dchi, 2023), the RillGrow model (Favis-Mortlock, 1998) is
unusual in its adoption of a cellular automaton (CA: see
“List of abbreviations” in the Appendix) representation of
the eroding soil surface (cf. Smith, 1991; Murray and Paola,
1997; Coulthard et al., 2002; Darboux et al., 2002; Nicholas,
2005). CA models have been used to study emergent phe-
nomena in a wide variety of scientific domains (e.g. Wolfram,
1984; Wu, 1998; Cappuccio et al., 2001; Wahle et al., 2001;
Silva et al., 2019; Favis-Mortlock, 2004). In RillGrow – as in
the majority of CA models – all process interactions are “lo-
cal”, i.e. take place only between adjacent cells of the digital
elevation model (DEM) grid which represents soil surface
elevations (and other soil properties). There are no process
representations which operate in the DEM as a whole. As a
consequence of this purely local focus, the model makes no
distinction between rill and inter-rill erosion processes. In-

stead, they are considered to be part of a continuum. The
model’s local (i.e. confined to a single cell and the cells
which surround it) representation of erosion processes cre-
ates larger emergent multi-cell patterns: micro-rills and rills
(Favis-Mortlock et al., 2000).

As with virtually all erosion models (e.g. Favis-Mortlock
et al., 2001), there is a need to calibrate the empirical inputs
which RillGrow requires and then to evaluate model results
against observations (Jetten et al., 1999; Batista et al., 2019).
The relatively unusual modelling approach adopted by Rill-
Grow lends itself to the exploitation of novel tools for cali-
bration (Epple et al., 2022). This is particularly so with regard
to the capturing of spatial patterns, such as rill networks.

In an early RillGrow study (Favis-Mortlock, 1998), a
moving-head laser scanner was used to capture microtopog-
raphy: first of the initial soil surface of a laboratory-based
plot and then of the eroded soil surface of the plot following
simulated rainfall. The initial-surface DEMs which resulted
from these scans were used as inputs for RillGrow, and the
end-of-experiment DEMs were used to evaluate the model’s
output. However, this strategy – comparing the model’s spa-
tial output only with the end-of-experiment DEM – leaves
open the possibility of “the right answer for the wrong rea-
son” since modelled rills may form in a temporal sequence
which is different from reality. The sequence with which ero-
sional channels are incised (i.e. the dynamic development of
flow-routing patterns) is of major importance when consider-
ing temporal changes in connectivity for areas ranging from
plot-sized to field-sized (Baartman et al., 2020).

Thus, there is a need for intra-experiment DEM captures
(time slices) to improve model evaluation. A subsequent
laboratory-based RillGrow study used data from Helming
et al. (1998) and did make use of intra-experiment DEMs.
However, it was necessary to pause the simulated rainfall in
order to use the laser scanner to capture the intra-experiment
microtopography and then to restart the simulated rainfall.
These within-experiment pauses were necessary for two rea-
sons: firstly, because laser scanning could not be carried out
with simulated rain falling onto the moving scanner head
(and even if it could, the scanner head would interfere with
the uniformity of the simulated rain) and, secondly, because
laser scanning as used in this experiment was not instanta-
neous, with the laser scanner rather requiring some minutes
to cover the whole plot area. Pausing an experiment in this
way to capture a snapshot of rapidly changing microtopog-
raphy is potentially problematic. Diminishing flow in rills
during intra-experiment stoppages will result in within-rill
deposition, which may influence subsequent within-rill de-
tachment when rainfall is restarted; also, a newly developed
soil crust (or seal) may begin to dry out and so change its
properties, particularly with regard to infiltration.

Another RillGrow study (Favis-Mortlock et al., 1998)
made use of simple photogrammetry to capture initial and
final DEMs of a small area together with a single intra-
experiment DEM which was obtained without pausing the
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experiment. Whilst this was a step forward, a single intra-
experiment DEM is not enough to satisfactorily evaluate the
temporal sequence with which erosional patterns form; also,
there were problems with raindrops obscuring parts of the
eroding area.

Structure-from-motion (SfM) photogrammetry can easily
capture multiple intra-experiment DEMs because almost all
processing is automatic (Eltner and Sofia, 2020); it therefore
promises to be a useful tool in calibrating spatially explicit
erosion models such as RillGrow. SfM photogrammetry per-
mits intra-experiment measurements of changes in soil sur-
face microtopography at millimetre to centimetre resolutions
for plot- and hillslope-sized areas, with millimetre to cen-
timetre accuracy (e.g. Eltner et al., 2018; Hänsel et al., 2016).
So far, SfM photogrammetry in the field of erosion studies
has mainly been applied to unoccupied aerial vehicle (UAV)
imagery. However, its potential for application with terrestri-
ally installed camera systems to increase the frequency of
geomorphic change detection to hours (e.g. Blanch et al.,
2024) or even to seconds (Eltner et al., 2017) has been il-
lustrated. Note that, with time-lapse SfM photogrammetry,
falling raindrops obscuring the plot or hillslope are less of an
issue (unlike in the approach used in Favis-Mortlock et al.,
1998) due to the high frequency of capturing data and, thus,
the increased likelihood of capturing images during rainfall
gaps.

For model calibration and evaluation, the most commonly
used approach involves space–time averaging: a simple com-
parison of measured and modelled runoff and sediment yield
at the end of the plot (or at the catchment outlet) and at the
end of the period of observation. Sometimes, this is supple-
mented by comparisons of measured and modelled time se-
ries, constructed from additional plot-end (or catchment out-
let) measurements during the period of observation. There
have been attempts to evaluate erosion models using spa-
tial data, e.g. from field surveys, aerial images, and fallout
radionuclide data (Brazier et al., 2001; Fischer et al., 2018;
Jetten et al., 2003; Saggau et al., 2022; Vigiak et al., 2006).
However, it has been and still is much less common to com-
pare the measured and modelled spatial patterns of erosion.
It is even less common to do so using more than one method
for comparison.

From the perspective of the historical development of ero-
sion models (e.g. Nicks, 1998) it is unsurprising that model
evaluations have concentrated on simple spatio-temporal av-
eraging approaches. The USLE (Wischmeier, 1976) and
subsequent models based upon the USLE (e.g. MUSLE:
Williams, 1975; RUSLE: Renard et al., 1991; USLE-M: Kin-
nell and Risse, 1998) are only capable of generating results
which are averaged over both time and space. Subsequent,
more process-focused erosion models such as WEPP (Near-
ing et al., 1989) or Erosion-2D (Schmidt, 1991) introduced
a 2D spatial element: a hillslope profile. Later came models
with an explicit spatial focus, such as LISEM (de Roo et al.,
1996) and Erosion-3D (Schmidt, 1996). The evaluation of

erosion models has therefore lagged behind the development
of the models themselves.

The aims of this study were, first, to use several multiple
objective functions to calibrate a process-focused soil ero-
sion model (RillGrow) and then to evaluate these objective
functions in terms of information gained from each function.
We used time-lapse SfM photogrammetry and measured the
sediment yield from two plot-sized rainfall simulations, one
in the field and the other in the laboratory. Ten different ob-
jective functions were considered to calibrate model parame-
ters. The best-performing model runs were chosen to be those
with the lowest residuals for multiple objective functions.
This novel approach to testing erosion models considers both
3D models of change with high spatio-temporal resolutions
and multiple sediment yield measurements at the plot outlet.

2 Methods

2.1 Data acquisition

The field and laboratory rainfall simulators of the Czech
Technical University in Prague were used in this study
(Fig. 1). Rainfall simulators can both control several char-
acteristics of incident raindrops and accelerate erosion pro-
cesses for a faster monitoring of soil surface changes. Thus,
simulators have become an integral part of erosion research,
including erosion model calibration and evaluation (Iserloh
et al., 2013; Prosdocimi et al., 2017; Bosio et al., 2023).

During the field experiment, the rainfall simulator (Kavka
et al., 2018) was used on a plot that had been prepared as
cultivated fallow. For the laboratory experiment, the rainfall
simulator (Kavka et al., 2019) was used on a disturbed soil
sample which had been prepared similarly to the field ex-
periment. Further site and experiment properties are given in
Table 1.

Both rainfall simulation experiments used the same ap-
proach with regard to runoff and sediment sampling: a stan-
dard procedure described by Stašek et al. (2023). At the bot-
tom of the plot, runoff is routed into a metal funnel. Samples
are collected at volumes of 1 to 2 L every 2.5 min after the
start of runoff. Samples were weighted to obtain the volume
of surface runoff and then were filtered using KA-3M paper
filters (Papírny Pernštejn, Czechia) and dried at 105 °C in an
air drier in order to obtain the amount of soil per sample.

Nine single-lens reflex (SLR) cameras (Canon EOS 450D,
600D, 1100D, and 2000D and Nikon D700) were used to cre-
ate the photogrammetric data for both the field and the lab-
oratory experiments (Fig. 2). These captured images every
10 s in a synchronized manner using a remote trigger which
had been constructed in-house. The cameras used different
but fixed focal lengths to ensure a stable principal distance
during the experiment. At the field site, the cameras were
mounted at a height of about 4 m. This captured a region
of interest (RoI) of about 4 m2, covering the lower part of
the plot. In the laboratory, the whole plot could be captured
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Figure 1. Rainfall simulator used in the field (a) and in the laboratory (b).

Table 1. Rainfall, plot, and soil characteristics for both field and laboratory rainfall simulation experiments.

Field experiment Laboratory experiment

Rainfall properties

Rainfall intensity (mm h−1) ∼ 140 ∼ 120
Kinetic energy (J m−2 mm−1) 10 7.8
Nozzle type WSQ40 WSQ40

Plot properties

Rained-on area (m) 2 × 8 1 × 4
Slope (%) 9 40
Duration of experiment (min) 90 30
Surface Seed bed condition (cultivated fallow or bare soil)

Soil properties

Soil type Loam
Clay/silt/sand % 10.5/56.6/32.9
Organic carbon % 1.49
Soil depth and condition Undisturbed soil – arable soil with 35 cm deep topsoil,

cultivated to the depth of 10 cm with a hand cultivator and
hand roller (Stašek et al., 2023)

Disturbed soil – 15 cm topsoil and
5 cm of sand bottom; after filling,
rolled

(about 4 m2). Images were also captured with a Sony Alpha
6600 (142 and 148 images at the field site and 77 and 79
images in the laboratory before and after the experiment, re-
spectively) by walking around the plot to measure the entire
area underneath the rainfall simulator. Ground control points
(GCPs) were distributed around the plot (15 and 22 for the
field and laboratory experiments, respectively) and measured
with millimetre accuracy using a total station in order to scale
and reference the image measurements.

2.2 Image data processing

Images captured with the Sony Alpha 6600 were used to de-
rive 3D representations of the whole plot for both the field
and the laboratory experiments using Agisoft Metashape (v.
2.0.2) and following the standard SfM photogrammetry steps
(e.g. Eltner and Sofia, 2020). Processing of the time-lapse
image data required extra steps to obtain the 3D models, fol-
lowing Grothum et al. (2024). Images were sorted by ac-
quisition time and then were processed using the applica-
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Figure 2. Ortho photo (left) and elevation change map (right) of the field (a) and laboratory (b) experiments. The cameras for time-lapse
SfM are marked with red boxes. The green box in (a) shows the region of interest, for which high-temporal-resolution change observations
were made.

tion programming interface (API) of Metashape (v. 2.0.2) to
automatically generate a time series of DEMs using time-
lapse SfM photogrammetry (Eltner et al., 2017; Blanch et al.,
2024). In total, 708 and 220 filtered (for outliers) dense 3D
point clouds were calculated for the field and laboratory ex-
periments, respectively. Point clouds from the whole plot and
time series were then rasterized using an interpolation ap-
proach that retains the average height value for points falling
in the same raster cell. Empty cells were linearly interpolated
considering the nearest non-empty cells. For both the field
and the laboratory experiments, the image-based 3D models
of the whole plots were rasterized to a resolution of 3 and
1.5 cm, respectively. These DEMs were then used as inputs
for the RillGrow model. The time-lapse data were rasterized
to resolutions of 1 and 0.5 cm for the field and laboratory,
respectively. Note that the time series of the DEMs covers
a smaller RoI at the field site because the cameras were not
able to cover the whole erosion plot.

DEMs of differences (DoDs) were also constructed by
point cloud differencing considering M3C2-PM (James et
al., 2017) to estimate significant changes based on the ac-
curacy of the image-based 3D reconstruction. The variance
in the tie points, resulting from the bundle adjustment, is ap-
plied to estimate the spatially distributed error, which is then
transferred to the dense point cloud using a distance-based
weighted average if several points fall within a given search
radius. The error information is then used with the multi-

scale cloud-to-cloud approach (M3C2, Lague et al., 2013) to
calculate the point cloud differences. The first point cloud of
the time series is used as a reference point cloud in relation to
which all subsequent point clouds are differentiated to ensure
the same orientation of the point normal used by the M3C2
tool. The final point clouds of difference are rasterized to
DoDs with the same resolution as the time-lapse DEMs (i.e.
1 and 0.5 cm) considering only the significant changes and
using the M3C2 distance as the Z (vertical) value. However,
no interpolation was performed at this stage due to large data
gaps, especially at the beginning of the experiments, when
there were only small changes in soil surface elevation which
fell within the noise level of the data.

2.3 The simulation model for soil erosion by water

RillGrow works as follows. Rain falls onto the DEM at ran-
dom locations as individual drops. The number of drops per
time step is calculated from the user-inputted mean and stan-
dard deviation of rainfall intensity. Raindrop volume is calcu-
lated from the mean and standard deviation of raindrop diam-
eter (also user inputs, as is raindrop fall velocity). Infiltration
(if chosen by the user; otherwise, the soil is assumed to be
saturated) is calculated using the explicit Green–Ampt model
of Salvucci and Entekhabi (1994). Overland flow moves
from grid cell to grid cell in the D8 direction of the steepest
slope until it leaves the grid or can move no further, i.e. until
it is ponded. The depth of the water in ponded cells increases
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as more overland flow arrives. Eventually, overtopping may
occur. The speed of overland flow on the grid is calculated
using either a Manning-type or the Darcy–Weisbach flow ve-
locity equation: if this is chosen then the friction factor may
be a user-inputted constant based on the Reynolds’ number
or calculated using the approach of Lawrence (1997). No dis-
tinction is made between rill and inter-rill overland flow.

During flow routing, each wet cell has a sediment load
which has been received from the adjacent upstream cell(s).
Transport capacity is calculated using Eq. (5) from Nearing
et al. (1997). If the sediment load exceeds the transport ca-
pacity then excess sediment is deposited assuming a linear
function of the difference between sediment load and trans-
port capacity (Eq. 12 in Lei et al., 1998). If the sediment load
is less than the transport capacity then soil is eroded from
the cell using a probabilistic detachment equation by Near-
ing (1991): this represents FD-FT (flow detachment − flow
transport) in the Kinnell (2001) classification of erosion sub-
processes. No distinction is made between rill and inter-rill
flow erosion.

In this way, micro-rills are incised, with their location hav-
ing been determined only by microtopography. Micro-rills
“compete”, with the most “successful” (i.e. those that have
been incised in such a way that they become part of a con-
nected network which conveys runoff downslope) growing
further to become rills. Eventually, a highly connected rill
network is formed.

In the version of RillGrow used in this study, splash re-
distribution was represented using the diffusion equation ap-
proach of Planchon et al. (2000) together with a water depth–
splash efficiency relationship. This represents RD-ST (rain-
drop detachment − splash transport) in the Kinnell (2001)
classification of erosion sub-processes. Recent versions of
RillGrow also consider gravitational collapse: “slumping”
represents mass movement on wet cells; this occurs most fre-
quently along rill sidewalls. If a cell’s shear stress (due to
overland flow) exceeds a user-inputted threshold and if the
cell is saturated (i.e. subsurface soil water for the cell is at its
maximum value) then slumping occurs. Soil is assumed to
flow hydrostatically down the steepest D8 soil surface gradi-
ent surrounding the cell until it reaches a user-inputted angle
of rest. “Toppling” similarly represents mass movement, but
the soil cell does not need to be saturated: if any cell–cell gra-
dient exceeds a user-inputted threshold then soil is assumed
to move until it reaches a user-inputted angle of rest.

Detached and deposited sediment is considered to com-
prise three size fractions (clay, silt, sand). The soil grid is rep-
resented as one or more erodible layers above an un-erodible
basement. Each soil layer can possess different user-inputted
erodibilities for flow, splash, and slumping for each of the
three size fractions.

Early versions of RillGrow (Favis-Mortlock, 1998)
adopted simple, mostly empirical representations of the ero-
sion and deposition due to overland flow. Nonetheless, the
model was able to satisfactorily replicate spatial patterns of

Figure 3. Flowchart of RillGrow. Blue-edged boxes indicate hydro-
logical processes or stores, brown-edged boxes indicate erosional
processes, and black-edged boxes are model specific. The codes
(RD-ST, FD-FT, etc.) describe erosional sub-processes; see Kin-
nell (2001). Plain black lines represent process linkages, and dashed
black lines represent feedback.

observed rill networks and amounts of runoff and soil loss for
plots in the laboratory and field (Favis-Mortlock et al., 1998,
2000). Subsequent development of the model has moved to-
wards representations which are more – but still, unavoid-
ably, not wholly – physics-based. Thus, as with all current
erosion models, some calibration of user inputs is necessary
(Favis-Mortlock et al., 2001). A flowchart of the RillGrow
model, outlining its representation of hydrological and ero-
sional processes, is shown in Fig. 3. Equations used in the
model are given in the Supplement in Eqs. (S1)–(S14).

The model uses a time step for each iteration which is dy-
namically controlled by the maximum speed of cell-to-cell
runoff during the previous time step to ensure that cell-to-cell
flow in the model obeys the Courant et al. (1928) condition.
With cell sizes of millimetres to centimetres, time steps are
of the order of hundredths of a second. Thus, RillGrow sim-
ulations require considerable computing power for large grid
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sizes: simulations are, therefore (with current versions of the
model), confined to plot-sized areas.

2.4 Input parameters and model runs

To perform the erosion modelling with a range of model in-
put parameters, a Monte-Carlo-like approach was used. This
employed Latin hypercube (LHC) sampling to draw the pa-
rameters approximately randomly. The parameter space was
divided into bins, with sizes defined by the chosen parame-
ter value range and the number of drawings. This LHC ap-
proach aims to ensure a near-random distributed sampling of
parameter combinations so that the whole parameter space
is covered and the variability of the data is represented. LHC
sampling has been used to calibrate hydrological models (e.g.
Singh et al., 2024).

Seven RillGrow input parameters were considered in this
way:

– DEM base level, which is the vertical distance between
the lowest DEM cell elevation and the plot outlet level;

– N for splash efficiency, which determines soil redis-
tribution due to splash, i.e. RD-ST (raindrop detach-
ment − splash transport) and RD-FT (raindrop detach-
ment − flow transport) in Kinnell (2001);

– maximum flow speed, which is a cut-off for cell-to-cell
runoff speed which cannot be exceeded;

– K for detachment, which determines soil detachability
by flow, i.e. FD-FT (flow detachment − flow transport)
in Kinnell (2001);

– radius of soil shear stress, which controls the size of
the patch over which shear stress is distributed, which
controls slumping (gravitational cell-to-cell movement
of saturated cells which both exceed a given cell-to-cell
gradient and which exceed a shear stress threshold);

– threshold shear stress for slumping; and

– angle of rest for slumped soil.

Whilst other input parameters could have been chosen, we
focused on these following a first simple Monte Carlo simu-
lation using 3000 runs and testing 12 parameters.

Subsequently, 2000 and 2400 RillGrow simulation runs
were conducted for the laboratory and the field site, respec-
tively, at the high-performance computing (HPC) centre of
the Dresden University of Technology. As it was not practi-
cally feasible to save model outputs at every time step, se-
lected points in time were chosen, with a higher temporal
resolution at the beginning of the simulation and decreasing
temporal steps later on. For the field site, in total, 36 tempo-
ral points (minutes 0.2, 0.5, 1, 2, 3, 5, and 7 and, afterwards,
every 3 min until 90 min) were considered. For the laboratory
site, 19 temporal points (minutes 0.1, 0.2, 0.5, 1, 2, 3, and 4
and then every 2.5 min until 30 min) were considered.

2.5 Objective functions for erosion model evaluation

Erosion model results were compared with measured sedi-
ment yield and measured DoDs, considering, in total, 10 dif-
ferent objective functions and their combinations. The objec-
tive functions for different observations were tested with re-
gard to their suitability for calibrating the erosion model. We
distinguish between three different spatio-temporal charac-
teristics – i.e. space–time averaged, time averaged, and area
averaged (Table 1) – and different options to calculate com-
parison metrics – i.e. total change, root mean squared error
(RMSE), dynamic time warping (DTW) distance, and nor-
malized Nash–Sutcliffe efficiency (NNSE). Also, observa-
tions from different sources, namely image-based elevation
change (EC) models and sediment yield (SY) measurements,
were used (Table 2). Finally, the combination of different ob-
jective functions was investigated.

2.5.1 Space–time-averaged data

This considers the total change in the measurements, for ex-
ample, the change in the total sediment lost during the rain-
fall simulation experiment compared to the modelled sedi-
ment lost. Space–time-averaged EC refers to the cumulative
height change measured at the end of the experiments (i.e.
the difference, as in M3C2-PM, between the initial- and the
final-time-slice DEM) compared to the modelled EC.

2.5.2 Time-averaged data

Here, we compare the observed and modelled spatial pattern
of erosion. This involved two objective functions. The first
objective function estimated the pixel-wise difference, i.e. a
direct comparison of the measured 3D model and the simu-
lated soil surface. To do this, the observed DEM must be re-
sampled to the same resolution as the simulated raster. Calcu-
lated pixel height differences are eventually aggregated to an
average value. The second objective function is a dense vec-
tor representation (DVR) using a deep learning (DL) method
to calculate image embeddings, i.e. an abstract image repre-
sentation summarized in one vector, to compare them in the
latent (i.e. abstract) feature space. This approach is used here
to assess the similarity in terms of spatial patterns. The DL
approach is less sensitive to offsets in the position of rills
(i.e. several-pixel differences in the position of the modelled
rill compared with the observed rill). The CLIP (Contrastive
Language–Image Pre-training; Radford et al., 2021) model
was used to transform the images into the feature space be-
cause it has been shown to be robust across domains: this is
especially relevant for our application with height images,
which are usually not part of the training datasets. After-
wards, the cosine similarity score is used to derive a value
of similarity between the transformed images. To perform
this comparison, the DEMs were transformed into an 8-bit
three-channel image prior to some filtering of strong height
outliers to avoid artefacts by keeping only 95 % of the height
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Table 2. Summary of objective functions and their combinations used for the soil erosion model calibration.

Single objective function Multi-objective function

Total EC Space–time
averaged

Difference in total elevation
change (m)

EC t_series EC time series assessment with
RMSE, DTW, and NNSE

Total SY Difference of total sediment
yield (kg)

SY t_series SY time series assessment with
RMSE, DTW, and NNSE

RMSE EC Area
averaged

Root mean squared error eleva-
tion change (m)

EC and SY t_series EC and SY time series assess-
ment with RMSE, DTW, and
NNSE

RMSE SY Root mean squared error
sediment yield (kg)

EC t_series and total
change

EC t_series and considering to-
tal change

DTW EC Dynamic time warping distance
elevation change (m)

SY t_series and total
change

SY t_series and considering to-
tal change

DTW SY Dynamic time warping distance
sediment yield (kg)

EC and SY t_series and
total change

EC and SY t_series and consid-
ering total change

NNSE EC Normalized Nash–Sutcliffe ef-
ficiency elevation change (m)

EC t_series and
total change and spatial
pattern (no DL)

EC t_series and total change
and considering per-pixel EC

NNSE SY Normalized Nash–Sutcliffe ef-
ficiency sediment yield (kg)

EC t_series and
total change and spatial
pattern

EC t_series and total change
and considering per-pixel EC
and sim DL EC

Per-pixel
EC

Time
averaged

Per-pixel elevation difference
(m)

EC and SY t_series and
total change and spatial
pattern (no DL)

EC and SY t_series and to-
tal change and considering per-
pixel EC

Sim DL EC Similarity of spatial pattern
assessed with deep learning

EC and SY t_series and
total change and spatial
pattern – all

Considering all single objective
functions

values, with the remaining 5 % (i.e. the largest heights) be-
ing replaced by the closest inlier value. The best-performing
model runs were chosen with regard to the average difference
and similarity values of the final model run of each time se-
ries; i.e. we did not compare every simulated and observed
3D surface of a series but rather compared only the last ones.

2.5.3 Area-averaged data

Here, the comparison is between the time series of spa-
tially averaged (i.e. whole-plot) changes. In the case of the
EC data, the DoDs based on the M3C2-PM approach were
used to estimate the average height change per point in time,
thereby always considering the first DEM of the time series
as the reference model for the change calculation of the sub-
sequent models. The simulated DEMs were also differenti-
ated using the first model as the reference to eventually re-
ceive the simulated time series of the modelled EC. To com-
pare the time series, three different metrics were considered.

– RMSE is an accuracy metric that calculates the square
root of the quadratic mean of the differences between
the modelled and measured values.

– DTW distance is a measure that tries to find the opti-
mal match between two sequences and whose remain-
ing mismatch can be considered to be an estimate of the
time series similarity. It has the advantage that it is in-
variant in relation to some non-linear behaviour. This
metric has been applied to align complex time series of
topographic change (Anders et al., 2021).

– NNSE is the preferred metric to assess model perfor-
mance (Batista et al., 2019). It is a measure that relates
the modelled error variance to the measured one. The
closer the value to unity, the better the model predicts
the erosion.

Thus, in total, six metrics were estimated, i.e. the three sum-
marizing time series values calculated for both EC and SY
comparisons.

2.5.4 Combinations of objective functions

Combinations of different objective functions were also eval-
uated. The multiple objective function approach considers
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eight different combinations (Table 2). For the multiple ob-
jective function approach, the best models were found by
keeping the models whose metrics were within the top val-
ues; e.g. for finding the 10 best models, the objective func-
tion values were iteratively sorted and evaluated until at least
10 models remained within the top values of each list. We
assume that the use of more objective functions enables us
to deal better with equifinality (Beven, 2006) due to differ-
ent processes being captured with different calibration met-
rics, although only two data sources were used as input, i.e.
images and sediment yield measurements. For instance, the
time-averaged spatial similarity compares the overall appear-
ance of the rill network, whereas the RMSE of the time series
of elevation change ideally captures overall erosion within
the plot.

For the field experiment, results from the model runs of-
ten showed very strong artefacts. Therefore, a filter approach
was applied that assumed smoother changes in the soil sur-
face, including rill incision, to automatically detect and cor-
respondingly exclude these faulty simulation runs. Elevation
changes between the first and last DEM (i.e. the DoD) of
each simulation run were smoothed using a Gaussian fil-
ter with a five-pixel kernel. The smoothed model was then
subtracted from the original DoD to identify very strong
changes. The approach is adopted from Onnen et al. (2020).
If the difference is below an arbitrary threshold of 5 cm, the
change in that pixel is considered to be valid. Finally, the ra-
tio between the number of affected and non-affected artefact
pixels is calculated, and if the ratio is below 0.2 % then the
simulations are considered not to be plausible.

3 Results

Results are shown separately for the field and laboratory ex-
periments. Animations of elevation changes in the soil sur-
faces of the field and laboratory rainfall simulation experi-
ments may be viewed with Animations S1 and S2 in the Sup-
plement for the field and laboratory, respectively. Note that
some flickering is observable in both time series. This is due
to the unavoidable circumstance of capturing images during
rainfall, although rainfall does not fall continuously, leading
to a slight increase in data noise. Nevertheless, image match-
ing and DEM calculation were still possible because most
drops were detected as outliers during the SfM processing.

3.1 Results from the field experiment

During the 90 min of the field rainfall simulation, with an in-
tensity of 140 mm h−1, 173.5 kg of sediment was lost from
the plot. Total discharge was about 3100 L. Total net height
changes measured for the entire plot (including the RoI)
amounted to 1.2 cm. At the beginning of the rainfall experi-
ment, a rill began to form in the bottom left of the plot. Rill
growth then stopped. Later, a second rill began to form in
the bottom centre of the plot and then began to cut back-

wards (i.e. upstream). Growth of this rill slowed after some
time. Later, the left rill began to grow again, and this time it
continued to cut backwards until the end of the experiment.
The formation of wide head cuts was also observed during
the experiment; these appear to be more like terraces and are
present across the slope. They retreated upslope slightly but
did not evolve into rills.

Large artefacts developed in many model simulations
(Fig. 4). These artefacts show very large differences in terms
of accumulation and erosion between directly neighbouring
pixels, which is not a plausible erosion pattern. However,
some objective functions of the time series still indicated
a good fit between modelled and observed data, e.g. when
considering the lowest values for DTW EC (7.8 cm) and SY
(99 kg).

Also, the plotted time series of the 30 best simulated model
runs, according to the objective function DTW, seemed to in-
dicate a good capturing of the averaged EC by the erosion
model. An exception was the best model runs found by the
DTW SY, in which simulated splash was strongly underesti-
mated (Fig. 4). However, total EC (0.1 mm) and SY (0.26 kg)
differences show very good model run fits once again. Still,
an inspection of the maps of the final DoDs shows that the
best model run when applying only the EC-based metrics
(Fig. 4, two left plots), i.e. without considering spatial pat-
terns, leads to noisy model runs. This might be due to high
positive and negative changes in immediate proximity, which
are then cancelled during the averaging of the EC. If only
SY-based metrics are used then not even rill patterns are visi-
ble in the best-simulated model runs (Fig. 4, two right plots).
The good fits in the unfiltered simulation data were therefore
found for the wrong reasons, i.e. due to the very strong arte-
facts, and so they do not reflect a good fit of parameters to
describe the simulated erosion process.

Using our chosen objective functions alone did not provide
sufficient information to automatically assess the plausibility
of model outputs and, thus, the best input parameters. Only
the additional assumption of smooth DEM changes enabled
the removal of these implausible models. When the filter was
applied, 279 model runs remained from the original 2000.
Different relationships between the objective functions be-
came clear after filtering (scatterplots in Fig. 5) and before
filtering (Fig. S3). In the subsequent assessment of the field
results, we considered only the filtered data.

The relationship between the different metrics of the ob-
jective functions is not linear, except for that between RMSE
and DTW EC, which indicates that the metrics capture dif-
ferent aspects of soil surface change due to erosion (Fig. 5).
For example, the model run that has the lowest difference
in terms of EC between simulated and observed data does
not have to be the same model run with the lowest SY
difference. The differences between the EC and SY met-
rics are more complex compared to the differences between
those with the same data sources, i.e. camera-based or plot-
outlet-measured. Nevertheless, in general, there is a depen-
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Figure 4. Although metrics of objective functions – e.g. time series of DTW of measured (red line) and simulated (grey lines) elevation
change (EC) and sediment yield (SY) for the field simulation (f) – indicate good model fit, large artefacts in the final simulated model are
visible (a–b). For the legend, see Fig. 2.

dence that is visible between the different metrics. This
was favourable because we were looking to explore the be-
havioural parameter space constrained by different sources of
data and objective functions. The assumption here is that the
more diverse the objective functions are, the better the dif-
ferent aspects of the model will be captured. The objective
functions that were chosen for the time series of EC (RMSE,
DTW, and NNSE for EC) and total change (EC) fit well,
which is also the case for the corresponding SY metrics. The
DL-based similarity values reveal the most complex and least
obvious relationship with the values of the other functions.

Next, we show the differences between the best model runs
chosen according to the different objective functions which
considered total changes (space–time-averaged), time series
(area-averaged), and spatial patterns (time-averaged). Fig-
ure 6 depicts the final DoD of the best model runs, given
the individual objective functions, as well as their combina-
tions. All variants of the objective functions result in a best
model run that appears to be realistic and that predicts at least
three dominant rills, though with different lengths, widths,
and depths. The predicted rills all reach quite far, compared
with observations, into the belt of no erosion towards the up-
per end of the plot; also, only two main rills were observed.
However, the observations for model evaluation were only
considered for the RoI, within which the rills did, indeed,
cross the whole length.

The best model runs differ when either single EC- or SY-
based objective functions are used for evaluation. If combi-
nations are considered, there is a difference between using
only EC-based metrics and SY-based metrics or combina-
tions of EC- and SY-based metrics. The same best model
run resulted for DTW EC, total EC, and sim DL EC. Thus,
EC metrics that consider space–time-averaged (total), area-
averaged (DTW), or time-averaged (sim DL) characteristics
all select the same model run. Further, in that model run,
no artefacts are present. This is also the case for NNSE SY.
The predicted SY for the best EC-metric-based model run
is, however, about 30 kg (∼ 17 %) off from the measured to-
tal SY, but the predicted and measured total EC are almost
identical. In the case of predicted total EC, the best NNSE-
SY-based model run is off by 1 mm total EC and by about
24 kg total SY. However, the best model run that was found
based on height changes also predicts a more pronounced left
rill across almost the whole plot length, which is not the case
for the best model run based on the NNSE SY metric. This
indicates a potentially better performance of EC-based met-
rics in finding the best-fitting rill pattern. The best model runs
for DTW, total, and sim DL EC and NNSE SY do not pre-
dict splash or inter-rill erosion, which does not fit the actual
observation of strong splash effects (Fig. 6). More splash is
modelled for a realization with better DTW and SY metrics.
However, in that model run, the rill depth is too small. The
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Figure 5. Scatterplots of values of objective functions for the field plot (EC in m – except for sim DL, which has no unit – and SY in kg).
Blue scatterplots (lower triangle) correspond to the laboratory experiment, and green scatterplots (upper triangle) correspond to the field
experiment. The objective functions and their abbreviations are explained in Table 2.

widest rills are found for the best model run based on RMSE
SY and per-pixel EC.

When considering the combination of objective functions,
only two best model runs eventually remained. For all objec-
tive functions that consider only EC as a parameter (and the
various combinations, i.e. EC t_series, EC t_series and total,
EC t_series and total and sp_pattern (no DL), EC t_series
and total and sp_pattern), only one model run remained.
The second model run was indicated for all other objective
function combinations that consider both EC and SY (i.e.
SY t_series, SY t_series and total, EC and SY t_series, EC
and SY t_series and total, EC and SY t_series and total and
sp_pattern (no DL), all). Nonetheless, it is obvious that these
two model runs still contain artefacts; also, they do not seem
to model splash adequately. This might, however, be masked
by the artefacts. Both model runs predict three main rills,
which are deeper for the second model run, i.e. when EC and

SY are considered for model evaluation. Time series from
the erosion model runs (i.e. the area-averaged metrics) reveal
a good fit by the 30 best model runs at the beginning of the
simulation, when changes to the soil surface are still small
(Fig. 7).

After about 30 min, the model runs begin to deviate
strongly from the observations, independently of the consid-
ered objective function (RMSE, DTW, or NNSE) for EC. We
noted that the erosion model runs were not able to capture
the observed change in erosion rates: after a slow increase in
erosion, after about 15 min, the erosion rate increased steeply
then decelerated to a lower rate after about 40 min, which
then remained nearly constant until the end of the experi-
ment. However, the simulation runs depict more continuous
erosion rates. Differences between modelled and simulated
time series of SY are not as strong. A better fit with regard to
the erosion rate and its change during the experiment is visi-
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Figure 6. Simulated height change for single and combinations of objective functions (1: EC t_series, EC t_series and total, EC t_series and
total and sp_pattern (no DL), EC t_series and total and sp_pattern; 2: SY t_series, SY t_series and total, EC and SY t_series, EC and SY
t_series and total, EC and SY t_series and total and sp_pattern (no DL), all). For the legend, see Fig. 2. The objective functions and their
abbreviations are explained in Table 2.

Figure 7. Time series of elevation change measured with time-lapse SfM and of sediment yield measured for the plot outlet of the 30 best
models according to the objective functions of RMSE, DTW, and NNSE for the field plot. Note that the scales of the y axes differ. The
objective functions and their abbreviations are explained in Table 2.
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ble. Still, the erosion model runs tend to either overestimate
or underestimate erosion throughout the experiment. Very
few model runs fitted observations very closely. When con-
sidering NNSE, no model run fitted, and all the best model
runs indicated underestimation.

Considering the observations alone, i.e. EC and SY, the
temporal behaviour indicates a difference in both measures.
The EC depicts stronger changes in erosion rate during the
rainfall simulation compared to the SY rate, which is more
stable. This difference might be due to the level of detection
(LoD) of the photogrammetry-based data. Thus, only when
changes exceed some threshold are they considered, poten-
tially underestimating splash processes in the early rainfall
phase.

The time series of the change in the spatial patterns (per-
pixel EC and sim DL EC) also indicate, at the beginning, a
small difference between simulations and observations since
the changes in the soil surface early on in the experiment
are still low. Later on, after about 15 min, the patterns be-
come less similar. Figure 8 shows the similarity in terms of
the spatial pattern for the top 30 model runs according to
the averaged per-pixel EC and sim DL EC metrics. The DL-
based approach further reveals that the stronger the changes
are, the closer the similarity values again become; however,
this is not the case for the per-pixel EC metric. This may
indicate that it becomes easier to assess the similarity with
DL as the spatial patterns become stronger due to increasing
dominance of erosion rills, whereas, during the intermediate
phase, the elevations of soil surfaces might be ambiguous due
to greater noise.

We assessed the 10 best model runs considering the dif-
ferent objective function options to evaluate the spread of
the model input parameters. Figure 9 shows the parameters
within the total para8meter range for the 10 best model runs
according to the multiple objective function approach us-
ing all objective functions. It is clear that the parameters do
not cluster tightly: equifinality is apparent here, with differ-
ent combinations of model input parameters giving similarly
good model fits according to the difference between obser-
vations and predictions as described by the different cali-
bration metrics. The spread of parameter values through the
whole parameter space remains, mostly for the single ob-
jective functions, as well as for their combinations. How-
ever, a closer look at the 10 best results for all objective
functions solely indicates decreased ranges of the parame-
ters determining soil detachability by flow and the thresh-
old for shear stress for slumping because, in their combi-
nation with the other parameters, they no longer cover the
whole of the parameter space but rather only cover partial ar-
eas; e.g. in the case of maximum flow velocity, there is an
inverse correlation with soil detachability by flow. In gen-
eral, very low flow detachment parameters were not consid-
ered, which highlights the preference for model runs with a
stronger influence of flow detachment with transport by flow.
Filtering of the artefacts from model runs is also visible in

the parameter space because the larger splash efficiency val-
ues are mostly removed (i.e. in the upper range, only very
few parameter values remained), indicating that raindrop de-
tachment with transport by raindrop splash is not adequately
described by the erosion model since the simulated influence
of splash is not confirmed by the observations (i.e. DoDs).

Assessing the relationship between the model parameters
and the metrics of the objective functions (Figs. S4–S10 in
the Supplement) shows that the choice of lower values for
the input parameter of “angle of rest for slumped soil” leads
to better model performance, whereas larger values have no
influence on the performance; i.e. no large changes with re-
gard to the metrics can be seen, either because they remain
high for the time series metrics or because they remain at a
nearly constant value for the area- and space–time-averaged
metrics. With regard to the parameter choices for DEM base
level, radius of shear stress, and splash efficiency, no influ-
ence on model performance is visible when looking at the
different metrics. Furthermore, it appears to be the case that,
with larger choices for the values of the model input pa-
rameters for flow detachment and maximum flow velocity,
a slightly better performance in terms of the model runs is
given when considering the SY-based metrics. However, this
relationship is not as clear for the EC-based metrics. Higher
shear stress slumping threshold values lead to better erosion
model performances when considering EC metrics, but the
performance worsens if SY metrics are considered.

None of the model runs did a good job of predicting the
observed rill pattern from the field experiment. Neither the
number of rills (two) nor their locations were adequately
modelled. However, some of the model runs did predict the
rill on the left side of the plot and the rill in the middle of
the plot. Nevertheless, no model run indicated that the rill on
the left would become more dominant later during the rain-
fall simulation and that the rill in the middle would be domi-
nant in the beginning of the experiment and then would stop
growing.

3.2 Results from the laboratory experiment

During the 30 min rainfall simulation in the laboratory, a to-
tal of 80.8 kg of sediment was lost from the plot, and the cor-
responding discharge was about 395 L. The total net height
change measured for the plot was 1.6 cm. Thus, although the
rainfall simulation intensity was the same as that of the field
experiment, a larger negative height change (about 25 %) was
seen, as well as greater sediment yield (considering the fact
that, for the laboratory plot, nearly half of the SY had already
been lost after only one-third of the total experiment dura-
tion for the field plot). Discharge amounted to only about
8 % of the field runoff. These differences are mainly due to
the significantly higher slope gradient for the laboratory ex-
periment. The animation (Fig. S1) of elevation changes dur-
ing the field experiment shows the formation of a rill network
which is markedly different from the network developed dur-
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Figure 8. Time series of spatial-pattern metrics for 30 best models according to per-pixel EC and DL-based EC similarity metric for the field
experiment. The objective functions and their abbreviations are explained in Table 2.

ing the field experiments. At first, a dominant rill formed on
the lower-right side of the plot. A second main rill then de-
veloped in the lower third of the plot, on the left side. After
about 15 min, the left rill merged with a third rill that began to
grow at the bottom of the plot after about 10 min, cutting up-
slope until it met the other rill. At the end of the experiment,
an intricate dendritic rill pattern was observable, especially
in the upper third of the plot, which was also dominated by
sheet erosion, draining into the two main rills. The rill net-
work formed in the first 15 to 20 min and then changed little,
mainly just deepening.

Again, in contrast, to the field experiment, in the labora-
tory rainfall simulation, no strong artefacts were observed in
the erosion model output. Therefore, no filtering was neces-
sary, and all 2400 model runs could be used for the evalua-
tion using the different single objective functions (Fig. 10).
Although the best model runs of the various calibration func-
tions predict the observed filigree rill pattern and/or a few
single strong rills, none of them adequately represent the
strong sheet erosion. In the best model runs based on the
area-averaged parameters (RMSE, DTW, NNSE), four dom-
inant rills that are wide and deep and situated across the
whole plot region are predicted. Considering total SY for
calibration yields three obvious rills, with the right-hand rill
fitting the observed data well as it is also bifurcated. How-
ever, none of the SY-based best model runs capture the over-
all fine rill pattern. The best model runs for the space–time-
and area-averaged EC-based metrics also predict wide rills
covering the lower region of the plot, which is closer to the
camera-based observations. The observed total SY is under-
estimated by 12 kg (DTW, RMSE, total EC) to 16 kg (NNSE
EC), whereas the residual of the predicted total SY for the
best SY-based model runs ranges between 1 kg (DTW SY)
and 3 kg (NNSE, RMSE SY). The best model run for the ob-
jective function considering per-pixel EC is the only one that
predicts two dominant rills. However, these rills are still too

wide and short compared with observations. The best model
run for the second metric focusing on the spatial pattern, i.e.
sim DL EC, predicts the formation of many small rills. Thus,
it is closest to the observed dendritic rill pattern, but the rills
are too shallow, and this model run completely misses the
observed sheet erosion.

When combining the objective functions, it is not possible
to find a single best model run that fits the observations well
(Fig. 11). In the case of parameters based on EC and SY time
series, model runs predict patterns with rills that are too wide
and too long and which cover the whole plot. The combina-
tion of objective functions considering only EC-based met-
rics, including the spatial pattern, indicates model runs with
rill erosion dominating in the lower to the middle parts of the
plot; however, these are still too long, and there is a belt of
no erosion in the upper region of the plot. If SY-based met-
rics are combined with EC-based ones then predicted rills are
shorter but still do not resemble the observations as the rills
remain too wide. Overall, in the camera-based observations
in the upper region of the plot, strong sheet erosion is visible,
which is not predicted by the erosion model.

Relationships between the different calibration metrics are
more obvious for the laboratory experiment (Fig. 5). Correla-
tions between all objective function values, except for NNSE
and the DL-based spatial-pattern comparison, are clearly lin-
ear. The relationship between the values of the NNSE SY and
EC and the remaining metrics is obvious and non-linear. The
DL-based similarity metric alone reveals an unclear relation-
ship with the values of the other functions.

When assessing the temporal behaviour of the 30 best
model runs according to the area-averaged metrics, the EC-
based approaches reveal model runs that fit well or tend to
underestimate soil erosion in the middle period of the exper-
iment (Fig. 12). The best model runs according to the RMSE
and NNSE EC do a better job of predicting height change
over time, while the DTW-EC-based models give a best fit
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Figure 9. Parameter values of 10 best models considering all objective functions – lower triangle corresponds to the laboratory experiment,
and upper triangle corresponds to the field experiment. The colours help to identify points belonging to the same model run.

at the beginning and end of the experiment (as is expected
due to the way in which the DTW is calculated). The NNSE-
EC-based simulations show the largest variance between the
30 best model runs at the end of the experiment. In contrast
to the field experiment, the rates of change for the observed
EC and SY are similar in the laboratory rainfall simulation,
which may result from more intense change at the beginning
of the experiment, leading to crossing of the LoD threshold

early on. The best model runs according to the SY-based cal-
ibration values also fit the observations well. The RMSE-
and NNSE-SY-based best model runs overestimate erosion,
especially at the beginning but also slightly throughout the
rainfall experiment. The NNSE-based best model runs scatter
strongly towards the end of the experiment. The best model
runs according to the DTW SY metric reveal a stronger vari-
ation with regard to the temporal behaviour of the sediment
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Figure 10. Simulated height change of the best model with regard to the single objective functions. For the legend, see Fig. 2. The objective
functions and their abbreviations are explained in Table 2.

Figure 11. Simulated height change of the best model with regard to the multiple objective functions. For the legend, see Fig. 2. The objective
functions and their abbreviations are explained in Table 2.

yield, with a few model runs strongly underestimating ero-
sion.

In both the field and the laboratory experiments, the
spatial-pattern metrics indicate a high agreement between
model results and reality at the beginning of the experiment.
Later in the experiments, these begin to diverge when con-
sidering the per-pixel EC (Fig. 13). However, the best model

runs according to the DL-based metric already show an in-
crease in the deviation between observations and the model
very early on in the experiment; towards the end, the differ-
ences decrease again. This is not surprising because the 30
best model runs were chosen using the difference of the last
model runs in the time series. In general, model runs of the
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Figure 12. Time series of elevation change measured with time-lapse SfM and of sediment yield measured for plot outlet of the 30 best
models according to the objective functions of RMSE, DTW, and NNSE for the laboratory plot. Note that the scales of the y axes differ. The
objective functions and their abbreviations are explained in Table 2.

laboratory experiment were more similar to each other than
was the case for model runs of the field experiment.

Compared to the field experiment, the combination of ob-
jective functions enables a more obvious narrowing down of
the range of parameter values with regard to the input pa-
rameters of the threshold of shear stress for slumping and the
angle of rest for slumped soil, both of which are in favour of
lower values (Fig. 9). For the input parameter of distance to
the DEM base level, lower values are chosen for the 10 best
model runs. The remaining parameters are spread across the
entire range. For the laboratory experiment, relationships be-
tween the erosion model input parameters and the metrics of
the objective functions indicate similar characteristics com-
pared to the field experiment, except for the SY and when
considering the parameter of the threshold of shear stress for
slumping (Figs. S11–S17). Overall, no model run did a good
job of predicting the response of the soil in the laboratory
rainfall simulation experiment to the multiple and interacting
processes of soil erosion. Rills were too long and wide, and
no finely detailed rill pattern was predicted.

4 Discussion

This evaluation of a single soil erosion model used three
approaches for spatio-temporal averaging (Table 1). While
other erosion model evaluations (e.g. Favis-Mortlock et al.,
1996; Jetten et al., 1999) have considered multiple erosion
models, few if any previous erosion model evaluations have

considered all three spatio-temporal averaging approaches.
An important finding from this study is that each averaging
approach, as exemplified by each group of objective func-
tions, illuminates different aspects of erosion model perfor-
mance, as discussed below. No single objective function is
capable of identifying all of the strengths and weaknesses
of the model tested. Thus, as we appreciate more strongly
the interacting temporal and spatial complexities of soil ero-
sion – whether at the process-dominated plot scale, as in this
study, or the connectivity-controlled catchment scale (Favis-
Mortlock et al., 2022) – and incorporate representations of
this complexity into future erosion models, it is clear that
we will need approaches to model evaluation of the kind de-
scribed in this study.

A particular challenge when comparing measured and
modelled patterns of rill erosion results from the problem
of small spatial offsets in rill location. A modelled rill net-
work might, as judged by eye, be very similar to an ob-
served rill network. But a simple pixel-by-pixel comparison
of measured and modelled DEMs could still give poor re-
sults since rills may well be spatially offset between the two
DEMs, perhaps by very small distances. Additionally, mea-
sured and modelled rill depths may differ. There is much less
of a problem when considering inter-rill changes since these
are dispersed across the whole of the eroding area, and, thus,
averaged values can be used. AI-based similarity objective
functions (Radford et al., 2021), as used in this study, could
provide a potential solution to this issue. Such objective func-
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Figure 13. Time series of spatial-pattern metrics for 30 best models according to per-pixel EC and DL-based EC similarity metric for the
laboratory experiment. The objective functions and their abbreviations are explained in Table 2.

tions can give a clear measure of the fit between models and
observations even if the rills are not at identical locations.

We found that the best field experiment model runs using
either EC-based single objective functions, i.e. DTW, total,
and sim DL, which suggests that, in some cases, an ensemble
of objective functions might not be needed. However, it also
became clear that there is a sensitivity towards the choice
of the single objectives because, for the metrics of RMSE,
NNSE, and per-pixel EC, another best model run was found.
Finding the best model runs using only EC-based measures
suggests that the erosion model calibration might be possi-
ble without using sediment yield observations in certain sce-
narios. This has important implications for the usage of our
approach to also calibrate models at larger scales, i.e. when
time series of catchment data via UAV or aerial measure-
ments may not be available.

The calibration metric DTW is not the most suitable for
the SY-based measurements in the field experiment. How-
ever, if it is EC-based, the best model run was found to out-
perform the fit of the RMSE- and NNSE-EC-based metrics.
This may be due to the averaging of the SY changes with
no spatial consideration, whereas the averaged EC values are
still based on spatial measurements. The best temporal be-
haviours of soil surface change (EC) or SY were captured
before the artefact filtering; i.e. the DTW, RMSE, and NNSE
values and corresponding plotted time series indicated a very
good model fit. It is clear that splash redistribution is, in-
deed, an important process in our two experiments. However,
the erosion model was not able to represent this process ade-
quately. Further work is needed to avoid creating the artefacts
that make the model outcome implausible.

When using time-lapse SfM photogrammetry to measure
soil erosion, it must be considered that erosion-masking pro-
cesses, such as soil compaction and settling, can lead to
faulty erosion measurements (Kaiser et al., 2018; Epple et
al., 2025). In these two experiments, such processes are as-

sumed to be negligible due to the application of very strong
rainfall events on relatively compacted soils (soil bulk den-
sity of 1.23 t m−3). Similar considerations apply when using
laser scanners, e.g. Wang and Lai (2018).

From the perspective of future work, this study has clearly
indicated weaknesses in some process representations within
RillGrow, particularly splash redistribution. Work to improve
this is ongoing. In addition, the computational needs of the
model meant that the multiple model runs required by the
current study used a great deal of computing power and time.
A parallel-processing version of RillGrow is being devel-
oped.

In addition to considering changes in DEM elevation, it
might also be useful in future studies to consider measure-
ments of ponding and runoff forming at the soil surface
(Zamboni et al., 2025) or spatially distributed velocity quan-
tities (Wolff et al., 2024). These can be used to provide fur-
ther calibration and/or evaluation opportunities focusing on
the hydrological rather the sedimentological processes.

Another approach for future work could focus on the as-
sessment of weighting the different objective functions. This
is of interest because this study reveals that some objec-
tive functions are more important than others, such as when
considering spatial patterns versus time series of averaged
change metrics (e.g. DTW EC versus sim DL EC and their
combinations, i.e. EC t_series and total and sp_pattern in the
field experiment). We tested a weighted error after standard-
izing the objective function values. However, such a uniform
approach did not produce good results for the field experi-
ment; i.e. the best model runs contained only very small rills.
Thus, the optimum weighting of the different functions is not
known. Another potential improvement is the consideration
of the parameter distribution. The 10 or 30 best model runs
revealed that the output is not one set of parameters but ac-
tually a set of parameter distributions. However, these distri-
butions are not independent; i.e. if one parameter is chosen,
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this means that a specific other needs to be drawn. Therefore,
in the future, conditional drawings should be considered (i.e.
Bayes’ principle).

5 Conclusions

This study advances the calibration and evaluation of soil
erosion models by considering various objective functions
that consider spatio-temporal aspects differently. Several
thousand runs of the erosion model RillGrow were per-
formed with parameters drawn approximately randomly
by means of a Latin hypercube approach. Outputs from
these model runs were compared to sediment yields mea-
sured during field- and laboratory-based rainfall simulation
experiments, and model outputs were compared to SfM-
photogrammetry-derived observations, i.e. representations of
soil surface change with spatial resolutions of a few centime-
tres and temporal resolutions of 10 s. Ten calibration metrics
were used to find the best-performing model runs.

Results highlight the need for more sophisticated evalu-
ation techniques that go beyond traditional space–time av-
eraging methods. Different spatio-temporal averaging ap-
proaches illuminate different aspects of model performance,
indicating that no single objective function could fully cap-
ture the complexities of erosion processes. The study also
identified challenges in model evaluation, such as the issue of
spatial offsets in rill locations, and suggests AI-based similar-
ity functions as a potential solution. Additionally, the study
clearly identified limitations in the process representations in
the version of RillGrow used in the study, particularly with
regard to splash erosion. Such a finding is very useful for
prioritizing ongoing refinement of the erosion model.

The exploration of alternative calibration metrics and the
potential for parallel processing to address computational de-
mands illustrate the evolving landscape of erosion modelling.
Our findings suggest that future research should focus on
refining objective functions that also consider novel obser-
vations of the soil erosion processes, as such observations
are likely under future global change. Future research should
also consider parameter distributions to improve calibration
outcomes.

Overall, this study strongly emphasizes the need for more
nuanced evaluation of erosion models, including the incor-
poration of spatial-pattern comparison techniques. This is
necessary to provide a deeper understanding of any erosion
model’s capabilities. Only with such improved model evalu-
ations will we be able to adequately develop and evaluate a
future generation of soil erosion models, which will be vital
tools in forecasting and managing the erosional impacts of
future global change.

Appendix A: List of abbreviations

CA Cellular automaton
CLIP Contrastive Language–Image Pre-training
DEM Digital elevation model
DL Deep learning
DoD DEM of differences
DTW Dynamic time warping
DVR Dense vector representation
EC Elevation change
FD-FT Flow detachment − flow transport

(Kinnell, 2001)
GCP Ground control point
LHC Latin hypercube
LoD Level of detection
NNSE Normalized Nash–Sutcliffe efficiency
PM Precision map
RD-FT Raindrop detachment − flow transport

(Kinnell, 2001)
RD-ST Raindrop detachment − splash transport

(Kinnell, 2001)
RMSE Root mean square error
RoI Region of interest
SfM Structure from motion
SLR Single-lens reflex
SY Sediment yield
UAV Unoccupied aerial vehicle
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