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Abstract. Land planning projects aiming to maximize soil organic carbon (SOC) stocks are increasing in num-
ber and scope, often in line with the objective to reach carbon neutrality by 2050. In response, a rising number of
studies assesses where additional SOC could be stored over regional to global spatial scales. In order to provide
realistic values transferrable beyond the scientific community, studies providing targets of SOC accrual should
consider the timescales needed to reach them, taking into consideration the effects of C inputs, soil type, and
depth on soil C dynamics.

This research was conducted in a 320 km2 territory in north-eastern France, where eight contrasted soil types
have been identified, characterized, and mapped thanks to a high density of fully described soil profiles. Con-
tinuous profiles of SOC stocks were interpolated for each soil type and land use (cropland, grassland, or forest).
We defined potential targets for SOC accrual using percentile boundary lines and used a linear model of depth-
dependent C dynamics to explore the C inputs necessary to reach those targets within 25 years. We also used
values from the literature to model C input scenarios and provided maps of SOC stocks, maximum SOC accrual,
and realistic SOC accrual over 25 years.

SOC stocks and maximum SOC accrual are highly heterogenous over the region of study. Median SOC stocks
range from 78–333 tC ha−1. Maximum SOC accrual varies from 19 tC ha−1 in forested Leptosols to 197 tC ha−1

in grassland Gleysols. The simulated realistic SOC accrual over 25 years in the whole region of study was one-
fifth of the the maximum SOC accrual. Further consideration of depth-dependent SOC dynamics in different soil
types is therefore needed to provide targets of SOC storage over timescales relevant to public policies aiming to
approach carbon neutrality by 2050.

1 Introduction

Soils constitute a carbon reservoir that can help us mitigate
for climate change or, conversely, accelerate greenhouse gas
(GHG) emissions if not managed properly. Objectives for
carbon neutrality by 2050 rely on an increase in soil organic
carbon (SOC) via changes in land management practices
over the coming decades while preserving existing stocks

(Minasny et al., 2017). There is a rising demand for the sci-
entific community to provide quantitative targets for SOC
accrual for stakeholders at regional scales and over decadal
timescales. However, soils are heterogenous, and dynamic
systems (soil carbon) stocks are constantly being mineral-
ized and renewed by new inputs. The spatial heterogeneity
of soil carbon stocks and fluxes presents a challenge to soil
carbon sequestration strategies. Certain soils may represent
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large stocks that need to be preserved, while others may have
a greater capacity for SOC accrual.

Estimation of SOC stocks and SOC stock accrual poten-
tial should be performed over the whole soil profile because
SOC below 20 cm can account for more than 50 % of the total
stock (Jobbágy and Jackson, 2000; De Vos et al., 2015). Im-
pacts of management practices on SOC dynamics have been
found to vary above and below 30 cm, so the consideration
of the whole soil profile is important to provide accurate rec-
ommendations to stakeholders (Tautges et al., 2019).

Targets of SOC accrual are currently estimated using two
distinct concepts. The first is the fine-fraction saturation ap-
proach, using the clay and silt content as a proxy for the max-
imum carbon content that a given soil is theoretically able to
stabilize in association with mineral phases (Hassink, 1997;
Angers et al., 2011). The other is based on the analysis of cur-
rent ecosystems’ functioning: this method seeks the highest
observed SOC stock from a dataset taken in a given pedocli-
matic context and assumes this stock to be a realistic target
under the management practices captured by the dataset (Lal,
2005; Chen et al., 2019). In this study, we adapt this method
to define depth-dependent targets as a continuous profile. The
fine-fraction saturation approach will not be used due to our
focus on the whole soil profile: at depth, SOC storage be-
comes limited by diminishing organic matter inputs; there-
fore, carbon saturation in the fine fraction is unlikely to be
a pertinent constraint on maximum SOC accrual (Poeplau et
al., 2024).

Targets of SOC accrual need to be evaluated over
timescales relevant to stakeholders, keeping in mind, in par-
ticular, the objective of achieving carbon neutrality by 2050.
Getting the kinetics of SOC accrual necessitates a model-
driven approach and scenarios of C inputs to the soil (Barré
et al., 2017). Mechanistic models of SOC dynamics such as
Millennial (Abramoff et al., 2022) are one option to incorpo-
rate the effect of climate change and modifications in man-
agement practice but necessitate a lot of input data; there-
fore, simpler models remain valuable to explore (Derrien et
al., 2023; Schimel, 2023). For some studies, simple linear
models dependent on C inputs have proven to be sufficient
to capture respiration patterns across different soils and SOC
levels even though temporal fluctuation in respiration fluxes
were not properly represented (Fujita et al., 2014). We use a
linear model that contains a fast-cycling, a slow-cycling, and
an inert pool. Pool size and turnover have been calibrated by
Balesdent et al. (2018) using a global database of C concen-
trations and 13C isotopes measured after a change in vegeta-
tion in multiple campaigns, principally over several decades.
This calibration makes the Balesdent et al. (2018) parameters
singularly robust to estimate C accrual over 25 years.

In addition to land use (Guo and Gifford, 2002), the
physico-chemical properties of the soil play an important role
in SOC accumulation and residence time (Kögel-Knabner et
al., 2021). Soil properties that affect SOC stabilization in-
clude the clay content and exchangeable cations (Rasmussen

et al., 2018). High Ca2+ concentrations in soils were found
to intensify SOC accumulation through either increased oc-
clusion within aggregates or enhanced SOC association with
minerals (Rowley et al., 2021). Low pH values also hinder
microbial activity and organic matter degradation, leading
to an increased residence time of SOC in the soil (Malik
et al., 2018). The parameters from Balesdent et al. (2018)
in the model are therefore modulated with functions from
other models that account for these soil properties. Finally,
SOC dynamics are impacted by climate change, both directly
through the effects of soil temperature and moisture on C
decomposition rates and indirectly through modifications in
soil properties (Luo et al., 2017).

Once targets of SOC accrual have been set for a given
timescale, the next step to facilitate communication with
stakeholders is to map where this carbon can be stored in
a given region in order to account for the spatial heterogene-
ity of soils. Soil maps therefore constitute an important tool
to spatially assess SOC stocks and fluxes (Wiesmeier et al.,
2015).

The main objective of this paper is to estimate and map
realistic targets for SOC accrual within decadal timescales,
accounting for soil type and depth. To that end, we explore
the effect of land use and soil type on whole-profile SOC
stocks and decadal dynamics. We focus on a region of study
where dense data collection has taken place and where land
use change has seen very little variation for 200 years. We
use a combination of pre-existing methods (interpolation of
continuous SOC profiles, estimation of theoretical maximum
SOC stocks based on observed values, application of a sim-
ple model of C dynamics robust at decadal timescales, and
mapping of the simulated SOC accrual after 25 years) as an
innovative way of generating realistic results that are trans-
ferrable beyond the scientific community. We explore two
scenarios of SOC accrual: one where we apply annual C in-
puts necessary to reach the theoretical maximum SOC stock
within 25 years and one where we apply realistic C input
values found in the literature. We also explore scenarios with
different rates of temperature increase by 2050 following cli-
mate change scenarios RCP4.5 and RCP8.5.

2 Materials and methods

2.1 Study site and data acquisition

The Perennial Observatory of the Environment (OPE in
French) has been monitoring since 2007 a 320 km2 area
located in the north-eastern part of France (in Meuse and
Haute-Marne counties). This observatory operated by the
Radioactive Waste Management Agency (ANDRA) aims to
follow the environmental impacts of a planned deep under-
ground nuclear waste storage facility. In the framework of the
monitoring programme, various environmental data, includ-
ing soil characterization and mapping, have been collected.
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The OPE study area is dominated by agricultural and for-
est lands: 55 % of the region is occupied by agricultural
lands managed by conventional agriculture practices, 29 %
is occupied by forests dominated by deciduous trees (oak,
hornbeam, and beech), 14 % is occupied by grassland, and
less than 2 % by urban areas. A land occupation map from
1830 shows that limited modifications in land use have taken
place over the past 200 years (Dupouey et al., 2008). The
region’s continental climate is softened by some oceanic in-
fluences. According to data collected by the OPE weather
stations from 2009 to 2019, the mean annual temperature is
10.4 °C (±6.2 °C between summer and winter), annual cu-
mulated rainfall is 983 mm (±113,) and potential evapotran-
spiration (ETP) = 661 mm (±79).

This study uses a total of 198 soil profiles (932 samples)
to estimate SOC stocks and maximum SOC accrual. 86 of
these soil profiles were collected within the region of study
between 1995 and 2019 and were used along with a 1 / 50 000
pedological map (Party et al., 2019) to classify the soils into
eight dominant soil types and define the physico-chemical
characteristics of each of their horizons, such as pH, CaCO3,
texture, and rock fragment content (Table 1).

The eight identified soil types can be broadly divided
based on the geological parent materials and the geomor-
phology of the region (Fig. 1). On the plateaus, preserved
detritic Cretaceous layers from the Valanginian stage with
high concentrations of silt and sand lead to the formation of
Eutric and Dystric Cambisols, with podzols locally reaching
depths of more than 2 m. On the hillslopes and in the val-
leys, the parent materials are Tithonian limestones and Kim-
meridgian marls and limestones, leading to the formation
of Calcaric to Hypereutric Cambisols with high rock frag-
ment contents in the deeper horizons. Soils on the hillslopes,
referred to as Rendzic Leptosols and Hypereutric Epileptic
Cambisols, are more superficial and have higher rock frag-
ment content. Stagnosols and Gleysols can be found at the
bottom of the valleys and over the Kimmeridgian marls and
limestones: they are deep, clay-rich, and hydromorphic soils;
the former is waterlogged for part of the year, while the latter
is waterlogged all year round. In the north-east of the study
area, clay-rich and CaCO3-bearing materials from a tunnel
excavation in 1841–1846 form local pockets of Technosols,
which were not considered in this study due to their lim-
ited spatial extent. Land use information was derived from
the 1 / 100 000 CORINE Land Cover 2018 at a resolution of
25 ha (European Environment Agency, 2020).

The data from the 86 soil profiles contain SOC content
data on the different soil horizons (253 samples) but only
48 bulk density measurements using the cylinder method.
In order to provide additional SOC content and bulk den-
sity data as a function of depth, 112 additional profiles cor-
responding to these eight soil types were collected from
soil databases in the six surrounding administrative geo-
graphical units (counties). The soil profiles were collected
by the RMQS (French Soil Quality Monitoring Network)

and RENECOFOR (French Permanent Plot Network for the
Monitoring of Forest Ecosystems). More detailed informa-
tion on these datasets can be found in previous publica-
tions (Cissé et al., 2023; INRAE et al., 2021, 2024; Munera-
Echeverri et al., 2024). In each collected sample, organic
carbon content (g kg−1) is measured in the fine fraction
(< 2 mm) by dry combustion after the removal of the inor-
ganic carbon with acid. Since this study only considers min-
eral soil, the litter layer was excluded from the forest profiles.
Bulk density values are measured using the cylinder method
in 552 out of the 932 samples and are otherwise estimated
from a pedotransfer function from Beutler et al. (2017) based
on clay and total organic content values as follows:

BD=
[
1.6179 − 0.0180 × (clay + 1)0.46

−0.0398 × SOC0.55
]−1.33

, (1)

where BD is the bulk density (kg m−3), clay is the clay con-
tent (g kg−1), and SOC is the total organic carbon content
(g kg−1). The pertinence of this pedotransfer function to es-
timate bulk density in our region of study has been validated
with the 48 samples from the region of study where bulk den-
sity measurements were available with a mean square error
value of 0.70. Other pedotransfer functions from the litera-
ture (Saxton and Rawls, 2006; Akpa et al., 2016; Shiri et al.,
2017) were also tested but gave mean square error values of
3.13, 6.81, and 353.35 respectively.

2.2 Estimation of initial and maximum SOC stocks

2.2.1 Initial SOC stocks

Soil organic carbon stocks per surface unit are calculated as
follows (Chen et al., 2019):

SOCstock =
p × SOC × BD × (100−%rock fragments)

1000
, (2)

where SOCstock is the total SOC stock (kg m−2), p the soil
thickness (m), SOC the soil organic carbon content (g kg−1),
BD the bulk density (kg m−3

= g dm−3), and % rock frag-
ments the percentage of elements > 2 mm (%).

This methodology assumes that the fraction > 2 mm does
not contain organic carbon, which has been disputed by Har-
rison et al. (2011) in cases where the rock fragments are
abundant and display signs of porosity and weathering.

The median soil organic carbon content (SOC in g kg−1)
as a function of depth for each soil type and land use was cal-
culated using the typical SOC content profile established by
Mathieu et al. (2015) and Jreich (2018) on the basis of three
descriptors: �1, the SOC content of the soil type at maximal
depth; �2, the SOC content at the surface; and �3, the depth
at the half maximum of the SOC content:

SOC(s, z) = �1(s) + (�2(s)− �1(s)) × e−(z/�3(s)), (3)
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Table 1. Mean values of pH, clay content, rock fragments content and CaCO3 concentration for each soil type and horizon, calculated from
86 whole soil profiles sampled between 1995 and 2019 within the region of study. Standard deviations are given in brackets. See measurement
protocols in Table A1.

Soil type Horizon Depth [cm] Horizon Clay [g kg−1] pH Rock [%] CaCO3 [g kg−1]
Thickness fragments

[cm]

Calcaric Rendzic Leptosols 1 35 (9) 16 (5) 478 (68) 7.8 (0.9) 3 (15) 58 (118)
2 19 (6) 392 (123) 8.3 (0.4) 35 (30) 414 (186)

Calcaric Cambisol 1 60 (17) 14 (6) 462 (110) 7.8 (0.9) 8 (15) 13 (136)
2 21 (11) 394 (87) 8.2 (0.4) 35 (23) 465 (250)
3 25 (11) 328 (110) 8.3 (0.3) 70 (20) 389 (246)

Hypereutric Epileptic 1 43 (11) 22 (7) 489 (73) 7.8 (0.8) 0 0
Cambisol 2 21 (5) 523 (86) 6.9 (1.1) 60 (31) 0

Hypereutric Cambisol 1 84 (61) 20 (6) 409 (125) 6.9 (1.0) 2 (13) 0
2 30 (14) 522 (147) 7.5 (0.7) 3 (28) 0
3 33 (45) 733 (119) 7.8 (0.4) 50 (26) 2 (5)

Eutric Cambisol 1 85 (30) 18 (6) 278 (107) 5.6 (0.8) 0 0
2 27 (10) 484 (164) 6.2 (1.0) 0 0
3 40 (28) 595 (207) 7.5 (1.5) 5 (36) 2 (17)

Dystric Cambisol 1 168 (33) 15 (5) 40 (1) 4.0 (0.2) 0 0
2 18 (3) 27 (6) 4.3 (0.2) 0 0
3 10 (0) 40 (8) 4.3 (0.2) 0 0
4 48 (3) 75 (9) 4.7 (0.1) 0 0
5 78 (23) 95 (44) 4.6 (0.1) 0 0

Stagnosol 1 115 (30) 28 (5) 490 (182) 7.8 (1.0) 0 2 (196)
2 40 (11) 353 (131) 8.2 (1.4) 0 98 (244)
3 47 (11) 346 (111) 8.4 (1.2) 1 (15) 576 (236)

Gleysol 1 140 (41) 23 (7) 453 (88) 7.8 (0.4) 0 103 (105)
2 46 (12) 386 (62) 8.2 (0.3) 0 143 (189)
3 72 (36) 350 (75) 8.2 (0.3) 0 290 (288)

where s is the soil type and z the depth.
This method was used to interpolate SOC content data

from national and regional datasets acquired per horizon in
order to obtain the continuous distribution of SOC stock over
the whole soil profile for each soil type and land use con-
sidered. A least-squares method for non-linear curve-fitting
(MATLAB function lsqcurvefit) was then applied to adjust
the parameters �1–3 (Table A2).

Continuous vertical profiles of median bulk density were
then obtained for each soil type using a logarithmic fit. The
horizon thickness and percentage of rock fragments corre-
spond to the median of the values per horizon per soil types
in the 86 profiles within the OPE zone. This gave us a con-
tinuous profile of median SOC stocks as a function of depth,
corresponding to the initial SOC stock profile. The dataset
was collected between 1995 and 2019, but since land use has
not changed since 1830, the soil profiles were assumed to be
in a steady state and to represent the initial SOC stocks be-
fore the implementation of C input modelling scenarios. The
median SOC stock was then calculated at each 1 cm inter-

val along the whole profile based on the median bulk density
curve, the median SOC curve, and the percentage of rock
fragments.

2.2.2 Theoretical maximum SOC stocks and maximum
SOC accrual

The theoretical maximum SOC stocks in this study are the-
oretical targets based on the upper values of the SOC data
observed within the region. These targets represent the SOC
stock that a given soil type can reach by implementing
the land management strategies represented in the region
of study. The theoretical maximum SOC stock is therefore
region-dependent as it is driven by not only the intrinsic
textural properties of the soil, but also the climate and the
ecosystem plant productivity as they influence soil biology
and chemistry along the soil profile. The maximum SOC ac-
crual corresponds to the difference between the theoretical
maximum SOC stock and the initial SOC stock.
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Figure 1. Land uses, soil types, and geomorphological context of the study region. (a) Land use (data source is CORINE Land Cover 2018).
(b) Map of dominant soil types (data source is Party et al., 2019). (c) Synthetic cross section of the geology, topography, and dominant soil
types in the region of study.

The regression fit method applied using Eq. (3) from Jre-
ich (2018) worked iteratively by first computing the 50th-
percentile boundary line (median profile corresponding to the
initial SOC stocks) and removing all data points inferior to
that line. The process was then repeated for the 75th per-
centile, then the 88.5th, and finally the 94th. The choice in
percentile value strongly affects the estimation of maximum
SOC stocks (Chen et al., 2019). In our case, since the num-
ber of SOC data points per soil type ranges from 29 (Hy-
pereutric Epileptic Cambisol) to 268 (Stagnosol), the 75th

boundary line is calculated based on 14 to 134 data points,
the 88.5th percentile based on 7 to 67 data points, and the
94th percentile based on 3 to 34 data points. We chose the
75th boundary line to define the theoretical maximum SOC
stocks. We also calculated the 88th percentile boundary line
to discuss its impact on theoretical maximum stocks and on
subsequent SOC dynamic modelling.

A bootstrap method was used to determine the overall un-
certainty in the initial SOC stocks and maximum SOC ac-
crual for each soil type at the 90 % confidence interval (Chen
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et al., 2019). We generated random subsets of input parame-
ters SOC, BD, percentage of rock fragments, and depth val-
ues within the standard deviation of each soil type and re-
peated the procedure 1000 times to obtain 1000 estimates of
the mean and percentiles values of the carbon stocks.

2.3 Simulation of SOC accrual at different timescales

Our modelling approach is illustrated in Fig. 2, with further
details on model functioning and equations in Appendix B.
The profiles of initial SOC stocks were first discretized into
10 cm layers. In each layer, we applied a three-pool model
with a fast-cycling pool, a slow-cycling pool, and an inert
pool, where the dynamic pools are ruled by exponential ki-
netics. SOC stocks do not saturate and are linearly depen-
dent on C inputs for a given situation. The pools’ relative
size and turnover were calibrated by Balesdent et al. (2018)
using a global database of change in stable carbon (C3/C4)
signatures measured over multiple campaigns, over decadal
timescales, for 112 grassland, forest and cropland sites. The
C3/C4 approach is typically efficient for following carbon dy-
namics over timescales ranging from 1 to 1000 years, espe-
cially compared to the 14C method, which covers timescales
of several thousands of years (Verma et al., 2017). We cor-
rected the model parameters calibrated at the global scale in
Balesdent et al. (2018) to account for local conditions of tem-
perature, humidity, pH, clay content, and CaCO3 content as
recommended by Rasmussen et al. (2018). This was done
using the equations from the AMG model (Andriulo et al.,
1999; Saffih-Hdadi and Mary, 2008; Clivot et al., 2017; Lev-
avasseur et al., 2020). The mean residence times as a function
of depth derived from the corrected mineralization factors in
the fast and slow pools can be found in Table C1.

We modelled three different scenarios of C inputs to ex-
plore how much SOC might accrue after 25 years:

– Scenario 1 (initial input regime). This scenario corre-
sponds to the annual C inputs necessary to maintain the
initial SOC stocks in each soil type and land use, ob-
tained by matrix inversion (Mao et al., 2019); there is
no SOC accrual in this case.

– Scenario 2 (extreme input regime). This scenario cor-
responds to the annual C inputs necessary to reach the
theoretical maximum SOC stocks within 25 years, ob-
tained through iterative optimization of the model.

– Scenario 3 (realistic increased input regime). The fi-
nal scenario defines C input values higher than in
scenario 1 that are compatible with the ranges of
gain in C inputs after implementation of practices
promoting C sequestration found in the literature:
+0.5 tC ha−1 yr−1 for forests, +1.0 tC ha−1 yr−1 for
grasslands, and +1.5 tC ha−1 yr−1 for croplands.

For scenario 3, we sought values of typical current plant in-
puts and of realistic increased inputs from the literature or

Figure 2. Summary of our approach: (a) estimation of initial and
theoretical maximum SOC stocks from the measured data; (b) es-
timation of vertical repartition of C inputs for the different scenar-
ios considered, obtained by matrix inversion; (c) functioning of the
depth-dependent three-pool model (fast-cycling pool, slow-cycling
pool, and inert pool). The letter a denotes the allocation factor, MRT
stands for the mean residence time (in years), and y stands for years.
MRT values vary with depth as per Balesdent et al. (2018) and are
corrected for temperature, humidity, pH, texture, and CaCO3; val-
ues displayed correspond to the mean MRT values per pool and
depth section (see the “Materials and methods” section for details
and Table C1 for MRT values for each soil type and depth). The
initial C inputs and maximum C inputs are provided in Table C2.

from existing data within the region of study. Typical current
C inputs in forests range within 1.6–2.8 tC ha−1 yr−1 accord-
ing to measurements carried out in the RENECOFOR net-
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work in the region of study, assuming 50 % mineralization
of aboveground input in the forest floor (Mao et al., 2019).
Changes in harvest practices towards the non-export of har-
vest residues after thinning could provide additional inputs
in the range of 0.5–2 tC ha−1 yr−1 (total realistic input range:
1.6–4.8 tC ha−1 yr−1) (Mao et al., 2019). In grasslands, an-
nual inputs to the soil range within 1.18–5.2 tC ha−1 yr−1 ac-
cording to studies from Australia and western Europe (meth-
ods used are RothC inverse modelling, allometric equations
using yield data, and expert opinion) (Martin et al., 2021).
In croplands, annual inputs to the soil range within 1.8–
6.8 tC ha−1 yr−1 according to studies conducted worldwide
(methods used are direct measurements, RothC inverse mod-
elling, allometric equations using yield data, and expert opin-
ion) (Martin et al., 2021). Within these ranges, the specific
realistic values for the region of study were chosen by ma-
trix inversion of the theoretical maximum SOC stocks, which
provide the annual inputs necessary for the model to reach
but to not exceed the maximum SOC stocks in the long term.

The equations of SOC stock evolution over time were then
applied for these scenarios over 5000 years to visualize the
new steady state and assess the maximum potential for C
storage. Particular attention was given to the SOC accrual
reached after 25 years to fit with the carbon neutrality time-
line.

Finally, we tested the effect of projected rises in tempera-
ture on the simulated SOC accrual by modifying the mineral-
ization correction factor linked to temperature (see Eq. B1).
The temperature was increased linearly to projected annual
temperatures in the region of study according to scenarios
RCP4.5 (+1.0 °C) and RCP8.5 (+1.3 °C) according to model
simulations by the Météo France ALADIN63_CNRM-CM5
model within an 8 km radius area around Bure (55087), com-
paring the intervals of 2046–2055 and 2009–2019 (DRIAS,
Météo France, CERFACS, IPSL). This corresponds to an in-
crease in mean annual temperatures from 10.4 to 11.4 °C
(RCP4.5) or 11.9 °C (RCP8.5) over 25 years at all depths.
RCP8.5 amounts to an extreme scenario in terms of increased
mineralization rates since, in addition to using the most pes-
simistic RCP scenario, our model assumes that rises in tem-
perature propagate instantly at depth and that humidity con-
ditions remain at the present levels. We tested the sensitivity
of SOC accrual in the two temperature scenarios in the dif-
ferent soil types and land covers.

2.4 Spatialization

The study site was divided into zones characterized by their
land use (cropland, grassland, or forest) and by their domi-
nant soil type. Mapping zones were derived from the inter-
section of the CORINE Land Cover map and of the soil map.
Values of SOC stocks, maximum SOC accrual, and simu-
lated accrual after 25 years were then associated with each
mapping zone.

Mapping results are by necessity a simplification of the
real distribution of soils properties and SOC contents. Fig-
ure 1b shows the dominant soil type in each mapping zone,
but in reality, due to the high spatial variability in soil char-
acteristics, each mapping zone contains several soil types
that cannot be explicitly delimited on the map at this spa-
tial resolution. Therefore, each point within a given zone has
a probability of belonging to one of several soil types (e.g.
70 % chance of being a Eutric Cambisol and 30 % chance
of being a Stagnosol). The total SOC stock for a zone is
then obtained by the weighted mean of the SOC stocks (e.g.
70 % of the SOC stock for Eutric Cambisols and 30 % of the
SOC stock for Stagnosols). The standard deviation of the to-
tal SOC stock should likewise be obtained by the weighted
standard deviations of the SOC stocks. The local uncertainty
corresponds to expected local variations in the zone if the
different soil types have contrasting SOC stocks. We visual-
ized this local uncertainty by mapping the contrasts in SOC
stocks within each zone in Fig. D1.

3 Results

3.1 SOC stock and maximum SOC accrual as a
function of depth, land use, and soil type

3.1.1 Vertical repartition of SOC stocks

Current SOC stocks over the whole-profile range from 78
to 333 tC ha−1 (Table 2), of which 59 to 156 tC ha−1 are
in the topsoil (0–30 cm). The lowest SOC stocks are found
in the shallower soil types (Calcaric Rendzic Leptosol and
Hypereutric Epileptic Cambisol). Current SOC stocks are
twice to 3 times higher in hydromorphic soils (Stagnosols
and Gleysols) compared to non-hydromorphic soils.

SOC content and stocks decrease with depth, with sharp
decreases in the SOC stock profiles corresponding to a
change in the percentage of rock fragments between two
horizons (Fig. 3). On average, excluding the shallower soil
types (Calcaric Rendzic Leptosol and Hypereutric Epileptic
Cambisol), the proportion of the SOC stock situated in the
first 30 cm is 53 % for croplands, 67 % for grasslands, and
71 % for forests (Table E1). The soils in croplands are there-
fore depleted in SOC in the topsoil compared to forests and
grasslands (Fig. 3a). The difference in SOC stocks between
land uses diminishes in the deeper horizons.

3.1.2 Theoretical maximum SOC stocks and maximum
SOC accrual

The theoretical maximum SOC content decreases with depth
for all soil types from 50–100 g kg−1 near the surface to un-
der 25 g kg−1 at the bottom of the soil profiles (Fig. 3a). The
theoretical maximum SOC stocks range from 129 tC ha−1

in the Hypereutric Epileptic Cambisol to 476 tC ha−1 in the
Gleysols.
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Table 2. Initial SOC stocks, C input regimes to the soil considered in this study, theoretical maximum SOC stocks based on the 75th percentile
of our regional dataset, and SOC stock after 25 years under a realistic scenario of C inputs, for each soil type and land use. Realistic range
of annual C inputs to the soil is 1.8–6.8 tC ha yr−1 for croplands (Martin et al., 2020), 1.18–5.2 ha yr−1 for grasslands (Martin et al., 2020),
and 1.6–4.8 ha yr−1 for forests according to measurements made in the region of study.

Depth [cm] Land use Initial SOC stock Theoretical Scenario 1: Scenario 2: Scenario 3: SOC stock after
(C: cropland, (90 % confidence maximum SOC initial input extreme input realistic 25 years under
G: grassland, interval in stock (75th regime regime increased input realistic

F: forest) brackets) percentile) [tC ha−1 y−1] [tC ha−1 y−1] regime increased input
[tC ha−1] [tC ha−1] [tC ha−1 yr−1] regime

[tC ha−1]

Calcaric C 78 (48–115) 167 1.3 7.0 2.8 102
Rendzic G 101 (84–138) 1.9 6.0 2.9 118
Leptosol F 149 (97–183) 2.7 3.8 3.2 157

Calcaric C 100 (58–133) 191 1.8 7.9 3.3 123
Cambisol G 134 (66–183) 2.7 6.5 3.7 150

F 148 (104–184) 2.8 5.7 3.3 156

Hypereutric C 92 (49–129) 129 1.5 3.8 3 117
Epileptic F 106 (76–121) 2.0 3.4 2.5 115
Cambisol

Hypereutric C 103 (62–137) 228 1.4 9.5 2.9 127
Cambisol G 167 (125–255) 2.5 6.4 3.5 183

F 160 (92–204) 2.3 6.7 2.8 168

Eutric C 102 (59–144) 194 1.0 6.4 2.5 128
Cambisol G 90 (66–115) 1.2 7.4 2.2 107

F 157 (71–190) 2.0 4.2 2.5 166

Dystric F 120 (76–198) 169 1.0 3.7 1.5 129
Cambisol

Stagnosol C 166 (101–237) 285 1.5 9.2 3 189
G 161 (108–279) 1.9 9.8 2.9 177
F 172 (121–249) 2.3 9.4 2.8 181

Gleysol C 279 (154–417) 476 2.8 17.3 4.3 301
G 333 (252–466) 4.6 14.9 5.1 349

The maximum SOC accrual varies from 19 tC ha−1 for
shallow, rocky forest soils to 197 tC ha−1 for agricultural
Gleysols considering a conversion of cropland into grassland
or forests. According to the 75th-percentile method, soils in
the region of study are at 74 % of their theoretical maximum
SOC stock on average, ranging between 16 % and 61 % for
croplands, 30 % and 56 % grasslands, and 40 % and 82 % for
forests. Across all land uses, the shallow rocky soils (Cal-
caric Rendzic Leptosol and Hypereutric Epileptic Cambisol)
are closer to their theoretical maximum SOC stocks than the
Stagnosols and Gleysols. Using the 88th percentile instead
of the 75th increases our estimation of the theoretical max-
imum SOC stocks by about 16 % (9 %–27 % depending on
soil type), without changing the hierarchy of maximum SOC
stocks across the eight soil types (Table E1).

3.2 Exploring kinetics of simulated SOC accrual

The equations of our model calculate the SOC mean resi-
dence times per depth as a function of the physico-chemical

properties of the studied soil types (see Eqs. B1–B5). In our
study site, they range from 50–100 years above 30 cm and
from 145–453 years below 30 cm (Table C1). The increase
in mean residence time with depth is stark in the slow pool
(from 477–1100 years in the first 10 cm to 1744–5817 years
in the deeper soil horizons) but is hardly discernible in the
fast pool (17–38 years in the first 10 cm to 11–47 years in
the deeper soil horizons). Since most of the new C inputs are
allocated to the fast carbon pool and in the surface horizons
(Tables C1–C2), the SOC accrual is not strongly affected by
soil type over 25 years.

The initial stationary C inputs obtained by model ma-
trix inversion are, depending on soil type, between 1.0
and 2.8 tC ha−1 yr−1 for croplands, 1.2–4.6 tC ha−1 yr−1 for
grasslands, and 1.0–2.8 tC ha−1 yr−1 for forests (Table 2).
By contrast, the extreme input regime needed to reach
the theoretical maximum SOC stocks within 25 years
ranges between 3.8 and 17.3 tC ha−1 yr−1 for croplands, 6.0–
14.9 tC ha−1 yr−1 for grasslands, and 3.4–9.4 tC ha−1 yr−1

for forests. The realistic increased input regime chosen based
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Figure 3. (a) Median (50th percentile of the dataset for each land use) and theoretical maximum (75th percentile of the dataset) fitted depth
profiles of SOC content in each soil type. The Jreich parameters (Jreich, 2018) used to plot the SOC content profiles are given in Table A2.
(b) Current SOC stocks for croplands and maximum SOC accrual to reach the theoretical maximum SOC stocks of each soil type.

on the literature is 2.5–4.3 tC ha−1 yr−1 for croplands, 2.2–
5.1 tC ha−1 y−1 for grasslands, and 1.5–3.3 tC ha−1 yr−1 for
forests.

Under the realistic increased input regime and when ris-
ing temperatures are not considered, the SOC accrual after
25 years ranges from 22–26 tC ha−1 for cropland and 15–
18 tC ha−1 for grassland to 8–10 tC ha−1 for forests (Fig. 4;
Table E2). Kinetics of SOC accrual are dependent on the
time since the implementation of the practice increasing C
inputs to soil. The yearly accrual rates averaged over the
first few decades range between 0.88 and 1.04 tC ha−1 yr−1

for croplands, 0.6–0.72 tC ha−1 yr−1 for grassland and 0.32–
0.4 tC ha−1 yr−1 for forests. The accrual rates then decrease
over decadal and centennial timescales as the SOC stocks
stabilize asymptotically towards the new steady state, as per
the model equations. SOC accrual at the new steady state is

highest for Dystric Cambisol owing to the effect of the low
pH on the mineralization rates as implemented in the model.
Modelled SOC accrual after 25 years decreases with depth
for all soil types and land uses (Fig. 5).

Under the RCP4.5 scenario of a 1.0 °C increase over
25 years, the SOC accrual is attenuated by 7 % to 38 % com-
pared to the SOC accrual simulated at constant tempera-
ture (10 % for cropland, 20 % for grassland, and 30 % for
forests, on average). The SOC accrual after 25 years under
this scenario ranges from 16–24 tC ha−1 for cropland and
10–16 tC ha−1 for grassland to 5–8 tC ha−1 for forest (Ta-
ble E2).

Incorporating the RCP8.5 scenario of a 1.3 °C increase in
temperature over 25 years attenuates SOC accrual by 10 %
to 50 % and shows a stronger impact of soil type and espe-
cially land cover on the mineralization rates (Table E2). SOC
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Figure 4. Model results of SOC accrual after 25, 100, and 5000 years for forests for a scenario of +0.5 tC ha−1 yr−1 compared to the initial
C inputs, with the temperature remaining constant.

Figure 5. Model results of SOC accrual after 25 years at each depth under the three considered C input scenarios (+1.5 tC ha−1 yr−1 in
croplands, +1.0 tC ha−1 yr−1 in grasslands, and +0.5 tC ha−1 yr−1 in croplands compared to the initial C inputs), with the temperatures
remaining constant. Model results for each soil type are only shown for the land uses represented in the dataset.

accrual is attenuated by 10 %–20 % in cropland soils, 10 %–
40 % in grassland soils, and 40 %–50 % in most forest soils
except Dystric Cambisols (20 %).

3.3 Maps of SOC stocks, maximum SOC accrual, and
simulated accrual after 25 years

The repartition of SOC stocks and maximum SOC accrual
in the region of study is most visibly related to land use but
is also affected by the spatial distribution of Stagnosols and

Gleysols (Fig. 6). The current SOC stock in the region of
study amounts to a total of 3.9 MtC, with a standard deviation
of 1.5 MtC according to the bootstrap method (Fig. F1). To
compare these results with national-scale estimates of SOC
stocks, we average 3.9 MtC over the entire region of study
and obtain a mean value of 122 tC ha−1, of which 87 tC ha−1

is in the first 30 cm.
The maximum SOC stock that the region can theoretically

contain is 3.9+ 2.5= 6.4 MtC, suggesting that the soils in
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the region of study are at 61 % of their theoretical maximum
SOC stock. However, according to model results in scenario
3, this maximum SOC stock would only be reached over
timescales of centuries to millennia, and the SOC accrual af-
ter 25 years only reaches 0.57 MtC. The SOC accrual in the
region of study is attenuated by 14 % and reaches 0.49 MtC
when a 1.0 °C increase in temperature is implemented in the
mineralization rates (Fig. F2).

4 Discussion

4.1 Implications of our approach to estimate target SOC
stocks and accrual rates

There is a rising interest in representing the contribution of
soils to carbon storage, through the mapping of both current
SOC stocks and the maximum SOC stocks that these soils
can theoretically reach. Modelling can then be used to ex-
plore the input rates and timescales needed to reach these
target SOC stocks. Our approach for estimating SOC theoret-
ical maximum stocks was made possible by the uncommon
abundance of soil profile data and by the detailed pedolog-
ical map available in the region of study. This approach is
most pertinent in areas where the land use and management
have remained stable for many years (over 200 years in our
region of study) because the high values of SOC stocks used
to estimate target SOC stocks per soil type are more likely to
represent a steady state than a transient stage. Such data-rich,
well-documented regions can serve as references for similar
pedoclimatic zones. A further step would then be to intensify
profile-scale data collection in other regions to provide refer-
ence values of SOC stocks and maximum SOC accrual in as
many pedoclimatic zones as possible in order to upscale this
approach from the regional to the global scale (Barré et al.,
2017).

Three C input scenarios were implemented to explore ki-
netics of SOC accrual. The first was an initial input regime
obtained by matrix inversion, which corresponds to the an-
nual C inputs necessary to maintain the initial SOC stocks
in the steady state. We found a good agreement between
the model-derived initial C inputs and available measure-
ments and estimates made within the region of study: in
croplands, the simulated C inputs were consistent with es-
timations of C inputs derived from the method of Bolinder
et al. (2007) based on crop yields recorded in the region of
study (Fig. G1). In forests, the model-derived initial C inputs
were consistent with measurements from the RENECOFOR
carried out in the region of study.

The second scenario sought the annual C inputs neces-
sary to reach the theoretical maximum SOC stocks within
25 years. The required annual C input rates largely exceed
the realistic ranges from the literature for most soil types.
The only soil types for which this scenario is realistic are
the shallow soils (Calcaric Rendzic Leptosol and Hypereu-
tric Epileptic Cambisol) and the sandy Dystric Cambisol, be-

cause these soils have lower SOC stocks than the others and
are already close to their theoretical maximum SOC stocks.

The third scenario used realistic annual C input values
from the literature, and found SOC accrual rates ranging
from 0.32–1.04 tC ha−1 yr−1 within the first 25 years. Ex-
amples can be found from previous studies of similar SOC
accrual rates within decadal timescales following changes
in land management strategies without changing the land
use: transition from conventional to conservation agricul-
ture in croplands (Autret et al., 2016); promoting an in-
crease in plant diversity in grasslands (Yang et al., 2019);
less frequent cutting in forests, or acting on forest productiv-
ity to increase root inputs and limiting soil disturbance dur-
ing harvesting (Jandl et al., 2007; Mayer et al., 2020). The
1.5 tC ha−1 yr−1 additional C inputs modelled in croplands
resemble values calculated in a long-term field experiment
after transition from conventional agriculture to conservation
agriculture (1.72 tC ha−1 yr−1 over 16 years, Autret et al.,
2016). Those inputs also correspond to what the model re-
quires to maintain the theoretical maximum SOC stocks in a
steady state; this convergence confirms the robustness of the
approach.

Using a percentile boundary line (here: 75th percentile of
the SOC data) to estimate the theoretical maximum SOC
stocks comes with a methodological challenge: the percentile
regression necessarily depends on the size of the dataset and
on its variability. A low percentile value within a large dataset
underestimates the maximum SOC accrual, but an excessive
percentile value within a small dataset produces an unrealis-
tic target and increases the sensitivity to outliers. Other stud-
ies have used the following percentile values to estimate the-
oretical maximum SOC stocks at various spatial scales: Chen
et al. (2019) compared maximum total SOC stocks follow-
ing the 0.8, 0.85 and 0.9 percentile value at the national scale
(1089 sites); Georgiou et al. (2022) compared the maximum
mineral-associated SOC with low- and high-activity miner-
als at the 0.9, 0.95 and 0.975 percentiles at the global scale
(1144 profiles). Standardized rules to define the choice of a
percentile value for a target stock, depending on the scale of
the study and the size and variability of the dataset, have yet
to be established. Here, our choice of target SOC stocks at
the 75th percentile is justified by the concordance between
the annual C inputs necessary to maintain these stocks in a
steady state and realistic ranges of annual C inputs from Mar-
tin et al. (2021) and from regional RENECOFOR datasets
(Table 2). By contrast, maintaining SOC stocks at the 88th
percentile boundary line would require annual C inputs be-
tween 4.4 and 21.7 tC ha−1 yr−1, far in excess of what can be
realistically added to soils. We recommend, where possible,
to verify the realism of SOC stock targets using carbon dy-
namics models and matrix inversion to estimate the annual C
inputs necessary to reach these targets in the long term.

Interrogating the realism of target SOC stocks is of par-
ticular importance when deeper soil horizons are considered.
Another concept used to define target SOC stocks is to fo-
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Figure 6. Maps of SOC stocks (a), maximum SOC accrual (b), and simulated SOC accrual after 25 years under a realistic increased
input scenario (+0.5 tC ha−1 yr−1 for forests, +1.0 tC ha−1 yr−1 for grassland, and +1.5 tC ha−1 yr−1 for cropland) (c). Upper and lower
confidence intervals provided by the bootstrap method are given in Fig. F1. The standard deviation of the total SOC stocks and maximum
SOC accrual based on the upper and lower confidence intervals applied to the whole region is 1.5 MtC.

cus on the mineral-associated carbon, considered to be more
stable, using the clay and fine silt fraction as a proxy for the
amount of carbon that can theoretically be stored in a soil in
the long term (Hassink, 1997; Cotrufo et al., 2019; Georgiou
et al., 2022). However, applying this concept over the whole
soil profile leads to unrealistically high targets and therefore
unrealistic C inputs at depth (Fig. H1).

Modelled SOC accrual in scenario 3 ranged from 8.5 to
26 tC ha−1 after 25 years, with a rapid decrease in SOC ac-

crual rates with depth driven by decreasing C inputs. The
deeper horizons of the soil provide limited opportunity for
additional storage over short timescales using current land
management practices. Furthermore, the proportion of new
carbon inputs that is allocated to the fast carbon pool exceeds
85 % at all depths in the soil profile (Table C1): this implies
that even in the deeper soil horizons, the majority of new
C inputs is quickly mineralized, as also simulated by Sierra
et al. (2024). The mean residence times (MRTs) in the fast
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pool remain similar near the surface and at depth (17–38 and
11–47 years respectively) but increase with depth in the slow
pool (from 477–1100 to 1744–5817 years). The greater con-
trast in mean residence times between the fast and slow pools
at depth challenges our understanding of SOC dynamics.

Soil type did not play a major role in SOC accrual over
short timescales: the observed differences in mineralization
rates across soil types are not sufficient to have a signifi-
cant impact after 25 years, especially in the fast pool (Ta-
ble C1). It is rather the land use that affects SOC accrual
by controlling the quantity and vertical repartition of inputs
(Table C2). However, the soil type has a strong influence on
current SOC stocks by categorizing soils based on profile
depth, rock fragment content, and other physico-chemical
properties. Hydromorphic soils in particular have total SOC
stocks up to 3 times higher than in other soil types, mak-
ing their preservation particularly critical. These high SOC
stocks are due to waterlogged conditions strongly limiting
decomposer activity (Sahrawat, 2004), notably, for energetic
reasons (Keiluweit et al., 2016).

Our model provides a widely applicable tool to assess
the effect of different soil types and initial distributions of
SOC stocks on SOC dynamics at decadal timescales. It does
not account for vertical transfer, but Balesdent et al. (2018)
showed that 13C incorporation in subsoil after a change in
vegetation is slow and affects only long-term carbon dynam-
ics. Sierra et al. (2024) also found that transport may only
play a secondary role in the formation of soil carbon profiles
according to simulation examples and measurements from
carbon and radiocarbon profiles. The priming effect is not
taken into consideration in our model even though it is ex-
pected to occur when C inputs to the soil increase, which
could cause simulated results to overestimate SOC accrual
(Guenet et al., 2018). Priming is difficult to include in pre-
dictive models because the processes involved are still poorly
understood (Bernard et al., 2022). Current explorations of the
priming effect use either mechanistic models centred on mi-
crobial processes (Schimel, 2023) or theoretical models fitted
to laboratory experiments, which do not fit the scope of our
study.

Testing for the effect of temperature increase on mineral-
ization rates led to an attenuation of SOC accrual by 2050
of 7 % to 50 % depending on the climate scenario consid-
ered. We did not account holistically for the effects of cli-
mate change on SOC dynamics in this study: the combina-
tion of changes in temperature, CO2 concentration, and pre-
cipitation can drive a myriad of responses in net primary
production, SOC input repartition, and mineralization pro-
cesses (Rocci et al., 2021; Bruni et al., 2021). In forests,
for instance, increased drought conditions may increase tree
mortality but might also enhance deeper root prospection for
water, thereby changing the vertical repartition of C inputs
(Schlesinger et al., 2016). Different soil types are also ex-
pected to respond differently to climate change due to, for
instance, the impact of soil texture on soil moisture regimes

(Bormann, 2012; Hartley et al., 2021). Here, we have con-
sidered a simplified case where humidity conditions has not
changed since the period from 2009–2019 and do not af-
fect soil carbon dynamics. The scientific community needs
to improve its understanding of the priming effect and SOC
dynamics processes driven by climate change and to further
explore how the soil type influences organic matter decom-
position dynamics over decadal timescales.

4.2 Implications for stakeholders: what levels of C
accrual are achievable after 25 years?

Increasing soil organic carbon (SOC) stocks in soils has the
potential to provide global benefits, but its successful im-
plementation requires regional-scale information on land use
and soil type. An important aspect of this work is to pro-
vide relevant SOC storage targets to stakeholders. The max-
imum SOC accrual can be used as a theoretical, long-term
target value but is not representative of how much carbon
can realistically be added to soils over decadal timescales.
In the region of study, total SOC accrual after 25 years un-
der a realistic scenario of C inputs was found to be one-
fifth of the the maximum theoretical SOC accrual (0.57 MgC
versus 2.5 MgC). Our simulation of rising temperatures fol-
lowing RCP4.5 (+1.0 °C) and RCP8.5 (+1.3 °C) attenuated
this SOC accrual by 7 %–38 % and 10 %–50 % respectively
over 25 years through the increase in mineralization rates.
This shows that increasing organic matter inputs to the soil
remains worthwhile since SOC accrual remains significant
even in an extreme scenario (highest projected increase in
temperature but no change in humidity conditions).

Maps of SOC stocks are efficient tools for synthesizing
scientific results at the regional scale for stakeholders. Cru-
cially, they highlight areas where soil degradation would lead
to the greatest release of CO2. The current SOC stocks have
been built over timescales of centuries to millennia, espe-
cially in the deeper soil horizons, but can be rapidly lost
due to land use change and other disturbances. Therefore, as
highlighted by Sierra et al. (2024), the priority should be to
preserve the existing SOC stocks even as we attempt to im-
plement innovative land management practices to maximize
these SOC stocks where possible. Despite the high uncertain-
ties associated with regional-scale estimations of SOC stocks
(Fig. F1), our mean SOC stock values of 87 tC ha−1 in the
first 30 cm are in accordance with national-scale estimates
that found SOC stocks of 75–100 tC ha−1 in the north-east of
France (Pellerin et al., 2021).

The map of maximum SOC accrual was found to be
of limited interest because it does not provide a timescale
for when that maximum SOC stock might realistically be
reached. Reaching the theoretical maximum SOC stocks by
the 2050 horizon for carbon neutrality would require pro-
hibitively high annual C input rates. We therefore recom-
mend maps of prospective SOC accrual to be time-specific,
with C input rates within realistic ranges.
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Our time-specific SOC accrual map is an improvement
from simple representation of maximum theoretical SOC
stocks but remains a simplification of what can realistically
be implemented. The map implies a uniform increase in C
input rates for each land use in the entire region of study,
but this would likely be hindered by practical and socio-
economic factors. The SOC stock and time-specific SOC ac-
crual maps should be used as part of a wider set of deci-
sion support tools for land planners. In some circumstances,
adding organic carbon to soils might not even be the best so-
lution for mitigating climate change: biomass harvest not re-
turned to the soils can instead be used as a source of food,
biosourced energy, or biomaterials (Derrien et al., 2023).
These alternate uses of carbon biomass offer a means of
substituting fossil carbon, which should be verified quanti-
tatively by life cycle analysis.

Finally, soil type information provided to stakeholders
should not be limited to the current or prospective SOC
stocks. Soil-type-specific physico-chemical properties are an
important but, as of yet, rarely considered factor for land
planning. Soil type affects numerous soil functions such as
water retention, resistance to erosion, and nutrient cycling
(Adhikari and Hartemink, 2016). These soil functions should
be considered in addition to the SOC dynamics to choose
management strategies adapted to each soil type.

5 Conclusions

Informing stakeholders of soil management strategies to
preserve and maximize existing soil organic carbon (SOC)
stocks is a pressing concern in the scientific community. It is
critical to communicate on the effects of soil type, depth, and
land use on SOC accrual in soil over time periods compatible
with the roadmap for C neutrality, and to explore the C inputs
necessary to reach these targets.

The annual C inputs necessary to reach theoretical maxi-
mum SOC stocks within 25 years in the region of study were
found to exceed realistic C input ranges from the literature
for most soil types (3.4–17.3 versus 1.18–6.8 tC ha−1 yr−1).
The SOC accrual after 25 years modelled under a realistic
scenario of increased C inputs was one-fifth of the maxi-
mum SOC accrual estimated over the whole region of study
(0.57 MgC versus 2.5 MgC).

We note a greater contrast between SOC mean residence
times at depth, which invites further investigation: while a
fraction of the new C inputs added to the deep-soil horizons
can remain stable over millennial timescales, the majority is
mineralized within 2 decades. Simulating a rise in temper-
ature of 1.3 °C over 25 years following RCP8.5 attenuated
SOC accrual by 10 % to 50 %.

The effect of soil type on SOC mineralization rates was not
visible over the decadal timescales considered. However, the
soil type plays an important role in the spatial repartition of
the current SOC stocks that need to be preserved. Studies of
SOC stocks and storage capacities should be complemented
by more holistic explorations of soil functioning and ecosys-
tem services.

This study provides a set of maps to give a more com-
plete picture of the issues related to carbon storage in soils
(carbon stocks, maximum SOC accrual, and realistic SOC
accrual over decadal timescales). Such maps have the poten-
tial to facilitate communication with land planners and stake-
holders by highlighting areas most worthy to preserve and
where carbon storage practices are likely to be the most effi-
cient over decadal timescales. The efficacy of such maps as
decision support tools should be explored via collaboration
projects with stakeholders.
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Appendix A

Table A1. List of soil properties collected at each soil profile and their measurement protocol.

Study type Soil property Unit Method

Field observation Slope % In situ operator’s assessment
Soil depth cm In situ operator’s assessment
Horizon textural class Type In situ operator’s assessment completed by NF X 31-107
Horizon compacity Type Knife test (ISO 25177: 2008)
Horizon rock fragment content % In situ operator’s assessment
Horizon hydromorphic features Type In situ operator’s assessment

Lab agronomic analysis Horizon pH – NF ISO 10390
Horizon organic matter g kg−1 NF ISO 10694
Horizon CaCO3 g kg−1 NF ISO 10693

Table A2. List of descriptors used to plot the SOC content curves for each soil type and land use: �1, the SOC content of the soil type at
maximal depth; �2, the SOC content at the surface; and �3, the depth at the half maximum of the SOC content (based on Mathieu et al.,
2015 and Jreich, 2018).

Land use Soil type (WRB) Soil type (RPF) �1, �2, �3,
(bottom SOC) (top SOC) (depth at the half

[g kg−1] [g kg−1] maximum of the
carbon content) [cm]

Cropland Calcaric Rendzic Leptosol Rendosol 17 31 17
Forest Calcaric Rendzic Leptosol Rendosol 22 74 16
Grassland Calcaric Rendzic Leptosol Rendosol 12 53 15
Cropland Calcaric Cambisol Calcosol 14 33 21
Forest Calcaric Cambisol Calcosol 17 62 18
Grassland Calcaric Cambisol Calcosol 14 54 15
Cropland Hypereutric Epileptic Cambisol Rendisol 19 38 13
Forest Hypereutric Epileptic Cambisol Rendisol 16 60 12
Cropland Hypereutric Cambisol Calcisol 10 24 17
Forest Hypereutric Cambisol Calcisol 22 64 21
Grassland Hypereutric Cambisol Calcisol 14 54 15
Cropland Eutric Cambisol Brunisol 8 18 21
Forest Eutric Cambisol Brunisol 8 45 16
Grassland Eutric Cambisol Brunisol 5 23 21
Forest Dystric Cambisol Alocrisol 4 31 15
Cropland Stagnosol Rédoxisol 10 21 19
Forest Stagnosol Rédoxisol 9 46 17
Grassland Stagnosol Rédoxisol 9 40 14
Cropland Gleysol Réductisol 16 26 16
Grassland Gleysol Réductisol 21 68 18
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Appendix B

B1 Details of model functioning

A depth-dependent SOC dynamic model using multilayer
soil modules was built to establish the time needed to reach
different levels of carbon storage in the soil. SOC is allo-
cated to three boxes (fast, slow, and stable) corresponding to
different SOC mineralization rates defined by Balesdent et
al. (2018) based on a meta analysis of changes in stable car-
bon isotope signatures at 55 grassland, forest, and cropland
sites in the tropical zone.

The mineralization factors associated with each box were
then corrected for temperate soils using correction factors de-
fined for the AMG model to account for not only the differ-
ence in environmental conditions (temperature and humid-
ity) between tropical and temperate, but also the differences
in pH, clay content, and CaCO3 between soil types. The cor-
rection factors linked to temperature and humidity are based
on Andriulo et al. (1999) and Saffih-Hdadi and Mary (2008).
The correction factors linked to pH, clay content and CaCO3
were previously established by Clivot et al. (2017) based on
the monitoring of N mineralization in 65 bare fallow soils
representative of arable cropping systems in France at a depth
of up to 150 cm. These corrections are in accordance with
recommendations from Rasmussen et al. (2018), for whom
soil organic matter (SOM) stabilization depends on not only
clay content, but also pH and exchangeable calcium for al-
kaline soils. The correction factors for the temperature (T ),
humidity (H ), clay content (A), pH, and CaCO3, as used in
the 2019 AMG model, were as follows:

f T =
25

1+ (25− 1) × e0.12×15 × e−0.12×T , (B1)

fH =
1

1+ 0.03× e−5.247×(P−PET)/1000 , (B2)

fA= e−2.519× 10−3
× clay, (B3)

f pH= e−0.112×(pH−8.5)2
, (B4)

fCaCO3 =
1

1+ (1.5× 10−3
× CaCO3)

, (B5)

with T being the mean annual temperature, P the mean an-
nual precipitation, and PET the potential evapotranspiration.

The total correction factor, f = f T ×fH ×fA×f pH×
fCaCO3, was calculated for the tropical sites from Bales-
dent et al. (2018) and for the temperate conditions in the
OPE region of the study (fBAL and fOPE respectively). The
corrected mineralization factors, k1corr and k2corr, were ob-

tained with the following equations:

k1corr = k1 ×
fOPE

fBAL
, (B6)

k2corr = k2 ×
fOPE

fBAL
. (B7)

For each soil type and land use, the initial carbon stocks
every 10 cm were again obtained by data interpolation with
the Jreich method (2018); they were distributed between the
three pools based on the depth-dependent allocation factors
defined by Balesdent et al. (2018) as follows:

C1init(i) = Cinit(i) × a1(i), (B8)
C2init(i) = Cinit(i) × a2(i), (B9)
C3init(i) = Cinit(i) × (1− (a1(i)+ a2(i))), (B10)

with Cinit being the initial carbon stock and a1 and a2 the
proportion of carbon in pool 1 and 2 at each depth i.

The incorporated soil carbon inputs at each depth i and
time step t were added as follows:

C1in(t, i) = INPUT(i) × α(i), (B11)
C2in(t, i) = INPUT(i) × (1−α(i)), (B12)

with α being the proportion of new carbon inputs that is allo-
cated to the fast carbon pool calculated from the steady-state
input equations (see Eqs. C19–C22 below).

The outputs at each time step were a function of the car-
bon stock at time step t and of the corrected mineralization
factors at each depth i as follows:

C1out(t, i)= C1(t, i) × (e−k1corr(i)×timestep
− 1), (B13)

C2out(t, i)= C2(t, i) × (e−k2corr(i)×timestep
− 1). (B14)

The change in soil carbon stock at each depth i between t
and t + 1 was defined as follows:

dC1(t, i)= C1out(t, i) + C1in(t, i), (B15)
dC2(t, i)= C1out(t, i) + C2in(t, i). (B16)

The soil carbon stocks at t + 1 were therefore defined as fol-
lows:

C1(t + 1, i) = C1(t, i) + dC1(t, i), (B17)
C2(t + 1, i) = C2(t, i) + dC2(t, i). (B18)

The corrected mineralization rates also led to the defini-
tion of carbon mean residence time as a function of depth
for each soil type (MRT = 1/k, see Table A2). SOC mean
residence times in the steady state depend on the physico-
chemical properties of the studied soil types: at our study
site, they range from 50–100 years in the topsoil and from
145–453 years underneath.

The model was initialized under the assumption that the
carbon stocks calculated at the different depths in 2018 were
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in a steady state. This assumption is justified on average by
a land occupation map from 1830 showing limited changes
in land use over the past 200 years (Dupouey et al., 2008).
Inverting the model in the steady state yielded the verti-
cal repartition of yearly C inputs necessary to keep the in-
put and output fluxes equal across the full profile. We de-
fined INPUTeq, the repartition of incorporated C inputs every
10 cm in the steady state, as follows:

C1eq (i)= INPUT(i)×
α(i)
k1corr

, (B19)

C2eq (i)= INPUT(i)×
(1−α)
k2corr

. (B20)

The two previous equations are used to define α as follows:

α(i)=
a1×k1corr
a2×k2corr

1+
(
a1×k1corr
a2×k2corr

) . (B21)

This estimate of the yearly inputs did not distinguish between
surface inputs and inputs by the root systems. The model fur-
ther assumed that there was no vertical redistribution of SOC
between the layers following this initial allocation (Balesdent
et al., 2018). Then, the allocation and mineralization rates
of these inputs were used at each depth layer to infer the
mean residence time of the C inputs per land use: this sec-
ond definition of the mean residence time depends on both
the physico-chemical properties of the soil and the vertical
repartition of inputs.
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Appendix D

Figure D1. Local uncertainty in SOC linked to the non-explicit
repartition of soil types within the cartographic units. As an ex-
ample, in zone 1, which is covered in forests, the represented soil
types are 80 % Eutric Cambisol (157 tC ha−1) and 20 % Stagnosol
(172 tC ha−1). In zone 2, which is under grassland, the represented
soil types are 80 % Stagnosol (161 tC ha−1) and 20 % Gleysol
(333 tC ha−1). For this reason, the local variability in SOC stocks
is higher in zone 2 than zone 1.
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Appendix E

Table E1. SOC stocks and maximum storage capacity above and below 30 cm (below 30 cm is represented in bold).

Median SOC stocks in 2018 (tC ha−1) Theoretical Theoretical Maximum SOC accrual (tC ha−1)
maximum SOC maximum SOC

stocks stocks
(75th percentile) (88th percentile)

Cropland Grassland Forest All land uses All land uses Cropland Grassland Forest

Calcaric Rendzic 70 155 138 155 170 85 60 17
Leptosol 8 12 11 12 13 5 6 2

Calcaric 81 155 123 155 180 75 41 32
Cambisol 19 36 24 36 42 17 16 12

Hypereutric 78 112 97 112 122 34 15
Epileptic 14 17 10 17 18 3 7
Cambisol

Hypereutric 63 142 104 142 180 78 28 38
Cambisol 40 86 56 86 109 46 32 30

Eutric Cambisol 59 130 119 130 146 71 59 11
43 64 38 64 72 22 45 27

Dystric 101 76 101 117 25
Cambisol 68 44 68 79 24

Stagnosol 64 142 76 142 180 76 50 28
101 143 44 143 182 42 74 85

Gleysol 78 187 114 187 209 110 32
202 289 58 289 324 87 111

Table E2. Simulated SOC accrual in tC ha−1 in the different soil types and land uses (C: cropland, F: forest, and G: grassland) after 1, 10,
25, 50, 200, 1000, and 5000 years of a model run under a scenario of additional inputs of 0.5 tC ha−1 yr−1 for forests, 1.0 tC ha−1 yr−1 for
grasslands, and 1.5 tC ha−1 yr−1 for croplands. Constant temperature is given in the top part of the table.

Years Calcaric Rendzic Calcaric Cambisol Hypereutric Hypereutric Eutric Cambisol Dystric Stagnosol Gleysol
Leptosol Epileptic Cambisol Cambisol

Cambisol

C G F C G F C F C G F C G F F C G F C G

1 1.5 1.0 0.5 1.5 1.0 0.5 1.5 0.5 1.5 1.0 0.5 1.5 1.0 0.5 0.5 1.5 1.0 0.5 1.5 1.1
10 12.6 8.6 4.6 12.5 8.6 4.6 12.9 4.6 12.6 8.7 4.5 13.1 8.8 4.6 4.6 12.8 8.8 4.6 12.3 8.9
25 23.7 16.2 8.7 22.9 15.8 8.4 24.5 8.6 23.7 16.2 8.5 26.0 17.3 9.1 9.4 23.6 16.4 8.7 21.3 15.5
50 32.6 22.2 11.9 30.6 21.0 11.2 34.3 11.9 32.2 21.9 11.5 37.5 24.8 13.0 14.4 33.1 23.1 12.2 27.6 20.1
100 39.1 26.3 14.0 36.0 24.4 13.0 40.9 14.0 38.2 25.7 13.5 46.5 30.3 15.9 18.8 40.6 27.9 14.6 32.7 23.3
200 45.5 30.0 16.0 41.8 27.8 14.9 46.7 15.7 44.2 29.4 15.4 54.0 34.5 18.0 22.1 49.1 32.7 16.8 40.1 27.6
5000 84.5 52.1 27.4 78.9 48.4 26.4 92.4 27.6 98.5 60.1 32.1 133.8 69.6 36.2 50.0 142.3 77.9 36.1 118.5 64.1

SOC accrual after 25 years for a temperature increase of 1.0 °C by 2050 (RCP 4.5 scenario)

25 21.5 13.6 5.5 20.2 12.5 5.3 22.1 6.2 21.4 13.0 5.8 24.1 15.5 6.5 8.0 21.3 13.8 5.9 17.8 10.5

SOC accrual after 25 years for a temperature increase of 1.3 °C by 2050 (RCP 8.5 scenario)

25 20.8 12.9 4.5 19.4 11.4 4.3 21.4 5.5 20.7 12.1 5.0 23.5 14.9 5.8 7.5 20.5 13.0 5.1 16.7 9.0
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Appendix F

Figure F1. SOC stocks and maximum SOC additional storage capacity, with lower and upper confidence intervals as estimated by the
bootstrap method. The SOC stock in the region of study ranges from 2.4–5.3 MtC and the maximum SOC additional storage capacity from
1.2–4.1 MtC.
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Figure F2. SOC accrual after 25 years under a scenario of additional C inputs dependent on land use, (a) with temperatures staying at their
2018 level and (b) with a 1.0 °C increase in temperature over 25 years, increasing the C mineralization rates according to the correction
factors of the AMG model. The attenuation in SOC accrual due to increased mineralization rates is (0.49–0.57) / 0.57= 14%. The 1.0 °C
increase in temperature was obtained from model simulations of mean annual temperatures by the Météo France ALADIN63_CNRM-CM5
model under scenario RCP4.5 within an 8 km radius area around Bure (55087), comparing the intervals of 2046–2055 and 2009–2019. This
information is sourced from DRIAS, Météo France, CERFACS, IPSL.

Appendix G

Figure G1. Estimation of the current incorporated C inputs in croplands via a yield-based allocation coefficients method from Bolinder et
al. (2017) using agricultural yield and amendment values based on compiled reports from 2010–2019 in the region of study. The allocation
coefficients were derived from the literature (harvest index and carbon content in plant parts are from Bolinder et al., 2007; organic matter
content in manure from Houot et al., 2014; root : shoot ratios in croplands from Jackson et al., 1996; and incorporation coefficients form
Girard et al., 2011). Estimated C inputs in the croplands in the region of study are 1.4 tC ha−1 yr−1, with a mean winter wheat yield value
of 5.53 t dry matter ha−1 yr−1 and an amendment value of 2.13 t dry matter ha−1 yr−1. The average C inputs in the steady state obtained
via model inversion in the croplands of the region of study, weighted by the proportion of each soil type in the cropland areas, amount to
1.7 tC ha−1 yr−1.
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Appendix H

Figure H1. Carbon saturation curves from Hassink as a function of depth. The Hassink equation was established empirically on the basis
of 20 Dutch grassland soils considered to be in the stationary state, as follows: Csat = 4.09+ 0.37× (Clay + fineSilt) (%), where Csat is the
theoretical carbon saturation concentration in the fine fraction in g kg−1. The Hassink equation provides unrealistic profiles of the maximum
SOC content distribution in the fine fraction at depth below 30 cm, especially in the Hypereutric Cambisol, Eutric Cambisol, and Stagnosol,
as the equation only accounts for soil texture and does not consider the biotic controls on C inputs and SOC decomposition rates. As a
comparison, the 75th-percentile fit represents a theoretical maximum SOC content in both the fine fraction and the particulate organic matter.
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