

Supplement of

Biochar reduces early-stage mineralization rates of plant residues more in coarse-textured soils than in fine-textured soils – an artificial-soil approach

Thiago M. Inagaki et al.

Correspondence to: Thiago M. Inagaki (thiago.inagaki@nibio.no) and Franziska B. Bucka (bucka@em.uni-frankfurt.de)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1: Maximum water hold capacity of artificial soils. Different uppercase letters represent significant differences among the soils by the LSD test at p<0.05. Boxplots represent the third quartile, the median, and the first quartile range of the data

Property	Value
Specific Surface Area (m ² g ⁻¹) ^a	402.95
Ash content (%) ^b	1.1
C content (%) ^c	95.6
N content (%) ^c	3.9
H (%) ^c	0.9
Total Inorganic C (%) ^d	<0.1
H/C ratio (molar)	0.11
O/C ratio (molar)	0.02
pH in CaCl ₂ ^e	7.7
Electrical Conductivity (µS cm ⁻¹)	87

Table S1: Biochar general characterization.

a: DIN ISO 9277, b: DIN 51719: 1997-07, c: DIN 51732: 2014, d: DIN 51726: 2004-06, e: DIN ISO 10390:2005-12, f: BGK III. C2: 2006-09